The supercritical phase of percolation is
well behaved

By G. R. GRIMMETT AND J. M. MARSTRAND
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We prove a general result concerning the critical probabilities of subsets of a lattice
&Z. It is a consequence of this result that the critical probability of a percolation
process on £ equals the limit of the critical probability of a slice of ¥ as the
thickness of the slice tends to infinity. This verification of one of the standard
hypotheses of the subject settles many questions concerning supercritical percolation.

1. Introduction

Let d be a positive integer, let 0 < p < 1, and declare each vertex of the lattice Z% to
be open with probability p and closed otherwise, independently of all other vertices.
Write C for the set of vertices connected to the origin by paths of open vertices; that
is, C' is the (open) cluster containing the origin, and let

0(p) = Py(IC] = ),

where P, is the relevant probability measure on subsets of Z%.
It is well known that if d > 1 then there exists a critical value p, of p satisfying
0<p,<1and
Olp)=0 if p<p.
O(p) >0 if p>p,.

Let A be an infinite connected subset of Z%; it is also well known (see Grimmett 1989,
p- 120) that there is a critical value p,(A4) such that there exists a.s. an infinite open
cluster in 4 if p > p,(4) and a.s. no such cluster if p < p.(4), where a.s. denotes
‘almost surely with respect to the measure P,’. In particular P(Z%) = p,. Tt is of
special interest when 4 takes one of the following two forms:

(a) a ‘slice with thickness k£’ given by

S(k) ={xeZ*:0< x; < k,j> 2}, (1.1)
where x = (v, %,,...,%;) and k is a positive integer;
(b) a ‘half-space’ given by
H={xezZ% x, > 0}. (1.2)
Now S(k) = H = Z% for all d, k, and it easily follows that
Pe < Pe(H) < pe(S(k)). (1.3)
Moreover for a similar reason p,(S(k)) is a decreasing function of k, so we can write
PelS) = lim p(S(k)). (1.4)
k>0
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The problem of proving that the mean cluster size is finite throughout the
subcritical phase (when p < p,) was settled by Menshikov (1986) and Aizenman &
Barsky (1987). As a consequence of their work, the subcritical régime is now well
understood. The supercritical régime (when p > p.) has remained something of a
challenge for d > 3. Although many results of interest have been established for
» > p.(S), few have been obtained under the hypothesis that p > p,. However, the
corresponding full results will follow by an application of the following theorem,
which is one of the main results of this paper.

Theorem. If d = 3, then p, = p.(S).

By (1.3) and (1.4) it follows at once that p, = p,(H). In fact we shall deduce this
theorem from the more general Theorem A which is stated and proved in §4. Finally
in §5 we shall outline some of the consequences.

Our result that p, = p.(S) extends a recent result of Barsky et al. (1990a, b) who
have proved the weaker equality p,(H) = p.(S). On the other hand Barsky et al. have
also shown that 6y(p.(H)) =0, where 6,(p) is the P,-probability that the origin
belongs to an infinite open cluster in H. Although our method is based in part on
ideas in Barsky ef al. we are unable to settle the question as to whether or not
O(p.) = 0. Our difficulty lies in our use of ‘sprinkling’; that is, the technique of
adding a small density of extra open vertices to create open paths. We shall show
that, if (p) > 0 and 5 > 0, then p+9 > p.(S(k)) for some k = k().

In earlier work, Kesten (unpublished work, 1988) has proved by quite different
techniques that p.(S) is equal to the limit as k — oo of the critical probability of the
slab 2%t x {1,2,...,k}.

We shall work throughout this paper with percolation as briefly described in the
first paragraph of this section; that is, site percolation on the d-dimensional
hypercubic lattice Z?. However, our methods and conclusions are valid for a large
category of processes including many bond and site processes on crystalline lattices
in dimensions d > 3. See Grimmett (1989) for a general account of the mathematical
theory of percolation.

2. Definitions and notation

This section contains the principal definitions and notation used in the paper, and
the reader can use it subsequently for reference. For special purposes some further
definitions and notation will be given in the later sections. On the other hand for the
expressions 0(p), P, p., p.(4), S(k), H, S, the reader is referred back to the first part
of §1. ‘

Writing Z ={..., —1,0,1,...}, then for each z,y€Z® the distance from z to y is

given by le—y| = max l2; =yl

J
where x = (@), %,, ..., ;) and y = (y;, Y, ..., ¥q). U I |2, —y,| = 1, {x, 9} is an edge ; we
then write  ~ y and say that « is adjacent to y. We denote by E? the set of all edges
in Z* and by L% = (Z% [E% the corresponding ‘hypercubic’ lattice, although we
normally identify L* with Z?. The elements x € Z% are called vertices. In particular, for
J=1,2,...,d the unit vertices are given by

iy = (80,00,...,69),

where 8 = 1 if r = j and 0 = 0 otherwise.
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For 4 = 7%, the internal boundary of 4 is given by
04 = {xeA:3yeZ%— A such that x ~ y},
and the external boundary is given by
AA = {xeZ%—A:3yed such that x ~ y} = 0(Z*—A4).

Let 0 < p < 1 and declare each vertex of Z% to be open with probability p and
closed otherwise independently of all other vertices in the lattice. We identify the set
of realizations (or configurations) with

Q= {0, 1,
where o= (w(x):2€Z% e

represents the realization in which x is open if w(x) = 1 and closed if w(x) = 0. With
Z the usual o-field we denote by P, the relevant probability measure on (2, #).

Let (f(x):x€Z%) be a family of independent random variables having the uniform
distribution on [0, 1], and write

Q* =[0,117".

With & * the usual o-field of 2%, we denote by P the relevant product probability
measure on (2% Z*). For each pe[0,1] and x€Z% we say that x is p-open if
Sf(z) < p and p-closed if f(x) = p. Thus P(x is p-open) = p and P(x is p-closed) = 1 —p.
Later we shall use the measure space (2% & * P) in order to realize different
percolation processes on the same sample space. When p = p, we shall identify ‘p-
open’ with ‘open’ and ‘p-closed’ with ‘closed’. We say that a set A = Z% is open if
x is open for all xe 4, and similarly we define closed, p-open, p-closed subsets of Z%.

