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Abstract: It is proved that in the Voronoi model for percolation in dimension 2 and 3,
the crossing probabilities are asymptotically invariant under conformal change of metric.

To define Voronoi percolation on a manifoldM , you need a measureµ, and a
Riemannian metricds. Points are scattered according to a Poisson point process on
(M, µ), with some densityλ. Each cell in the Voronoi tessellation determined by the
chosen points is declaredopenwith some fixed probabilityp, andclosedwith probability
1−p, independently of the other cells. The above conformal invariance statement means
that under certain conditions, the probability for an open crossing between two sets is
asymptotically unchanged, asλ → ∞, if the metricds is replaced by any (smoothly)
conformal metricds′. Additionally, it is conjectured that ifµ andµ′ are two measures
comparable to the Riemannian volume measure, then replacingµ by µ′ does not effect
the limiting crossing probabilities.

1. Introduction

Letγ be a simple closed curve inC = R2, and letD be the closed topological disk which
it bounds. Pick two disjoint arcsγ1, γ2 ⊂ γ. Let ε > 0 be small, and letεZ2 denote the
square grid rescaled byε. Fix somep ∈ [0, 1] and declare each edge inεZ2 to beopen
with probabilityp, andclosedwith probability 1− p, independently of the other edges.
This is just the standard bond percolation model on the square grid; for background and
history, see [9]. LetPCε,p(D, γ1, γ2) be the probability that there is a path of open edges
in the subgraph ofεZ2 lying in D that connects a vertex which has an edge crossing
γ1 to a vertex which has an edge crossingγ2. This is called thecrossing probabilityfor
(D, γ1, γ2) in the bond percolation model with parametersε, p.

The main interest is in the limit asε → 0. H. Kesten [10] proved that the critical
probabilitypc (the leastp above which there is an infinite open connected component
with probability 1) for bond percolation on the square lattice is 1/2, and that
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0 < lim inf
ε→0

PCε,pc (D, γ1, γ2) ≤ lim sup
ε→0

PCε,pc (D, γ1, γ2) < 1.

Although not proved yet, it is widely believed that the limit

PC0,p(D, γ1, γ2) = lim
ε→0

PCε,p(D, γ1, γ2),

exists forp = pc. It is known that forp 6= pc the limits exist, andPC0,p(D, γ1, γ2) is 0
if p < pc and 1 ifp > pc.

Aizenman, Langlands, Pouliot and Saint-Aubin have conjectured that the limits
PC0,p(D, γ1, γ2) are conformally invariant. More precisely,

Conjecture 1.1 ([12]). Letf : D → D̂ be a homeomorphism ofD onto another topo-
logical diskD̂ ⊂ C, and suppose thatf is conformal in the interior ofD. Then

PC0,pc
(D, γ1, γ2) = PC0,pc

(
f (D), f (γ1), f (γ2)

)
.

This conjecture motivated the current work. In [11] numerical data from computer
simulations has been collected, estimating the crossing probabilities of rectangles. The
discussion of these results led to the above conjecture. Subsequently, J. L. Cardy [6]
found a heuristic argument supporting this conjecture, and derived (using arguments
outside the scope of mathematics) a formula for the limiting crossing probabilities, in
terms of the cross ratio of the images of the endpoints ofγ1, γ2 under the conformal map
from D to the unit disk. Cardy’s formula matched the numerical data quite well. Later,
Langlands et. al. [12] have obtained more precise numerical data, giving further support
to the conjecture and to Cardy’s formula.

Although the current work does not settle the conjecture, it does prove a related
conformal invariance property, which, in our view, is not less important. In order to
discuss it, the Voronoi percolation model must be introduced. The precise definitions
are given in Sect. 2, but a loose description will be given here.

Let M be a smooth manifold, and letds be a Riemannian metric onM . Let µ be a
measure onM that is comparable to vol, the Riemannian volume measure onM . The
most interesting case isµ = vol. Take some parametersp ∈ [0, 1], λ > 0. Now letω
be a Poisson point process on (M, µ), with densityλ. Each cell in the Voronoi tiling
with nucleiω is declaredopenwith probabilityp, andclosedotherwise. Then one looks
at crossing probabilities inside the union of all open tiles. The measureµ plays a role
in the choice of the nucleiω, and the metricds is instrumental in defining the Voronoi
tessellation. Our main result is that, in dimensiond = 2 or 3, asymptotically, the crossing
probabilities are unchanged if the metricds is replaced by any other smoothly conformal
metric.

Note that the effect of a mappingf is to change both the measureµ and the metric
ds. The main advantage of the Voronoi percolation model is that it permits a separate
treatment of the effects of the change inµ and the change inds. We conjecture that in two
dimensionsµ may be changed to any comparable measure, without effecting the limiting
crossing probabilities. It is shown that this Density Invariance Conjecture and our main
result imply the analog of Conjecture 1.1 in the Voronoi model. Although this seems
almost tautological at first sight, there is some work involved in dealing with some
sticky boundary issues. Some numerical evidence supporting the Density Invariance
Conjecture in dimension two are presented here. The simulations also suggest that the
limiting crossing probabilities for Voronoi percolation in dimension 2 are the same as
in theZ2 model.
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The impression that one might get from Conjecture 1.1 is that the conformal in-
variance has something to do with analyticity, since conformal maps are analytic. In
fact, as the physics literature suggests [2], this impression is erroneous. Our main result
shows that the conformal invariance is much more general, and holds outside the realm
of analytic maps and dimension 2.

The Voronoi percolation model has been introduced into the mathematical literature
by M. Q. Vahidi-Asl and J. C. Wierman [15], in the context of first passage percolation.
Here are some useful properties of this model:

• Rotation invariance.
• Duality: in dimension 2 andp = 1/2, the union of open tiles has the same stochastic

behavior as the set of closed tiles. Based on this, A. Zvavitch [16] has shown that there
is no unbounded open cluster (component) for Voronoi percolation withp = 1/2 in
R2.

• Generality: the model makes sense in the setting of Riemannian manifolds. In partic-
ular, the theory of Voronoi percolation in the hyperbolic plane is interesting [4].

• Separation of measure and metric, as discussed above.
• Gradual refinement: one may pass from a configuration to a denser configuration

by inserting new random points one by one. In contrast, when refining a grid, it is
necessary to make drastic changes.

The reader may wish to look into the work of M. Aizenman [1], who constructs a
continuous limit of percolation models using Voronoi percolation.

The plan of the paper is as follows. Sect. 2 gives precise definitions, and the statement
of the main results. A brief outline of the proof is sketched in Sect. 3, while Sects. 4
through 9 provide the details. Of these, Sects. 4 through 6 are geometric in nature,
and Sects. 7 through 8 are probabilistic. Sect. 9 assembles the pieces together and
completes the proof. Finally, Sect. 10 introduces the Density Invariance Conjecture,
presents numerical evidence for it in dimension two, and shows that it implies the analog
of Conjecture 1.1 in the Voronoi percolation setting.

2. The Voronoi Percolation Model and Statement of the Main Result

Throughout the paper,M will be a smooth Riemannian manifold,d will be the dimension
of M , andds will denote the Riemannian metric onM . Let d0(·, ·) be the distance
function associated with (M, ds). Also associated withds is the natural volume measure,
vol. Let µ be measure onM comparableto vol, which means that there is a constant
c > 0 such thatc−1 vol(A) ≤ µ(A) ≤ c vol(A) for every measurableA ⊂ M .

Given parametersλ > 0, p ∈ [0, 1], one defines the Voronoi percolation process
on (M, ds, µ, λ, p), as follows. Let� be the space of all subsetsω of M such that the
intersection ofω with any compact subset ofM is finite. There is a (Borel) probability
measurePλ on � given by the Poisson point process on (M, µ) with densityλ. The
measurePλ is characterized by the formula,

Pλ

(|ω ∩ A| = k
)

=

(
λµ(A)

)k
k!

exp
(− λµ(A)

)
, (2.1)

for every measurableA (with finite measure) and every integerk, and by the requirement
that |ω ∩ A1|, . . . , |ω ∩ An| are independent random variables whenA1, . . . , An are
disjoint measurable sets. Here, and below, for any setX, the cardinality ofX will be
denoted|X|.
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The elementsω ∈ � are calledconfigurations. Let ω be some configuration. Given
anyz ∈ ω, its Voronoi tileT(z) = T(ω, ds, z) is the set of all pointsw ∈ M such that
d0(w, z) ≤ d0(w, z′) for all z′ ∈ ω. The collection of all Voronoi tiles is theVoronoi
tiling of ω, and will be denotedT(ω, ds). It is indeed a tiling ofM , except for the trivial
case (which will henceforth be ignored) whereω = ∅.

In Voronoi percolation, each tile ofT(ω, ds) is declaredopenwith probabilityp, and
closedwith probability 1−p, independently, and one studies the connected components
of the union of all open tiles. We now make an equivalent, slightly different and more
precise, formulation. Let̂� = � × �. ThenPλ,p is defined to be the product measure
Ppλ × P(1−p)λ on �̂. Givenω = (ωo, ωc) ∈ �̂, the setωo will be called the set of open
nuclei, andωc is the set of closed nuclei. The projection mapπ : �̂ → � is defined by
π(ωo, ωc) = ωo ∪ ωc. If πω̂ = ω, thenω̂ will be called acoloring of ω. The elements of
�̂ are calledcolored configurations.

Let τ ∈ �̂ be distributed according toPλ, and letτo be a random subset ofτ , chosen
so that for anyx ∈ τ the probability forx ∈ τo is p, and for differentx, x′ ∈ τ the
eventsx ∈ τo, x′ ∈ τo are independent. Then it is not hard to verify that (τo, τ − τo)
is distributed according toPλ,p. This means that a legitimate way of generating aPλ,p-
randomω̂ is by first selecting aPλ randomω and then selecting an appropriate random
coloring of it. We shall make use of these two distinct ways of generating aPλ,p-random
colored configuration.

Given a colored configurationω ∈ �̂, the tiles inT(ω̂, ds) = T(πω̂, ds) which belong
to open nuclei are calledopentiles, and the other tiles areclosedtiles.

We soon define thecrossingevents and the crossing probabilities. Perhaps the clean-
est situation to deal with is one in which there is no boundary:M is compact (and bound-
aryless), and one is looking for percolation in homotopy classes; that is, the “crossing”
event is the event that there is a closed curve, contained in the union of open tiles, which
is in a prescribed homotopy class. However, this is not the situation prevalent in the
literature. The definitions below are not the most natural ones, with respect to the way
the boundary is dealt with. They have been adopted because they make the proofs easier
(that is, possible), and since we feel that it is better to leave the boundary issues to future
investigations.

Let M ′ be a compactd-dimensional set inM , which has smooth boundary, and let
S1, S2 ⊂ M ′ be two open disjoint sets, with smooth boundary. Givenω = (ωo, ωc) ∈ �̂,
let T′

O(ω, ds) be the union of open tiles ofT(ω, ds) which have nuclei inM ′, and let
C = C(M, M ′, S1, S2, ds) ⊂ �̂ be the event that there is a connected component of
T′

O(ω, ds) which intersects bothωo ∩ S1 andωo ∩ S2. If ω ∈ C, we say that there is a
crossing fromS1 to S2 in (M, M ′, ω, ds).

Now suppose thatu : M → R is a smooth function, and consider the metriceuds,
which is conformal to our original metricds.

2.1. Conformal invariance theorem for percolation. Suppose thatd = dim(M ) = 2
or 3. LetI ⊂ (0, 1) be a compact interval. Then

lim
λ→∞

Pλ,p

(
C (M, M ′, S1, S2, ds

)− C (M, M ′, S1, S2, e
uds
) )

= 0,

uniformly forp ∈ I.

