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Abstract: Itis proved that in the Voronoi model for percolation in dimension 2 and 3,
the crossing probabilities are asymptotically invariant under conformal change of metric.
To define Voronoi percolation on a manifol, you need a measurne, and a
Riemannian metriels. Points are scattered according to a Poisson point process on
(M, 1), with some density\. Each cell in the Voronoi tessellation determined by the
chosen points is declaregpenwith some fixed probability, andclosedwith probability
1—p, independently of the other cells. The above conformal invariance statement means
that under certain conditions, the probability for an open crossing between two sets is
asymptotically unchanged, as— oo, if the metricds is replaced by any (smoothly)
conformal metriais’. Additionally, it is conjectured that if: andy’ are two measures
comparable to the Riemannian volume measure, then repladiyg:” does not effect
the limiting crossing probabilities.

1. Introduction

Let~ be a simple closed curve (= R?, and letD be the closed topological disk which
it bounds. Pick two disjoint arcs;, v» C 7. Lete > 0 be small, and letZ? denote the
square grid rescaled ky Fix somep € [0, 1] and declare each edged? to beopen
with probabilityp, andclosedwith probability 1— p, independently of the other edges.
This is just the standard bond percolation model on the square grid; for background and
history, see [9]. LePC. ,(D, 71, 72) be the probability that there is a path of open edges
in the subgraph ofZ? lying in D that connects a vertex which has an edge crossing
~1 to a vertex which has an edge crossingThis is called therossing probabilityfor
(D, 1, 72) in the bond percolation model with parameters.

The main interest is in the limit as— 0. H. Kesten [10] proved that the critical
probability p. (the leasip above which there is an infinite open connected component
with probability 1) for bond percolation on the square lattice/i8,Jand that
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0 < lim irgf PCep (D, v1,72) < limsupPCe . (D, v1,72) < L.
€ e—0

Although not proved yet, it is widely believed that the limit
PCop(D,71,72) = M PCe (D71, 72),

exists forp = p,. It is known that forp Z p. the limits exist, andP?Cq ,(D, 71,72) is 0
if p < p.and1ifp > p,..

Aizenman, Langlands, Pouliot and Saint-Aubin have conjectured that the limits
PCo (D, v1,72) are conformally invariant. More precisely,

Conjecture 1.1 (12]). Letf : D — D be a homeomorphism @f onto another topo-
logical diskD C C, and suppose that is conformal in the interior oD. Then

PCo,.(D,71,72) = PCop, (f(D), f(11), f(72)).

This conjecture motivated the current work. In [11] numerical data from computer
simulations has been collected, estimating the crossing probabilities of rectangles. The
discussion of these results led to the above conjecture. Subsequently, J. L. Cardy [6]
found a heuristic argument supporting this conjecture, and derived (using arguments
outside the scope of mathematics) a formula for the limiting crossing probabilities, in
terms of the cross ratio of the images of the endpointg of, under the conformal map
from D to the unit disk. Cardy’s formula matched the numerical data quite well. Later,
Langlands et. al. [12] have obtained more precise numerical data, giving further support
to the conjecture and to Cardy’s formula.

Although the current work does not settle the conjecture, it does prove a related
conformal invariance property, which, in our view, is not less important. In order to
discuss it, the Voronoi percolation model must be introduced. The precise definitions
are given in Sect. 2, but a loose description will be given here.

Let M be a smooth manifold, and l€t be a Riemannian metric alf. Let i be a
measure on/ that is comparable to vol, the Riemannian volume measurk/oiihe
most interesting case js = vol. Take some parametepse [0,1], A > 0. Now letw
be a Poisson point process oW (1), with density . Each cell in the Voronoi tiling
with nucleiw is declaredpenwith probabilityp, andclosedotherwise. Then one looks
at crossing probabilities inside the union of all open tiles. The measptays a role
in the choice of the nucleb, and the metrials is instrumental in defining the Voronoi
tessellation. Our main resultis that, in dimensifon 2 or 3, asymptotically, the crossing
probabilities are unchanged if the metdicis replaced by any other smoothly conformal
metric.

Note that the effect of a mappinfjis to change both the measurend the metric
ds. The main advantage of the Voronoi percolation model is that it permits a separate
treatment of the effects of the change:iand the change iths. We conjecture that in two
dimensiong: may be changed to any comparable measure, without effecting the limiting
crossing probabilities. It is shown that this Density Invariance Conjecture and our main
result imply the analog of Conjecture 1.1 in the Voronoi model. Although this seems
almost tautological at first sight, there is some work involved in dealing with some
sticky boundary issues. Some numerical evidence supporting the Density Invariance
Conjecture in dimension two are presented here. The simulations also suggest that the
limiting crossing probabilities for Voronoi percolation in dimension 2 are the same as
in the Z? model.
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The impression that one might get from Conjecture 1.1 is that the conformal in-
variance has something to do with analyticity, since conformal maps are analytic. In
fact, as the physics literature suggests [2], this impression is erroneous. Our main result
shows that the conformal invariance is much more general, and holds outside the realm
of analytic maps and dimension 2.

The Voronoi percolation model has been introduced into the mathematical literature
by M. Q. Vahidi-Asl and J. C. Wierman [15], in the context of first passage percolation.
Here are some useful properties of this model:

e Rotation invariance.

e Duality: in dimension 2 ang = 1/2, the union of open tiles has the same stochastic
behavior as the set of closed tiles. Based on this, A. Zvavitch [16] has shown that there
iszno unbounded open cluster (component) for Voronoi percolationgathl/2 in
R-.

e Generality: the model makes sense in the setting of Riemannian manifolds. In partic-
ular, the theory of Voronoi percolation in the hyperbolic plane is interesting [4].

e Separation of measure and metric, as discussed above.

e Gradual refinement: one may pass from a configuration to a denser configuration
by inserting new random points one by one. In contrast, when refining a grid, it is
necessary to make drastic changes.

The reader may wish to look into the work of M. Aizenman [1], who constructs a
continuous limit of percolation models using Voronoi percolation.

The plan of the paper is as follows. Sect. 2 gives precise definitions, and the statement
of the main results. A brief outline of the proof is sketched in Sect. 3, while Sects. 4
through 9 provide the details. Of these, Sects. 4 through 6 are geometric in nature,
and Sects. 7 through 8 are probabilistic. Sect. 9 assembles the pieces together and
completes the proof. Finally, Sect. 10 introduces the Density Invariance Conjecture,
presents numerical evidence for it in dimension two, and shows that it implies the analog
of Conjecture 1.1 in the Voronoi percolation setting.

2. The Voronoi Percolation Model and Statement of the Main Result

Throughout the papek/ will be a smooth Riemannian manifoldiwill be the dimension

of M, andds will denote the Riemannian metric alf. Let dy(:, -) be the distance
function associated with\(, ds). Also associated witlis is the natural volume measure,
vol. Let 1 be measure o/ comparableto vol, which means that there is a constant
¢ > 0 such that =1 vol(A4) < u(A) < cvol(A) for every measurabld c M.

Given parameters > 0, p € [0, 1], one defines the Voronoi percolation process
on (M, ds, u, A\, p), as follows. Let2 be the space of all subsetsof M such that the
intersection ofu with any compact subset @f is finite. There is a (Borel) probability
measureP, on Q given by the Poisson point process av () with densityA. The
measurePy, is characterized by the formula,

k
Au(A)
Pr(on =) = PO e ), 1)
for every measurabld (with finite measure) and every integerand by the requirement
that |w N A4],...,|w N A,| are independent random variables whép ..., A,, are
disjoint measurable sets. Here, and below, for anyXsethe cardinality ofX will be
denoted X |.
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The elements) € Q are callecconfigurationsLetw be some configuration. Given
anyz € w, its Voronoi tile T(z) = T(w, ds, 2) is the set of all pointsw € M such that
do(w, 2) < do(w, 2’) for all 2/ € w. The collection of all Voronoi tiles is th&oronoi
tiling of w, and will be denoted (w, ds). It is indeed a tiling of\/, except for the trivial
case (which will henceforth be ignored) where= ().

In Voronoi percolation, each tile df(w, ds) is declaredpenwith probabilityp, and
closedwith probability 1— p, independently, and one studies the connected components
of the union of all open tiles. We now make an equivalent, slightly different and more
precise, formulation. LeR = Q@ x Q. ThenP, , is defined to be the product measure
P,y X Pa_p)x on 2. Givenw = (w,,w.) € €, the setu, will be called the set of open
nuclei, andw, is the set of closed nuclei. The projection map$2 — Q is defined by
T(Wo, we) = wo U we. If 7 = w, thend will be called acoloring of w. The elements of
2 are callectolored configurations

Let7 € Q be distributed according tBy, and letr, be a random subset of chosen
so that for anyr € 7 the probability forxz € 7, is p, and for differentz, 2’ € 7 the
eventsr € 7,, ' € 7, are independent. Then it is not hard to verify that, ¢ — 7,)
is distributed according t® ,. This means that a legitimate way of generating\g,-
randomwis by first selecting &, randomw and then selecting an appropriate random
coloring of it. We shall make use of these two distinct ways of generatig,arandom
colored configuration. A

Given a colored configuratian € 2, the tilesinT (o, ds) = T(ww, ds) which belong
to open nuclei are callegpentiles, and the other tiles amosedtiles.

We soon define therossingevents and the crossing probabilities. Perhaps the clean-
est situation to deal with is one in which there is no bound&fys compact (and bound-
aryless), and one is looking for percolation in homotopy classes; that is, the “crossing”
event is the event that there is a closed curve, contained in the union of open tiles, which
is in a prescribed homotopy class. However, this is not the situation prevalent in the
literature. The definitions below are not the most natural ones, with respect to the way
the boundary is dealt with. They have been adopted because they make the proofs easier
(thatis, possible), and since we feel that it is better to leave the boundary issues to future
investigations.