A path in Z% is a finite sequence z(0), 2(1), ..., z(n), or an infinite sequence z(0), 2(1),
..., of distinct vertices in Z% such that x(¢) ~ x(¢+ 1) for all relevant ¢. A set 4 = Z¢
is connected if each pair x,y €A belong to some path contained in 4. We call a path
open if all its vertices are open. We write ‘4 <> B’ if there exist a€ 4 and beB such
that @ and b belong to some open path, and write ‘4 <> B in D’ if there exists such
an open path contained in D. We write ‘4 «» o0’ if there is an infinite open path
containing some a€A. The open cluster at the vertex y is given by

Cly) ={xeZ® xy}.
We set C(y) = & if y is closed, and we recall that C(0) = C, where 0 denotes the
origin.
For each positive integer n, the box B(n) is the set
B(n) = {xeZ%:|x| < n},
and we write
T(n) ={x = (X, %y, ..., 0,)€2% 2, =n, 0 < x; <nforj=23,...,4d},
a special subset of a face of B(n). For positive integers m, n we write

2m+1
T(m,n) = U {ji,+T(n);}.
j=1
For each xeZ%, we call an open box x+ B(m) a (launching) m-pad, and if 2m < n, we
write
K(m,n) ={xeT(n): x+1, belongs to some m-pad in T'(m, n)}.
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Thus we may regard K(m,n) as the subset of 7'(n) ‘adjacent’ to the union of all m-
pads which ‘rest’ on T'(n).

3. The lemmas

In this section we state and prove six lemmas. Lemma 1 is really based on a certain
technique, which we describe beforchand. Lemmas 2, 3, 4 and 5 are preliminary to
Lemma 6 which together with Lemma 1 we shall need in §4.

The proof of our theorem in §4 makes use of a ‘block’ argument, in which we shall
consider a ‘lattice’ of large boxes in Z% and define any one of these to be open if there
exist certain long open paths within and near it. We aim to show that with positive
probability there exists an infinite ‘path’ of open boxes, each one ‘adjacent’ to the
next. Thus that part of our proof will use a renormalization of the original site
percolation on Z%; that is, percolation on kZ% for some large integer k, in fact more
precisely on a connected subset of kZ%. In the meantime, leading up to and including
Lemma 1, we regard percolation on a connected set F < Z% from the standpoint of
a cluster generated from a single vertex, say the origin, by a certain stochastic
process. When we eventually apply this in §4, however, this Z% will be renormalized
to kZ% for a suitable k. Of special importance to us will be the case when F = 72,
regarded as a subset of Z%.

Let F be an infinite connected subset of Z% containing the origin. Following a
standard procedure, we let e(1),e(2), ... be a fixed ordering of the edges of the graph
induced by F. Let ¢g:Z* {0, 1} be given, where for each xe Z%, x is open if g(x) = 1
and closed if g(x) = 0. Then there arises a sequence (S,,) of ordered pairs of subsets
of Z* defined inductively :

SOZ(g7g):
(). @) if gla,)
(@t it glay)

’

1
S, = 0,

where x; = 0, the origin.
Having defined S, = (4,,B,) for r =0,1,...,¢, we then define S,,, as follows.
Case 1. If possible let e, denote the carliest edge in the fixed ordering with one
endvertex belonging to 4, and the other endvertex, x,,, say, belonging to (4, U B,)°.
We then write

S = {(At U, i), By) if g(w,,,)
o (A, B U{zyyq}) i g(ay,)

Case 2. If x,,, under Case 1 does not exist then we set S,.;, = S,.

In the limit we define S = (4, B) where 4 = (J, 4, and B = U, B,.

Thus we examine the vertices of /' one by one, and it is not difficult to see that,
if the origin 0 is open, we eventually build up the open cluster 4 containing 0 and
contained in ¥. We note that B is the external boundary of 4 in F.

The above routine results in an infinite sequence & = (S,,8,,...), and in doing so
it examines the values g(x,),g(x,), ... in turn. The same routine may be used if the
g(x) are random variables taking values in {0, 1}, and the outcome .# is then a
random sequence. Let us write, for t = 0,1, ...,

17
0.

[/L(g(xtﬂ) =118,8,,...,8,) ifz,, exists,

D=1 (3.1)

otherwise,
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where y is the probability measure associated with the sequence of random variables
g(@,), g(®5), . ...

Lemma 1. Using the notation introduced above, suppose that there exists y such that

v > p(F) and
p(&L )=y foral & andt. (3.2)
Then (4| = 00) > 0. (3.3)

Proof. Let (f(x):x€Z% be independent random variables with the uniform
distribution on [0,1], and consider the following cluster-growth process ¢ with
associated product measure P as defined in §2. Declare the origin of Z% to be green
if f(0) < u(g(0) = 1), and red otherwise. If the origin is red, we terminate the process.
If the origin is green, find the earliest edge e, incident with the origin, and declare
its other endvertex x, green if f(x,) < u(g(x,) = 1|8, = 0,), where o, = (4,, B,), and
A, ={0}, B, = . We iterate this process in the step by step manner described
before Lemma 1. The general step is to declare x,,, (if it exists) to be green if

Sl y) < plg(x,,) = 118, =0, for 0 <0 < t),

and red otherwise, where o; = (4;,B,) is the vector comprising the set 4, of green
vertices and the set B, of red vertices after the consideration of ;.