This means that the set of configurationsω ∈ �̂ for which there is a crossing with
respect to the metricds, but not with respect to the conformal metriceuds has measure
tending to 0 asλ → ∞, and the convergence is uniform inp as long asp is kept away
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from 0 and 1. In particular, whenλ is large, the probability ofC (M, M ′, S1, S2, ds
)

is
approximately the same as the probability ofC (M, M ′, S1, S2, e

uds
)
, and the same is

true for intersections of such events.
Actually, the theorem is true even withI = [0, 1]. To prove this one needs to show

that for some constantδ > 0, we have

lim
λ→∞

Pλ,p

(
C (M, M ′, S1, S2, ds

) )
= 0,

uniformly for p ∈ [0, δ], and

lim
λ→∞

Pλ,p

(
C (M, M ′, S1, S2, ds

) )
= 1,

uniformly for p ∈ [1 − δ, 1]. These facts, which are actually valid in greater generality,
are not hard. (The analogous statements in the discrete setting are certainly well known.)
But because the methods involved are almost disjoint from those of this paper, and for
the sake of keeping the size of the article reasonable, the proof will be delayed to some
future work.

The point about the limit in Theorem 2.1 being uniform is that one may letp depend
onλ and tend topc asλ → ∞, and still the theorem applies. Any value can be prescribed

for limλ→∞ Pλ,p

(
C (M, M ′, S1, S2, ds

) )
, if p is an appropriate function ofλ. This

issue is even more important in dimension 3, since it has not been proved in any model

that the limit limλ→∞ Pλ,pc

(
C (M, M ′, S1, S2, ds

) )
is not always 1 or 0.

We now discuss a variant of the theorem involving percolation in homotopy classes.
Let α be a collection of homotopy classes ofM ′ and letC(M, M ′, α, ds) ⊂ �̂ denote
the event that there is a path inT′

O(ω, ds) which realizes a homotopy class inα.

2.2 Conformal invariance theorem for percolation in homotopy classes. Sup-
pose thatd = dim(M ) = 2 or 3. LetI ⊂ (0, 1) be a compact interval. Then

lim
λ→∞

Pλ,p

(
C (M, M ′, α, ds

)− C (M, M ′, α, euds
) )

= 0,

uniformly forp ∈ I.

The same proof applies to both theorems.

3. Brief Outline of the Proof of Theorems 2.1 and 2.2

Consider a configurationω ∈ �, and the Voronoi tilingsT0, T1 produced by using the
two metricsds andeuds. A situation where there are two neighboring tiles inT0 and the
corresponding tiles inT1 do not neighbor is called adefect. The first step is to analyse
the geometry of configurations that are defect prone. We shall find that for compact sets
in dimensiond, in configurations with approximatelynd cells, the typical number of
defects is in the order ofnd−2. In particular, ford = 2, the expected number of defects
is finite.

It turns out that the best way to deal with the defects is to think of a typical configu-
ration as a defect-free configuration, with defects added on top of it by an independent
(sort of) Poisson process, which has small density. In practice, much effort is required
to make this philosophy work.



80 I. Benjamini, O. Schramm

In dimensions 2 and 3, defects turn out to be rare enough so that they do not effect
percolation. The effect of the defects added on top of a defect-free configuration is
majorized by changing the status of all tiles intersecting sufficiently large spherical
shells about the location of the defect, from open to closed, say. We shall need quite
delicate tail estimates for the number of tiles intersecting such spherical shells. Using
these estimates, and a second moment argument, it will follow that (ford = 2, 3), with
high probability, these haphazard defects will not destroy percolation.

Almost all of the proof does not assumed = 2, 3, only at the very end we shall apply
this restriction. Perhaps this might be valuable in the future, in extending the results to
higher dimensions. From time to time, remarks will be made, hinting how the proof may
be simplified if one restricts to the caseM = R2.

4. The Geometry of Defects

We consider some fixed configurationω ∈ �. Recall thatd0(·, ·) denotes the metric onM
corresponding to the Riemannian metricds, and letd1(·, ·) be the metric corresponding
to the conformal Riemannian metriceuds. Let T0(ω) be the Voronoi tessellation for
ω with respect tod0(·, ·), and letT1(ω) be the Voronoi tessellation obtained by using
the metricd1(·, ·). A defectis a pair of pointsp1, p2 ∈ ω such that the Voronoi tiles
T0(p1), T0(p2) are adjacent, but the corresponding tilesT1(p1), T1(p2) are not. That is,
T0(p1) ∩ T0(p2) 6= ∅ = T1(p1) ∩ T1(p2).

Lemma 4.1. Let K be a compact subset ofM . There is a constantC = C(u, K) > 0
with the following property. Suppose thatq, p1, p2 ∈ K and r ∈ (

0, C−1
)
, satisfy

d0(q, p1) = d0(q, p2) = r. Then there is aq1 ∈ M satisfying

(1) d0(q1, q) < Cr2,
(2) d1(q1, p1) = d1(q1, p2), and
(3) |d1(q1, p1) − d1(q1, p)| < Cr3, for anyp ∈ M satisfyingd0(q, p) = r.

One fact the lemma tells us is that a small ball in one metric is very close to a ball in
a conformal metric. In general, the two balls should be allowed to have different centers,
in order to obtain the correct order of approximation.

In the particular situation where (M, ds) is a domain in the plane with the Euclidean
metric and the metriceuds is the pullback toM of the Euclidean metric under a conformal
mapf : M → C, the lemma is significantly easier. One may takeq1 as the center of
the circle which is the image of the circle|z − q| = r under a M̈obius transformation
which agrees withf at q, p1, p2. ThenC is bounded by a constant times the maximum
modulus of the Schwarzian derivative off nearq.

Proof. Since the restriction ofu to K is bounded, and the lemma is not effected if we
add a bounded constant tou, we assume without loss of generality thatu(q) = 0.

Setut = tu, and letdt(·, ·) be the metric induced by the Riemannian metriceutds.
Thendt is a one parameter family of metrics, interpolating betweend0 andd1. We shall
first solve the differential problem; that is, a tangent vectorv will be found such that for
a pathq(t) in M satisfyingq(0) = q, q′(0) = v, the conditions

(1’) |v| < Cr2,
(2’) d

dtdt

(
q(t), p1

)
= d

dtdt

(
q(t), p2

)
at t = 0, and

(3’)
∣∣ d
dtdt

(
q(t), p1

)− d
dtdt

(
q(t), p

)∣∣ < Cr3 at t = 0, for everyp ∈ M satisfying
d0(q, p) = r,
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are satisfied. It will then be quite easy to get the original statement from the differential
statement.

Our first goal is to estimate the derivative∂∂tdt(q, p1) at t = 0. Sincer is as small as
we wish, we may assume that any geodesic segment joining two points whose distance
is at most 2r is unique, in any of the metricsdt. Let γt be the geodesic segment for
the metricdt joining q andp1, and suppose that eachγt is parameterized according
to arc-length. Setg(x, y) = lenghtdx

(γy), the length ofγy in the metricdx. Theng is
smooth (since geodesics can be obtained by solving an ODE on the tangent bundle), and

dt(q, p1) = g(t, t). (4.1)

Because the curveγ0 is length minimizing in the metricd0, the equation

∂

∂y
g(0, 0) = 0, (4.2)

holds. Therefore, (4.1) implies

∂

∂t

∣∣∣∣
t=0

dt(q, p1) =
∂

∂x
g(0, 0) =

∂

∂x

∣∣∣∣
x=0

lenghtdx
(γ0). (4.3)

Becauseγ0 is parameterized according to arclength, we have,

lenghtdx
(γ0) =

∫ r

0
exu(γ0(s)) ds.

Together with (4.3), this gives,

∂

∂t

∣∣∣∣
t=0

dt(q, p1) =
∫ r

0
u
(
γ0(s)

)
ds. (4.4)

Using local coordinates, andu(q) = 0, the following estimates are obtained,

γ0(s) = q + sγ′
0(0) +O(s2),

u
(
γ0(s)

)
= s∇u(q) · γ′

0(0) +O(s2).

Substituting this into (4.4) yields,

∂

∂t

∣∣∣∣
t=0

dt(q, p1) =
1
2
r2∇u(q) · γ′

0(0) +O(r3). (4.5)

If v is any tangent vector atq, andq(t) is a path inM with q′(t) = v, then we have

d

dt

∣∣∣∣
t=0

d0
(
q(t), p1

)
= −v · γ′

0(0),

because−γ′
0(0) is the gradient of thed0-distance fromp1 atq. Hence, it follows from (4.5)

that
d

dt

∣∣∣∣
t=0

dt

(
q(t), p1

)
=

d

dt

∣∣∣∣
t=0

d0
(
q(t), p1

)
+

d

dt

∣∣∣∣
t=0

dt

(
q, p1

)
= −v · γ′

0(0) +
1
2
r2∇u(q) · γ′

0(0) +O(r3).

(4.6)
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Suppose thatv has the form

v =
1
2
r2∇u(q) + O(r3). (4.7)

Then we getddtdt

(
q(t), p1

)
= O(r3). The same would be equally true ifp1 is replaced by

anyp such thatd0(q, p) = r, because the above expression forv does not depend onp1.
Consequently, (1’) and (3’) would be satisfied for an appropriately chosenC = C(u, K).
So all that remains for the solution of the differential problem is to find theO(r3) term
in the expression forv, which would guarantee (2’).

Let βt be the geodesic segment joiningq and p2 in the metricdt, parametrized
according to arc-length. We use the expression (4.4) and the corresponding expression
with β andp2 replacingγ andp1, to get,

∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
=
∫ r

0

(
u
(
γ0(s)

)− u
(
β0(s)

))
ds

=
∫ r

0
∇u
(
β0(s)

) · (γ0(s) − β0(s)
)
ds +

∫ r

0
O
(
|γ0(s) − β0(s)|2

)
ds.

(4.8)

Let αw(s) denote the geodesic starting atαw(0) = q with initial directionα′
w(0) = w.

Then αw(s), α′
w(s) and α′′

w(s) are smooth functions ofw and s. Consequently, for
s ∈ [0, r],

γ0(s) − β0(s) = O
(
r|γ′

0(0) − β′
0(0)|), (4.9)

γ′′
0 (s) − β′′

0 (s) = O
(|γ′

0(0) − β′
0(0)|). (4.10)

Using this in (4.8), gives,

∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
=
∫ r

0
∇u(q) · (sγ′

0(0) − sβ′
0(0)
)
ds

+
∫ r

0
∇u(q) · (γ0(s) − sγ′

0(0) − β0(s) + sβ′
0(0)
)
ds

+
∫ r

0

(
∇u
(
β0(s)

)− ∇u(q)
)

· (γ0(s) − β0(s)
)
ds

+ O
(
r3|γ′

0(0) − β′
0(0)|2)

=
1
2
r2∇u(q) · (γ′

0(0) − β′
0(0)
)

+
∫ r

0
∇u(q) · (γ0(s) − sγ′

0(0) − β0(s) + sβ′
0(0)
)
ds

+ O
(
r3|γ′

0(0) − β′
0(0)|) .

(4.11)

Set
h(s) = γ0(s) − sγ′

0(0) − β0(s) + sβ′
0(0).
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Note thath(0) = h′(0) = 0, andh′′(s) = γ′′
0 (s) − β′′

0 (s), which isO
(|γ′

0(0) − β′
0(0)|),

according to (4.10). Therefore,

h(s) = O
(
r2|γ′

0(0) − β′
0(0)|), (4.12)

for s ∈ [0, r]. Now use this in (4.11),

∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
=

1
2
r2∇u(q) · (γ′

0(0) − β′
0(0)
)

+
∫ r

0
∇u(q) · h(s) ds + O

(
r3|γ′

0(0) − β′
0(0)|)

=
1
2
r2∇u(q) · (γ′

0(0) − β′
0(0)
)

+ O
(
r3|γ′

0(0) − β′
0(0)|) .