Let M’ be a compaci-dimensional set i/, which has smooth boundary, and let
&1, 6, € M’ betwo open disjoint sets, with smooth boundary. Given(w,, w.) € €2,
let T, (w, ds) be the union of open tiles af(w, ds) which have nuclei in\/’, and let
C=CM,M', &1,6;,,ds) C Q be the event that there is a connected component of
T, (w, ds) which intersects botly, N &1 andw, N &,. If w € C, we say that there is a
crossing fromS; to &, in (M, M, w, ds).

Now suppose that : M — R is a smooth function, and consider the metfids,
which is conformal to our original metrig¢s.

2.1. Conformal invariance theorem for percolation. Suppose thad = dim(M) = 2
or 3. LetI C (0,1) be a compact interval. Then

lim Py, (€ (M, M, 61, 82,ds) — € (M, M, 81,82, ¢"ds) ) =0,

uniformly forp € I.

This means that the set of configuratianss 2 for which there is a crossing with
respect to the metri€s, but not with respect to the conformal metefeds has measure
tending to 0 as\ — oo, and the convergence is uniformjpras long a® is kept away
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from 0 and 1. In particular, whekis large, the probability of (M, M' 61, 6,, ds) is
approximately the same as the probabilityj((fM, M 61,6,, e“ds), and the same is
true for intersections of such events.

Actually, the theorem is true even with= [0, 1]. To prove this one needs to show
that for some constaiat> 0, we have

lim Py, (C (M, M',61,62,ds) ) =0,
A—00

uniformly for p € [0, §], and
lim Py, (c (M, M’,Gl,Gz,ds)) =1

uniformly forp € [1 — ¢, 1]. These facts, which are actually valid in greater generality,
are not hard. (The analogous statements in the discrete setting are certainly well known.)
But because the methods involved are almost disjoint from those of this paper, and for
the sake of keeping the size of the article reasonable, the proof will be delayed to some
future work.

The point about the limit in Theorem 2.1 being uniform is that one mgy dietpend
on )\ andtendte. asA — oo, and still the theorem applies. Any value can be prescribed

for limy_ Prp (C (M, M’,&1,65,ds) ) if p is an appropriate function of. This
issue is even more important in dimension 3, since it has not been proved in any model
that the limit limy_, o P . (C (M, M', &1, 65,ds) ) is not always 1 or 0.

We now discuss a variant of the theorem involving percolation in homotopy classes.
Let o be a collection of homotopy classes&f and letC(M, M', «, ds) C 2 denote
the event that there is a pathTj, (w, ds) which realizes a homotopy classdn

2.2 Conformal invariance theorem for percolation in homotopy classes.  Sup-
pose thatl = dim(M) = 2 or 3. Let! C (0, 1) be a compact interval. Then

im Py, (c (M, M’, a,ds) — C (M, M”,a,e“ds)) =0,

I
A—00
uniformly forp € I.

The same proof applies to both theorems.

3. Brief Outline of the Proof of Theorems 2.1 and 2.2

Consider a configuration € €2, and the Voronoi tilings ¢, T1 produced by using the

two metricsds ande“ds. A situation where there are two neighboring tileJ gnand the
corresponding tiles iff; do not neighbor is called defect The first step is to analyse

the geometry of configurations that are defect prone. We shall find that for compact sets
in dimensiond, in configurations with approximately? cells, the typical number of
defects is in the order of?—2. In particular, ford = 2, the expected number of defects

is finite.

It turns out that the best way to deal with the defects is to think of a typical configu-
ration as a defect-free configuration, with defects added on top of it by an independent
(sort of) Poisson process, which has small density. In practice, much effort is required
to make this philosophy work.
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In dimensions 2 and 3, defects turn out to be rare enough so that they do not effect
percolation. The effect of the defects added on top of a defect-free configuration is
majorized by changing the status of all tiles intersecting sufficiently large spherical
shells about the location of the defect, from open to closed, say. We shall need quite
delicate tail estimates for the number of tiles intersecting such spherical shells. Using
these estimates, and a second moment argument, it will follow thad o2, 3), with
high probability, these haphazard defects will not destroy percolation.

Almost all of the proof does not assunies 2, 3, only at the very end we shall apply
this restriction. Perhaps this might be valuable in the future, in extending the results to
higher dimensions. From time to time, remarks will be made, hinting how the proof may
be simplified if one restricts to the casdé = R2.

4. The Geometry of Defects

We consider some fixed configuratione Q2. Recall thatiy(-, -) denotes the metric ol
corresponding to the Riemannian metfic and letd; (-, -) be the metric corresponding
to the conformal Riemannian metri¢ds. Let To(w) be the Voronoi tessellation for
w with respect tady(-, -), and letT;(w) be the Voronoi tessellation obtained by using
the metricdy(-,-). A defectis a pair of points, p, € w such that the Voronoi tiles
To(p1), To(p2) are adjacent, but the corresponding tilegp;), T1(p2) are not. That is,
To(p1) N To(p2) 70 = Ta(p1) N Ta(p2).

Lemma 4.1. Let K be a compact subset 8f. There is a constant’ = C(u, K) > 0
with the following property. Suppose thatp:, p. € K andr € (0,C~1), satisfy
do(q, p1) = do(q, p2) = r. Then there is g, € M satisfying

(1) do(g1,q) < Cr?,
(2) di(q1,p1) = di(q1, p2), and o
(3) |da(q1, p1) — da(q, p)| < Cr3, for anyp € M satisfyingdo(g, p) = r-

One fact the lemma tells us is that a small ball in one metric is very close to a ball in
a conformal metric. In general, the two balls should be allowed to have different centers,
in order to obtain the correct order of approximation.

In the particular situation wheré{, ds) is a domain in the plane with the Euclidean
metric and the metrie“ds is the pullback ta\/ of the Euclidean metric under a conformal
mapf : M — C, the lemma is significantly easier. One may takeas the center of
the circle which is the image of the circle — ¢| = » under a Mdbius transformation
which agrees witty atq, p1, p.. ThenC is bounded by a constant times the maximum
modulus of the Schwarzian derivative phearg.

Proof. Since the restriction of to K is bounded, and the lemma is not effected if we
add a bounded constantdowe assume without loss of generality th#4) = 0.

Setu; = tu, and letd,(-, -) be the metric induced by the Riemannian metticds.
Thend; is a one parameter family of metrics, interpolating betwé&eandd,. We shall
first solve the differential problem; that is, a tangent veetuiill be found such that for
a pathg(t) in M satisfyingq(0) = ¢, ¢’(0) = v, the conditions
(1) |v| < Cr?,

(2) £di(q(),p1) = £di(q(t), p2) att =0, and
(3) |&Ldi(qt), p1) — £di(q(t),p)| < Cr® att = 0, for everyp € M satisfying
do(q,p) =,
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are satisfied. It will then be quite easy to get the original statement from the differential
statement.

Ouir first goal is to estimate the derivati\g’gdt(q,pl) att = 0. Sincer is as small as
we wish, we may assume that any geodesic segment joining two points whose distance
is at most 2 is unigue, in any of the metricg;. Let v, be the geodesic segment for
the metricd, joining ¢ andp;, and suppose that eaeh is parameterized according
to arc-length. Seg(x, y) = lenght;, (v,), the length ofy, in the metricd,. Theng is
smooth (since geodesics can be obtained by solving an ODE on the tangent bundle), and

di(g,p1) = 9(t. ). (4.1)
Because the curveg, is length minimizing in the metridy, the equation
0
oy

holds. Therefore, (4.1) implies

0 0 0
| dlg,p1) = %g(oa 0) = B

lenght;, (o). (4.3)
Ot|i=o =0 °

=

Becauseyg is parameterized according to arclength, we have,

lenght, (7o) = / et 00D .
0
Together with (4.3), this gives,

ot

du(q. pa) = /0 u(ro(s)) ds. (4.4)

t=0
Using local coordinates, angq) = 0, the following estimates are obtained,
70(s) = g + 575(0) + O(s),
u(0(s)) = 5Vu(g) - 1(0) + O(s?).
Substituting this into (4.4) yields,

o e = 32V 240 + 00 @5)

t=0

If v is any tangent vector gt andq(t) is a path inM with ¢'(t) = v, then we have

o do(q(t), p1) = —v - 7(0),

t=0

because-v;(0) is the gradient of thé,-distance fronp, atg. Hence, it follows from (4.5)
that

d

i ap) = L

d
at| o do(q(t),p1) + —| di(q,p1)

=0 dt |1z (4.6)
= 0 34(0) + 2r*Vulg) - 74(0) + 06,
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Suppose that has the form
v= %r2Vu(q) +0(r3). (4.7)

Then we get.d; (q(t), p1) = O(r®). The same would be equally truepif is replaced by
anyp such thatly(q, p) = r, because the above expressiomfaloes not depend agn.
Consequently, (1") and (3") would be satisfied for an appropriately cheser' (u, K).
So all that remains for the solution of the differential problem is to find@e’) term
in the expression fos, which would guarantee (2').

Let 8; be the geodesic segment joiniggand p, in the metricd;, parametrized
according to arc-length. We use the expression (4.4) and the corresponding expression
with g andp, replacingy andps, to get,

ot

(dt(Q»pl) = dt(QaPZ))

= [ (uoats) — () ) s (4.8)
OT .

= [ Vu(5o) - ()~ o) s+ [ O (1)~ (o)) s
0 0

t=0

Let a,,(s) denote the geodesic startingaat (0) = ¢ with initial directiona,(0) = w.
Then a,,(s), of,(s) and &/ (s) are smooth functions ofy and s. Consequently, for
s €[0,r],

70(s) = Bo(s) = O (r[6(0) — Bo(0)]) (4.9)
76 (s) = B (s) = O(|0(0) — 5(0)])- (4.10)

Using this in (4.8), gives,

% o (dt(q,pl) — di(q, pz))

= /O Vuulg) - (574(0) — s50(0)) ds
N /0 V() - (va(s) — $75(0) — Bols) + s5(0)) ds

o [ (Tu(s) - Vul@) - (o) — Gl s (@)
0
+0 (FH4(0) - H4O))
= 2r2Vula) - ((0) ~ GH(0))
+ | Futa) - (ots) = 575(0) = () + 55%(0) s
+0 (F14(0) - B(O)).