Let 4 be the (limiting) cluster of green vertices, with external boundary B in F. It
follows from (3.2) that every vertex in B is y-closed. The cluster ', of y-open vertices
at the origin cannot intersect B, and hence C, is a subset of 4. On the other hand
Y > p.(F) so that there is strictly positive probability that C, is infinite, and there-
fore P(|C,| = o) > 0. It is clear that the process # has the same distribution as the
process &, and (3.3) follows as required. O

The next lemma is based on the idea that if two sets are joined to one another by
an open path with large probability, then they are likely to be joined by many such
paths. It is related to the ‘sprinkling’ lemma of Aizenman et al. (1983), but it does
not use sprinkling.

Lemma 2. Let R, K = B < 7% with (RUAR)NK = & and let
U={xeARNB:3yeB such that x ~ y and y K in B— (R U AR)}.
Then for each positive integer ¢,
P,(UI<t) < (1—p)'Py(AR«> K in B—R).
Proof.
P,(AR <+ K in B—R) = P,(U is closed (or empty))
= P,(IUl <t, Uis closed)
= X P,(Uisclosed
B

ACSARDN
Al<t

U=A)P,U = A)

—In
A

I
™

(1=p)4P,(U = A),

A nB
t

n
NS

A
A

since the event {U = A4} is independent of the states of the vertices in 4. Hence
P,(AR @K in B—R) > (1—p)'P,([U] < 1),
as required. O
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Now it is obvious that if for a given m we have B(m) <> o0, then for all n > m there
exists x€dB(n) such that B(m)« x in B(n). It follows from our next lemma that,
roughly, in this case for large » there will probably exist many x with this property.

Lemma 3. For any positive integers k and m, we have

n§m P,(U,| < k. B(m) > 00) < (1—p) %, (3.4)
where U, = {xedB(n): B(m) &z in B(n)}. (3.5)
Proof. For n = m, we have
(1=p)™P,(|U,| <k, B(m) o 0) < (1=p)"P,(1 < |U,| < k)
< ByUpsy = DI S|, < k) Py(1 <|U,| < k)
=P(Upny =D, 1< |U,| < k) = (En),
say, where the events E, are disjoint, and the lemma follows by summation. [

We deduce the next lemma from Lemma 3 by using a certain idea of symmetry
together with the FKG inequality (Harris 1960).

Lemma 4. For any positive integers | and m, we have

liminfP,(|V(n)| = 1) > 1 —P,(B(m) «»> c0)/* (3.6)
where w = d2% and
V(n) = {xeT(n): B(m) e x in B(n)}. (3.7)

Proof. By the definition of 7'(n) in §2, we note that there exists a group of
symmetries of the cube, of order w= (2d)2% ' =d2% and with the following
property: if the elements of the group transform 7'(n) respectively into 7)(n),
T,(n),...,T,(n), then w

U Ti(n) = 0B(n).

=1

It follows from the definition of U, in (3.5) that

10,1 <l = A V)] <D,

where Vi(n) = {xeTi(n): B(m) < x in B(n)}
for + =1,2,...,w. This intersection is of decreasing events, whence by the FKG
inequality

w

PU,| < wl) > TR,V <1

P| n)| < 1y*

It follows that
P,(Vn) = 1) > L=P,(|U,| < wi)!*.

However, writing & = wl in (3.4) of Lemma 3, the series on the left is convergent, and
hence
Py(lU,| < wl) < Py(|U,| < wl, B(m) <> 00)+ P,(B(m) <> o0)

_ = P,(B(m)«»00) as n->o0,
by Lemma 3. O
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We shall now deduce from Lemma 4 that, if 6(p) > 0, then, for sufficiently large
m, n, it is very likely that B(m) can be joined to some m-pad ‘resting’ on 7'(n); the
reader is referred back to §2 for the relevant definitions.

Lemma 5. If 0(p) > 0, then for each 5 > 0 there exist positive integers m = m(d, p, )
and n = n(d, p,n) such that 2m < n and

P,(B(m) <> K(m,n) m B(n)) > 1—1.

Proof. Since 6(p) > 0, there exists m = m(d, p,y) such that
P,(B(m) < ) > 1—(3)", (3.8)

where w = d2%.
Then in turn there exists M = M(d, p, n) such that

M
/t(U w@) > 11—, (3.9)
i=1
where &, 6,, ..., &, are independent events in some probability space, each having u-
probability given by
w(6;) = P,(B(m)isopen), 1=1,2,.... M. (3.10)

In fact it is sufficient that .
(l_p(2m+1) )M < %,'7’
but we do not require the precise condition.
Writing
Il=2m+1)""M, (3.11)

by Lemma 4 and by (3.8) there exists n = n(d, p,y) such that

Py(V(n)| = 1) > 11y, (3.12)

where V(nr) is given by (3.7).

Supposing, as we may, that 2m + 1 divides n + 1, we can partition 7'(n) into disjoint
(d—1)-dimensional boxes with sides of length 2m. Then by (3.7) and (3.11), |V(n)| > 1
implies that B(m) is joined in B(n) to at least M of these boxes, and by (3.9) and
(3.10), with probability greater than 1 —317, at least one of these boxes corresponds
to a ‘parallel” m-pad in T(m,n). The lemma now follows by (3.12). |

In the next lemma and in §4 to follow, we use the probability measure P on 2* and
the notions of ‘p-open’ and ‘p-closed’, as defined in §2.

Lemma 6. If O(p) > 0, then for each €,6 > 0 there exist positive integers m =
m(d, p, €,0) and n = n(d, p, €, 8) such that 2m < n and with the following property : for
each set R such that B(m) € R = B(n) and (RUAR)NT(n) = &, and each function
L:AR N B(n)—[0,1—0] we have

P(G|H) > 1—e¢, (3.13)
where
G = {there exists a path in B(r)—R from AR N B(n) to K(m,n), this path
being p-open outside AR N B(n) and (f(u)+ 8)-open at its only
vertex we AR N B(n)} (3.14)
Proc. R. Soc. Lond. A (1990)
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B(n)

Figure 1. A path 7 in B(n)—R. The endpoint » of 7 lies in AR, and the endpoint v belongs to 0B(n)
and is adjacent to an m-pad lying next to 0B(n).

and
H = {x is p(x)-closed for all xe AR N B(n)}. (3.15)

The event G of (3.14) is illustrated in figure 1.