(4.13)
Let A be theO

(
r3|γ′

0(0) − β′
0(0)|) term, that is,

A =
∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
− 1

2
r2∇u(q) · (γ′

0(0) − β′
0(0)
)
. (4.14)

Choose,

v =
1
2
r2∇u(q) + A

γ′
0(0) − β′

0(0)
|γ′

0(0) − β′
0(0)|2 , (4.15)

and, as before, letq(s) be a path satisfyingq(0) = q andq′(0) = v. Then

∂

∂s

∣∣∣∣
s=0

(
d0(q(s), p1) − d0(q(s), p2)

)
= −v · γ′

0(0) +v · β′
0(0)

= −1
2
r2∇u(q) · (γ′

0(0) − β′
0(0)
)− A

= − ∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
,

by (4.14). Consequently,

d

dx

∣∣∣∣
x=0

(
dx(q(x), p1) − dx(q(x), p2)

)
=

∂

∂s

∣∣∣∣
s=0

(
d0(q(s), p1) − d0(q(s), p2)

)
+

∂

∂t

∣∣∣∣
t=0

(
dt(q, p1) − dt(q, p2)

)
= 0,

which shows that (2’) holds. SinceA is O
(
r3|γ′

0(0) − β′
0(0)|), the definition (4.15) of

v satisfies (4.7). Hence (1’) and (3’) are still satisfied, as we have seen above. This
completes the solution of the differential problem.

To solve the original problem, for every pointq∗ and everyt ∈ [0, 1], definev(q∗, t)
as in (4.15), but with the metricdt replacingd0 and the pointq∗ replacingq. Let q(t) be
the solution of the initial value problemq(0) = q, q′(t) = v

(
q(t), t

)
, and setq1 = q(1).

(Becausev
(
q(t), t

)
= O(r2), r < C−1, andq ∈ K, by an appropriate choice of the

constantC it is guaranteed that this initial value problem has a solution in the interval
[0, 1]. The essential point here is thatq(t) stays in a compact subset ofM .) Then it is
easy to see that (1) and (2) hold. Verifying (3) is just slightly harder, because (3’) was
obtained only for pointsp satisfyingd0(q, p) = d0(q, p1), and these are generally not the
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points satisfyingdt(q(t), p
)

= dt(q(t), p1
)
. To deal with that, start with anyp satisfying

d0(q, p) = r. At every pointz let w(z, t) be the direction atz of the geodesic for the
metricdt that goes fromz to q(t). Let p(t) satisfyp(0) = p and

p′(t) =

(
∂

∂s

∣∣∣∣
s=t

(
ds

(
q(s), p1

)− ds

(
q(s), p(t)

)))
w
(
p(t), t

)
.

Thendt

(
q(t), p(t)

)
= dt

(
q(t), p1

)
for all t ∈ [0, 1]. Hence,d1

(
q1, p(1)

)
= d1(q1, p1). By

the equivalent of (3’) att, |p′(t)| = O
(
r3
)
. Sod0

(
p(1), p

)
= O

(
r3
)
, which gives

d1(q1, p) − d1(q1, p1) = d1(q1, p) − d1
(
q1, p(1)

)
= O

(
r3
)
.

This implies (3), and completes the proof. �

Notation. Suppose thatq, z are points inM . If there is a unique shortest geodesic
segment fromq to z, in the metricd0, then the direction atq of that geodesic will be
denotedNq(z). When working in local coordinates,Nq(z) can be thought of as a unit
vector inRd. We may also think ofNq(z) as a unit vector inTqM , the tangent space to
M at q.

Note that for any compactK ⊂ M there is anε > 0 such thatNq(z) is well defined
whenq ∈ K andd0(q, z) < ε.

The following lemma will help us prove that defects are rare.

Lemma 4.2. LetK be a compact subset ofM . There is a constantC = C(M, ds, u, K)
> 0such that the following holds. Letω ∈ �, and consider the two Voronoi tessellations,
T0 = T0(ω), T1 = T1(ω), obtained by using the metricsd0 andd1. Suppose thatp1, p2 ∈
K ∩ ω form a defect (that is,T0(p1) ∩ T0(p2) 6= ∅ = T1(p1) ∩ T1(p2)) and assume
that T0(p1) ∩ T0(p2) ⊂ K. Let q be the point inT0(p1) ∩ T0(p2) which maximizes
d0
(
q, ω − {p1, p2}

) − d0(q, p1), and setr = d0(q, p1), r′ = d0
(
q, ω − {p1, p2}

)
. Let

Z = {z1, . . . , zk} be the set of pointsz ∈ ω − {p1, p2} such thatd0(q, z) = r′. If
r < C−1, then

(1) r′ ≤ r + Cr3, and
(2) the vectors{Nq(p1), Nq(p2), Nq(z1), . . . , Nq(zk)} are affinely dependent.

Proof. TakeC to be larger than the constant in Lemma 4, and assumer < C−1. Let
q1 be the point described in that lemma, and setr1 = d1(q1, p1) = d1(q1, p2). Since
q1 /∈ ∅ = T1(p1) ∩ T1(p2), there is a pointz0 ∈ ω − {p1, p2} with d1(q1, z0) < r1.
We know thatd0(q, z0) ≥ r andd0(q, q1) = O(r2). Hence, there is a pointz′

0 on the
d1-geodesic segment fromz0 to q1 that satisfiesd0(q, z′

0) = r. Then, according to 4. (3),
d1(q1, z

′
0)+O(r3) ≥ d1(q1, p1) > d1(q1, z0). But sinced1(q1, z0) = d1(q1, z

′
0)+d1(z′

0, z0),
it follows that d1(z0, z

′
0) = O(r3), which impliesd0(z0, z

′
0) = O(r3). Consequently,

d0(q, z0) = r +O(r3). By construction, among all the points inω −{p1, p2} the points in
Z are closest toq. Therefore,r′ ≤ d0(q, z0) = r+O(r3) for z ∈ Z, and (1) is established.

Let L be the set of pointsp in M such thatd0(p, p1) = d0(p, p2). If q(t) is a smooth
path inM which satisfiesq(0) = q, then

d

dt

∣∣∣∣
t=0

(
d0
(
q(t), p1

)− d0
(
q(t), p2

))
= q′(t) · (Nq(p2) − Nq(p1)

)
.

BecauseNq(p1) 6= Nq(p2), it follows by the implicit function theorem thatL ∩ W is a
smoothd − 1 manifold, for some openW ⊂ M which containsq.
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Let w ∈ TqM be any tangent vector atq which is orthogonal to
(
Nq(p2) −Nq(p1)

)
.

Then there is a smooth pathq(t) in L such thatq(0) = q andq′(0) = w. Recall thatq
maximizes

d0
(
p, ω − p1, p2

)− d0(p, p1), (4.16)

amongp in T0(p1) ∩ T0(p2). Since (4.16) is negative whenp ∈ L − T0(p1) ∩ T0(p2),
it follows thatq maximizes (4.16) amongp in L ∩ W . Therefore, there must be some
z ∈ Z such that

0 ≥ d

dt

∣∣∣∣
t=0

(
d0
(
q(t), z

)− d0
(
q(t), p1

))
= w · (Nq(p1) − Nq(z)

)
.

This means that for every vectorw tangent toL, w ∈ TqL, there is somej ∈ 1, . . . , k
with w · vj ≤ 0, wherevj is the orthogonal projection ofNq(p1) − Nq(zj) ontoTqL.
Therefore, 0 is in the convex hull of{v1, . . . , vk} (see Eggleston [7, Ch. 1,§7]), and
consequently{v1, . . . , vk} is linearly dependent. Hence, the linear span of{v1, . . . , vk}
is contained in ak − 1 dimensional subspace ofTqL. Because eachNq(p1) − Nq(zj)
is a linear combination ofvj andNq(p1) − Nq(p2), it follows that the set{Nq(p1) −
Nq(p2), Nq(p1)−Nq(z1), . . . , Nq(p1)−Nq(zk)} is contained in ak dimensional subspace
of TqM . This proves (2), and establishes the lemma.�

Recall thatM ′ is a compact subset ofM in which the crossing is considered. Let
M∗ ⊂ M be some compact set that containsM ′ in its interior. We now define a potential
defect to be a situation where some of the necessary conditions for a defect of Lemma 4.2
are satisfied.

Definition. LetC be the constant in Lemma 4.2, withK taken to beM∗. Consider some
configurationω ∈ �. A potential defect is a situation where, there is an integerk ≥ 1,
and a pointq ∈ M , and nucleip1, p2, z1, . . . , zk ∈ ω, and numbersr, r′ > 0 such that

(1) r < C−1,
(2) r ≤ r′ ≤ r + Cr3,
(3) r = d0(q, p1) = d0(q, p2),
(4) r′ = d0(q, z1) = · · · = d0(q, zk), and
(5) the vectors{Nq(p1), Nq(p2), Nq(z1), . . . , Nq(zk)} are affinely dependent.

The numberr is called the span of the potential defect, and the pointq is the navel of
the potential defect.

5. Defects are Rare

This section will provide an estimate for the probability of having a defect or potential
defect in a given region. The argument will be based on the necessary condition for
defects given in Lemma 4.2. We start with the following almost obvious lemma.

Lemma 5.1. Let m ≥ 3 be some integer, and letXm be the set of pointsx =
(z1, . . . , zm) ∈ (Rd

)m
such that{z1, . . . , zm} ⊂ Rd is affinely dependent and|zj | = 1

for eachj = 1, . . . , m. ThenXm has finite(md − d − 2)-dimensional measure.
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Proof. Let Y be the space of tuplesy = (L, w, y1, . . . , ym, θ), whereL ⊂ Rd is an
(m − 2)-dimensional linear subspace,w is a unit vector orthogonal toL, y1, . . . , ym

are unit vectors inL, andθ ∈ [0, π/2]. Then, clearly,Y is a compact (md − d − 2)-
dimensional smooth manifold with boundary, and therefore has finite (md − d − 2)-
dimensional measure. The map

8(L, w, y1, . . . , ym, θ) = (cosθ w + sinθ y1, . . . , cosθ w + sinθ ym),

takesY onto Xm, and is a Lipschitz map. ThereforeXm has finite (md − d − 2)-
dimensional measure. �

Here is another nearly trivial lemma.

Lemma 5.2. LetW ⊂ Rd be open, letν be Lebesgue measure onW , letλ > 0, and let
ω ⊂ W be a Poisson point process on(W, ν) with densityλ. Letm > 1 be an integer,
and letω̂m ⊂ Wm be the set of points(v1, . . . , vm) ∈ ωm such thatvj 6= vk for j 6= k.
Letνm = ν × · · · × ν be the product measure inWm, and letS ⊂ Wm be measurable.
Then the probability that̂ωm will intersectS is at mostλmνm(S).

Proof. One first proves the lemma in the case thatS ⊂ Wm is a box disjoint from the
diagonalswj = wk. The general case follows. Details are left to the reader.�

For an intervalI ⊂ R and a setW ⊂ M , letPD(W, I) be the event that inW there
is a navel of a potential defect whose span is in the intervalI.

Proposition 5.3. LetK be a compact subset ofM , and letW ⊂ K be open. Then,

Pλ

(
PD(W, [0, ε]

)) ≤ C vol(W )λd+2εd2+d+2,

for every ε ∈ [
λ−1/d, C−1

]
, whereC > 0 is a constant which may depend on

M, µ, ds, u, K, but not onW, λ, ε.

Lemma 5.4. Let the situation be as in the proposition. There is a constantC0 =
C0(M, ds, K) > 0, such that the following holds. Letε ∈ [0, C0], δ ∈ (0, 1), and letk in
the range1, 2, . . . , d. LetS be the set of all tuples(p1, p2, z1 . . . , zk) ∈ Mk+2 such that
for someq ∈ W , r ∈ [0, ε], andr′ ∈ [r, r + δε), we haver = d0(q, p1) = d0(q, p2), r′ =
d0(q, z1) = · · · = d0(q, zk), and the vectors{Nq(p1), Nq(p2), Nq(z1), . . . , Nq(zk)} are
affinely dependent. Then the(k +2)d-dimensional measure ofS isO (1) vol(W )δε(k+1)d.

