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Abstract. The triangle condition for percolation states that ]Γ τ(0,x) τ(x,y)
χ,y

-τ (y, 0) is finite at the critical point, where τ (x, y) is the probability that the sites
x and y are connected. We use an expansion related to the lace expansion for a
self-avoiding walk to prove that the triangle condition is satisfied in two
situations: (i) for nearest-neighbour independent bond percolation on the
^/-dimensional hypercubic lattice, if d is sufficiently large, and (ii) in more
than six dimensions for a class of "spread-out" models of independent bond
percolation which are believed to be in the same universality class as
the nearest-neighbour model. The class of models in (ii) includes the case
where the bond occupation probability is constant for bonds of length less
than some large number, and is zero otherwise. In the course of the proof an
infrared bound is obtained. The triangle condition is known to imply
that various critical exponents take their mean-field (Bethe lattice) values
(y = β = 1, δ = Δt = 2, ί ^ 2) and that the percolation density is continuous at
the critical point. We also prove that v2 = 1/2 in (i) and (ii), where v2 is the
critical exponent for the correlation length.
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1. Introduction

In the last decade significant progress has been made in the rigorous understand-
ing of critical phenomena, particularly concerning its mean-field behaviour in
high dimensions. For Ising and φ4 spin systems one of the important ideas has
been the combination of the infrared bound [16] with correlation inequalities. This
method, together with other ideas, has led to considerable understanding of these
models in four or more dimensions, including a proof of the triviality of φ4 field
theories in more than four dimensions and a proof that many critical exponents
take their mean-field values above four dimensions [35,1,15,4,3].

For the self-avoiding walk no general proof of an infrared bound is known,
and the methods which were successful for the spin systems cannot be applied. An
alternate approach was introduced by Brydges and Spencer [12], who used the lace
expansion to prove mean-field critical behaviour for the weakly self-avoiding walk
in more than four dimensions. This method was further developed in [31-33],
where mean-field critical behaviour was proved for the strictly self-avoiding walk
above some undetermined dimension d0 > 4, and in [25], where the infinite self-
avoiding walk was constructed in high dimensions.

For percolation there is also no general proof of an infrared bound, and in fact
there are indications that the infrared bound is violated in less than six dimensions
[14,41]. However based on an analogy with the bubble diagram, which played an
important role in the analysis of the Ising and φ4 models, Aizenman and Newman
[6] introduced an unverified condition, the so-called triangle condition, which was
shown by them to imply mean-field behaviour for the susceptibility in percolation
models. The triangle condition is expected to hold above six dimensions.
Subsequently further implications of the triangle condition were obtained in
[8,28]. In this paper we prove that the triangle condition is satisfied in two
situations: (i) for independent nearest-neighbour Bernoulli bond percolation in
sufficiently high dimensions, and (ii) in more than six dimensions for a class of
"spread-out" models of independent bond percolation, which includes certain
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finite range models as well as certain models in which the bond occupation
probability decays exponentially as a function of the length of the bond. In the
course of the proof we obtain a uniform infrared bound below the critical point,
which is valid in high dimensions for model (i), and above six dimensions for the
models in (ii). The method of proof can also be applied to site percolation, and
yields the same results (with a suitable interpretation of the spread-out models).
Consequences of the triangle condition are that the critical exponents γ, /?, δ, and
Δt (defined below) exist and take their mean-field values, and that the percolation
density is continuous at the critical point.

The models in class (ii) are believed to be in the same universality class as the
nearest neighbour-model. It is known that for the nearest neighbour model the
upper critical dimension is at least six [13,38], and the proof of this fact can be
extended to the models in (ii) [39]. Thus our result strongly supports the conjecture
that for these models the upper critical dimension is equal to six.

The proof of these results is based on an expansion for the two-point function
which is related to the lace expansion for self-avoiding walk. The expansion is used
to treat a percolation model as a perturbation of the random walk model whose
transition probabilities are proportional to the percolation bond occupation
probabilities. Similar methods can also be applied to branched polymers [21].

7.7. The Models

We consider independent Bernoulli bond percolation on the infinite d-
dimensional hypercubic lattice Έd. To each unordered bond (pair of distinct sites)
b = {x,y} (x,yeZd) a random variable nb is associated, which takes the values 0
and 1. The set of random variables {nb} is independent, and the distribution of nb is
given by

?vob(nb = 1) =pb9 Prob(nb = Q) = ί-Pb.

We require Zd-invariance (translation, reflection and rotation by π/2) for the

P{x,y}=P{O,y-x}

We consider the following possibilities for pb:
(i) the nearest-neighbour model:

if x is a nearest neighbour of 0

otherwise.

(ii) The spread-out models:

P{o,χ)=P' L~dg(x/L),

where g: Rd --> [0, oo) is a given function which is normalized so that jg (x) ddx = 1,
and is invariant under rotations by π/2 and reflections in the coordinate
hyperplanes. The parameter L will be taken to be large. (This type of limit to study
mean-field behaviour is related to the so-called Kac limit [23,26].) A basic example
is

if ||x||oo = max \xt\ ̂  1
1 ^ i ίg d

0 otherwise.
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We require that g decay exponentially at infinity (i. e., there exist C, ε > 0 such that
g(x) ^ C exp [ — ε \\ x || QJ). Then models (i) and (ii) are expected to be in the same
universality class. The bond density/? is the only parameter in these models (apart
from an additional parameter h we shall mention briefly to define the critical
exponent δ). For the models in (ii) we will show that the triangle condition is
satisfied for d> 6, if L is sufficiently large and g is piecewise differentiable.