In the proof of our theorem in §4, we shall show that with positive probability we
can construct a suitable sequence of m-pads B;, B,, ..., all connected to B, by open
paths. Essentially this is carried out step by step by a sequence of applications of
Lemma 5, but we cannot use Lemma 5 directly because certain relevant events are
not independent.

The purpose of Lemma 6 above is to overcome this difficulty, and enable us to
extend an open connected set (" to a larger open connected set ¢ containing the next
m-pad. After translation of coordinates in Lemma 6 we can think of R as C" N B(n).
Then to extend C” in B(n) we have to cross over AR, each of whose vertices x is
already determined as f(x)-closed. However, there is a good chance that some of
these x are (f(x)+ d)-open, and this is part of the idea of the proof which follows.

Proof of Lemma 6. Assume that 6(p) > 0 and let ¢, > 0. Choose a positive integer
¢ so large that
(1-9)" < e, (3.16)

and then choose a positive number % so that
7 < 3e(1—p). (3.17)

Then we can, by Lemma 5, choose positive integers m = m(d, p,e,8) and n =
n(d, p, €,8) such that 2m < n and

P (B(m)«> K(m,n) in B(n)) > 1—1. (3.18)

p v

Suppose that B(m) = R = B(n), (RUAR)NT(n) = & and B:AR N B(n)—~[0,1—4].

Since K(m,n) < T(n), it is easy to see that
{B(m) < K(m,n) in B(n)} < {AR < K(m,n) in B(n)— R},
whence by (3.18),
P, (AR < K(m,n) in B(n)—R) > 1 —1. (3.19)
For each K < T'(n), writing
UK) = {xe AR N B(n):3yeB(n) such that  ~ y and y > K in B(n)— (R U AR)},
(3.20)
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the events {|{U(K)| <t} and {K(m,n) = K} are independent. It follows by Lemma 2
that

P(UK(m,n)| <t)= X P(UK)| <t)Py(K(m,n)=K)

KcT(n)
< X (1—=p)*P(AR«> K in B(n)—R) P,(K(m,n) = K)
KcT(n)

= (1—=p)~*P,(AR «» K(m, n) in B(n)—R),
again by the independence of the relevant events. We now have, by (3.19),
P,(\UK(m,n))| >t) = 1—(1—p)™y. (3.21)

For each U = AR N B(n), the event {U(K(m, n)) = U} is independent of the states of
the vertices in U, and these states are independent of each other. Consequently,
writing P# for the probability measure P conditioned on the event H given in (3.15),
we have

PH(x is (B(x)+ 0)-closed for all xe UK (m,n)), UK (m,n))| > t)
= Y PH(xis (B(x)+ d)-closed for all xe U, UK (m, n)) = U)

< (1—8)VPH{UK(m, n)) = U) < (1—98)t.

It follows by (3.16), (3.17) and (3.21) that

PH(there exists a (B(u)+ d)-open vertex uwe UK (m,n)))
= PH(UK (m,n))| > t)— (1 —29)
= P,(UK(m, n))| > t)—(1—9)’
>1—(1-p)'p—(1-90)>=1—e¢
Thus PH(G) > 1—¢, which is (3.13) as required. O

4. The main theorem

Theorem A. If F is an infinite connected subset of Z%, and p,(F) < 1, then for each
n > 0 there exists an integer k > 0 such that

Pe(2kF +B(k)) < po(Z%)+7.

Our theorem of §1 follows at once by the choice F = Z2, for in this case 2kF + B(k)
is a translation of the slice S(2k) having thickness 2k. Other consequences will be
discussed in §5.

Proof. We shall work with the family (f(x):x€Z%) of independent random
variables having the uniform distribution on [0, 1] and with the associated ideas as
discussed in §2. We shall show that, if y > 0 and p = p,+1y (where p, = p.(Z%)), then
there is a strictly positive probability that there exists an infinite (p + #%)-open cluster
in 2kF + B(k), for an appropriate choice of k. This we achieve by describing a
procedure for building such a cluster, and appealing to Lemma 1. We shall verify the
principal hypothesis of Lemma 1, that ‘success’ at each step has a sufficiently large
probability, by using Lemma 6.
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Let 0 < 5 < p, and write

P =P+, (4.1)
8 = n/(4d), (4.2)
6= (1—p(F)/(8d). (4.3)

Since p > p,, we have 6(p) > 0. Moreover, since p,(F) <1, we have ¢,d>0.
Consequently there exist m = m(d, 5, €, 0), n = n(d, 7, €, d) such that 2m < n and with
the property in the statement of Lemma 6. We write

N=m+n+1, (4.4)

and we shall show that the statement of Theorem A is valid with k = 2.

We ‘renormalize’ Z? by considering the set of vertices {4Nx:x€Z%; of special
importance to us are the corresponding boxes {4Nx+ B(N):x€Z%, and we call such
boxes site-boxes. A pair of site-boxes are called adjacent if they are centred at adjacent
vertices of the renormalized lattice. Adjacent site-boxes are linked up by partly
overlapping bond-boxes, that is, boxes of the form Ny+B(N) with yeZ?® such that
exactly one component of y is not divisible by 4; such a box is called a half-way box
if the exceptional component of y is even.

We shall examine site-boxes one by one, declaring them to be either ‘occupied’ or
‘unoccupied’ according to certain rules. We do this in turn in the manner described
before Lemma 1. Let e(1),e(2),... be a fixed ordering of the edges of F'; we may
suppose without loss of generality that the origin 0 belongs to /. We begin by
examining the site-box B(N), corresponding to the origin. If B(N) is unoccupied then
we terminate the process. If it is occupied, we find the earliest edge e, incident with
the origin, and consider the site-box 4Nz, +B(N) corresponding to the other endpoint
x, of e,. If this site-box is occupied, then we add x, to the ‘occupied cluster’ at the
origin; in any case we shall never return to it. This process is continued, at each stage
finding the earliest edge one of whose endpoints lies in the occupied cluster at the
origin and the other of which corresponds to a site-box which has not yet been
examined. We shall present a suitable definition of the occupied state, such that (a)
Lemma 1 will imply the existence of an infinite occupied cluster with positive
probability, and (b) the existence of such a cluster necessarily entails the existence
of an infinite open cluster in the original subset 2kF + B(k) of Z°.