Proof. Recall the setsXm of Lemma 5. Let

Y = [0, 1] × [0, δ) × Xk+2.

From that lemma it follows that the (k + 1)d-dimensional measure ofY is O(δ). Let
Y ′ = εY ; that is, the setY scaled byε. Then the (k + 1)d-dimensional measure ofY ′ is
O (1) δε(k+1)d. Consider the map

90 : Y ′ → (
Rd
)k+2

defined by

90(r, α, x1, . . . , xk+2) =
(
rε−1x1, rε

−1x2, (r + α)ε−1x3, . . . , (r + α)ε−1xk+2
)
.
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Differentiation shows that90 is Lipschitz inY ′ with a Lipschitz constant which depends
only ond. (Becauser, r+α and thexj ’s areO(ε).) Consequently, the (k+1)d-dimensional
measure of90(Y ′) is alsoO (1) δε(k+1)d.

We assume, with no loss of generality, thatW is contained in a coordinate chart of
M . This allows us to identify the tangent spaceTzM with Rd, for z in a neighborhood of
W . Given a pointz ∈ W and a vectorv ∈ Rd with |v| ≤ 15ε, let expz(v) denote the point
x ∈ M such thatd0(z, x) = |v| and the tangent atz of thed0-geodesic segment fromz to
x is v/|v|. (This is usually called the exponential map.) Since geodesics can be obtained
by solving an ODE on the tangent bundle, the map expz(v) is smooth inz andv (that is,
the geodesic flow is smooth). For eachz ∈ W and each (v1, v2, . . . , vk+2) ∈ 90(Y ′), set

91(z, v1, v2, . . . , vk+2) =
(

expz(v1), . . . , expz(vk+2
)
.

Since91 is smooth, we find that the (k + 2)d-dimensional measure of91
(
W ×91(Y ′)

)
is O (1) vol(W )δε(k+1)d. The lemma follows, becauseS = 91

(
W × 90(Y ′)

)
. �

Proof of 5.3.Let C1 denote the constant of Lemma 4.2. Fix some smallε ≥ λ−1/d.
Let Ak, k = 1, 2, . . . be the event that there is a pointq ∈ W , anr ∈ [0, ε], an r′ ∈
[r, r+C1r

3), and distinct pointsp1, p2, z1, . . . , zk ∈ ω such thatd0(q, p1) = d0(q, p2) = r,
d0(q, zj) = r′, j = 1, . . . , k, and the unit vectors{Nq(p1), Nq(p2), Nq(z1), . . . , Nq(zk)}
are affinely dependent.

By definition,PD(W, [0, ε]
) ⊂ A1 ∪ A2 ∪ . . . . SetA = A1 ∪ · · · ∪ Ad, and note

thatAk ⊂ Ad for k > d, because any subset ofRd whose cardinality isd + 2 is affinely
dependent. Therefore,

PD(W, [0, ε]
) ⊂ A. (5.1)

Now fix somek = 1, . . . , d, and considerAk. To estimatePλ (Ak), apply Lemma 5.4
with δ = O(ε2), and then use Lemma 5. (Here the measureµ is only comparable, not
equal to Lebesgue measure, but that is enough.) The combination of these two lemmas
gives

Pλ (Ak) ≤ O (1) vol(W )λk+2ε(k+1)d+2. (5.2)

Since we takeε ≥ λ−1/d, this is largest whenk = d, and hence,

Pλ

(
PD(W, [0, ε)

)) ≤ Pλ (A) ≤ O (1) vol(W )λd+2ε(d+1)d+2,

which proves the proposition. �
Set,

L = L(λ) = λ−1/d (logλ)(d+1)/d2

. (5.3)

This quantityL will be an important length scale in the following sections. The two
essential features of the choice ofL is that it tends to zero faster thanλ−1/d(logλ)1/(d−1),
but slower thanλ−1/d(logλ)1/d.

Lemma 5.5 (no giant tiles). LetK ⊂ M be compact, and letc > 0 be some constant.
Then thePλ-probability that there will be a tile inT(ω, ds) which intersectsK and has
diameter greater thancL tends to zero asλ → ∞.
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Proof. Let U ⊂ M be an open set which containsK and has compact closure. Suppose
thatλ is sufficiently large so that the distance fromK to M − U is greater than 4cL.
Let X be a maximal subset ofU with the property that any distinct elements of it have
distance at leastcL/9. The cardinality ofX satisfies

|X| = O(L−d). (5.4)

For anyx ∈ X, let Ex ⊂ � be the event that the ballB0(x, cL/9) does not intersectω.
Then we have

Pλ

(Ex) = e−λLd/O(1). (5.5)

Let z ∈ ω, and letT(z) be the tile with nucleusz in T(ω, ds). Suppose thatT(z)
intersectsK, and its diameter is greater thancL. Then there is somey ∈ T(z) such
thatd0(y, z) ≥ cL/2 andd0(y, K) ≤ cL. Consequently, the ballB0(y, cL/3) is disjoint
fromω and contained inU . There will be somex ∈ X with d0(x, y) < cL/6. For thatx,
we shall haveω ∈ Ex. This shows that the event that there is some tile which intersects
K and has diameter≥ cL is contained in∪x∈XEx. Hence, we get from (5.4) and (5.5)
that the probability of that event is at most

O(L−d)e−λLd/O(1),

which tends to zero asλ → ∞, by (5.3). �

Note that the number of tiles ofT(ω, ds) that are expected to intersectK is in the
order ofλ.

Theorem 5.6. SupposeK ⊂ M is compact, and has positive volume. Then the expected
number of defects involving tiles inK is O(1)λ(d−2)/d, whenλ is large.

The theorem will not be needed in the following, because we will need information
about potential defects more than about actual defects. It is presented only for complete-
ness.

Proof. Let W ⊂ M be a set whose diameter is smaller thanλ−1, say, and letw0 be
some point inW . For any interval [a, b], let hW (a, b) be the probability that there will
be inW a navel of a defect with span in the range [a, b]. By Proposition (probdef),

hW

(
0, λ−1/d

)
≤ O(1) vol(W )λ(d−2)/d.

Now consider someε ≥ λ−1/d. If there is for a configurationω a navel inW of a defect
with span in the range [ε, 2ε], then the ballB0(w0, ε/2) does not contain any point inω.
This latter event is independent ofPD(W, [ε, 2ε]

)
, and consequently,

hW (ε, 2ε) ≤ Pλ

(
B0(w0, ε/2) ∩ ω = ∅)Pλ

(
PD(W, [ε, 2ε]

))
≤ O(1)e−λεd/O(1) vol(W )λd+2εd2+d+2,

again, using Proposition 5.3. Consider a tiling ofK by sets{Wj} with very minute
diameters. Letn(ω) be the number of tiles in the tiling which contain a navel of a defect.
Then
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En(ω) ≤
∑

j

hWj

(
0, λ−1/d

)
+
∑

j

∞∑
k=0

hWj

(
λ−1/d2k, λ−1/d2k+1

)
≤ O(1) vol (K) λ(d−2)/d

∞∑
k=0

e−2kd/O(1)2k(d2+d+2) = O(1)λ(d−2)/d.

Since every defect has a navel which is not the navel of any other defect, for any specific
configurationω, the number of tilesWj which meet a navel tends to a number at least
as large as the number of defects ofω as the tilingWj becomes very fine. Consequently,
by the monotone convergence theorem, the expected number of defects is bounded by
the limsup ofEn(ω), as the tilingWj becomes finer. The theorem follows. �

Remark.In fact, the estimate in Theorem 5.6 is sharp.

6. The Size of Spherical Shells

This section is devoted to proving a tail estimate for the number of Voronoi cells in
a random Voronoi tilingT(ω, ds) which meet a union of spheres. (It is possible to do
without this section if one is interested only in the caseM = R2.) The precise statement
which we shall need is as follows.

Proposition 6.1. LetM0 ⊂ M be compact, letK ⊂ M0 be a finite set, and leta, R, λ >
0, with λ large andR2 ≤ λ−1/d. For eachx ∈ K, let S(x) be the sphere of radiusR
aboutx. Givenω ∈ �, let n(ω) = n(K, R, λ, ω) be the number of Voronoi tiles in the
tiling T(ω, ds) that have diameter≤ R and intersect∪x∈KS(x). Then there is a constant
C = C(a, M, M0, ds, µ) > 0 such that

Eλ exp
(
an(ω)

) ≤ exp
(
CRd−1λ(d−1)/d|K|

)
,

whereEλ denotes the expectation operator of(�, Pλ).

6.2 Lemma of Ball Unions. Let 0 < C < ∞, and letA ⊂ Rd be a union of open
balls with centers on the unit sphereSd−1 ⊂ Rd, and with radii bounded byC. Then
the (d − 1)-dimensional measure of∂A is bounded by a constant which depends only
onC andd.

The proof is motivated by hyperbolic geometry, but does not use it.

Proof. Suppose first thatA is a finite union of such balls,

A = ∪n
j=1B(qj , rj).

Let X be the set of pointsx ∈ ∂A such thatx is on the boundary of exactly one of
the ballsB(qj , rj). ThenX has full (d − 1)-measure in∂A. We now define a map
f : X → Sd−1. Let x ∈ X, and suppose thatj is the index such thatx ∈ ∂B(qj , rj).
If x ∈ X ∩ Sd−1, setf (x) = x. Otherwise, letBx be the largest open ball which is
contained inB(qj , rj), is internally tangent toB(qj , rj) atx, and is disjoint fromSd−1.
See Fig. 1. Clearly,Bx is well defined, and there is precisely one intersection point of
∂Bx andSd−1. Let f (x) be that intersection point.

Note thatf : X → Sd−1 is a continuous map. Suppose thaty is a point inA∩Sd−1.
LetBy be the maximal open ball which is externally tangent toSd−1 aty and is contained
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f (x)

Bx

x

Fig. 1.The definition of the mapf (x)

in A. If x is some point inX ∩ ∂By, then the ballBy is strictly contained in the ball
B(qj , rj) with x ∈ ∂B(qj , rj). Consequently,x is the only point in∂A ∩ By, and
Bx = By. It follows that for everyy ∈ Sd−1 there is at most a uniquex ∈ X outside the
unit ball B(0, 1) such thatf (x) = y. The same argument applies to the pointsx inside
the unit ball. Therefore, the mapf is at most 2 to 1.

Consider one of the balls,B(qj , rj), in the union making upA. It is enough to show
that locally the mapf does not contract distances too much inX ∩ ∂B(qj , rj). This
can be done by inspecting the extreme cases where eitherrj is small or at the points
where∂B(qj , rj) is close toSd−1. Alternatively, observe that the restriction off to a
component of∂B(qj , rj)∩X−Sd−1 is equal to an inversion in some (d−1)-dimensional
sphereZ and that the center ofZ cannot be too close toSd−1. The case whereA is a
union of infinitely many balls follows by a limiting argument. The details are left to the
reader. �

Remark.In the lemma, one may replace the assumption that the centers of the balls
making upA are onSd−1 by the assumption that the interior angle of the intersection
of these balls with the unit ball be bounded away from 0.

For book-keeping, we introduce yet another tiling ofM , TB , which will be non-
random. The only important feature ofTB is that every one of its tiles has diameter
O
(
λ−1/d

)
and volume at leastCλ−1 for some constantC = C(ds) > 0. For example,

TB may be constructed as follows. Take a set of pointsB ⊂ M such that the distance
between any two points inB is at leastλ−1/d, andB is maximal with this property, and
let TB = T(B, ds), denote the corresponding Voronoi tiling.

Proof of 6.1.For x ∈ K, let A(x) be the union of all open balls with radius at mostR
and center inS(x) that do not intersect any tile ofTB which intersectsω.