If nb = 1 we say that b is occupied, while if nb = 0 we say that b is vacant. We use
Probp(ls) to denote the probability of an event E with respect to the joint
distribution of the {nb}, and denote expectation with respect to this distribution
by< V

Given a bond configuration {nb}, two sites x and y in the lattice are said to be
connected if there exists a path from x to y which consists of occupied bonds. The
connected cluster C (x) of x is the random set of sites defined by

C(x) = {yeZd: y is connected to x] .

The number of sites in C(x) is denoted by | C(x) \.
We define the two-point function

τp(x,y) = Probp (y is connected to x), (1.1)

the susceptibility

the percolation density

/»„(/>) = Probp(|C(0)| = oo), (1.3)

and the magnetization

Σ " n). (1.4)

We also define two correlation lengths

ί(p)=-Γlim-lnτp(0,(/i,0,...,0))l ' (1.5)
|_H->oo n j

and

Λ>l!τ,(0,xλ"2

)

To simplify the notation we will often omit the subscript p.
For the nearest-neighbour model it has been known for thirty years that

(except for the trivial case d = 1) there is a critical valuepc e (0,1) (depending on the
dimension) such that the percolation density vanishes for/? < pc and is nonzero for
p>pc [10,19]. Such a critical value of/? also exists for the models in (ii), for the g's
we will consider. Recently it has been proved that/?c can also be characterized as
sup {/?:#(/?)< oo} [27,2]. In this paper we are concerned with the critical
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behaviour of the model, i.e., the behaviour of functions such as those defined
above in the vicinity of (p,h) = (pc,0). By analogy with other statistical
mechanical models, and in agreement with numerical calculations, this behaviour
is expected to be in the form of power laws, and we introduce the critical exponents
γ,β, δ, At+!, v and v2 as follows:

X(p)~(Pc-pry as p\pC9 (1.7)

P«>(p)~<J>-Pc)β as pipe9 (1.8)

M(pc,h)~h1/δ as /zjO, (1.9)

(\C(0)\t+1}/(\C(Q)\t)~ (pc—p)~At+1 as p]pc, (1.10)

ξ<J>)~(Pc-prv as p\pc9 (1.11)

ζi(j>)~(j>c-pΓV2 as p\pc. (1.12)

Here f(p) ~ \p — pc\~λ is defined to mean that there exist positive constants C1

and C 2 such that

There are other critical exponents that can be defined (see [17,24,37]), but these
are the ones for which we can conclude mean-field values. The exponent δ is also
often defined by the (formally) equivalent relation

So far very little has been rigorously proved about the existence of the above
critical exponents. See [17,24] for a review.

On the Bethe lattice (Cayley tree), it can be shown that γ,β, δ, and At+1 exist
and have the values γ = β = 1, δ = At+ x = 2 for t + 1 = 2,3,4,... [17]. The Bethe
lattice critical exponents are known as the mean-field values, and it is expected that
for the models (i) and (ii) in more than six dimensions all critical exponents take
their mean-field values. The definition of v and v2 is problematic on the Bethe
lattice since these exponents are defined using the Euclidean structure, but with a
proper definition it can be shown that v2 = 1/2 [17]. On the hypercubic lattice it is
expected that v and v2 are equal, so the mean field values of these exponents is 1/2.
On the other hand, it has been rigorously shown by Chayes and Chayes [13] and by
Tasaki [38] that if all the critical exponents exist, then they cannot simultaneously
take their mean-field values in any dimension less than six. Thus the upper critical
dimension of the system is expected to be six.

1.2. Main Results

Aizenman and Newman [6] introduced an unverified condition, the triangle
condition, and showed that it implies that (1.7) holds with γ = l. The triangle
condition states that

π, (1.13)
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where V{p) is the triangle diagram

V(J>)= Σ τp(O,x)τp(x,y) τp(y,O). (1.14)
χ,y

Since the susceptibility χ{p) = Σ τ(0, x) diverges as/? approaches/?c from below for
X

the models (i) and (ii) we are considering [6], the statement that the triangle
diagram is finite at the critical point is not without content. Denoting by τp (k) the
Fourier transform of the two-point function, defined by

d J ddkτp(kf.
[-π,π]d

the triangle diagram can be written

If an infrared bound

were known, it would then follow that V(p) < oo for d> 6. A uniform bound on
C(p) for p <pc would thus be tantamount to (1.13). Such a uniform bound, and
hence the triangle condition, is expected to hold in more than six dimensions.

In addition to the fact that the triangle condition implies γ = ί, Barsky and
Aizenman [8] have shown that the triangle condition implies that (1.8) and (1.9)
hold with β = 1 and δ = 2, and Nguyen [28] has shown that it implies that (1.10)
holds with Δt = 2 for t = 2,3,4,.... It follows from (1.8) that the percolation
density P^ is continuous at the critical point, a fact which has been proved until
now only ΐord=2 [30]. (Continuity of P^ has been shown for all other values oΐp
in [5].) Our main result is that the triangle condition is satisfied (i) for the nearest-
neighbour model if the dimension dis sufficiently large, and (ii) for the spread-out
models if L is sufficiently large, for d > 6. Hence all the above consequences of this
condition also hold in these situations.