Once we have specified what is meant by saying that the origin is (or is not)
occupied, then much of the work will have been done; the event in question is
illustrated in figure 2. Consider then the site-box B(XV), noting that B(m) = B(N). We
say that ‘the first step is successful’ if B(m) is p-open; if the first step is not successful
then we terminate the process. Note that

P(B(m) is p-open) > 0, ‘ (4.5)
and assume henceforth that B(m) is p-open (this will turn out to be more a matter
of convenience than necessity). We recall that an ‘m-pad’ is a translation of B(m)
every vertex of which is p-open.

We write €', = B(m) and define, for xeZ?,
p if zeC,,
7i@) = {1 otherwise,
Bix) =0 forall xeZ?
so that every vertex x of Z%is y,(x)-open and g, (x)-closed. Let L; denote the identity
Proc. R. Soc. Lond. A (1990)
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r——/— T r— /A

IR U R —

Figure 2. An illustration of the event that the origin of the renormalized lattice is occupied. The
black boxes are m-pads; that is, they are p-open translates of B(m), which is the central black box
of the figure. The larger boxes are translates of B(NV). As indicated, B(m) is joined through a network
of paths and black boxes to m-pads contained in each of the copies of B(N) having a face common
with B(N).

and, forj = 2,3,...,2d, denote by L, the ‘earliest”’ isometry of Z? which preserves the
origin and which maps the first coordinate direction onto the jth; the word ‘earliest’
refers to some natural fixed ordering of the set of such isometries. Define C, by

C,=C,UE, UF,, (4.6)

where &, is the set of x€ AC, which are (§,(x)+ d)-open, and F] is the set of (p-open)
vertices yeB = B(n) U {U¥, L i(T'(m, n))} Such that y can be Jomed to AC, by a path
of B; which is p-open out81de A(Y and whose unique vertex u e AC, is (§,(u)+ &)-open.
We call this step successful if C, contains at least one vertex in K](m n) for each j =
1,2,...,2d, where K;(m,n) is the set of vertices z in L;(7T'(n)) such that z+L,(i,) lies
in an m-pad of L;(T(m,n)). If this step is unsuccessful, we terminate the process.

Before continuing, we estimate the probability that the step is successful,
conditional on the success of the previous step. Let ( be the event that there exists
a path in B(n)—B(m) from AB(m) to K(m,n), this path being p-open outside AB(m)
and (f,(u)+d)-open at its unique vertex w in AB(m). We denote by G, the
correspondmg event w1th K(m,n) replaced by K;(m,n). Then, by an application of
Lemma 6 with R = B(m), f = (3, restricted to AR ﬂB( n), we have

P(G;|B(m) is p-open) > 1—e¢, j=1,2,...,2d,

2d
so that P ( N G,
j

=1

B(m) is p—open) > 1—2de. (4.7)

Thus this step is successful with probability at least 1—2de.
Let us assume that the last step was successful. We define, for xe Z?,

v, (@) ifzeC,,
x)+¢6 ifxeAC, nC,,
Yal@) = A+ Lo (4.8)
P if ke Cy—(CLUAC)),
1 otherwise,
x)+d ifxe(AC,—C,)NB
182(90) — 131( ) ] ( l_ 2) ) (49)
P ifxe (AC,—AC,) N By,

0 otherwise,
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so that every vertex x of Z% is y,(x)-open and fS,(x)-closed. In general, for each
positive integer ¢ in the process we shall define real functions f,, y, on Z% satisfying

0 < B,(%) < Bra(2) < flw) <yq(@) < y(w) <1 forall xeZ® t=1,2,...,

and the resulting pair of sequences of functions (8,), (y,) will give a complete
description of the history of the construction. We shall in fact form sequences of
connected sets C; € 0, < ... and B’I,B;, ..., in such a way that

Bix) < fle) <y, (x) forall xzeZ? and t>1
and Pix) =0, 7t(x)=1 forall «¢C,UAC,.

Now it is clear that 7'(m,n) is contained in the bond-box Ni, +B(N). Let B,
denote the earliest m-pad (earliest in some fixed ordering of {u+B(m):ueZ%) in
CynT(m,n). We aim to extend C, to join up with a third m-pad, B, say, lying in the
half-way box 2Ni, +B(N), and accordingly we use a ‘steering action’. It happens
that, writing B, = b+ B(m), all the coordinates of b are positive, and consequently
b+ T(m,n)is not a subset of 2Ni, + B(N). We therefore seek a suitable target point not
in b+ 7T(m, n) but rather in b+ 7*(m, n), where U* is the image of the set U under the
symmetry x, &, x;>—§; for j = 2,3,...,d. We write

Ky (m,n) ={reb+T*@n): x+1,; belongs to some m-pad in b+ T*(m, n)}.

We then define
C,=C,UE,UF, (4.10)

where K, is the set of xe AC, N (b+B(n)) which are (§,(x)+ d)-open, and F, is the set
of (p-open) vertices ye By, = b+ (B(n) U T*(m,n)) such that y can be Jomed to AC, by
a path of B; which is p-open outside AC, and whose unique vertex ueA02 is
(fBo(u)+0)-open. We call this step successful if €, contains at least one vertex in
K (m n). If it is not successful, we terminate the process.

Let us estimate the probability that this step is successful, conditional on the
success of all earlier steps. We apply Lemma 6 centred at b, with K(m, n) replaced by
Ky(m,n), R=0Cyn (b+B(n)), p = f, restricted to AR N (b+B(n)), to find that this
condltlonal probability exceeds 1—e. We assume henceforth that this step is
successful.