Set
h(s) = 70(s) — 576(0) — Bo(s) + 556(0)-
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Note thath(0) = 1/(0) = 0, andh”'(s) = 7§ (s) — 3 (s), which isO(|v4(0) — 55(0)]),
according to (4.10). Therefore,

h(s) = O (r®|70(0) — Ba(0)]). (4.12)
for s € [0, r]. Now use this in (4.11),

% (dt(q, p1) — dt(QvPZ))

t=0

= %rzvu(q) - (70(0) — B5(0)) + /0 Vu(g) - h(s)ds + O (r*[7(0) — 55(0)|)

= %TZW(CI) - (7%(0) — B5(0)) + O (r376(0) — BH(0)]) -

(4.13)

Let A be theO (r3|v4(0) — 35(0)|) term, that is,

0 1 / ,
A= 5| (dapy - dtor) = 57Vu@) - (60 - 50). @14
Choose,
1 1(0) — 40
v=5r*Vu(g) + AM, (4.15)
0 0

and, as before, let(s) be a path satisfying(0) = ¢ andq’(0) =v. Then

<! (dola(s). pr) = dola(s),p2)) = v 76(0) +v - 55(0)

s=0

_ _%TZVU(q) - (76(0) - 55(0)) — A

ot

di(q,p1) — di(q,p2) ),
I )

by (4.14). Consequently,

% L:O (dm(q(x); pl) - dx (q(;[;)7 pz))

0s

(doate), ) — doa(s).p2)) +

(dt(q,m) - dt(Q>p2)) =0,

$=0 t=0

which shows that (2) holds. Sincé is O (7‘3|76(0) — 56(0)\), the definition (4.15) of
v satisfies (4.7). Hence (1') and (3’) are still satisfied, as we have seen above. This
completes the solution of the differential problem.

To solve the original problem, for every poigit and every € [0, 1], definev(q*, t)
as in (4.15), but with the metri¢; replacingdy and the point* replacingg. Let ¢(t) be
the solution of the initial value probleq(0) = ¢, ¢'(¢) = v(q(t),t), and set1 = ¢(1).
(Becausev(q(t),t) = O(r?), r < C~1, andq € K, by an appropriate choice of the
constantC it is guaranteed that this initial value problem has a solution in the interval
[0, 1]. The essential point here is thgt) stays in a compact subset df.) Then it is
easy to see that (1) and (2) hold. Verifying (3) is just slightly harder, because (3’) was
obtained only for pointg satisfyingdo(q, p) = do(q, p1), and these are generally not the
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points satisfyingl,(q(t), p) = d.(q(¢), p1). To deal with that, start with any satisfying
do(g, p) = r. At every pointz let w(z,t) be the direction at of the geodesic for the
metricd, that goes fronx to ¢(t). Let p(t) satisfyp(0) =p and

vo=( 4
s=t

Thend, (q(t), p(t)) = d¢(q(t), p1) forall ¢ € [0, 1]. Henceds (g1, p(1)) = da(q1, p1). By
the equivalent of (3') at, [p'(¢)] = O (r®). Sodo(p(1),p) = O (r*), which gives

di(q1, p) — dilqr, p1) = da(q1, p) — di (g1, p(1)) = O (r®).
This implies (3), and completes the proof. O

(4 (a.m1) = .6, ) wo0.1).

Notation. Suppose that;, z are points inM. If there is a unique shortest geodesic
segment fromy to z, in the metricdp, then the direction aj of that geodesic will be
denotedV,(z). When working in local coordinatesV,(z) can be thought of as a unit
vector inR<. We may also think ofV,(z) as a unit vector iff,, M, the tangent space to
M atgq.

Note that for any compadt’ C M there is are > 0 such thatV,(z) is well defined
wheng € K anddp(q, 2) < e.
The following lemma will help us prove that defects are rare.

Lemma 4.2. Let K be a compact subset 8f. There is a constar® = C(M, ds, u, K)

> Osuch thatthe following holds. Lete €2, and consider the two Voronoi tessellations,
To =To(w), T1 = T1(w), obtained by using the metridg andd;. Suppose thai;, p; €

K nw form a defect (that isTo(p1) N To(p2) # ® = T1(p1) N T1(p2)) and assume
that To(p1) N To(p2) C K. Letq be the point inTo(p1) N To(p2) which maximizes
do(q,w — {p1,p2}) — dolg, p1), and setr = do(q, p1), v’ = do(q,w — {p1,p2}). Let

Z ={z,...,2} be the set of points € w — {p1,p2} such thatdo(q,2) = r'. If

r < C~1 then

(1) v <r+Crd and
(2) the vectors{Ny(p1), Ng(p2), Ng(21), . . ., Nq(2x)} are affinely dependent.

Proof. TakeC to be larger than the constant in Lemma 4, and assurieC 2. Let
q1 be the point described in that lemma, and et di(q1, p1) = di(qa, p2). Since
g1 ¢ 0= T]_(pl) n T]_(pg), there is a pOim'Zo € w— {pl,pz} with dl(ql,ZQ) < 1.
We know thatdo(q, 20) > 7 anddo(q, ¢1) = O(r?). Hence, there is a point, on the
di-geodesic segment from to ¢4 that satisfiesly(g, z4) = r. Then, according to 4. (3),
d1(q1, 20)+O(r®) > da(qa, p1) > da(qa, 20). But sinceds(qa, z0) = da(qa, 20) +da(2g, 20),
it follows that di(z0,25) = O(r®), which impliesdo(z0, 25) = O(r®). Consequently,
do(q, 20) = r+O(r®). By construction, among all the pointsdn- {py, p»} the points in
Z are closest tq. Thereforer’ < do(q, 20) = r+O(r®) for z € Z, and (1) is established.
Let L be the set of pointg in M such thatdg(p, p1) = do(p, p2). If ¢(t) is a smooth
path in M which satisfieg(0) = ¢, then

dt

(do(at®), 2) = do(att),p2) ) = ¢'®) - (No22) — Ny0).

t=0

BecauseV,(p1) 7 Ny(p2), it follows by the implicit function theorem that N W is a
smoothd — 1 manifold, for some opeW C M which contains;.
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Letw € T,M be any tangent vector atwhich is orthogonal td N, (p2) — Ny(p1)).
Then there is a smooth paift) in L such thaiy(0) = ¢ and¢’(0) = w. Recall thaty
maximizes

do(pvw — P1,p2 ) - do(papl)a (416)

amongp in To(p1) N To(p2). Since (4.16) is negative whene L — To(p1) N To(p2),
it follows thatg maximizes (4.16) amongin L N W. Therefore, there must be some
z € Z such that

0> 2

7t (dO(Q(t)7 Z) - dO(Q(t)vpl)) -w- (Nq(pl) - Nq(z))'

t=0

This means that for every vectartangenttoL, w € T, L, there issomg € 1,... k
with w - v; < 0, wherev; is the orthogonal projection a¥,(p1) — Ny(z;) ontoT, L.
Therefore, 0 is in the convex hull dfv, ..., v} (see Eggleston [7, Ch. 17]), and
consequentlyfvs, . . ., vx } is linearly dependent. Hence, the linear spafraf . . . , vy }

is contained in & — 1 dimensional subspace B} L. Because eaclV,(p1) — Ny(z;)

is a linear combination of; and Ny(p1) — N4(p2), it follows that the se{ N, (p1) —
Ny (p2), Ny(p1)—Ny(21), - - - » Ny(p1)—N,(21) } is contained in & dimensional subspace
of T, M. This proves (2), and establishes the lemma.

Recall thatM’ is a compact subset @ff in which the crossing is considered. Let
M* C M be some compact set that contald$in its interior. We now define a potential
defectto be a situation where some of the necessary conditions for a defect of Lemma 4.2
are satisfied.

Definition. LetC be the constantin Lemma 4.2, withtaken to beM/ *. Consider some
configurationw € Q. A potential defect is a situation where, there is an intgger 1,
and a pointg € M, and nucleipy, p2, 21, . . ., 2x € w, and numbers, r’ > 0 such that

(1) r< o,

(2 r <+ <r+Crd

(3) 7 =do(g, p1) = do(q, p2),

(4) T/ = do(q7 Zl) == dO(Q7 Zk)! and

(5) the vectors{N,(p1), Ny(p2), Ny(21), - . ., Ny(2x)} are affinely dependent.

The number- is called the span of the potential defect, and the pgiistthe navel of
the potential defect.

5. Defects are Rare

This section will provide an estimate for the probability of having a defect or potential
defect in a given region. The argument will be based on the necessary condition for
defects given in Lemma 4.2. We start with the following almost obvious lemma.

Lemmab5.1. Let m > 3 be some integer, and leX,, be the set of pointa: =
(#15- -+, 2zm) € (RY)™ such that{z1, ..., z,,} C R? is affinely dependent arjd; | = 1
foreachj = 1,...,m. ThenX,, has finite(md — d — 2)-dimensional measure.
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Proof. Let Y be the space of tupleg = (L, w,y1,...,ym,H), whereL C R? is an
(m — 2)-dimensional linear subspace,is a unit vector orthogonal td, 1, ..., ym
are unit vectors irL, andf € [0, /2]. Then, clearlyY is a compactied — d — 2)-
dimensional smooth manifold with boundary, and therefore has finite-{ d — 2)-
dimensional measure. The map

DL, w,y1,. -+, Ym,0) = (COSOw +sinby,,...,cos w + sinb y,,),

takesY onto X,,, and is a Lipschitz map. Therefork€,, has finite (nd — d — 2)-
dimensional measure. [

Here is another nearly trivial lemma.

Lemma 5.2. LetiW C R? be open, let be Lebesgue measure @n, let A > 0, and let
w C W be a Poisson point process ¢, v) with densityA. Letm > 1 be an integer,
and letw,, C W™ be the set of point&, . .., v,,) € w™ such that; 7 v, for j 7 k.
Lety,, =v x --- x v be the product measure Y™, and letS C W™ be measurable.
Then the probability thab,,, will intersectS is at most\"v,,,(5).