Let U (x) = U (x, ω) denote the set of points inω which are nuclei of tiles with
diameter≤ R that intersectS(x), and suppose thatq ∈ U (x). Then there must be a
point z ∈ S(x) such thatq is the closest point toz which is in ω. Henceq is on the
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boundary of an open ball with center inS(x) which is disjoint fromω and has diameter
≤ R. Recall that every tile ofTB has diameter≤ C1λ

−1/d, whereC1 is some constant.
It follows thatq has distance at mostC1λ

−1/d from A(x) ∪S(x). LetH(x, ω) be the set
of all the tiles ofTB which are at distance at mostC1λ

−1/d from A(x) ∪ S(x), but do
not intersectA(x). We may conclude thatU (x) ⊂ ∪H(x, ω). (If Q is a set of tiles, then
∪Q denotes the union of the tiles inQ.)

Set
H =

⋃
x∈K

H(x, ω),

n∗ = |(∪H) ∩ ω|.
Thenn∗ = n∗(ω) ≥ n(ω). In order to bound the tail ofn∗, let us estimate from above the
size ofH. Assume first that the metricds is a flat (Euclidean) metric. For eachz ∈ S(x)
let r(z) be the maximalr ≥ 0 such that the open ball of radiusr aboutz is disjoint from
tiles of TB which intersectω (r(z) = 0 if z is in a tile ofTB which intersectsω). Set
r∗(z) = min{r(z), R} and fort ≥ 0,

A(x, t) =
⋃

z∈S(x)

B
(
z, r∗(z) + t

)
.

ThenA(x) = A(x, 0) and each tile inH(x, ω) is contained inA
(
x, 2C1λ

−1/d
)−A(x). In

order to bound the cardinality ofH(x, ω), we estimate the volume ofA
(
x, 2C1λ

−1/d
)−

A(x),

vol

(
A
(
x, 2C1λ

−1/d
)

− A(x)

)
=
∫ 2C1λ

−1/d

0

d

dt
vol A(x, t) dt

=
∫ 2C1λ

−1/d

0
vold−1 ∂A(x, t) dt,

(6.1)

where vold−1 denotes thed−1 dimensional measure. By the Lemma of Ball Unions (6.2),
appropriately rescaled, we know that

vold−1 ∂A(x, t) ≤ C2R
d−1

for some constantC2, and allt ≤ R. It follows then from (6.1) that

vol
( ∪ H

) ≤
∑
x∈K

vol
(
A
(
x, 2C1λ

−1/d
)

− A(x)
)

≤ 2C1C2|K|Rd−1λ−1/d. (6.2)

We set
β = C3|K|Rd−1λ(d−1)/d, (6.3)

with C3 a large constant. Sinceµ is comparable to the measure induced byds, we get
from (6.2),

µ
( ∪ H

) ≤ βλ−1, (6.4)

providedC3 is large enough. Because the measure of a tile inTB is at leastO(1)−1λ−1,
we also get,

|H| ≤ β, (6.5)

if C3 is large enough.
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To remove the assumption thatds is the Euclidean metric, observe that forx ∈ M
one may choose a Euclidean metric for a neighborhood ofx such that for points at
distanceO(R) from x distances are distorted by not more than an additive constant of
O(R2). Since we have the assumptionR2 ≤ λ−1/d, it is easy verify that the distortion
will not influence the validity of the argument above, but may only change the constants.

It is true that the collection of tilesH depends onω. Hence we cannot naively use
the standard formula for the probability thatω ∩ (∪H) has a given cardinality in terms
of λ andµ(∪H). But note thatH only depends on which tiles ofTB which contain a
point of ω, and does not depend on the number of points in each such tile. Consider
some tileT , and suppose thatg is the number of points inω ∩ T . Then the distribution
of g + 1 dominates the distribution ofg conditioned ong ≥ 1. This can be thought of
as a continuous instance of the BK inequality [5], but may also be verified directly. We
conclude from this argument and the inequalities (6.4), (6.5) that for eachm,

Pλ

(
n∗ ≥ m + β

) ≤
∞∑

j=m

βj

j!
e−β .

Consequently,

E exp
(
an(ω)

) ≤ E exp
(
an∗) ≤ eaβ

∞∑
j=0

eaj βj

j!
e−β = exp

(
aβ − β + eaβ

)
,

and the proposition follows. �

7. Clean Configurations

A local potential defectis a potential defect whose span is less than 1.1L, where

L = L(λ) = λ−1/d (logλ)(d+1)/d2

as in (5.3). This section will study the statistical
properties of configurations that have no local potential defects. These will be called
cleanconfigurations. We shall continue to use the book-keeping tilingTB , which was
introduced in Sect. 6. In the following, we assume thatλ is sufficiently large, so that the
diameter of any tile inTB is less thanL/100.

Let ω ∈ � be some configuration. Itslocal potential defect zoneZ(ω) is defined as
follows. LetZ0(ω) be the set of all navels of local potential defects and letZ(ω) be the
set of all tiles ofTB which contain a point inZ0(ω).

Let Q be any set of tiles ofTB . Denote byD(Q) the event thatZ(ω) = Q, let F (Q)
be the event thatZ(ω) ⊃ Q, and letN (Q) be the event thatZ(ω) ∩ Q = ∅. A clean
configuration is just a configuration inD(∅). We would like to discuss the distribution
of clean configurations, that is, to condition onD(∅). Hence it would be useful to have
Pλ

(D(∅)
)

> 0. If M has finite volume, this is clear, since with positive, but very small,
probability the configurationω will contain only a single point, and then no potential
defects are possible. (It will be shown below that the clean configurations are typically
not so sparse.) Hence, we shall for simplicity now assume thatM has finite volume.
There are obvious and simple methods to extend the discussion to the infinite volume
case.

Suppose thatA ⊂ �̂ is some event, andX is some subset ofM . We say thatA is
independentof X, if wheneverω ∈ A andω′ ∈ �̂ differ only in points which are in
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X, then alsoω′ ∈ A. We shall say thatA depends only onX, if A is independent of
M − X.

The next two lemmas relate the properties of random clean configurations to the
properties of ordinary configurations.

7.1. First lemma of clean configurations.Let Q be any set of tiles ofTB , and let
A ⊂ �̂ be some event which depends only on∪Q, the union of tiles inQ. LetQ2L be
the set of tiles ofTB with distance at most2L to ∪Q. Then

Pλ

(A|D(∅)
) ≤ Pλ

(A)
Pλ

(N (Q2L)
) .

In the proof, we shall need the FKG [8] inequality for Poisson point processes.
An eventX ⊂ � is increasing, if ω′ ∈ X wheneverω ∈ X andω ⊂ ω′ ∈ �. A
random variablef : � → R is increasing iff (ω′) ≥ f (ω) wheneverω′ ⊃ ω. Similarly
decreasingevents and random variables are defined. The FKG inequality for events
states thatPλ(X ∩ Y) ≥ Pλ(X )Pλ(Y) if eitherX , Y are both increasing events, or both
decreasing events. The FKG inequality for random variables states thatE(fg) ≥ Ef Eg,
if f, g are both increasing random variables, or both are decreasing random variables.
The proof of the FKG inequality for events in Poisson point processes may be found in
the paper by R. Roy [14]. Although the setting there is a bit different, the proof is easily
adapted to our situation. The FKG inequality for random variables can be obtained as a
corollary of the inequality for events.

Proof. Let Y be the set of tiles ofTB which are not inQ2L. Observe thatN (Y ) is
independent ofA. Also note thatN (Y ) andN (Q2L) are both decreasing events, and
therefore they are positively correlated, by the FKG inequality. These are the facts that
enter into the following estimate:

Pλ

(A|D(∅)
)

=
Pλ

(A ∩ N (Q2L) ∩ N (Y )
)

Pλ

(N (Q2L) ∩ N (Y )
)

≤ Pλ

(A ∩ N (Y )
)

Pλ

(N (Q2L) ∩ N (Y )
) =

Pλ

(A)Pλ

(N (Y )
)

Pλ

(N (Q2L) ∩ N (Y )
)

≤ Pλ

(A)Pλ

(N (Y )
)

Pλ

(N (Q2L)
)
Pλ

(N (Y )
) =

Pλ

(A)
Pλ

(N (Q2L)
) .

�

In order to effectively apply Lemma 7, we shall need an estimate forPλ

(N (Q)
)

whenQ is a set of tiles inTB . Proposition 5.3 gives,

Pλ

(N (Q)
) ≥ 1 − O (1) vol(∪Q)λd+2Ld2+d+2

= 1− O (1) vol(∪Q)λ(d−2)/d(logλ)O(1).
(7.1)

We shall need a different estimate for the case that|Q|, the number of tiles inQ, is large.
For any set of tilesQ ⊂ TB , the eventN (Q) is monotone decreasing. Therefore, the
FKG inequality and (7.1) give,
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Pλ

(N (Q)
) ≥

∏
T∈Q

Pλ

(N (T )
) ≥

(
1 − O (1) λ−2/d(logλ)O(1)

)|Q|

≥ exp
(
−O (1) λ−2/d(logλ)O(1)|Q|

)
,

(7.2)

because 1− ε ≥ e−2ε whenε > 0 is small.

7.2. Second lemma of clean configurations.LetQ be a set of tiles ofTB , and letQ6L

be the set of all tiles ofTB with distance at most6L from∪Q. LetA ⊂ �̂ be some event
which is independent of∪Q6L. Then,

Pλ,p

(A|D(Q)
) ≤ Pλ,p

(A|D(∅)
)

Pλ

(N (Q6L)
) .

Proof. Forj = 1, 2 letBj be the set of all tilesT of TB −Q such that the distance from
T to ∪Q is in the range [3(j − 1)L, 3jL). Also letB3 be all the tiles ofTB which are
not inQ ∪ B1 ∪ B2,

Pλ,p

(A|D(Q)
)

=
Pλ,p

(A ∩ F (Q) ∩ N (B1) ∩ N (B2) ∩ N (B3)
)

Pλ

(F (Q) ∩ N (B1) ∩ N (B2) ∩ N (B3)
)

≤ Pλ,p

(F (Q) ∩ N (B1) ∩ N (B3) ∩ A)
Pλ

(F (Q) ∩ N (B1) ∩ N (B2) ∩ N (B3)
) . (7.3)

Since the distance between∪B3 and∪(B1∪Q) is greater than 2.2L, the eventsN (B3)∩A
andF (Q) ∩ N (B1) are independent; that is,

Pλ,p

(F (Q) ∩ N (B1) ∩ N (B3) ∩ A) = Pλ

(F (Q) ∩ N (B1)
)
Pλ,p

(N (B3) ∩ A). (7.4)

Let A1 be the set of points inM with distance at mostL from (∪B1) ∩ (∪B2),
let A0 be the points in connected components ofM − A1 that intersect∪Q, and let
A2 = M −A0−A1. We want to show that the eventsF (Q)∩N (B1) andN (B2)∩N (B3)
are positively correlated. For this, the FKG inequality can be used, but not immediately.
Any ω ∈ �̂ can be decomposed into (ω0, ω1, ω2), whereωj = Aj ∩ ω. This induces a
decomposition� = �0 × �1 × �2 of �. Note thatF (Q) ∩ N (B1) is an event that’s
independent ofω2 and is monotone decreasing inπω1. Similarly, N (B2) ∩ N (B2) is
independent ofω0 and is monotone decreasing inπω1. Given anyω1 ∈ �1, let f (ω1)
be the probability that (ω0, ω1, ω2) ∈ F (Q) ∩ N (B1), and letg(ω1) be the probability
that (ω0, ω1, ω2) ∈ N (B2) ∩ N (B2), whereω0 ∈ �0 andω2 ∈ �2 are random. Thenf
andg are monotone decreasing random variables on�1. Hence, the FKG inequality for
random variables,E(fg) ≥ Ef Eg, gives,

Pλ

(F (Q) ∩ N (B1) ∩ N (B2) ∩ N (B3)
) ≥ Pλ

(F (Q) ∩ N (B1)
)
Pλ

(N (B2) ∩ N (B3)
)
.