Similar to (4.8) and (4.9), we define for xe Z¢

Vo() if xeC,,

Bolw)+8  ifxeAC, N O,

Ys(x) = _
P ifrel,—(C, UAC,),
1 otherwise,
Bo(x) if v ¢ By,

gy | PO HS T2 A0,—Co 0B

xXx) =
’ P if ve (AC;—AC,) N B,

0 otherwise.

Having completed a ‘link-up’ from the first site-box B(N) to the half-way box
2Ni, +B(N), we now return to the first site-box and attempt to ‘link-up’ with the
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half-way box 2Ni, + B(N) in a manner similar to that just described. In fact, by virtue
of the very first step we have already ‘linked-up’ with the bond-box Ni,+ B(N), and
s0 just one more step is needed.

Let B? = b® + B(m) be the earliest m-pad in Oy N Ly(T(m,n)). We define

C,=C,UE,UF,, (4.11)

where B, is the set of xe AC, N (b® +B(n)) which are (f3,(x) + 8)-open, and F, is the set
of (p-open) vertices y€Bj = b® +{B(n) U Ly(T*(m, n))} such that y can be joined to
AC, by a path of B which is p-open outside AC, and whose unique vertex ueAC, is
(f5(u) +&)-open. We call this step successful if C’ contains at least one vertex in

K@ (m,n) = {xeb®+L,(T*(n)): x+1, belongs to some m-pad in b + L,(T*(m, n))}.

If it is not successful we terminate the process.

Now
(C3UACy) N {6® +Ly(T*(m,n))} = &,

so that the joint distribution of f(x), for vertices x belonging to potential new m-pads,
conditional on C,, is the original product measure. Therefore, we may apply Lemma
6 as usual to deduce that the last step succeeds with (conditional) probability
exceeding 1—e. Assuming success, we define the functions y, and g, in the usual
manner.

In a similar way we attempt to ‘link-up’ in each of the remaining coordinate
directions j = 3,4, ...,2d, and we declare the origin 0 of the renormalized lattice to
be occupted if the entire construction up to that point is successful. This can only
occur at the moment of definition of C,,,,, and therefore the construction is
successful with conditional probability satisfying

P(0 is occupied | B(m) is open) > (1 —2de) (1 —¢€)**
> 1—4de = (1 +p.(F)) (4.12)
by (4.3). If 0 is not occupied, we terminate the process.
Before continuing, we pause to estimate the functions y, and g,. We recall that

formulae with the same form as (4.8) and (4.9) hold for all ¢ > 2. Following the
history of the construction, it is not difficult to see that, for ¢ = 1,2,...,2d +2,

By(x) () < p+(w,(x)—1)8 forall zeC,, (4.13)

where w,(x) is the number of integers r < ¢ for which xe B,(n), where B,(n) is the box
which replaces B(n) in Lemma 6 when we apply that lemma in extending C,_, to C,.
For ¢ =1,2,...,2d+2, we have the crude bound

wy(x) <2d4+1 forall zeZ? (4.14)

and it will be clear later that both (4.13) and (4.14) are valid for all g. Consequently,
by (4.1), (4.2), (4.13) and (4.14),

By() (x) < p.+n forall zel, g¢=1,2,.... (4.15)

Much of the work is now done. Assume that 0 is occupied, and find the earliest edge
e, of F incident to the origin. We may assume without loss of generality that the
other endvertex of e, is ¢,. In this case we move our attention to the site-box
4Ni, +B(N) corresponding to ¢;, and to determine whether or not it is occupied
requires a procedure similar to that for the origin. A significant difference, however,
is that the first stage is to attempt in two steps a ‘link-up’ to it from the half-way
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box 2Ni, +B(N) which we recall is already ‘linked-up’ with B(N). The rest of the
procedure consists of attempting to ‘branch out’ from 4Ni, + B(V), and to ‘link-up’
with the 2d —1 adjacent half-way boxes not considered so far.

We recall from the second step of our construction that b+ 7*(m, n) = 2Ni, + B(N).
We also recall that C; N (b+7*(m,n)) and hence C,,,, N (b+T*(m,n)) contains at
least one m-pad; let B, denote the earliest such m-pad. Thus B, < 2Ni, + B(NV), and
we attempt to link C,, , with an m-pad B, in the next bond-box 3N, +B(N) in a
manner similar to the ‘link-up’ from Ni, + B(N) to 2Ni, + B(N) in the second step. We
recall that we then needed a ‘steering action’ and we need this again but now in its
general form. Accordingly, in place of T*(m,n) used in the second step we use the
image of 7'(m,n) under the appropriate symmetry of the form x,~§,, z;~+¢; for
J=2,3,...,d, where, for each such j, we take the plus sign when the jth coordinate
of the centre of B, is negative, and the minus sign when it is non-negative. Performing
a step similar to the much earlier second step, we may extend C,,,, to a set Cyy s
containing a suitable m-pad B, in 3Ni; +B(N), and the (conditional) probability of
success exceeds 1—e as usual.

One more step similar to the last completes the ‘link-up’ with the site-box
4Ni, +B(N), and here we extend C,,,, to C,,,, containing an m-pad B, = b*+ B(m),
say, in this site-box. As anticipated, we next attempt to ‘branch out’ in the relevant
2d —1 directions, by forming 2d —1 m-pads ‘resting’ on the faces of b*+ B(n), in a
manner similar to the ‘branching-out’ from the origin in our very first step in 2d
directions. Since b* will generally differ from 4Ni;, we need to use the usual steering
technique to ensure that the new m-pads lie in their respective bond-boxes. There is
an additional proviso. It happens that the first coordinate b of b* equals 4V exactly.
In this ‘ambiguous state’ we override the usual convention and ensure, as we may,
that all the new m-pads rest on the ‘upper half’ of 6*+ B(n) in the sense that all
vertices in these m-pads have first coordinates not less than 4N. This in turn ensures
that these m-pads contain no vertices x for which f(x) has already been inspected. The
procedure of ‘steering away from the inlet branch’ will continue throughout all
future steps of the construction corresponding to this one.