Proof. One first proves the lemma in the case that W™ is a box disjoint from the
diagonalsw; = wy. The general case follows. Details are left to the reader]

For aninterval C R and asetWV c M, let PD(W, I) be the event that ikl there
is a navel of a potential defect whose span is in the intefval

Proposition 5.3. Let K be a compact subset 81, and letiV C K be open. Then,

P, (PD(W, [0, e])) < OVOI(W)NTH2ed+d+2,
for everye € [A"Y4,C~1], whereC > 0 is a constant which may depend on
M, p,ds,u, K, but not oniV, A e.

Lemma 5.4. Let the situation be as in the proposition. There is a constént=
Co(M, ds, K) > 0, such that the following holds. Lete [0, Cp], § € (0, 1), and letk in
the rangel, 2, ..., d. LetS be the set of all tuple®@1, po, 21 . . ., 2) € M**2 such that
for someg € W, r € [0, €], andr’ € [r,r + d¢), we haver = do(q, p1) = do(q, p2), ' =
do(g; z1) = -+ = do(q, z1), and the vector Ny(p1), Ng(p2), Ng(21), - . ., Ny(2x)} are
affinely dependent. Then ttie+ 2)d-dimensional measure 6fis O (1) vol(1W)5e*+D4,

Proof. Recall the set,,, of Lemma 5. Let
Y= [07 1] X [Oa 5) X Xk:+2-

From that lemma it follows that the: (+ 1)d-dimensional measure of is O(6). Let
Y’ = ¢Y; that is, the seY¥” scaled bye. Then the § + 1)d-dimensional measure af’ is
O (1) 6¢%**1d_Consider the map

WY — (RN

defined by

Wo(r, a, 21, .. ., Tp+2) = (re_lafl, re Yoo, (r+a)e tes, ..., (r+ a)e_lxk+2).
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Differentiation shows thaby is Lipschitz inY” with a Lipschitz constant which depends
only ond. (Because, -+« and ther;’s areO(e).) Consequently, théf+1)d-dimensional
measure ofto(Y”) is alsoO (1) sek+11,

We assume, with no loss of generality, thitis contained in a coordinate chart of
M . This allows us to identify the tangent spacel/ with R¢, for z in a neighborhood of
W.Givenapoint € W and avectov € R%with |v| < 15, letexp (v) denote the point
x € M suchthatlp(z, ) = |v| and the tangent atof thedy-geodesic segment froato
xiswv/|vl|. (This is usually called the exponential map.) Since geodesics can be obtained
by solving an ODE on the tangent bundle, the map, @xXps smooth inz andv (that is,
the geodesic flow is smooth). For eack W and eachufy, vy, . . ., vi+2) € Wo(Y”), set

W1(z,01, 02, - ., Uks2) = (€XP,(v1), . . ., €XP, (Vk+2).

SinceWw, is smooth, we find that the: ¢+ 2)d-dimensional measure &fy (W x W1(Y”))
is O (1) vol(W)5e* 1. The lemma follows, because= W1 (W x Wo(Y")). O

Proof of 5.3.Let C; denote the constant of Lemma 4.2. Fix some smafl \~1/4,
Let A, k = 1,2,... be the event that there is a poipte W, anr € [0,¢], anr’ €
[r, 7+Cyr3), and distinct pointy, po, 21, . . . , zx € wsuchthatly(q, p1) = do(q, p2) =,
do(g,z;) =7, =1,...,k, and the unit vector§ N,(p1), Nq(p2), Ng(21), - . ., Ng(2x)}
are affinely dependent.

By definition, PD(W,[0,¢€]) C A1U A, U....SetA = A U---U Ay, and note
that A, C A, for k > d, because any subsetf whose cardinality igl + 2 is affinely
dependent. Therefore,

PD(W,[0,€]) C A. (5.1)
Now fixsomek = 1, ..., d, and consider,. To estimateP, (Ax), apply Lemma5.4
with 6 = O(€?), and then use Lemma 5. (Here the meaguig only comparable, not

equal to Lebesgue measure, but that is enough.) The combination of these two lemmas
gives

Py (Ai) < O (1) vol(W)\e+2elkrDd+2. (5.2)

Since we take > A~Y/4 this is largest whe# = d, and hence,
Py(PD(W.[0,6))) < Py (A4) < O (D) vol(W)AH 2452

which proves the proposition. O
Set,
L= L) = A~Y4 (log \)@+D/d* (5.3)

This quantity L will be an important length scale in the following sections. The two
essential features of the choicelois that it tends to zero faster than/¢(log )Y/ @-1),
but slower tham\—%/4(log \)Y/<.

Lemma 5.5 (no giant tiles). Let K ¢ M be compact, and let > 0 be some constant.
Then theP, -probability that there will be a tile ifT (w, ds) which intersectds and has
diameter greater thanL tends to zero agd — oc.
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Proof. LetU C M be an open set which contaihSand has compact closure. Suppose
that \ is sufficiently large so that the distance frakhto M — U is greater thanél.

Let X be a maximal subset @f with the property that any distinct elements of it have
distance at leastl./9. The cardinality ofX satisfies

|X| = O(L™9). (5.4)

Foranyz € X, let€, C Q be the event that the ballo(z, cL/9) does not intersect.
Then we have

Py(&,) = e MO, (5.5)

Let z € w, and letT(z) be the tile with nucleus in T(w, ds). Suppose that (z)
intersectskK, and its diameter is greater thah. Then there is somg € T(z) such
thatdo(y, z) > cL/2 anddp(y, K) < cL. Consequently, the balky(y, cL/3) is disjoint
fromw and contained if/. There will be some € X with do(z, y) < ¢L/6. For thatz,
we shall havev € £,.. This shows that the event that there is some tile which intersects
K and has diameter cL is contained inJ,c x&,.. Hence, we get from (5.4) and (5.5)
that the probability of that event is at most

O(L—d)e—)\Ld/O(l)7
which tends to zero as — oo, by (5.3). O

Note that the number of tiles df(w, ds) that are expected to interseftis in the
order of \.

Theorem 5.6. Supposé( C M is compact, and has positive volume. Then the expected
number of defects involving tiles i is O(1)A@~2/4 when) is large.

The theorem will not be needed in the following, because we will need information
about potential defects more than about actual defects. Itis presented only for complete-
ness.

Proof. Let W C M be a set whose diameter is smaller thart, say, and letvy be
some point inW. For any interval §, b], let hyy (a, b) be the probability that there will
be inT a navel of a defect with span in the rangey]. By Proposition (probdef),

hw (o, xl/d) < O(1) vol(W)Ad=2/d,

Now consider some > \~/4. [f there is for a configuratiow a navel inlV of a defect
with span in the range:[ 2¢], then the ballBy(wo, ¢/2) does not contain any pointin
This latter event is independentBfD (W, [¢, 2¢] ), and consequently,

haw (€, 2) < Py (Boluwo, ¢/2) Nw = 0) P (PD (W, [¢, 24]) )
< O(l)e—)\ed/O(l) Vol(VV))\d+2€0l2+d+27
again, using Proposition 5.3. Consider a tilingffby sets{1¥;} with very minute

diameters. Let(w) be the number of tiles in the tiling which contain a navel of a defect.
Then
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oo

En(w) < Z I, (O, /\71/d> + ZZ hw, (A—l/dzk’ /\71/d2k+1)
J

j k=0

< O(1) vol (K) \(d-2)/d Z o= 2" /O gk(d*+d+2) — 0(1)/\(0172)/(1'
k=0

Since every defect has a navel which is not the navel of any other defect, for any specific
configurationw, the number of tile$¥’; which meet a navel tends to a number at least

as large as the number of defectsuads the tilingl?’; becomes very fine. Consequently,

by the monotone convergence theorem, the expected number of defects is bounded by
the limsup ofEn(w), as the tilinglV; becomes finer. The theorem follows. [

Remark.In fact, the estimate in Theorem 5.6 is sharp.

6. The Size of Spherical Shells

This section is devoted to proving a tail estimate for the number of Voronoi cells in
a random Voronoi tilingl (w, ds) which meet a union of spheres. (It is possible to do
without this section if one is interested only in the cage= R2.) The precise statement
which we shall need is as follows.

Proposition 6.1. Let My C M be compact, lek C My be afinite set, and let, R, A >

0, with X large andR? < A~Y/<, For eachz € K, let S(z) be the sphere of radiug
aboutz. Givenw € @, let n(w) = n(K, R, \,w) be the number of Voronoi tiles in the
tiling T(w, ds) that have diametex R and intersect,.c x S(x). Then there is a constant
C =C(a, M, My, ds, ) > 0 such that

Ey exp(an(w)) < exp (CRdflA(dfl)/d|K|) ,

whereFE, denotes the expectation operator(&, Py).

6.2 Lemma of Ball Unions. Let0 < C' < oo, and letA ¢ R? be a union of open
balls with centers on the unit sphefg—! ¢ R9, and with radii bounded by’'. Then
the (d — 1)-dimensional measure éfA is bounded by a constant which depends only
onC andd.

The proof is motivated by hyperbolic geometry, but does not use it.
Proof. Suppose first thadl is a finite union of such balls,
A= U;”:]_B(qu, ’I“j).

Let X be the set of points € 0A such thatr is on the boundary of exactly one of
the ballsB(g;, ;). ThenX has full @ — 1)-measure irDA. We now define a map
f:X — 891 Letz € X, and suppose thatis the index such that € dB(qg;,7;).
If z € X N S9L setf(r) = . Otherwise, letB, be the largest open ball which is
contained inB(g;, r;), is internally tangent td3(q;, ;) atz, and is disjoint froms<-1.
See Fig. 1. ClearlyB,, is well defined, and there is precisely one intersection point of
0B, andS?~1, Let f(x) be that intersection point.

Note thatf : X — S%1is a continuous map. Suppose thas a pointinAN S4-1,
Let BY be the maximal open ball which is externally tangerfifo® aty and is contained
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Fig. 1. The definition of the mag (z)

in A. If z is some point inX N 0BY, then the ballBY is strictly contained in the ball
B(g;,r;) with x € 0B(g;,7;). Consequentlyz is the only point in0A N BY, and

B, = BY. Itfollows that for everyy € S9~! there is at most a uniquec X outside the
unit ball B(0, 1) such thatf(x) = y. The same argument applies to the poinisside

the unit ball. Therefore, the mafis at most 2 to 1.