(7.5)
A similar argument shows that

Pλ,p

(D(∅) ∩ A) ≥ Pλ,p

(N (B3) ∩ A)Pλ

(N (Q) ∩ N (B1) ∩ N (B2)
)

= Pλ,p

(N (B3) ∩ A)Pλ

(N (Q6L)
)
.

(7.6)

Now combine (7.3), (7.4), (7.5) and (7.6), to obtain,
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Pλ,p

(A|D(Q)
) ≤ Pλ,p

(N (B3) ∩ A)
Pλ

(N (B2) ∩ N (B3)
)

≤ Pλ,p

(A ∩ D(∅)
)

Pλ

(N (Q6L)
)
Pλ

(N (B2) ∩ N (B3)
) ≤ Pλ,p

(A|D(∅)
)

Pλ

(N (Q6L)
) .

(7.7)

This proves the lemma. �

7.3. Lemma (clean configurations have no giant tiles).Let K be a compact subset
of M , and letS be the event that all tiles inT(ω, ds) which meetK have diameter
smaller thanL. Then

lim
λ→∞

Pλ

(S|D(∅)
)

= 1.

Proof. Let U be an open set inM whose closure is compact and which containsK.
Let X be a maximal subset ofU such that the distance between any two elements of
X is at leastL/9. Forx ∈ X let Ex be the event that the ballB0(x, L/9) is disjoint
from ω. Let Q(x) be the set of tiles inTB whose distance fromx is at most 3L. Since
Ex depends only on the intersection ofω with B0(x, L/9), the First Lemma of Clean
Configurations 7 gives,

Pλ

(Ex|D(∅)
) ≤ Pλ(Ex)

Pλ

(
N (Q(x)

)) =
e−Ldλ/O(1)

Pλ

(
N (Q(x)

)) .

Since
vol
(
Q(x)

)
= O(1)Ld = O(1)λ−1(logλ)O(1),

the inequality (7.1) implies thatPλ

(
N (Q(x)

))−→
λ→∞

1. Therefore,

Pλ

(
∪x∈X Ex

∣∣∣D(∅)
)

≤ O(1)|X|e−Ldλ/O(1) ≤ O(1)λ exp
(
−(logλ)1+ 1

d /O(1)
)

−→
λ→∞

0

The proof is now completed as the proof of Lemma 5.5.�

8. Insensitivity

This section can be avoided if one is only interested in the caseM = R2.
Let X be some finite set. We denote by 2X the set of funtions fromX to {0, 1}, and

make the usual identification of 2X with the collection subsets ofX. Given an element
a ∈ 2X , we denote by|a| the cardinality ofa, thought of as a set, which is the same
as theL1 norm ofa, thought of as a function. Ifν1, ν2 are two measures on 2X , we let
ν1 ∪ ν2 denote the image of the measureν1 × ν2 under the map∪ : 2X × 2X → 2X .
(In other words,ν1 ∪ ν2 is the distribution ofa ∪ b, if a andb are independent random
elements of

(
2X , ν1

)
and

(
2X , ν2

)
.) Similarly, the measureν1 ∩ ν2 is defined.

Fix somep ∈ [0, 1], and letη denote the product measure on 2X with η{a : x ∈
a} = p for eachx ∈ X.

8.1. Insensitivity Lemma. Let ν be a measure on2X . Then the following estimate
holds for the measure norm of the differenceη ∪ ν − η,

‖η ∪ ν − η‖ ≤
√

Eν∩ν

(
p−|a|)− 1.
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The expressionEν∩ν

(
p−|a|) means the expectation ofp−|a| whena is distributed

according toν ∩ ν.
The lemma was partly motivated by the concept of influence of a boolean variable

on a function, introduced by Ben-Or and Linial [3].

Proof. What can one say? Cauchy–Schwarz!

‖η ∪ ν − η‖2 =
( ∑

a∈2X

|η ∪ ν(a) − η(a)|
)2

≤
∑

a∈2X

η(a)
∑

a∈2X

η(a)−1
(
η ∪ ν(a) − η(a)

)2

=
∑

a∈2X

η(a)−1
(
η ∪ ν(a)2 − 2η ∪ ν(a) η(a) + η(a)2

)
=
∑

a∈2X

η(a)−1 η ∪ ν(a)2 − 1.

(8.1)

Observe that
η(a) = p|a|(1 − p)n−|a|,

wheren = |X|. We may write an equality of the formb∪c = a asa−c ⊂ b ⊂ a. Hence,

η ∪ ν(a) =
∑
c⊂a

ν(c)p|a|−|c|(1 − p)n−|a| = η(a)
∑
c⊂a

ν(c)p−|c|.

We use these expressions to simplify (8.1),

‖η ∪ ν − η‖2 ≤
∑

a∈2X

η(a)

(∑
c⊂a

ν(c)p−|c|
)2

− 1

=
∑

a∈2X

∑
b⊂a

∑
c⊂a

η(a)ν(b)ν(c)p−|b|−|c| − 1

=
∑
b∈2X

∑
c∈2X

ν(b)ν(c)p−|b|−|c| ∑
a⊃b∪c

η(a) − 1

=
∑
b∈2X

∑
c∈2X

ν(b)ν(c)p−|b|−|c|p|b∪c| − 1

=
∑
b∈2X

∑
c∈2X

ν(b)ν(c)p−|b∩c| − 1 = Eν∩ν

(
p−|a|

)
− 1.

�

8.2 Corollary. Letνc denote the image ofν under the mapa → X −a from2X to 2X .
Then

‖η ∩ νc‖ ≤
√

Eν∩ν

(
(1 − p)−|a|)− 1.

Proof. Useη ∩ νc =
(
ηc ∪ ν

)c
, and apply the lemma. �
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9. Assembly

Proof of Theorems 2.1 and 2.2.In the proof, we shall assume thatM is compact. This
is basically for convenience of notation, and it is easy to modify the arguments to apply
in general.

Let C denote the event of crossing, that isC = C(M, M ′, S1, S2, ds) ⊂ �̂, in the
situation of Theorem 2.1 andC = C(M, M ′, α, ds), in the situation of Theorem 2.2.
Similarly, let Cu denote the crossing, but with respect to the conformal metriceuds.
Given any setQ of tiles in TB , let P(Q) be the event that∪Q is pivotal for C; that
is, P(Q) is the set of allω such that there is anω′ which equalsω outside ofQ, and
one of them is inC while the other is not. Let1C be the event that there is a crossing
with respect to the metricds, but not with respect to the metriceu ds. In other words,
1C = C − Cu. We need to estimatePλ,p(1C) whenλ is large.

We shall continue to use the book-keeping tilingTB from Sect. 6. For each setQ
of tiles in TB , and fora > 0, letQa denote the set of tiles inTB with distance at most
a to ∪Q. Recall the definition 5 ofL. We assume thatλ is so large that in the scale of
L the setsM ′, S1, S2 are ‘very smooth’. LetS be the event all tiles inT(ω, ds) have
diameter at mostL.

Recall that for any setQ of tiles in TB , D(Q) denotes the event thatQ is the set of
tiles containing navels of local potential defects. Since whenω ∈ S, defects can occur
only at local potential defects, and because defects effect the connectivity only for the
tiles close by, we have,

1C ∩ S ∩ D(Q) ⊂ P(Q6L). (9.1)

We shall now estimatePλ,p(1C). Our first goal is to have an estimate onPλ,p(1C)
in terms of a random clean configuration with defects and an independent collection of
defects added on top of it. (While this is not a precise mathematical statement, we hope
it aids the intuition of the reader.) First write,

Pλ,p(1C) ≤ 1 − Pλ(S) + Pλ,p(1C ∩ S). (9.2)

Now estimate the last summand, using (9.1) and Lemma 7,

Pλ,p(1C ∩ S) =
∑
Q

Pλ,p

(
1C ∩ S|D(Q)

)
Pλ

(
D(Q)

)
≤
∑
Q

Pλ,p

(P(Q6L)|D(Q)
)
Pλ

(
D(Q)

)
≤
∑
Q

min
{

1, Pλ,p

(P(Q6L)|D(∅)
)
Pλ

(N (Q6L)
)−1
}

Pλ

(
D(Q)

)
≤ 2

∑
Q

Pλ,p

(P(Q6L)|D(∅)
)
Pλ

(
D(Q)

)
+

+
∑

Pλ

(
N (Q6L)

)
<1/2

Pλ

(
D(Q)

)
.

(9.3)

Our first goal of reducing to the situation where there is a clean configuration with defects
added on top can now be considered as accomplished. (This is the meaning of the left
summand, which is the more significant one.) We now estimate the left summand.
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Let X be a maximal set of points inM with the property that the distance between
any two points inX is at leastL, and for eachx ∈ X let S(x) denote the sphere of
radius 15L aboutx. For each setQ of tiles of TB , we letX(Q) denote the intersection
of X with ∪QL. It follows that the balls of radiusL and centers inX(Q) cover∪Q.

Fix for a moment someω = (ωo, ωc) ∈ �̂ and someQ. Let W (ω, Q) denote the
nuclei of tiles inT(ω, ds) that intersect∪x∈X(Q)S(x). Set

ω+
Q =

(
ωo ∪ W (ω, Q), ωc − W (ω, Q)

)
,

ω−
Q =

(
ωo − W (ω, Q), ωc ∪ W (ω, Q)

)
.

In other words,ω+
Q is obtained fromω by opening all the nuclei of tiles which intersect

∪x∈X(Q)S(x), andω−
Q is obtained fromω by closing them. LetK(Q) denote the event

that there is a crossing forω+
Q, but not forω−

Q. Observe thatS ∩P(Q6L) ⊂ K(Q), which
gives,

Pλ,p

(P(Q6L)|D(∅)
) ≤ Pλ,p

(K(Q)|D(∅)
)

+ 1− Pλ

(S|D(∅)
)
.

Now, (9.3) implies,

Pλ,p(1C ∩ S) ≤ 2
∑
Q

Pλ,p

(K(Q)|D(∅)
)
Pλ

(
D(Q)

)
+ 2− 2Pλ

(S|D(∅)
)

+

+
∑

Pλ

(
N (Q6L)

)
<1/2

Pλ

(
D(Q)

)
.

(9.4)

We now estimate the sum∑
Q

Pλ,p

(K(Q)|D(∅)
)
Pλ

(D(Q)
)
. (9.5)

Fix some cleanω ∈ D(∅), and letω′ ∈ � be arbitrary. Recall thatZ(ω′) denotes
the set of tiles inTB that contain navels of local potential defects ofω′. This means,
Pλ

(
Z(ω′) = Q

)
= Pλ

(D(Q)
)
. So (9.5) can be written as

P
(
ω ∈ K(Z(ω′)

)∣∣∣ω ∈ D(∅)
)
, (9.6)

where the probability is with respect to the joint distribution ofω andω′. Setτ = πω
(recall that this means thatτ is the same asω, except that it is not specified which nuclei
of τ are open and which are closed). We may think ofω as a random coloring ofτ , and
rewrite (9.6) as,

Eτ

(
P
(K(Z(ω′)

))∣∣∣τ ∈ D(∅)
)
. (9.7)

Here the probability is with respect to the coloring ofτ and with respect to the choice
of ω′. Let us fixτ for a moment, and considerω′ and the coloring ofτ as random. On
2τ , the collection of subsets ofτ , let η be the (p, 1 − p) product measure. In other
words, η is the distribution ofωo. Let ν be the measure on subsets ofτ given by
ν(A) = Pω′

(
W
(
τ, Z(ω′)

) ∈ A
)
; that is,ν is the image of the measurePλ under the

mapω′ → W
(
τ, Z(ω′)

)
. Note that with the notations of the Insensitivity Lemma 8.1

and its Corollary 8.2, the open nuclei inω+
Z(ω′) are distributed according toη ∪ ν, and

the open nuclei inω−
Z(ω′) are distributed according toη ∩ νc. So,
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P
(K(Z(ω′)

))
= Pη∪ν(C) − Pη∩νc (C)

≤ ‖η ∪ ν − η ∩ νc‖
≤ ‖η ∪ ν − η‖ + ‖η ∩ νc − η‖.