In this paper we prove the following theorems.

Theorem 1.1. For nearest-neighbour independent Bernoulli bond percolation on Έd

there is a do> 6 such that for d^d0 the infrared bound

τp(k) ^ const A:"2, uniformly in p<pc

holds. In addition the triangle condition is satisfied, i.e.,

Pc) = Σ hc (°> *) τPC (*> y) τPC (y> o) < oo.

Theorem 1.2. The infrared bound

τp{k) ^ const k~2, uniformly in p <pc,

and the triangle condition both hold for d> 6, for the spread-out models (ii), ifL is

sufficiently large (depending on d and g) and if-^ ^ — is pίecewίse continuous
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and g satisfies the following conditions:

ge^^^eL^(Έίd) for some δ>0,

$g(x)ddx=U

I \d'g(x)\ddx< oo, where the derivative is interpreted as a distribution, and

dI=\\-S- and / c {1,2, ...,</},
μel UXμ

g is invariant under rotations by π/2 and reflections in the coordinate hyperplanes.

As a consequence of the proofs of these theorems, we will also show that the
exponent v2 for the correlation length ξ2 exists and takes its mean-field value

v2 = l/2 (1.15)

for the nearest neighbour model if d ̂  d0 and for the spread-out models if d > 6
and L^ILQ. However a more complicated analysis is required to control the
correlation length ξ. It is proved in [20] that v = 1/2, under the same hypotheses as
(1.15).

Also, Eq. (4.10) below gives an upper bound for the critical probability for the
nearest-neighbour model in high dimensions, which together with a well-known
lower bound states that there is a constant C > 0 (independent of d) such that

2d-l =Fc= 2d^ d2'

We have done little to obtain the best possible value of d0 in Theorem 1.1. Our
current best estimate is d0 = 48, obtained by a slightly more complicated analysis
than that presented in this paper. This value can doubtless be improved, but a new
idea will be needed to obtain the triangle condition for the nearest-neighbour
model right down to the expected upper critical dimension of six. The fact that we
are unable to do much better than d0 = 48 suggests that we still do not have a very
efficient expansion for percolation. (For the self-avoiding walk the situation is
better: the lace expansion can be used to show that the bubble diagram is finite and
γ = 1, v2 = 1 /2 for the self-avoiding walk iΐd^Ί [22]. Here γ is the exponent which
measures the rate of divergence of the generating function at the critical point, and
v2 is defined as for percolation. The upper critical dimension for self-avoiding
walk is expected to be 4, so d^ 5 should be optimal.) However in view of the fact
that all of the models we are considering are believed to be in the same universality
class, the conjecture of universality, together with Theorem 1.2, strongly supports
mean-field behaviour for the nearest-neighbour model in more than six
dimensions.

The method of proof involves an expansion whose convergence is assured by
taking \\d to be small in Theorem 1.1 and ί/L to be small in Theorem 1.2.

1.3. Overview of the Proof

In this section we describe the general structure of the proof of Theorem 1.1. The
same ideas are used to prove Theorem 1.2. The basic structure of the proof is the
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same as that used in [31], where in particular it was shown that the bubble diagram
for the self-avoiding walk is finite at the critical point, in sufficiently high
dimensions. (Proofs with this type of structure, in different contexts, can be found
in [11,36].) In order to focus on the main ideas here we make some simplifications
and omit some details, deferring the complete proof to the remainder of the paper.

We define the following quantities:

T(p)= V(p)-1 = Σ Φ,x)τ(x,y) τ(y,0)-τ(0,0)\ (1.16)

γj\x\2τ(θ,x)2. (1.17)
X

The massless gaussian propagator is given by

C(x,y) = (2πΓ« jd'k f^^y w h e r e D(® = d~l Σ

We also introduce the gaussian quantities TG and WG corresponding to T(p) and
W(p), defined by replacing τ by C in (1.16) and (1.17). It is not difficult to show
that for d^Ί there are constants K1 and K2 such that TG^Kγd~ι and
WG^K2d~x (e.g., using Appendix B of [20] or Lemma 3.1 of [31]).

1.3.1. General Framework. The proof that the triangle condition is satisfied in
high dimensions is accomplished by showing that the following three statements
hold:

(i) For p <pc, T(p) and W(p) are continuous functions of p.
(ii) Forp^ίβd, T(p)^ Γ G ^^<Γ* and W(p)^WG^K2d~K

(iii) Let Jbe sufficiently large and fix any pe[l/2d,pc). If

A, (1.18)

then in fact

3. (1.19)

(In reality the precise statement of (iii) is more involved and can be found in
Sect. 4.) In the course of the proof of (iii) the infrared bound is obtained.