Consider one of the ballgi(g;, r;), in the union making up!. It is enough to show
that locally the mapf does not contract distances too muchX¥m 90B(g;,r;). This
can be done by inspecting the extreme cases where eitliersmall or at the points
wheredB(g;, ;) is close toS?~1. Alternatively, observe that the restriction pfto a
componentofB(q;, ;)N X —S?~tis equal to aninversion in somé- 1)-dimensional
sphereZ and that the center of cannot be too close t6¢~1. The case wherd is a
union of infinitely many balls follows by a limiting argument. The details are left to the
reader. [

Remark.In the lemma, one may replace the assumption that the centers of the balls
making upA are onS?~! by the assumption that the interior angle of the intersection
of these balls with the unit ball be bounded away from 0.

For book-keeping, we introduce yet another tilinghdf, T 5, which will be non-
random. The only important feature @fg is that every one of its tiles has diameter
O (A~Y/4) and volume at leagt'A~* for some constant’ = C(ds) > 0. For example,

T 5 may be constructed as follows. Take a set of poiits M such that the distance
between any two points iB is at least\~/¢, and B is maximal with this property, and
let T = T(B, ds), denote the corresponding Voronoi tiling.

Proof of 6.1.Forx € K, let A(x) be the union of all open balls with radius at maést
and center ir5(z) that do not intersect any tile Gfg which intersects.

Let U(z) = U(x,w) denote the set of points i which are nuclei of tiles with
diameter< R that intersectS(z), and suppose that € U(z). Then there must be a
point z € S(x) such thaty is the closest point ta which is inw. Henceq is on the
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boundary of an open ball with center $ifz) which is disjoint fromw and has diameter
< R. Recall that every tile of 3 has diametex C1 A=Y/, whereC is some constant.
It follows thatq has distance at mo6t A —Y/¢ from A(z) U S(x). Let H(z, w) be the set
of all the tiles of T 3 which are at distance at maSgA\~%¢ from A(z) U S(x), but do
not intersectd(z). We may conclude thdf (x) C UH (z,w). (If Q is a set of tiles, then
UQ denotes the union of the tiles @.)

Set
H= ] H@,w),
zEK

n* = |(UH) Nwl|.
Thenn* = n*(w) > n(w). In order to bound the tail of*, let us estimate from above the
size of H. Assume first that the metrits is a flat (Euclidean) metric. For eaehe S(x)
letr(z) be the maximat > 0 such that the open ball of radiugboutz is disjoint from
tiles of T 5 which intersectv (r(z) = 0 if z is in a tile of T 5 which intersectsv). Set
r*(z) = min{r(z), R} and fort > 0,

A, ty= [ B(zr(2) +t).
z€S(x)
ThenA(z) = A(z,0) and eachtile it (z, w) is contained i (z, 2C1 A=) — A(). In

order to bound the cardinality éf (z, w), we estimate the volume of (z, 2C; A\~ /4) —
A(x),

202 Y4d
vol <A (x,ZCl/\_l/d) - A(x)) = / = Vol Az 1) dt
0
(6.1)

20,2 Yd
= / V0|d71 GA(x, t) dtv
0

where vo);_; denotes thé—1 dimensional measure. By the Lemma of Ball Unions (6.2),
appropriately rescaled, we know that

volg_10A(z,t) < CLRY™1

for some constant’;, and allt < R. It follows then from (6.1) that

vol (UH) < Y vol (A (m,ZCl/\_l/d) - A(x)) < 20,CH| KRNV, (6.2)
rzeK
We set
B = Ca| K|RI-INE-D/d (6.3)

with C3 a large constant. Singeis comparable to the measure induceddbywe get
from (6.2),
p(UH) < BT (6.4)

providedCs is large enough. Because the measure of a tilegns at leasO(1) 1\ 71,
we also get,
[H| <5, (6.5)

if C3 is large enough.
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To remove the assumption thét is the Euclidean metric, observe that foe M
one may choose a Euclidean metric for a neighborhood sifich that for points at
distanceO(R) from x distances are distorted by not more than an additive constant of
O(R?). Since we have the assumpti® < A\~ it is easy verify that the distortion
will not influence the validity of the argument above, but may only change the constants.
It is true that the collection of tile&/ depends ow. Hence we cannot naively use
the standard formula for the probability thath (UH) has a given cardinality in terms
of A andu(UH). But note thatd only depends on which tiles dfg which contain a
point of w, and does not depend on the number of points in each such tile. Consider
some tileT’, and suppose thatis the number of points i@ N 7T". Then the distribution
of g + 1 dominates the distribution gfconditioned ony > 1. This can be thought of
as a continuous instance of the BK inequality [5], but may also be verified directly. We
conclude from this argument and the inequalities (6.4), (6.5) that forrach

P,\(n* 2m+ﬂ) < Zﬁ,—jefﬂ.

Consequently,

Eexp(an(w)) < Eexp(an*) < e Z e“-jilje_ﬁ = exp(aﬁ - B+ eaﬂ),
j=0 '

and the proposition follows. [

7. Clean Configurations

A local potential defecis a potential defect whose span is less thahl,l where
L = L(\) = A\Y4(Iog\)“* V% as in (5.3). This section will study the statistical
properties of configurations that have no local potential defects. These will be called
cleanconfigurations. We shall continue to use the book-keeping tifiggwhich was
introduced in Sect. 6. In the following, we assume thi sufficiently large, so that the
diameter of any tile ifT g is less thar./100.

Letw €  be some configuration. Itecal potential defect zon&(w) is defined as
follows. Let Zp(w) be the set of all navels of local potential defects andlgt) be the
set of all tiles ofT g which contain a point irZ(w).

Let Q be any set of tiles of g. Denote byD(Q) the event thaZ(w) = Q, let 7(Q)
be the event thaf(w) D Q, and letN(Q) be the event thaZ(w) N Q = (). A clean
configuration is just a configuration (). We would like to discuss the distribution
of clean configurations, that is, to condition D). Hence it would be useful to have
Py (D(0)) > 0. If M has finite volume, this is clear, since with positive, but very small,
probability the configuration will contain only a single point, and then no potential
defects are possible. (It will be shown below that the clean configurations are typically
not so sparse.) Hence, we shall for simplicity now assume Mhdtas finite volume.
There are obvious and simple methods to extend the discussion to the infinite volume
case.

Suppose thatt C Q is some event, and is some subset af/. We say that4 is
independenbf X, if wheneverw € A andw’ € Q differ only in points which are in
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X, then alsav’ € A. We shall say tha#l depends only oiX, if A is independent of
M- X.

The next two lemmas relate the properties of random clean configurations to the
properties of ordinary configurations.

7.1. Firstlemma of clean configurations.Let ) be any set of tiles of 3, and let
A C Q be some event which depends onlyd@p, the union of tiles inQ. Let @, be
the set of tiles of g with distance at mos2L to UQ. Then

Py (A)
PA(ADW) < Py(N(Q2r))

In the proof, we shall need the FKG [8] inequality for Poisson point processes.
An eventX C Q isincreasing if ' € X wheneverw € X andw C o’ € Q. A
random variablg’ : € — R is increasing iff (w’) > f(w) whenever,’ D w. Similarly
decreasingevents and random variables are defined. The FKG inequality for events
states thaP, (X' NY) > Py\(X) P (V) if either X', ) are both increasing events, or both
decreasing events. The FKG inequality for random variables statds(fat > E f Eg,
if f,g are both increasing random variables, or both are decreasing random variables.
The proof of the FKG inequality for events in Poisson point processes may be found in
the paper by R. Roy [14]. Although the setting there is a bit different, the proof is easily
adapted to our situation. The FKG inequality for random variables can be obtained as a
corollary of the inequality for events.

Proof. Let Y be the set of tiles of 3 which are not inQ,;,. Observe thatv'(Y) is
independent ofd. Also note that\'(Y) and MV (Q»y) are both decreasing events, and
therefore they are positively correlated, by the FKG inequality. These are the facts that
enter into the following estimate:

PyA(ANN(Q21) NN (Y))
Py (N(Q2r) NN(Y))
PA(ANN(Y)) _ P(A)P(NEY))
~ PA(N(Q21) NN(Y)) TP (N(Q22) NN(Y))
PA(APAN(Y))  _  P(A)
T PA(N(Q21)) PA(N(Y))  PA(N(Qz1))°

Py(AD®)) =

O

In order to effectively apply Lemma 7, we shall need an estimatePic(N (Q))
whenq@ is a set of tiles ifl 3. Proposition 5.3 gives,

PA(N(Q)) > 1— O (1) vol(UQ)AH2L T +d+2

(7.2)
=1 - 0 (1) vol(UQ)A@=?/4(1og 1)°D.

We shall need a different estimate for the case|[tQatthe number of tiles i, is large.
For any set of tiles) C Tp, the event\V(Q) is monotone decreasing. Therefore, the
FKG inequality and (7.1) give,
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PA(N(@)) = H Py\(N(T)) > (1 — 0@ A ?%%log )\)O(l)) 12!
ree (7.2)

> exp (=0 () A2/(1og )° P[] ) .

because Lt ¢ > e~2 whene > 0 is small.