(9.8)

Let a be distributed according to the measureν ∩ ν, and set

β = max{− logp, − log(1− p)}.

With the help of the Insensitivity Lemma and its corollary, (9.8) gives the following
estimate,

P
(K(Z(ω′)

)) ≤ 2
√

Eν∩νeβ|a| − 1, (9.9)

Let ω′′ be another random element of�, and set

m = m(τ, ω′, ω′′) =
∣∣∣W (

τ, Z(ω′)
) ∩ W

(
τ, Z(ω′′)

)∣∣∣.
Since (9.5) is equal to (9.7), the inequality (9.9) allows us to make the following estimate,∑

Q

Pλ,p

(K(Q)|D(∅)
)
Pλ

(D(Q)
)

≤ Eτ

(
min

{
1, 2
√

Eω′,ω′′eβm − 1

}∣∣∣∣ τ ∈ D(∅)

)
≤ 1 − Pλ

(S|D(∅)
)

+

+ 2Eτ

(√
Eω′,ω′′eβm − 1

∣∣∣∣ τ ∈ D(∅) ∩ S
)

Pλ

(S|D(∅)
)

≤ 1 − Pλ

(S|D(∅)
)

+ 2

√
Eτ,ω′,ω′′

(
eβm − 1

∣∣∣τ ∈ D(∅) ∩ S
)

= 1− Pλ

(S|D(∅)
)

+ 2
√

Eτ,ω′,ω′′
(
eβm|τ ∈ D(∅) ∩ S)− 1.

(9.10)

Let F be the (random) set of pointsx ∈ X such thatZ(ω′) andZ(ω′′) both intersect
the ball of radius 50L aboutx, and letnx be the number of tiles inT(τ, ds) that intersect
S(x) and have diameter at mostL. Setn = n(F, τ ) =

∑
x∈F nx. Then forτ ∈ S we

haven ≥ m. Consequently,

Eτ,ω′,ω′′
(
eβm|τ ∈ D(∅) ∩ S) ≤ Eτ,ω′,ω′′

(
eβn(F,τ )|τ ∈ D(∅) ∩ S)

≤ Eτ,ω′,ω′′
(
eβn(F,τ )|τ ∈ D(∅)

)
Pλ

(S|D(∅)
)

= Pλ

(S|D(∅)
)−1 ∑

K⊂X

P (F = K)Eτ

(
eβn(K,τ )|τ ∈ D(∅)

)
.

(9.11)

Let Qs(K) denote the set of tiles inTB that are within distances of K, and note
that n(K, τ ) depends only on the intersection ofτ with Q20L(K). We use the First
Lemma of Clean Configurations (7.1) to estimate the above conditional expectation by
an unconditional expectation, and then apply Proposition 6.1, as follows,
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Eτ

(
eβn(K,τ )|τ ∈ D(∅)

) ≤ Eτ

(
eβn(K,τ )

)
Pλ

(
N (Q30L(K)

))
≤ exp

(
O(1)|K|Ld−1λ(d−1)/d

)
Pλ

(
N (Q30L(K)

)) =
exp

(
O(1)|K|(logλ)1−d−2

)
Pλ

(
N (Q30L(K)

)) .

(9.12)

The number of tiles ofTB in Q30L(K) is O(1)|K| (logλ)O(1). Consequently, by (7.2),

Pλ

(
N (Q30L(K)

)) ≥ exp
(
−O (1) |K|λ−2/d(logλ)O(1)

)
.

Hence, (9.12) may be improved to

Eτ

(
eβn(K,τ )|τ ∈ D(∅)

) ≤ exp
(
O(1)|K|(logλ)1−d−2

)
. (9.13)

In order to get a good estimate for the right hand side of (9.11), we now study the
distribution ofF . For anyx ∈ X, the inequality (7.1) provides the following estimate
for the probability thatx ∈ F .

Pλ(x ∈ F ) ≤ O (1)
(
Ldλ(d−2)/d(logλ)O(1)

)2
= λ−4/d(logλ)O(1). (9.14)

Let X = X1 ∪ · · · ∪ XN be a partition ofX into disjoint setsXj with the property that
for eachj the distance between any two elements ofXj is at least 150L. We takeN to
be bounded by a constant, which depends only ond. This is possible, since there is a
bound on the number of points ofX in a ball of radius 150L. Note that ifx, x′ ∈ Xj ,
then the eventsx ∈ F andx′ ∈ F are independent. Using (9.14) and|X| = o(1)λ, this
gives,

P
(|F ∩ Xj | = k

) ≤ λkλ−4k/d(logλ)O(1)k = λ(d−4)k/d(logλ)O(1)k.

If |F | = k, we must havek ≥ |F ∩ Xj | ≥ k/N , for somej. Consequently,

P
(|F | = k

) ≤ N (k + 1)λ(d−4)k/(Nd)(logλ)O(1)k.

Together with (9.13) and (9.11), this gives,

Eτ,ω′,ω′′
(
eβm|τ ∈ D(∅) ∩ S)

≤ Pλ

(S|D(∅)
)−1 ∑

K⊂X

P (F = K)Eτ

(
eβn(K,τ )|τ ∈ D(∅)

)
≤ Pλ

(S|D(∅)
)−1

+

+ Pλ

(S|D(∅)
)−1

∞∑
k=1

N (k + 1)λ(d−4)k/(Nd)(logλ)O(1)k exp
(
O(1)k(logλ)1−d−2

)
= Pλ

(S|D(∅)
)−1(

1 + o(1)
)
,

(9.15)
asλ → ∞, becaused < 4. Recall that Lemma 7 says that

lim
λ→∞

Pλ

(S|D(∅)
)

= 1. (9.16)
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With (9.10) and (9.15), this gives,∑
Q

Pλ,p

(K(Q)|D(∅)
)
Pλ

(D(Q)
)−→
λ→∞

0.

From this, (9.16) and (9.4), we get,

Pλ,p(1C ∩ S) = o(1) +
∑

Pλ

(
N (Q6L)

)
<1/2

Pλ

(
D(Q)

)
. (9.17)

For any given tile inTB the probability that it is inZ(ω) is bounded byO(1)λ−2/d

(logλ)O(1), by (7.1). Because the total number of tiles inTB isO(λ) the expected number
of tiles inZ(ω) satisfies,

E
(
|Z(ω)|

)
≤ O(1)λ(d−2)/d (logλ)O(1) . (9.18)

On the other hand, (7.1) also implies that the number of tiles inQ must be at least
λ2/d(logλ)−O(1), if Pλ

(N (Q6L)
)

< 1/2. This gives the inequality,

E
(
|Z(ω)|

)
≥ λ2/d(logλ)−O(1)

∑
Pλ

(
N (Q6L)

)
<1/2

Pλ

(
D(Q)

)
. (9.19)

The combination of (9.18) and (9.19) implies,∑
Pλ

(
N (Q6L)

)
<1/2

Pλ

(
D(Q)

) ≤ O(1)λ(d−4)/d (logλ)O(1) −→
λ→∞

0,

becaused < 4. Now from (9.17), (9.2) and Lemma 5.5, it follows thatPλ,p(1C) −→
λ→∞

0,

which completes the proof of the theorem. �

10. The Density Invariance Conjecture

The following conjecture is probably true only in dimensiond = 2.

10.1. Density invariance conjecture.Let C (M, M ′, S1, S2, ds
)

be the crossings
event, as in Theorem 2.1, letµ be a measure onM , comparable tovol, and letPµ

λ,p

denote the resulting measure on�̂, where we have stressed the dependence onµ. Then
the limit crossing probability

PC(M, M ′, S1, S2, ds, µ, p) = lim
λ→∞

Pµ
λ,p

(C (M, M ′, S1, S2, ds
) )

exists, and does not depend onµ. A similar statement holds for the percolation in
homotopy classes of Theorem 2.2.
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One may consider a weaker version of the conjecture, where the claim is only that
the difference in the probabilities corresponding to two measuresµ, µ∗ tends to zero as
λ → ∞, instead of claiming that the limit exists. A stronger version of the conjecture
would state that the convergence is uniform inµ, as long as the constantc > 0 such
that c−1 vol ≤ µ ≤ c vol is held fixed. At least in the plane, the numerical evidence
below also suggests that the limiting crossing probabilities are the same as for the bond
percolation model.

The requirement thatµ be comparable to vol is probably stronger than needed. On
the other hand, assuming only that its support isM would not be sufficient. Consider
the following example. Let{Aj} be a sequence of vertical lines whose union is dense
in the plane, and letµj be the length measure onAj . Let{aj} be a sequence of positive
numbers that tends to zero very fast, and letµ =

∑
j ajµj . Then it is not hard to see that

whenλ → ∞ the probability for crossing a horizontal rectangle from left to right tends
to 1.

Numerical evidence.Following is some numerical evidence which supports the con-
jecture in the plane. We have tested five different measuresµ1, . . . , µ5. Their densities
f1(x, y), . . . , f5(x, y), respectively, all depend only on thex variable, and are given in
Table 1. Figure 2 shows a Voronoi tiling for a configuration obtained with the measure
µ4.

Table 1.The densities of the measures tested

f1(x, y) = 1,

f2(x, y) =

{
2/5, 1/3 < x < 2/3,

1, otherwise,

f3(x, y) =


1, x < 1/3,√

2/5, 1/3 ≤ x ≤ 2/3,

2/5, 2/3 < x,

f4(x, y) =

{
1, x < 1/2,

2/5, 1/2 ≤ x,

f5(x, y) =

1, x < 1/3,

(8 − 9x)/5, 1/3 ≤ x ≤ 2/3,

2/5, 2/3 < x.

With each of these measures, we ran the following experiment 200 times. SetR =
[a, b] × [c, d] = [0, 1.2] × [0, 1] andR′ = [a′, b′] × [c′, d′] = [ .08, 1.12] × [.08, .92].
Then the rectangle,R′ fits inR with a margin of 0.08. In the rectangleR, 100,000 points
were distributed independently, according to the given measure. The Voronoi tiling was
then computed. Following that, 1,000 times, random colorings of the resulting tilings
were computed, in each coloring the probability for a tile to be open was taken to be 1/2,
independently1. Then the algorithm determined the largestr0 ∈ [0, (b′ − a′)/(d′ − c′)

]
such that some connected component of the intersection of the union of open tiles with

1 Actually, with the objective of saving computing time, the complete coloring was not computed, only the
colors of the tiles that the algorithm queried were determined, but the result is the same.
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Fig. 2.A Voronoi tiling for a random configuration obtained withµ = µ4

the rectangleR′ intersects both lines{(a′, y) : y ∈ R},
{(

a′ + r0(d′ − c′), y
)

: y ∈ R
}

.

After all these runs, for anyr in the left hand column of Table 2, the proportion of the
runs for whichr ≥ r0 was computed, which is a statistical estimate for the probability
for left to right crossing of the rectangle [0, r] × [0, 1]. The resulting figures, denoted
Pµj

(r) are listed in Table 2, together with the values obtained from Cardy’s formula [6],
and the numerical values given in Langlands et. al. [12], for theZ2 percolation model.
We wish to stress that different entries in the column corresponding to anyµj were
obtained using the same trials, and are therefore dependent. On the other hand, entries
in different columns may be considered independent.

Note that the largest deviation between an entry in the middle columns to Cardy’s
value is in the order of 0.005. This is roughly comparable to an error inr that is equal
to the typical size of a Voronoi cell in these Voronoi tilings.

Qhull, a program created at the Geometry Center in Minnesota, was used to compute
the Voronoi tilings. We wish to thank the authors of qhull, C. Bradford Barber and
Hannu Huhdanpaa, and the Geometry Center, for making it available.