Together (i), (ii) and (iii) imply that there is a forbidden region in the graph of
T{p) or W{p), as depicted in Fig. 1. Therefore (1.19) holds and hence by definition
of T{p) it follows that

V{p)^\ + ZKιd'1Joτ?lλp<pe. (1.20)

But since τp(x,y) is an increasing and continuous function ofp [5], it follows from
(1.20) and the monotone convergence theorem that

P\Pc

and hence the triangle condition holds.
The proofs of (i) and (ii) are simple and are given in Sect. 4.2. The difficult part

of the proof is to obtain (iii). This is done by obtaining an expression for the
Fourier transform fp(fc), which under the assumption (1.18) can be shown to be a
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Fig. 1. Forbidden region (shaded) in the graph of T or W versus /?, for p <pc

small perturbation of the massless gaussian propagator C(k) = [l—D(k)]~ι.
Hence T(p) and W(p) are close to their gaussian counterparts TG and WG, and
thus the improved bounds on T(p) and W(p) in (1.19) follow.

For the self-avoiding walk the analogue of step (iii) was obtained using the lace
expansion. Here we derive and use an analogous expansion for percolation, which
yields an expression for τp(k). The lace expansion was derived in [12] using an
expansion followed by resummation, but it can also be derived using the inclusion-
exclusion relation [34]. It is the latter approach that we use for percolation. (In a
similar spirit, Park [29] has used the inclusion-exclusion relation to study
intersection probabilities for simple random walk.)

1.3.2. The Expansion. We describe the expansion in detail in Sect. 2, but let us
here give the basic idea of the expansion and explain how it can be used to obtain
(iii). We begin with some definitions. Two sites x and y are said to be doubly
connected (in a given configuration) if there exist two self-avoiding walks from x to
y, consisting of occupied bonds, which are distinct in the sense that they do not
share a common bond (although they may share common sites). If x and y are
connected, but not doubly connected, then there must be at least one bond in the
connected cluster of x whose removal would disconnect x and y. Such a bond is
referred to as a pivotal bond for the connection of x and y. There is a natural order
for the set of pivotal bonds, namely the first pivotal bond is the pivotal bond
b = {u9 υ) such that one endpoint, say u, oϊb is doubly connected to x. Either the
other endpoint v of b is doubly connected to y, in which case there are no further
pivotal bonds for the connection of x and y, or it is not. In the latter case, the
second pivotal bond is the one for which one endpoint is doubly connected to v,
and so on. This leads to the picture of a cluster joining x and y shown in Fig. 2. This
picture was also used in [27]. It is convenient to always regard a site as being
doubly connected to itself. In Fig. 2(b), the pivotal bonds divide the cluster into
parts which are mutually avoiding in the sense that no two can share a common
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(a)

(b)
8

Fig. 2. (a) A configuration in which x and y are connected, (b) Schematic representation of the
configuration in (a)

site. This represents a kind of repulsive interaction similar to that of self-avoiding
walk.

The event that 0 is connected to x is then the disjoint union of the event that 0
is doubly connected to x and the event that there is a pivotal bond for the
connection (and hence a first pivotal bond for the connection). We denote the
former event symbolically as

{0 is doubly connected to x} = 0<

and the latter as

{0 is connected to x but not doubly} = (J 0<
(u,v)

-x. (1.21)

Here the ordered bond (u, υ) is the first pivotal bond for the connection, so 0 is
doubly connected to u. The union in (1.21) is disjoint. Using this notation, and the
convention that τ(x,x) = 1, we have

Prob(0< -x). (1.22)
(u,v)

At this point we need to make the following definitions.

Definition 13. Given a bond configuration {nb} and a set A of sites, we define
(a) the connected cluster of x in Έd\A:
CΛ (x) = {ye Zd: y and x are connected using bonds having no endpoint in A}.

If y e CA (x) we say that y and x are connected in TLd\A,
(b) the reduced two-point function:

(c) the connected cluster of x after the bond {u, v} has been made vacant:
£{u,v} ̂  = {ye C{x): y remains connected to x after n{UfV} is set equal to zero}.
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Now we use a lemma from [6] (which is stated and proved in Sect. 2.1) to write
the summand in the second term on the right side of Eq. (1.22) as follows:

Prob (0<Z=> • x)=p(I[0<=>u] τcίu'v)^(v,x)). (1.23)
U V

The factor of/? on the right side is due to the fact that {u, v} is occupied, while the
restricted two-point function and the double connection of 0 and u are due to the
fact that (u, v) is the first pivotal bond. Next we replace the restricted two-point
function in (1.23) by

τ€{u'v} <°> (υ, x) = τ (ι>, JC) - [τ (v, x) - τ ^ " ' v } <°> (υ, x)]. (1.24)

This yields the equation

τ(0,x)-Prob(0<c=r>x)+/? £ Prob (0 < = > u) τ (ι>, x)
(u,v)

-p Σ </[0<=>M](τ(t;,x)-τeiu""<»)(ί;,x))>. (1.25)
(U,V)

Our goal is to manipulate the right-hand side of (1.25) so as to obtain terms
which either involve a convolution with τ evaluated at x, as in the second term on
the right side, or involve a multiple connection from x and no explicit two-point
function, as in the first term on the right side. (The reason for this will become clear
when we take Fourier transforms.) To this end we first observe that

τ(v9x)-τciu'v}<®(υ9x) = (I[v is connected to x in Έd but not in Zd\C{u v)(0)]}.