7.2. Second lemma of clean configurations.et( be a set of tiles of , and letQe,
be the set of all tiles df z with distance at mo$€L fromuq@. Let A C Q be some event
which is independent afQs;,. Then,

Prp(ADO)
Py p(AD@)) < Px(M(Qer))

Proof. Forj = 1,2 let B; be the set of all tile§" of T 5 — () such that the distance from
T touQ is in the range [3(— 1)L, 3jL). Also let B3 be all the tiles ofT g which are
notin@Q U B, U By,

_ Py (AN F(Q) NN (By) NN (B2) NN (B3))
PrnlAIP@) = =5 Ty NB) 1 N (B) N B)

_ Py (F(Q) NN(B1) NN (Bs) N A)
= PA(F(QNN(B)NN(B2) N N(B3))

(7.3)

Since the distance betweei; andu(B1UQ) is greater than2L, the events\/ (B3)N.A
andF(Q) N N(B,) are independent; that is,

Py p(F@Q)NN(B) NN (B3s) N A) = Px(F(Q) NN (B1)) P, (N (Bs) N A). (7.4)

Let A; be the set of points id/ with distance at mosL from (UB1) N (UB>),
let Ag be the points in connected componentshdf— A; that intersecty@, and let
Ay = M — Ag— A;1. We want to show that the ever#Q) NN (B1) andN (B2) NN (B3)
are positively correlated. For this, the FKG inequality can be used, but notimmediately.
Any w € Q can be decomposed inteqd, w1, ws), wherew; = A; Nw. This induces a
decompositior2 = Qg x Q1 x Q, of Q. Note thatF(Q) N AV(By) is an event that’s
independent ofs, and is monotone decreasing . Similarly, N'(B2) N N(By) is
independent ofyy and is monotone decreasingst;. Given anyw; € Q, let f(w1)
be the probability thatufp, w1, w2) € F(Q) N N (By), and letg(w1) be the probability
that (vo, w1, wo) € N (B2) N N (Bs), wherewg € Qg andw, € 5 are random. Thef
andg are monotone decreasing random variableQg@rHence, the FKG inequality for
random variablesl’(fg) > Ef Eg, gives,

Py (F(Q) NN (B1) NN(B2) N N(Bs)) > Px(F(Q) NN(B1)) P (N (B) NN (E(f;)%j
A similar argument shows that .
Prp(D@) N A) > Py, (N(Bs) N A)Py(N(Q) NN (B1) N N(By))

7.6
= Py p(N(B3) N A) Py (N(QeL)). (76)

Now combine (7.3), (7.4), (7.5) and (7.6), to obtain,
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Py p(NV(B3) N A)
Py(N(B2) N N(B3))
. Py, (AN D)) _ P (ADO)
T PA(N(Qsr)) PA(N(B2) NN (B3)) — Pr(N(Qsr))

This proves the lemma. O

Py, (AID(Q)

(7.7)

7.3. Lemma (clean configurations have no giant tiles)Let K be a compact subset
of M, and letS be the event that all tiles iff (w, ds) which meetK have diameter
smaller thanL. Then

Jim Py(S|D@)) = 1.

Proof. Let U be an open set i/ whose closure is compact and which contalis

Let X be a maximal subset @f such that the distance between any two elements of
X is at leastL/9. Forz € X let &, be the event that the balby(z, L/9) is disjoint
from w. Let Q(x) be the set of tiles iff 5 whose distance from is at most 3. Since

&, depends only on the intersectionwfwith Bo(x, L/9), the First Lemma of Clean
Configurations 7 gives,

Py(Ey) e—LdA/O(l)

Py (5z|D(®)) = P, (N(Q(@)) - Py (N(Q(x))) .

Since
vol (Q(z)) = O(1)L? = O(1)A"*(log \)°W),

the inequality (7.1) implies tha®, (N(Q(:c)))A—> 1. Therefore,

— 00

P)\(UJJEX ga:

D)) < OW|X|e~ =D < 0@ exp(~(log ) /0(1)) — 0

The proof is now completed as the proof of Lemma 5.5.

8. Insensitivity

This section can be avoided if one is only interested in the taseR?.

Let X be some finite set. We denote by 2he set of funtions fronX to {0, 1}, and
make the usual identification of2with the collection subsets df. Given an element
a € 2%, we denote bya| the cardinality ofa, thought of as a set, which is the same
as theL! norm ofa, thought of as a function. i1, v» are two measures on‘2 we let
v1 U v, denote the image of the measukex v, under the map) : 2% x 2% — 2X,

(In other wordsy; U 1, is the distribution of: U b, if « andb are independent random
elements of 2%, 11) and (2%, 1,).) Similarly, the measure; N v is defined.

Fix somep € [0, 1], and lety denote the product measure ot ith n{a : = €
a} = pforeachr € X.

8.1. Insensitivity Lemma. Let v be a measure o2%. Then the following estimate
holds for the measure norm of the differemge v — 7,

[nuv—mnl <\ Eun (p~lol) — 1.
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The expressiott, , (p~!?l) means the expectation pf 2l whena is distributed
according tar N v.

The lemma was partly motivated by the concept of influence of a boolean variable
on a function, introduced by Ben-Or and Linial [3].

Proof. What can one say? Cauchy—Schwarz!

Uy =P = (Y Iy Uria) —n(a)))’

ac2X
<Y 0@ Y 0@ (nu @) - n(@)®
a€2X a€2X (8.1)
= > n@) ™ (nUn(@)? — 21U v(a) n(a) + n(@)?)
ae2X
= Z n(a)"tnUv(a)® - 1.
ae2X

Observe that
n(a) = pll (@ —p)"~1,
wheren = | X|. We may write an equality of the forbnJc = a asa — ¢ C b C a. Hence,

nUv(a) =Y v(ep! 1@ —pyr T =) Y v(ep!.

cCa cCa

We use these expressions to simplify (8.1),

2
InUv—=nl> < > n(a) (Zu(c)pc'> -1

a€2X cCa

=3 5 n@p@uep i -1

a€2X bCa cCa

=3 3 vowp M S ey -1

be2X ce2X aDbUc

= Z Z v(B)v(c)p~ P lelpltuel g
be2X ce2X

=3 > v " 1= B, (p71) - 1
be2X ce2X

O

8.2 Corollary. Letv¢ denote the image ofunder the map — X —a from2X to 2¥.
Then

In v < /B (= p)lol) — 1.

Proof. Usen N ve = (n°Uv), and apply the lemma. O
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9. Assembly

Proof of Theorems 2.1 and 2.ix the proof, we shall assume thaf is compact. This
is basically for convenience of notation, and it is easy to modify the arguments to apply
in general. R

Let C denote the event of crossing, thatCiss C(M, M', &1, S,,ds) C L, in the
situation of Theorem 2.1 and = C(M, M’, o, ds), in the situation of Theorem 2.2.
Similarly, letC, denote the crossing, but with respect to the conformal metrifs.
Given any set) of tiles in T g, let P(Q) be the event thatQ is pivotal forC; that
is, P(Q) is the set of allv such that there is an’ which equalsv outside of@, and
one of them is irC while the other is not. LeAC be the event that there is a crossing
with respect to the metrids, but not with respect to the metréi ds. In other words,
AC =C — C,. We need to estimatg, ,(AC) whenA is large.

We shall continue to use the book-keeping tilifig from Sect. 6. For each sét
of tiles inT 5, and fora > 0, letQ, denote the set of tiles ifi 5 with distance at most
a to UQ. Recall the definition 5 of.. We assume that is so large that in the scale of
L the setsM’, G, G, are ‘very smooth’. LetS be the event all tiles if (w, ds) have
diameter at mosi.

Recall that for any sep of tiles in T 5, D(Q) denotes the event thét is the set of
tiles containing navels of local potential defects. Since when S, defects can occur
only at local potential defects, and because defects effect the connectivity only for the
tiles close by, we have,

ACNSND(Q) C P(QeL)- (9.1)

We shall now estimaté’y ,(AC). Our first goal is to have an estimate B8R ,(AC)
in terms of a random clean configuration with defects and an independent collection of
defects added on top of it. (While this is not a precise mathematical statement, we hope
it aids the intuition of the reader.) First write,

Py ,(AC) < 1— Py(S) + Py, (ACN S). (9.2)

Now estimate the last summand, using (9.1) and Lemma 7,

Py p(ACNS) =) Prp(ACNSID(Q)) PA(D(Q)
Q

< Z Py »(P(Qs) D(Q)) Pr(D(Q))
Q

< Domin {1 Py (PQePO) PA(W@er) " }A(DQ) g5
a .

< ZZ Py »(P(Qe)|D(0)) Pr(D(Q)) +
Q
+ Z P\(D(Q)).
Py (N(QGL)) <1/2
Our first goal of reducing to the situation where there is a clean configuration with defects

added on top can now be considered as accomplished. (This is the meaning of the left
summand, which is the more significant one.) We now estimate the left summand.
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Let X be a maximal set of points il with the property that the distance between
any two points inX is at leastL, and for eachv € X let S(z) denote the sphere of
radius 19, aboutz. For each sef) of tiles of T 5, we let X (Q) denote the intersection
of X with uQ . It follows that the balls of radiug and centers ik (Q) coveruq.

Fix for a moment some = (w,,w.) € 2 and som&). Let W (w, Q) denote the
nuclei of tiles inT (w, ds) that intersect,.c x()S(x). Set

wo = (wo UW(w, Q) we — W(w,Q)),
wg = (wo — W(w, Q),we UW(w,Q)).

In other wordswy, is obtained fromw by opening all the nuclei of tiles which intersect
Uzex(@)S(2), andwg, is obtained fromw by closing them. LetC(Q) denote the event

that there is a crossing far;,, but not forw, . Observe thas N P(Qer) C K(Q), which
gives,
Py p(P(Qer)IDW)) < Prp(K(Q)ID®)) +1— Pr(SID()).

Now, (9.3) implies,

Py ,(ACNS) <2 Py, (K@Q)IDW®) PA(D(Q)) +2— 2P\ (SD()) +
Q

+ > P\(D(@)). ©4)
P (N(QGL)) <1/2
We now estimate the sum
Z Py, (K(Q)|D®)) PA(D(Q)). (9.5)
Q

Fix some cleanv € D(0), and letw’ € Q be arbitrary. Recall thaZ(w’) denotes
the set of tiles inl 3 that contain navels of local potential defects.df This means,
P\(Z(W) = Q) = P,(D(Q)). So (9.5) can be written as

P(w e K(Z2(W)) ‘w e D(@)), (9.6)

where the probability is with respect to the joint distribution.odndw’. Setr = 7w
(recall that this means thatis the same as, except that it is not specified which nuclei
of 7 are open and which are closed). We may think @fs a random coloring af, and
rewrite (9.6) as,

E. (P(IC(Z(w’))) ‘T c :D(@)). (9.7)

Here the probability is with respect to the coloringrodnd with respect to the choice
of w’. Let us fixT for a moment, and consider and the coloring of as random. On
27, the collection of subsets af, let  be the f,1 — p) product measure. In other
words, n is the distribution ofw,. Let v be the measure on subsetsrofiven by
v(A) = Py (W (7, Z(w')) € A); that is,v is the image of the measuré, under the
mapw’ — W (7, Z(w')). Note that with the notations of the Insensitivity Lemma 8.1
and its Corollary 8.2, the open nucleim}(w,) are distributed according tpU v, and

the open nuclei ilmg(w,) are distributed according tpN v°. So,
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P(K(Z(@"))) = Pyun(C) — Py (C)
<|pUv—nnve (9.8)
<|muv—=nl+{nnve—nq].