The remaining steps consist of the 2d —1 ‘link-ups’ with the relevant half-way
boxes. Since b* is generally not ‘centralized ’, it is the case that in some of the 2d — 1
directions we may already have a connecting m-pad in the target half-way box, and
for such directions the ‘link-up’ is deemed complete. For the remaining directions we
proceed as we did originally when ‘branching out’ from the origin, and if the entire
construction is successful, then ¢, is declared to be occupied.

The number of new m-pads required in deciding that i, is occupied is no greater

h
than 2+ (2d—1)+(2d—1) = 4d,
and therefore, as in (4.12),
P(3, is occupied | 0 is occupied) > (1 +p,(I)). (4.16)

The procedure does not necessarily terminate even if ¢, is unoccupied, as there may
well be other site-boxes adjacent to B(N) which we need to test. If ¢, is unoccupied,
then there was some step in the construction which was unsuccessful ; on encountering
this step, we define the new y and £ functions, and then abandon this site-box to
move on to another.

Following the procedure explained before Lemma 1, we examine the relevant site-
boxes one by one as described for the second site-box. Thus we first ‘link-up’ from
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P A P B

— L— By

Figure 3. Successful connections in the renormalized growth process. The black central box is B(m),
which is contained in B(N). The box B(m) is joined by a network of paths and open boxes to open
boxes contained in copies of B(N). These paths are contained in the ‘growing cluster’, a few of
whose other connections are displayed.

the relevant half-way box to the new site-box B, say, and then ‘branch out’ to the
half-way boxes which are ‘half-way’ to those adjacent site-boxes not yet examined.
In general there may be fewer than 2d —1 adjacent site-boxes not yet examined; it
is even possible that they have all been examined in which case we declare the
renormalized site to be unoccupied and move on to the next site-box.

Proceeding thus with the step by step approach described before Lemma 1 and
illustrated in figure 3, we have in the notation of that lemma that u = P, that
g(z,.,) =1 if and only if the (¢4+1)th vertex x,,, considered in the renormalized
lattice is occupied, and that ‘

p(Lt) > 1 +p,(F)) for t>1.

Applying Lemma 1, we find that, conditional on the event {B(m) is open}, there is
strictly positive probability that the cluster 4 of occupied vertices in the
renormalized lattice is infinite, so that

P(|A| = o0) = P(|A| = oo | B(m) is open) P(B(m) is open) > 0.

If 4 is infinite, then there is a connected cluster of 4NVF + B(2N) containing the origin,
and such that (by (4.15)) every vertex therein is (p,+#)-open; the claim of the
theorem follows. O

5. The supercritical phase

We note some consequences of Theorem A and its method of proof.

() We have seen already that the theorem implies that, for each e > 0, there
exists k such that p,(S(k)) < p.+e¢. Using results of Grimmett (1981, 1983), it may
be deduced also that, if 4:[0, 00)— [0, c0) satisfies

h(u)/logu—oc0 as wu—>co,

then, for each € > 0, there exists a positive integer k such that the critical probability
of the subset

{x = (v, %, ..., 0q) €Z%:0 < 2y < h(2y), 2, = 0, || < k for j > 2}
is less than p,+e.

Proc. R. Soc. Lond. A (1990)



454 G. R. Grimmett and J. M. Marstrand
(b) The second of our consequences is that, if p, < p < 1, then
P,(0 = niy, |C] < 00) < e ™E®

for some §(p) satisfying 0 < £(p) < oco. This was proved by Chayes et al. (1987) for
sufficiently large p, and the full result now follows from their work together with the
formula p, = p. (). In the language of mathematical physics, the correlation length
is finite throughout the supercritical phase. See Grimmett (1989, §§6.5, 6.6) and
Kesten (unpublished work, 1988).

(¢) A similar application of our theorem to a result of Kesten & Zhang (1989) gives
us that

Py(n <10] < 0) < exp (—a(p) n'® V')

for some a(p) satisfying a(p) > 0 if p > p,.

(d) Let IT, be the maximal number of vertex-disjoint open paths crossing an n-
cube from one face to the opposite face. If p > p, then there exist f(p), y(p) > 0 such
that

Py, = B(p)n™") = 1—exp (—y(p)n™).

This now follows from Chayes & Chayes (1986) who assumed that p > p.(S). In fact
their argument makes use of Lemma 4.9 in Aizenman et al. (1983).

An easier proof of this result may be obtained by direct use of the argument in the
proof of Theorem A, and we sketch this. Let N, A be positive integers and write
n = AN. Divide the ‘(n—1)-cube’ D(n—1) ={0,1,...,n—1}% into A9~2 ‘slices’ of the
form

D,n—1)={xeDn—1):kE,N<z, < (k,+1)N,1 <i<d—2}

for k= (ky, ky, ... kg o)€{0,1,..., A—1}42,

where x; denotes the ith component of x. We partition each D, (n—1) into (N—1)-
cubes of side-length N—1 in the usual way. If p > p, and N = N(p) is a sufficiently
large function of p, then we may think of the (N—1)-cubes within D, (n— 1) as being
the vertices of a supercritical site-percolation process. Such a process contains
dA disjoint crossings of the slice with probability at least 1—e " for some d(p),
7(p) > 0; this may be proved as done by Grimmett & Kesten (1984) or Chayes &
Chayes (1986) for ‘independent percolation’. These crossings correspond in the
original process to at least JA disjoint open crossings of the slice. Different slices do
not overlap, and hence 17, is at least the sum of A% 2 independent contributions, each
of which exceeds A with probability at least 1 —e™7". Since there is no essential loss
of generality under the assumption that n = AN is an integer multiple of N, the
conclusion now follows by a simple estimate for the binomial distribution.