(1.26)

The event on the right side of (1.26) is such that every occupied self-avoiding
walk from υ to x must pass through C{UfV}(0) (which within the inner expectation
(1.26) on the right side of (1.25) represents a given deterministic fixed set of sites).
As an example of a situation that can occur in this event, we consider the
configuration in Fig. 3. There (uί,vί) is the first pivotal bond such that every
occupied self-avoiding walk from v to u1 passes through C{M'y}(0), and z' is the

Fig. 3. An example of a configuration contributing to the right side of Eq. (1.26). Thick lines
represent the bonds connecting the sites in £{u*v)(0). Thin lines represent the bonds connecting v
and x. The point t is a point in C{"'υ}(0) on an occupied self-avoiding walk from z' to ux
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latter endpoint of the previous pivotal bond {z, z'}. Other possibilities and special
cases exist, for example v could be doubly connected to x, but we ignore such cases
in this overview. By another application of the lemma quoted above (1.23), the
contribution to (1.26) due to the configuration in Fig. 3 is equal to

Σ ' . ( « i . » i ) ) ] ^ l " 1 " ' ' I ' ( l ' ) ( » i , J c ) > , (1-27)
(uι,vι) z'

where E(v, z\ (ux, t^)) is the event that (a) v is connected to z' via a pivotal bond
{z,z'}, (b) z' is doubly connected to ux, with one of the occupied paths passing
through a site in C{"ίt;}(0), and (c) {u1, vί} is occupied and is the first pivotal bond
such that every occupied self-avoiding walk from v to uγ passes through C{u'v}(0).
As before we will replace the restricted two-point function in (1.27) using the
analogue of (1.24).

This allows us to write (1.25) as

τ(0,x) = Prob (0<r=> .*)+/? Σ Prob (0<d=>w) τ(v,x)

(u,v)

(M, V) Z'

+ other cases + remainder. (1.28)
The remainder comes from the use of (1.24) in (1.27). Let us now for simplicity
ignore the other cases and the remainder in (1.28). We take the Fourier transform
of (1.28), and use the fact that the Fourier transform of a convolution is the
product of the Fourier transforms. Solving the resulting equation for τp(k) yields

f w -1 - 24, D »t- t l ) + ή , w

 + c o r r c c t i o° s (1 29)

where
g0 (k) = Σ Prob (0 <=> x)eikx, (1.30)

JCΦO

eik'\2dpD(k) + Π0(k)=p Σ Prob(0<=>w) eik'\ (1.31)
(u,v)

(the first term on the left side of (1.31) is the u = 0 term on the right side) and

(u,v) z'

1.3.3. Bounding Terms in the Expansion. We can estimate gθ9 77O, and Π1 using
the van den Berg-Kesten inequality [9]. In the form that we need it the van den
Berg-Kesten inequality states the following. Let Vl9...9Vnbe sets of paths in the
lattice, and let E{, /= 1,...,«, be the event that at least one of the paths in V{ is
occupied. Then

Prob [there exist pairwise distinct occupied paths ω1eVί,...,ωneVn]

S P r o b [Et]... P r o b [En]. (1.33)
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The inequality (1.33) with n = 2 can be used to estimate (1.30) and (1.31) by
taking V1 = V2 to be the set of all paths from 0 to x:

(1.34)
xΦO

Σ =>u)^2dp £ τ(0,x)2 ^2dp T(p). (1.35)
wΦO X Φ O

The estimation of (1.32) is more involved. We will use the inequality

I[E(υ,z', (Ml ^ J ] <Ξ£ /[ίe <?<"•»> (0)] I[E(v,z', t,{Ul,Vi))h (1-36)
t

where E (v, z', t, (uλ, vj) is the event that (a) v is connected to z', (b) zr is doubly
connected to uγ, with one of the occupied paths passing through t, (c) (uί, v^) is
occupied, and (d) all of these connections are given by distinct paths. With (1.33),
this gives

£p Σ Σ
(u,v) t,z'

(u,v),uι,t,z',w

To better visualize this inequality we will introduce a diagrammatic notation in
which it is represented by

" ' (1.37)

(One factor of/? is inherent in the diagram.) As we shall show in Sects. 2.3 and 3.1,
the right side of (1.37) can be bounded in terms of T{p) to give

1/7,1 ^ (2dp)2 (1 + T(p))2 [T(p)/3 + (2T{p)βdyi2 + \fd]. (1.38)

The right side of (1.38) is 0{d~ι) for large d, under the assumption (1.18).
Analogous upper bounds can be obtained for first and second ^-derivatives of g0,
Πo, and Πγ involving W(p) as well as T(p).

1.3.4. Bounds on τ(k). Proof Completed. In this section we describe how (1.19)
can be obtained, assuming (1.18). Incorporating the corrections in Eq. (1.29) into
corrections to g0 and Π0 — Πl9 τ(k) can be written in the form

where
g (k) = go (k) + corrections,

and

Π(k9p) = Πo (k) - Πx (k) + corrections.
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Now for any p<pc,

1 - 2dpD(k) - Π(h,p) = 1 - 2dpD(k) - Δ(k9p) - [1 - 2dp - fi(0,p)]

+ [ί-2dp-U(P,p)].