Let a be distributed according to the measure v, and set
3 = max{—logp, —log(1—p)}.
With the help of the Insensitivity Lemma and its corollary, (9.8) gives the following

estimate,
P(K(ZW")) <2V E,nyeflel — 1, (9.9)

Letw” be another random element@f and set
m=m(r,w, ") = ‘W(T, Z(W)) NW(r, Z(w")) ‘
Since (9.5) is equal to (9.7), the inequality (9.9) allows us to make the following estimate,

> P (K@Q)ID©)) P (D(@)
Q

< E. (min {1, 2\/E, relm — 1} TE D(@))
< 1- P\(SID@®)) +
(9.10)
+2F., <\/Ew/7w//€5m — 17 e DN S> Py (S|D(@))

< 1- Py(S|DW)) + 2\/ Eror o (eﬁm f 1‘7 e D) N 5)

=1 P, (S|D(®)) + 2\/ By o (P77 € DO)NS) — 1.

Let F' be the (random) set of poinise X such thaZ(w’) andZ(w") both intersect
the ball of radius 50 aboutz, and letn,. be the number of tiles ifi (r, ds) that intersect
S(x) and have diameter at most Setn = n(F,7) = > . n.. Thenforr € S we
haven > m. Consequently,

Er o (7|7 € DO)NS) < Bry o (70| € DO) N S)
< E‘r,w/,w” (eBn(F’T)h_ € D(@))
- P\(S|D(®)) (9.12)

=P\(SID®) " Y. P(F = K)E, ("5 € D).
KcX

Let Qs(K) denote the set of tiles ifi g that are within distance of K, and note

that n(K, 7) depends only on the intersection ofwith Q2or (K). We use the First
Lemma of Clean Configurations (7.1) to estimate the above conditional expectation by
an unconditional expectation, and then apply Proposition 6.1, as follows,
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B, (P57 € D(@)) < B, (e#Km)
Py (N(Q3OL(K)))
. (9.12)
_ exp(OWK|LT A/ eXp(O(l)IK |(log )~ )
Py <N(Q3OL(K))) Py (N(Q3OL(K))) .

The number of tiles oT 5 in Qs (K) is O(1)| K| (log \)°™. Consequently, by (7.2),
(N (Qaor () ) = exp(=0 (@) [K|A~2/(1og y)°)
Hence, (9.12) may be improved to
E,(e”D)|r € D(D)) < exp (O(1)|K\(Iog A)H‘Z) . (9.13)

In order to get a good estimate for the right hand side of (9.11), we now study the
distribution of F'. For anyz € X, the inequality (7.1) provides the following estimate
for the probability thatr € F'.

2
Pa(z € F) < O(1) (Ld)\(d‘z)/d(log )\)O(l)) = \~¥/d(log \)°W. (9.14)

LetX = X;U---U Xy be a partition ofX into disjoint setsX; with the property that
for eachj the distance between any two elements(ofis at least 150. We takeN to
be bounded by a constant, which depends onlyl.ofhis is possible, since there is a
bound on the number of points &f in a ball of radius 150. Note that ifz, 2" € Xj,
then the events € F anda’ € F are independent. Using (9.14) ajX| = o(1)), this
gives,

P(IF N X;| = k) < MA%*/(log \) Mk = X4/ d(1og ) Ok,
If |F'| = k, we must havé > |F'N X,| > k/N, for somej. Consequently,
P(|IF| = k) < N(k+ DA/ N (jog 3)ODF,
Together with (9.13) and (9.11), this gives,
Er o wr (eﬁm|7 e D) N S)

< P(SIDW) ' Y. P(F = K)E, (" |- € D))
KcX

< P\(S|D@) "+

+ P(SID(@) S N(k + DA/ N (1og \)OWF exp (O(l)k:(log A)l—d’z)
k=1
= PA(SID@) (1 +0(1)),
(9.15)
as\ — oo, becausd < 4. Recall that Lemma 7 says that

/\Iim P\ (S|D(®)) = 1. (9.16)
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With (9.10) and (9.15), this gives,

% Py, (K@) P (D(@) — 0.

From this, (9.16) and (9.4), we get,

Py, (ACNS) =o(1) + > Py(D(Q)). (9.17)
Py (M(@ez)) <1/2

For any given tile ifl 3 the probability that it is inZ(w) is bounded byD(1)A—%/¢
(log A)O(l), by (7.1). Because the total number of tileFin is O()\) the expected number
of tiles in Z(w) satisfies,

E (|Z(w)|) < O/ (1og 1)OD (9.18)

On the other hand, (7.1) also implies that the number of tile® imust be at least
A2/d(log \)~OW, if Py (N(Qsr)) < 1/2. This gives the inequality,

E(12@)]) 2 3og )™ 3" A(D@).  (919)
Py (M(Qez)) <1/2
The combination of (9.18) and (9.19) implies,
Y. A(D@) < 0@V (log )P — 0,
Py (N(Qsr)) <1/2

because < 4. Now from (9.17), (9.2) and Lemma 5.5, it follows ﬂﬁt’p(Ac))\*) 0,
which completes the proof of the theorem. O

10. The Density Invariance Conjecture

The following conjecture is probably true only in dimensibs 2.

10.1. Density invariance conjecture.Let C (M, M’,61,62,ds) be the crossings
event, as in Theorem 2.1, letbe a measure o/, comparable tovol, and IetPﬁfp

denote the resulting measure @) where we have stressed the dependenge dinen
the limit crossing probability

PC(M, M', 81,8z, ds, p,p) = m Pl (C (M, M, &1, &2,ds))

exists, and does not depend pnA similar statement holds for the percolation in
homotopy classes of Theorem 2.2,
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One may consider a weaker version of the conjecture, where the claim is only that
the difference in the probabilities corresponding to two measurgs tends to zero as
A — oo, instead of claiming that the limit exists. A stronger version of the conjecture
would state that the convergence is uniformuinas long as the constant> 0 such
thatc=tvol < p < cvol is held fixed. At least in the plane, the numerical evidence
below also suggests that the limiting crossing probabilities are the same as for the bond
percolation model.

The requirement that be comparable to vol is probably stronger than needed. On
the other hand, assuming only that its suppotfisvould not be sufficient. Consider
the following example. Lef A, } be a sequence of vertical lines whose union is dense
in the plane, and lgt; be the length measure oty. Let{q; } be a sequence of positive
numbers that tends to zero very fast, and.et Zj a;/t;. Thenitis not hard to see that
when)\ — oo the probability for crossing a horizontal rectangle from left to right tends
to 1.

Numerical evidenceFollowing is some numerical evidence which supports the con-
jecture in the plane. We have tested five different measures ., us. Their densities
filz,y), ..., fs(x,y), respectively, all depend only on thevariable, and are given in
Table 1. Figure 2 shows a Voronoi tiling for a configuration obtained with the measure

4.

Table 1. The densities of the measures tested

Aly)=1,
(25, Y3<e<2/3 | [
fol@,y) = {1, otherwise
1, z < 1/3,
faw,y) = 2/5, 13<e<2/3, 1
2/5, 23<,
_ )1 x < 1/2, *‘
falz,y) = {2/5, y2<x,
1, z < 1/3,
fs(z,y) = ¢ (8 —9x)/5, Y3<w<2/3, N
2/5, 2/3< . e

With each of these measures, we ran the following experiment 200 timeR. Set
[a,b] x [¢,d] =[0,1.2] x [0,1] and R’ = [d/,¥'] x [¢/,d’] = [.08,1.12] x [.08,.92].
Then the rectangle?’ fits in R with a margin of 008. In the rectangl&, 100,000 points
were distributed independently, according to the given measure. The Voronoi tiling was
then computed. Following that,d00 times, random colorings of the resulting tilings
were computed, in each coloring the probability for a tile to be open was taken f@be 1
independentl}. Then the algorithm determined the largest [0, (' — a’)/(d' — )]
such that some connected component of the intersection of the union of open tiles with

1 Actually, with the objective of saving computing time, the complete coloring was not computed, only the
colors of the tiles that the algorithm queried were determined, but the result is the same.
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Fig. 2. A Voronoi tiling for a random configuration obtained with= p.4

the rectangle?’ intersects both line§(a’, y) : y € R}, {(a’ +ro(d —c'),y) 1y € R}.
After all these runs, for any in the left hand column of Table 2, the proportion of the
runs for whichr > ro was computed, which is a statistical estimate for the probability
for left to right crossing of the rectangle,[d x [0, 1]. The resulting figures, denoted
P, (r) are listed in Table 2, together with the values obtained from Cardy’s formula [6],
and the numerical values given in Langlands et. al. [12], forzheercolation model.
We wish to stress that different entries in the column corresponding tq:amyere
obtained using the same trials, and are therefore dependent. On the other hand, entries
in different columns may be considered independent.

Note that the largest deviation between an entry in the middle columns to Cardy’s
value is in the order of @05. This is roughly comparable to an error-ithat is equal
to the typical size of a Voronoi cell in these Voronai tilings.

Qhull, a program created at the Geometry Center in Minnesota, was used to compute
the Voronoi tilings. We wish to thank the authors of ghull, C. Bradford Barber and
Hannu Huhdanpaa, and the Geometry Center, for making it available.

Invariance under conformal mappingg-ollowing is the conjecture from Langlands
et. al. [12], adapted to the Voronoi model.