Invariance under conformal mappings.Following is the conjecture from Langlands
et. al. [12], adapted to the Voronoi model.

Conjecture 10.2. Let J be a closed topological disk in the planeR2 = C, and let
γ1, γ2 ⊂ ∂J be two disjoint arcs. Letω ∈ �̂ be a random colored Poisson point process
in the plane, with respect to ordinary area measure, with densityλ andp = 1/2, and
consider the resulting Voronoi tilingT. LetPCλ(J, γ1, γ2) be the probability that there
is some path inJ that connectsγ1 andγ2, and is contained in the union of open tiles of
T. Suppose thatf : J → R2 is a continuous injective mapping, which is conformal in
the interior ofJ . Then

lim
λ→∞

PCλ(J, γ1, γ2) = lim
λ→∞

PCλ

(
f (J), f (γ1), f (γ2)

)
.

Let’s talk about duality in the plane. Observe that the probability that there is some
point that belongs to more than 3 Voronoi tiles is zero. A configuration in which 4
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Table 2.

Lang. Cardy’s
r Pµ1(r) Pµ2(r) Pµ3(r) Pµ4(r) Pµ5(r) et. al. value

.5000 .8214 .8229 .8234 .8229 .8200 − .8244

.5235 .8037 .8063 .8070 .8046 .8028 .8065 .8070

.5481 .7854 .7883 .7888 .7867 .7847 .7783 .7889

.5779 .7636 .7673 .7673 .7646 .7626 .7666 .7671

.6070 .7428 .7462 .7456 .7438 .7418 .7453 .7459

.6400 .7197 .7220 .7222 .7204 .7188 .7217 .7223

.6667 .7011 .7028 .7036 .7015 .7001 − .7035

.6721 .6974 .6992 .6998 .6978 .6966 .6994 .6997

.7059 .6742 .6770 .6762 .6747 .6737 .6762 .6765

.7414 .6508 .6532 .6525 .6510 .6498 .6522 .6527

.7500 .6451 .6475 .6469 .6456 .6441 − .6470

.7753 .6287 .6313 .6303 .6298 .6279 .6301 .6306

.8190 .6011 .6037 .6029 .6022 .6007 .6026 .6030

.8611 .5758 .5782 .5772 .5775 .5755 .5768 .5774

.9048 .5508 .5534 .5516 .5522 .5507 .5516 .5519

.9512 .5254 .5271 .5263 .5271 .5251 .5257 .5260
1.000 .4994 .5010 .5004 .5012 .4997 .4999 .5000
1.051 .4730 .4750 .4750 .4757 .4742 .4743 .4741
1.105 .4475 .4492 .4495 .4506 .4490 .4484 .4482
1.161 .4222 .4238 .4244 .4254 .4238 .4230 .4227
1.221 .3965 .3974 .3989 .3997 .3978 .3974 .3970

Voronoi tiles have a nonempty intersection will be calleddegenerate. It follows that the
boundary of any union of tiles of a nondegenerate configuration is a disjoint collection
of paths in the plane. In the situation of the conjecture, let ˆγ1 and γ̂2 be the two arcs
in ∂J − (γ1 ∪ γ2), and letω ∈ �̂ be a nondegenerate configuration. LetA be the set
of all points inJ that are either onγ1 or may be joined toγ1 by a path inJ contained
in open tiles. Then eitherA intersectsγ2, or there is a boundary component ofA ∩ J
that connects ˆγ1 and γ̂2. In the latter case, it follows that there is a path inJ from γ̂1
to γ̂2 that is contained entirely in closed tiles. On the other hand, if there is such a path
connecting ˆγ1 andγ̂2, then there cannot be an open path inJ connectingγ1 andγ2. We
conclude that either there is inJ an open crossing fromγ1 to γ2, or there is a closed
crossing from ˆγ1 to γ̂2, and these cases are mutually exclusive. Since the probability for
an open crossing is the same as the probability for a closed crossing, we get,

PCλ(J, γ1, γ2) + PCλ (J, γ̂1, γ̂2) = 1. (10.1)

Proposition 10.3. Conjecture 10.1 implies Conjecture 10.2.

The proof uses Theorem 2.1, and monotonicity and continuity properties of crossing
probabilities.

If one assumes that Conjecture 10.1 is valid also for intersections of crossing events,
then the proof below can be used to show that 10.2 is valid for intersections of crossing
events, as discussed in [12].

Proof. Let the situation be as in Conjecture 10.2. Since for any suchJ there is a contin-
uous injective mapping takingJ to the unit disk, which is conformal inJ , we assume,
without loss of generality, thatf (J) is the closed unit diskU .
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We start with a one-sided estimate. Letα1 be a closed arc on the unit circle which is
contained in the relative interior of the arcf (γ1), and letα2 be a closed arc on the unit
circle which is contained in the relative interior off (γ2). We shall show that

lim inf
λ→∞

(
PCλ(J, γ1, γ2) − PCλ

(
U, α1, α2

) ) ≥ 0. (10.2)

Letβ be an analytic simple closed curve which approximates∂J , and has the pattern
of intersection with∂J as indicated in Figure 3, and letJ ′ be the closed disk bounded
by β. Let S1 be a smooth open topological disk inJ ′ − J , such that∂S1 ∩ β is an arc
approximatingγ1, and letS2 be a smooth open topological disk inJ ′ − J , such that
∂S2 ∩β is an arc approximatingγ2. Letg be the Riemann map fromJ ′ to the unit disk,
and assume thatg is normalized so thatg(f−1(0)) = 0 and the derivative ofg ◦ f−1 at
0 is real. BecauseJ ′ is an approximation ofJ , g−1 : U → J ′ is an approximation of
f−1 : U → J . We assume thatβ has been chosen sufficiently close to∂J so that the arc
g(∂S1 ∩β) containsα1 in its interior, and the arcg(∂S2 ∩β) containsα2 in its interior.
Hence for somer > 1, the images ofα1 andα2 under the mapz → r−1z are contained
in S1 andS2, respectively. Fix such anr, and letG(z) = rg(z).

β J

γ2

γ1

Fig. 3.The approximationβ of ∂J

Sinceβ is analytic,g extends to a conformal homeomorphism from a neighbor-
hoodW of J to a neighborhood of the closed unit disk. LetM ⊃ J be a bounded
open set whose closure is contained inW . By Theorem 2.1, whenλ is large, the
probability ofC(M, J ′, S1, S2, |dz|) is approximately the same as the probability of
C(M, J ′, S1, S2, |G′(z)dz|). By Conjecture 10, we may also change the measure from
ordinary volume measure to the measure induced by the mapG. But M with metric
|G′(z)dz| and measure induced byG is isomorphic toG(M ) with ordinary Euclidean
metric and measure. Thus, asλ → ∞, the probability ofC(M, J ′, S1, S2, |dz|) tends
to the probability ofC(G(M ), G(J ′), G(S1), G(S2), |dz|). Whenλ is large, we may
assume, with high probability, that all tiles nearM and nearU are very small. For such
configurations, a crossing fromα1 to α2 in U implies ω ∈ C(G(M ), G(J ′), G(S1),
G(S2), |dz|), andω ∈ C(M, J ′, S1, S2, |dz|) implies a crossing fromγ1 to γ2 in J .
This proves (10.2).
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On the other hand, ifα′
1 andα′

2 are arcs on∂U which containf (γ1) andf (γ2) in
their interiors, respectively, then

lim sup
λ→∞

(
PCλ(J, γ1, γ2) − PCλ

(
U, α′

1, α
′
2

) ) ≤ 0. (10.3)

This can be proved in the same way as (10.2), or deduced from (10.2), using duality.
Conjecture 10.2 will follow from (10.2) and (10.3), once we prove thatPCλ(U, α1, α2) is
continuous inα1 andα2, with a modulus of continuity that’s independent ofλ. Therefore,
the next lemma completes the proof. �

10.4 Continuity Lemma. Letα1 andα′
2 be two disjoint arcs on∂U , and letα2 ⊂ α′

2
be an arc which has an endpointa in common withα′

2. Let b be the other endpoint of
α2, let c be the other endpoint ofα′

2 and letd be the endpoint ofα1 that is separated in
∂U froma by the relative interior ofα1 ∪ α2. Set

ρ =
(a − c)(b − d)
(a − d)(b − c)

,

the cross ratio ofa, b, c, d. Assuming Conjecture 10.1, for allλ sufficiently large,

PCλ

(
U, α1, α

′
2

)− PCλ

(
U, α1, α2

) ≤ O(1)√
ρ

.

Proof. Let β be the component of∂U − α1 ∪ α′
2 that hasa as an endpoint, and let

h : U → U be a conformal homeomorphism of the unit disk that takesα′
2 − α2 and

α1 ∪ β1 into arcs of the same length, with centers on the real axis. Setγ1 = h(α1),
δ = h(β), let γ2 be an arc that is slightly shorter thanh(α2), is contained inh(α2),
and hash(a) as one of its endpoints, and letγ′

2 be an arc that is slightly longer than
h(α′

2), containsh(α′
2) and hasa as one of its endpoints. Note that there is a conformal

automorphismh1 of U , close to the identity, that takesγ1 into an arc that containsγ1 in its
interior, and takesγ′

2 into an arc that containsh(α′
2) in its interior. (Recall that conformal

automorphisms ofU are determined by the images of three points on∂U . One only needs
to appropriately choose the images of the endpoints ofγ1 and the endpoint ofγ′

2 distinct
froma.) By (10.3) withU replacingJ , h1◦h replacingf , and arcs appropriately chosen,
we have

PCλ

(
U, α1, α

′
2

) ≤ PCλ

(
U, γ1, γ

′
2

)
+ o(1), (10.4)

asλ → ∞. Similarly, by (10.3),

PCλ

(
U, α1, α2

) ≥ PCλ

(
U, γ1, γ2

)
+ o(1), (10.5)

Let A ⊂ �̂ be the event that there is a crossing inU from γ1 to γ′
2 in open tiles, but

there isn’t such a crossing fromγ1 toγ2, and consider some nondegenerate configuration
ω ∈ A. There must be an open crossing fromγ′

2 −γ2 toγ1. Becauseγ2 does not connect
in open tiles to this crossing, by duality, there must be a crossing in closed tiles from
γ′

2 −γ2 toγ1 ∪ δ. LetB be the event that there is an open crossing fromγ′
2 −γ2 toγ1 ∪ δ,

and there is also a closed crossing between these arcs. Then,

PCλ

(
U, γ1, γ

′
2

)− PCλ

(
U, γ1, γ2

)
= Pλ(A) ≤ Pλ(B). (10.6)

Let n be the largest integer such that the length of the arcγ1 ∪ δ = h(α1 ∪ β) is less
thanπ/n. Since the cross ratio is invariant under conformal automorphisms ofU , it is
easy to verify, using the definition ofρ, that
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ρ = O
(
n2
)
. (10.7)

Recall that by the choice ofh, the arch(α′
2 −α2) has the same length asγ1 ∪ δ. We also

assume, with no loss of generality, that the length ofγ′
2 − γ2 is less thanπ/n. For any

integerk, let Bk be the rotation ofB by kπ/n; that is, the set of allω ∈ �̂ such that the
rotation ofω about 0 bykπ/n is in B. Observe that ifω ∈ Bj is nondegenerate andk is
not divisible byn, thenω /∈ Bj+k, because any crossing fromγ′

2 −γ2 to γ1 ∪ δ separates
the rotation bykπ/n of γ′

2 − γ2 and the rotation bykπ/n of γ1 ∪ δ.
The eventsBj , j = 0, . . . , n − 1 aren events with the same probability, and the

intersection of any two of them has zero probability. Therefore,

Pλ(B) ≤ 1/n. (10.8)

From (10.4), (10.5), (10.6), and (10.8), we get

PCλ

(
U, α1, α

′
2

)− PCλ

(
U, α1, α2

) ≤ 1/n + o(1). (10.9)

Therefore, (10.7) completes the proof. �
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