Using (1.18), it follows from (1.34) that 1 + g(0) « 1 for large d, and hence (since
f (0) =/(/;)) the last term on the right side is

Therefore

~ 2 φ (1 - Z) (A:)) + U(09p) - ύ(k,p)'

The difference of 77's in the denominator can be controlled in terms of the
second ^-derivative of Π using (1.18), along the lines we have outlined above for
bounding Πγ. The assumption on W in (1.18) is used at this point. This allows us
to absorb the difference of 77's into the gaussian term 2dp{\ — D(k)), which with
(1.34) yields an infrared bound. The fact that 2 dp > 1 is used at this point. We then
write T{p) and W{p) in terms of τ (£), and using this infrared bound obtain the
improved estimate (1.19) for T(p) and W(p). The inequality 2 dp ^ 3 follows from
(1.40) and the fact that Π is O(d~ι). Although the proof of the infrared bound
initially uses the assumption (1.18), once we have derived the stronger statement
(1.19) the assumption holds automatically.

This completes the outline of the proof. The remainder of the paper is devoted
to giving a rigorous proof of Theorems 1.1 and 1.2, following this outline. In the
next section we describe the organization of the remainder of the paper and
summarize some notation and definitions.

1.4. Organization, Notation and Definitions

In this section we describe the organization of the remainder of the paper and
summarize some definitions. We also introduce a convenient diagrammatic
notation.

In Sect. 2 a detailed derivation of the expansion for the two-point function is
given, and estimates are given for the terms of the expansion in both x-space and k-
space. These estimates are given by diagrams as in (1.37). In Sect. 3 it is shown how
the diagrams can be bounded by products of Γ, Wand a small number of related
quantities which play a role in the precise version of the assumption (1.18). In
Sect. 4 the statements (i), (ii) and the precise version of (iii) (from Sect. 1.3.1) are
proved, completing the proof of Theorem 1.1. In Sect. 4.4 the proof that v2 = 1/2
for the nearest-neighbour model when d^d0 is given. Finally in Sect. 5 the
modifications to the proof of Theorem 1.1 which are necessary to prove
Theorem 1.2 are described.

We now list several definitions, some of which were made in the last section
and some of which are new.

Definition 1.4. (a) A bond is an unordered pair of distinct sites {x, y). An ordered
bond is denoted (x,y). A path from x to y is a self-avoiding walk (not necessarily
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nearest-neighbour for the spread-out models) from x to y, considered as a set of
bonds. Given a bond configuration {nb}, an occupied path is a path consisting of
occupied bonds. Two paths are distinct if they have no bonds in common.
(Distinct paths may have common sites.)

(b) Given a bond configuration, two sites x and y are connected if there is an
occupied path from x to y. They are doubly connected if there are at least two
distinct occupied paths from x to y. A site x is always considered to be doubly-
connected to itself.

(c) Given a set of sites A c Έd and a bond configuration, two sites x and y are
connected in A if there is an occupied path from x to y consisting of bonds whose
endpoints both lie in A. The sites x and y are doubly-connected in A if there are at
least two distinct occupied paths from x to y consisting of bonds whose endpoints
both lie in A. Two sites x and y are connected through A if there is at least one
occupied path from x to y and if in addition every occupied path from x to y has at
least one bond with an endpoint in A. Similarly we define x and y to be doubly-
connected through A if x and y are doubly-connected and connected through A.

(d) Given a bond configuration, the connected cluster C(x) of x is given by

C(x) = {yeZd: y is connected to x}.

Given a set A of sites, we define

CA(χ) = {yeZd: y and x are connected in ΊLd\A),

and the restricted two-point function

Given a bond {u, v}, we define

C{u'v](x) = {y e Έd\ y is connected to x in the new configuration
obtained by setting n{UtΌ] = 0}.

(e) Given a bond configuration, a bond {u,v} (occupied or not) is called
pivotal for the connection from x to y if either xeC(u) and y e C(v), ovxe C(v) and
yeC(u), but yφC{u'v)(x). Similarly an ordered bond (w,v) is pivotal for the
connection from x to y if xe C{u>v)(u% yeC{u υ)(v), yφC{u>υ){x). If x and y are
connected then there is a natural order to the set of occupied pivotal bonds for the
connection from x to y (providing there exists one or more occupied pivotal bond),
and each of these pivotal bonds can be ordered in a natural way, as follows. The
first pivotal bond from xtoyxs the ordered occupied pivotal bond (u, v) such that
u is doubly connected to x. If («, v) is the first pivotal bond for the connection from
x to y9 then the second pivotal bond is the first pivotal bond for the connection from
v to y, and so on.

Finally we describe the diagrammatic notation that will be used for the
remainder of the paper. This notation has the virtue of making cumbersome
expressions more transparent. We will denote the event that there is an occupied
path between x and y by a solid line joining x and y: x y. In a diagram
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consisting of several such solid lines it is always to be understood that there are
distinct paths making the required connections. For example, the diagram

denotes the event that y is connected to z, z is connected to w, z is connected to x,
and x is connected to u, all by distinct paths.