(e) In a disordered electrical network containing a proportion p of conductors and
1—p of insulators, the effective resistance R, between opposite faces of an n-cube
satisfies

P,(limsup {n? 2R, } < c0) = 1,if p > p,.
n—>o0
This is a consequence of (d); see Grimmett & Kesten (1984), and Chayes & Chayes
(1986).

(f) If p > p,, there is only a small probability that two vertices z and y are in the
infinite open cluster but joined by no open path of ‘reasonable’ length. We make this
statement more precise as follows. Let xeZ% where d > 3, and M > 1, and write
D(x, M) for the smallest cube of the form [1{,[a;,b,] containing both B(M) and
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x+BWM); if, for example, x = (x,2,,...,2,) and x; = 0 for all ¢, we should take
a;=—M, b;=2,+M for i =1,2,...,d. We claim that there exists o(p), satisfying
a(p) > 0 if p > p,, such that

P00, 00,02 in D(x, M) < e M (5.1)

for all M.

Here is a sketch of a direct proof of (5.1). Let p > p,, and let N be a positive integer
sufficiently large that the renormalized percolation process of the proof of Theorem
A, with F' = Z? say, is supercritical ; write R = 2N+ 1. Let

Ay ={0 00,2 00,0« xin D(x, M)},
noting that 4,,,, € 4,,. Now
Pp(AR(j+1) IARj) < max {P(’LLH—”U in D(.%',R(j+ 1))—D(.%', Rj)}a (52)

where the maximum is taken over all pairs u, v of vertices contained in AD(z, Rj).
This holds since, if 4p; occurs, then there exists some ‘earliest’ pair u, v € AD(x, Rj)
such that u and v are joined (respectively) to 0 and x by open paths contained (apart
from their endpoints) in D(x, Rj); if, in addition, Ay, occurs, then u«»v in
D(x,R(j+1))—D(x,Rj). The latter d-dimensional ‘annulus’, when unwrapped,
resembles part of Z%1 x {0, 1,...,2N}. It may be seen, using the block construction in
the proof of Theorem A, that there exists y(p) > 0 such that

Py(uevin D@, R(j+1))—D(x, Bj)) = y(p)
uniformly in u, v, j and x. Hence
Py(Apiin|Ap) <1=y(p) for j=0,1,...,

implying that Py(Ag;) < (1=y(p))y for j=0,1,...,

from which (5.1) follows.

Similar arguments appear in Aizenman et al. (1983), under the hypothesis
P> pe(S).

(9) Our final observation, (5.5) to follow, concerns the length of the shortest open
path between two distant vertices. Let L(x, y) be the number of edges in the shortest
open path joining vertex x to vertex y, with the convention that L(x,y) = oo if
x«»y. The random variable L(x,y) has an atom at oo, and it is therefore more
convenient to work instead with the random variable L’(z, y) defined as follows. For
each xeZ? let i(x) denote ‘the vertex nearest to x” which lies in an infinite open
cluster; that is

| —i(x)] = min {Jx —2|:z <> o0}
and ¢(x) is chosen to be the earliest vertex which achieves this minimum, according
to some predetermined ordering of the vertices of Z? We define L'(x,y) =
L(i(x),i(y)), noting that L’(x,y) < oo a.s. (almost surely), by the almost sure
uniqueness of the infinite cluster.

Suppose that p>p, and d>=3. It is clear that {L'(x,y):2,yeZ% and
{L'(x+t,y+1t):2,ye Z% are identically distributed families of random variables, for
any fixed t€ Z%. Furthermore, it is easily checked that

L'(x,y) < L'(x,2)+L'(z,y) for x,y,zeZ%
so that L’ satisfies the subadditive inequality. Once we have proved that
E(L (x,y)) < oo forall x,yeZ? (5.3)
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where £ denotes expectation, then it will follow immediately by the subadditive
ergodic theorem (see Kingman 1976) that, as n— o0,

%L’(O,nx) —A(x) a.s. and in L, (5.4)
for some real A(x) satisfying

Z|x| )< oo for x=(xy,,,...,2,)€Z"
=1
It is a consequence of (5.4) that, as n— oo,
{(1/n) L(0, nx) — A(2)} g0y Ligereny > 0 @8, (5.5)

where I, is the indicator function of the event 4. This extends a conclusion of Zhang
& Zhang (1984) valid in the case of two dimensions.
We need only prove that E(L'(x,y)) < co. Suppose that M, N > 0. Then

Pp<L’(x,y>>M) S Py(L(u.v) > M, i(2) = u,i(y) = v)

u, veZd

+ X Pp(L(u,v)ZM,uHoo,vHoo). (5.6)
Iuil?c[véN
lo—yl<N

We claim first that there exists a(p) > 0 such that
P,(li(z)—2| = N) < e *®¥ for N>0,zeZ° (6.7)

Certainly p > p, entails p > p (S(k)) for some k; with this choice of %, the prob-
ability that no vertex in {z+7¢,:0 <j < N} lies in an infinite cluster is at most
exp ( P)|IN/(k+1)]) for some 4(p) > 0, and (5.7) follows. Secondly, we have from
(5.1) that there ex1st% oc(p) > 0 such that

Py(ue> 00,0 00, ucrvinu+Dw—u,N)) < e PV,

The number of edges in D(v—wu, N) is at most d{1+ |[v—u|+2N}?, which is no greater
than d{4N+|x—y|}* if [u—2| < N and [v—y| < N. Therefore

Py(L(u,v) 2 M, u«> 00,0 0) < e PN (5.8)
whenever M = d{4N+ |z —y|}* (5.9)

and lu—z| <N, [v—y| <N. We set N = |571d" V)| and then (5.9) holds for all
sufficiently large M. It follows from (5.6), (5.7) and (5.8) that for some ¢ < 00 and
p(p) > 0 we have

P (L (z,y) = M) < cM exp(— B(p)M*?) for all large M.

Summing over integer values of M, we obtain K(L'(x,y)) < oo as required.
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