Conjecture 10.2. Let J be a closed topological disk in the plaf® = C, and let
1,72 C 0J be two disjoint arcs. Let € 2 be a random colored Poisson point process
in the plane, with respect to ordinary area measure, with densijydp = 1/2, and
consider the resulting Voronoi tiling. Let PC\(J, 71, 72) be the probability that there
is some path iy that connects; and~,, and is contained in the union of open tiles of
T. Suppose thaf : J — R? is a continuous injective mapping, which is conformal in
the interior of J. Then

AIi_r’nOO PCX(J,v1,72) = A|Lmoc PCA(f(J), f(0), f(2))-

Let's talk about duality in the plane. Observe that the probability that there is some
point that belongs to more than 3 Voronoi tiles is zero. A configuration in which 4
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Table 2.

Lang. Cardy's
r Py (r) Puy(r) Pug(r) Pu,(r) Pu(r) etal value

5000 .8214 .8229 .8234 .8229 .8200 — .8244

5235 .8037 .8063 .8070 .8046 .8028 .8065 .8070
.5481 .7854 .7883 .7888 .7867 .7847 7783 .7889
5779 7636 .7673 7673 .7646 .7626 .7666 .7671
.6070 .7428 .7462 .7456 .7438 .7418 .7453 .7459
.6400 .7197 7220 .7222 .7204 .7188 .7217 .7223
.6667 .7011 .7028 .7036 .7015 .7001 — .7035

6721 6974 6992 .6998 .6978 .6966 .6994 .6997
7059 .6742 6770 .6762 .6747 .6737 .6762 .6765
.7414 6508 .6532 .6525 .6510 .6498 .6522 .6527
7500 .6451 .6475 .6469 .6456  .6441 — .6470

7753 .6287 .6313 .6303 .6298 .6279 .6301 .6306
.8190 .6011 .6037 .6029 .6022 .6007 .6026 .6030
.8611 5758 5782 5772 5775 5755 5768 5774
.9048 5508 5534 5516 .5522 5507 .5516 .5519
9512 5254 5271 5263 .5271 5251 .5257 .5260
1.000 .4994 5010 .5004 5012 .4997 .4999 .5000
1.051 4730 4750 4750 4757 4742 4743 4741
1105 4475 4492 4495 4506 4490 4484 4482
1161 4222 4238 4244 4254 4238 4230 4227
1221 3965 .3974 .3989 .3997 .3978 .3974 .3970

Voronoi tiles have a nonempty intersection will be calEdieneratelt follows that the
boundary of any union of tiles of a nondegenerate configuration is a disjoint collection
of paths in the plane. In the situation of the conjecture;learid+, be the two arcs

in 0J — (1 U2), and letw € Q be a nondegenerate configuration. 4ebe the set

of all points inJ that are either o, or may be joined toy; by a path inJ contained

in open tiles. Then eithed intersectsy,, or there is a boundary component4in J

that connects; and~,. In the latter case, it follows that there is a pathJifrom 4,

to 4, that is contained entirely in closed tiles. On the other hand, if there is such a path
connectingy; and~z, then there cannot be an open patlyinonnectingy; and~,. We
conclude that either there is ih an open crossing from, to ~,, or there is a closed
crossing fromy to 9., and these cases are mutually exclusive. Since the probability for
an open crossing is the same as the probability for a closed crossing, we get,

PC\(J,71,72) + PCx (J,71,72) = L (10.1)

Proposition 10.3. Conjecture 10.1 implies Conjecture 10.2.

The proof uses Theorem 2.1, and monotonicity and continuity properties of crossing
probabilities.

If one assumes that Conjecture 10.1 is valid also for intersections of crossing events,
then the proof below can be used to show that 10.2 is valid for intersections of crossing
events, as discussed in [12].

Proof. Let the situation be as in Conjecture 10.2. Since for any suitlere is a contin-
uous injective mapping taking to the unit disk, which is conformal id, we assume,
without loss of generality, that(J) is the closed unit disk/.
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We start with a one-sided estimate. logtbe a closed arc on the unit circle which is
contained in the relative interior of the af¢y;), and letas be a closed arc on the unit
circle which is contained in the relative interior 6fv,). We shall show that

lim inf (PCA(J, y1,72) — PC (T, al,az)) > 0. (10.2)

Let 8 be an analytic simple closed curve which approximatésand has the pattern
of intersection with.J as indicated in Figure 3, and It be the closed disk bounded
by 5. Let &1 be a smooth open topological disk.Jh — J, such thab&; N 5 is an arc
approximatingy;, and letS, be a smooth open topological disk 4 — .J, such that
06, N G is an arc approximating,. Let g be the Riemann map fronf to the unit disk,
and assume thatis normalized so thaj(f~%(0)) = 0 and the derivative af o 1 at
0 is real. Becausé’ is an approximation of/, g~ : U — J' is an approximation of
f~1:U — J. We assume that has been chosen sufficiently closeétd so that the arc
g(061 N B) containsy in its interior, and the arg(0&, N ) containsy; in its interior.
Hence for some > 1, the images ofi; anda, under the map — r~z are contained
in &; and&,, respectively. Fix such an and letG(z) = rg(z).

Fig. 3. The approximatior of 9.J

Since$ is analytic,g extends to a conformal homeomorphism from a neighbor-
hood W of J to a neighborhood of the closed unit disk. et > J be a bounded
open set whose closure is containedih By Theorem 2.1, when is large, the
probability of C(M, J', &1, &5, |dz|) is approximately the same as the probability of
C(M, J' 61,6, IG’(z)dz\). By Conjecture 10, we may also change the measure from
ordinary volume measure to the measure induced by the@adaut M with metric
|G’ (z)dz| and measure induced Iy is isomorphic toG(M) with ordinary Euclidean
metric and measure. Thus, &s— oo, the probability ofC (M, J', &1, &, |dz|) tends
to the probability ofC (G(M), G(J'), G(&1), G(S2), |dz|). When\ is large, we may
assume, with high probability, that all tiles neldrand neal’ are very small. For such
configurations, a crossing fromy to a; in U impliesw € C(G(M), G(J"), G(&y),
G(6y),|dz]), andw € C(M, J', &1, &2, |dz|) implies a crossing froma to 4, in J.
This proves (10.2).
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On the other hand, if; and«} are arcs ordU which containf(y;) and f(2) in
their interiors, respectively, then

lim sup(PC,\(J, 11,72) — PCy (U, o, a) ) <o. (10.3)
A—0o0

This can be proved in the same way as (10.2), or deduced from (10.2), using duality.

Conjecture 10.2 will follow from (10.2) and (10.3), once we prove fh@$ (U, oy, a2) is

continuous inv; andap, with a modulus of continuity that's independentof herefore,

the next lemma completes the proof. [

10.4 Continuity Lemma. Letay and o, be two disjoint arcs o®U, and leta; C o
be an arc which has an endpoiatin common withw,. Letb be the other endpoint of
ay, letc be the other endpoint ef;, and letd be the endpoint af; that is separated in
oU froma by the relative interior ofy; U arp. Set

_ (a—c)(b—d)
P la=—d—o)

the cross ratio ofi, b, ¢, d. Assuming Conjecture 10.1, for allsufficiently large,

a3 — o@1
PCy (T, o1, ay) — POy (T, ag, 02) < \‘fp)

Proof. Let 3 be the component AU — a3 U o that hasa as an endpoint, and let
h : U — U be a conformal homeomorphism of the unit disk that takis- o, and
a1 U By into arcs of the same length, with centers on the real axisySet h(ay),

0 = h(B), let v, be an arc that is slightly shorter thatfa.), is contained inh(ay),
and hash(a) as one of its endpoints, and Ig§ be an arc that is slightly longer than
h(a5), containsh(as) and has: as one of its endpoints. Note that there is a conformal
automorphisnk; of U, close to the identity, that takeginto an arc that containg in its
interior, and takes; into an arc that contairiga,) in its interior. (Recall that conformal
automorphisms d¥/ are determined by the images of three point8onOne only needs
to appropriately choose the images of the endpointg ahd the endpoint of; distinct
froma.) By (10.3) withU replacing/, h, o h replacingf, and arcs appropriately chosen,
we have

PC)\ (Uv Qj, 0/2) < PCX (Ua 71, ’)é) + 0(1)? (104)
as\ — oo. Similarly, by (10.3),
PCy (U, 1,02) = PCx (U, 71,72) +o0(1), (105)

Let A C © be the event that there is a crossingirfrom ~; to ~5 in open tiles, but
there isn’t such a crossing from to +,, and consider some nondegenerate configuration
w € A. There must be an open crossing frgin- v, to v1. Becausey, does not connect

in open tiles to this crossing, by duality, there must be a crossing in closed tiles from
~v5—v2t0y1Ud. Let B be the event that there is an open crossing fgm v, to v, U 6,

and there is also a closed crossing between these arcs. Then,

PC)\ (U7 71/)’5) - PC)\ (Ua 71772) = P)\('A) < P)\(B) (106)

Letn be the largest integer such that the length of theyate o = h(ay U ) is less
thanz /n. Since the cross ratio is invariant under conformal automorphisrbs ifis
easy to verify, using the definition @f that
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p=0 (n?). (10.7)

Recall that by the choice @f, the arch(a), — ) has the same length asuU 6. We also
assume, with no loss of generality, that the length%f- +; is less thanr /n. For any
integerk, let By, be the rotation of3 by k7 /n; that is, the set of all € <2 such that the
rotation ofw about 0 bykw/n is in B. Observe that v € B; is nondegenerate ards
not divisible byn, thenw ¢ B;., because any crossing froph— 2 to v U § separates
the rotation bykr/n of 75 — 72 and the rotation by /n of v, U 4.
The eventsB;, j = 0,...,n — 1 aren events with the same probability, and the

intersection of any two of them has zero probability. Therefore,

Py\(B) <1/n. (10.8)
From (10.4), (10.5), (10.6), and (10.8), we get
PCy (U, o1, 0/2) — PC, (U, a17a2) < 1/n+o(1). (10.9)

Therefore, (10.7) completes the proof. O
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