We will also use a Feynman diagram notation in which full propagators are
represented by wavy lines, unlabelled vertices are summed over the lattice, and
labelled vertices are fixed. In addition we will shade in any loop for which all
vertices on the loop may coincide. In unshaded loops the summation is
constrained such that at least two of the vertices must be distinct. For example the
diagram

represents

τ(y,z) £ τ(z,w) τ(u,x) τ(x,z) = τ(y,z) V(p),
u,x

while the diagram

represents

τ(y>z) Σ τ ( z ' w ) τ(«>*) τ(x,z)-τ(z,z) 3 = τ(>,2
Lu,x J

A pair of wavy lines terminating together in bars denotes two propagators
ending at two sites y and y' and carries a factor ofp{yt yΊ and a sum over all ordered
bonds (y,yf). For example,

2. The Expansion

In this section we derive the expansion for τp(0, x) which is the main tool used in
the proof of Theorems 1.1 and 1.2. The results of this section are valid for general
Zd-invariant bond percolation models, long or short range. (In fact, Proposi-
tions 2.3 and 2.4 hold without the assumption of Έd-mvariance.) To simplify the
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notation we write ?^ forp{xy). In Sect. 2.1 we use the inclusion-exclusion principle
to prove an identity of the form:

τ(0,*) = <Σo.,+ Σ (-l)ngM(0,x) + ( - l ) " + 1 RN(β,x)+ Σ Poyτ(y,x)
n=0 y + 0

+ Σ (-l)"£77n(0,/)T(/,x). (2.1)
n = 0 y'

The identity (2.1) is valid for any p <pc and any nonnegative integer N, and the
nonnegative quantities gn, Πn and RN are given by explicit formulas in Proposi-
tion 2.3. There is a close relation between Πn and gn:

In Sect. 2.2 the van den Berg-Kesten inequality is used to obtain x-space estimates
for gn, Πn and RN in terms of the full propagator τ itself. These estimates are stated
in Proposition 2.4.

Taking the Fourier transform of Eq. (2.1) gives the following formula for τ(A ),
which will play a key role in obtaining the infrared bound in Sect. 4:

τ(k) = — ^ ~N (2-2)

y+0 n=0

To control τ(k) we will employ fc-space estimates for gn{k), Πn(k) and RN(k).
These follow easily from the x-space estimates and are given in Proposition 2.6 in
Sect. 2.3.

Throughout this section we make use of the definitions and notation given in
Sect. 1.4.

2.1. Derivation of the Expansion

The expansion is derived using a lemma from [6] together with repeated use of
inclusion-exclusion. We begin (as outlined in Sect. 1.3.2) by writing

τ (0, x) = Prob (0 is connected to x)

= Prob(0<^zr>x) + Σ Prob(0 is connected to x but not doubly,
(u,v)

and (w, v) is the first pivotal bond). (2.3)

We define

go(09x) = Prob(0<πr>x) -δ0tX. (2.4)

To analyze the second term on the right side of (2.3), we use the lemma from [6].
Before stating the lemma, we first introduce some definitions. Let B be a

random or deterministic set of bonds, and let E be any event. We denote by Bs the
set of sites consisting of endpoints of bonds in B, and we denote by C{UfV)(0)b the
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connected bond cluster of the origin which remains after setting n{UfV) = 0. The
event that E occurs on B is defined to be the set consisting of those bond
configurations for which the new configuration obtained by setting nb = 0 for all
b φ B is a configuration in the event E. The lemma involves events satisfying:

E occurs and the ordered bond (w, υ) is pivotal for the connection from 0 to x

=> E occurs on C { " ' y } (0)b. (2.5)

An example of an E satisfying (2.5) is the event that 0 is doubly connected to u.
For simplicity we consider only the case p<pc, which is sufficient for our

needs.

Lemma 2.1. Let E be an event satisfying (2.5), and fix p < pc. Then

Q[E occurs and (u,v) is occupied and pivotal for the connection from 0 to x]}

= puv(I[E occurs andueCφ)] τclu'v)^(v,x)).

Proof The proof is by conditioning on C{UiV}(0). Since/? <pc, this cluster is finite
with probability one. Let

S = {finite connected bond clusters B: 0,ueBs and E occurs on B}.

Since E satisfies (2.5), apart from a set of measure zero

{E occurs and (w, v) is pivotal} = ( j {C{u'v}(0)b = B and (w, υ) is pivotal}.

Therefore

(I[E occurs and (w, v) is occupied and pivotal])

= puv(I[E occurs and (w, v) is pivotal])

= p u v Σ P r o b ((">») i s P i v o t a l I C{u'v} (0)* = B) P r o b (<?{M'v) (0)» = B)
BeS

Since
{C{u>v}(0)b = B and (u, v) is pivotal}

= {C{u>v](0)b = B<ιndv is connected to x in ΊLd\Bs},

and since the events {C{u'v)(0)b = B) and {v is connected to x in Zd\i?5} are
independent, the conditional probability is equal to

<J[υ is connected to x in Zd\Bs\) = τBs(v, x).

Therefore the above sum can be written

Σ £
BsS BeS

=puv (I[ueC{u>v)(0) and E occurs on C{M'y}(0)] τcίu'v}W(v,x))
= puv </[« e C { " ' υ } (0) and E occurs] τ e { " ' w > (°> (t?, x)>. (2.6)

The last equality is due to the fact that if ^occurs, but not on C{u'v](0)b, then by
(2.5) (w, v) cannot be pivotal, in which case either v e C{M> v} (0) or v is not connected
to x, and hence τ^lu'v}(^(v,x) — 0.
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A

Fig. 4. Examples of configurations contributing to ID(v,x;A)

But now if UE C(0)\C{u>v}(0) then 0 is connected to u through {v}9 and hence
τ ί lMl(°)(t;,x) = 0. Thus the right side of (2.6) is equal to

puv(I[E occurs and weC(O)] T ^ ' ^ ^ M ) ) ,

and the lemma is proved. D

We now use this lemma, with E the event that 0 is doubly connected to w, to
write the second term on the right side of (2.3) as

(u,v)

To implement the inclusion-exclusion principle, we replace the restricted two
point function by

τclu'υ} (0Hι;, x) = τ(v, x) - [τ(v, x) - τcίu'v) <°>(!?, x)]. (2.7)

This gives (2.1) with N = 0, if we define

A>(o,/) = Σ py
yΦO

and
Ro(0,x)= Σ Pm<nθ<=>u] {τ(v,x)-τ^'υ>(oKv,x)}}. .(2.8b)

(U,V)

To proceed further we rewrite the difference of two-point functions occurring
in the remainder Ro using the following lemma. In preparation for the statement
of the lemma we make the following definition, which is illustrated in Fig. 4. Given
a set A of sites, define

ID(v,x; A) = I[v and x are doubly connected through A]

+ I[3z' Φ v such that z' is connected to v in Zd\A,
z' is an endpoint of a pivotal bond for the connection of v and x,

and z' is doubly connected to x through A]. (2.9)

Lemma 2.2. Given a set A of sites and two fixed sites v and x,

(y,yf)

Proof By definition of τA,

τ(v, x) — τA (v, x) = (I[v and x are connected through A]}.
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Each configuration contributing to the right side belongs to exactly one of the
following two cases.
Case 1. The sites v and x are doubly connected through A. This contributes to ID,
giving the first term on the right side of (2.9).
Case 2. The sites v and x are connected through A but are not doubly connected
through A. In this case there is at least one pivotal bond for the connection from v
to x, and we subdivide this case into the following cases.
Case 2a. There is no pivotal bond (w, w') (for the connection from υ to x) such
that w is connected to v through A. This gives the other contribution to ID in (2.9).
There z' is the latter endpoint of the last pivotal bond for the connection of v to x.
Case 2b. There is a pivotal bond whose first endpoint is connected to v through A.
In this case there is a first such pivotal bond (y9y') The contribution due to this
case to τ(v9x) —τA(v,x) is

Σ </[(>>,/) is the first pivotal bond (for the connection from υ to x)
y'y whose first endpoint is connected to v through A]}.

Let E be the event that v and y are connected through A, and there is no pivotal
bond (w, w') for the connection from vtoy such that w is connected to v through A.
Then E satisfies (2.5) (with (u9v) replaced by (y9y

r) and 0 by ύ) and
I[E] = ID(υ,y; A), and hence by Lemma 2.1 the above expression is equal to the
last term on the right side of the equation in the statement of the lemma. This
completes the proof of Lemma 2.2. D

We now return to the derivation of the expansion. Beginning with the equation

t ΦO y'

in which g0, Πo and Ro were defined in Eqs. (2.4), (2.8a), and (2.8b), we use
Lemma 2.2, with A = C{M'υ}(0), to replace the difference of two-point functions
occurring in Ro. This leads to a nested expectation in Ro. In order to specify
unambiguously to which expectation the set C{u'v] (0) (which is defined in terms of
a given bond configuration) corresponds, we use subscripts in nested expectations,
i.e., C£u'v](0) denotes C{"'y}(0) defined by the bond configuration corresponding
to the configuration < >(ll). In applying Lemma 2.2 to (2.8b), C{u'v](0) is random
in the expectation of (2.8 b), but deterministic with respect to the expectation
produced by application of Lemma 2.2. Using subscripts we have

(u,v)

The first term gives gt. In the second term we replace the restricted two-point
function τ^'y){p) by an unrestricted two-point function plus a correction as in (2.7).
The term involving the unrestricted two-point function gives rise to a term

,yf)τ(y\x), where Π1 (like gx) contains two nested expectation values.
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The correction term, containing a difference of restricted and unrestricted two-
point functions, is the remainder ^(O,*) . Now the same procedure can be
iterated, beginning with the use of Lemma 2.2 to rewrite the difference of two-
point functions, and so on. The details are straightforward but tedious, and lead to
the following result. To abbreviate the notation, we write

and

Proposition 2.3. For N ̂  0 and for p<pc,

n = 0 i t O

+ X (-1)" ΣΠn(0,/)τ(y',x) + (-
M = 0 y'

where
g0 (0, x) - Prob (0 <=>x) -δo,x,

and for n ̂  1,

gΛ(0,X)= Σ / W Σ Pyn,y,<n0<=>y1]<l
(yi,y\) (yn,y^)

' \ID (yn>X> Q-l)/(«)/(«-1) ' ' /(3)/(2)/(l)/(0

where y'o = 0. Also, for n^O,

Finally

RN(O,X)=

Remark. In the nested expectation

/D (y'2,χ; Ci)>(2)>(i)>(0)

which occurs in g2 (0, x), it is worth emphasizing again that within the innermost
expectation, Cγ2'yί](y[) represents a deterministic set of sites, which is random in
the middle expectation. Similarly Qyuy'ί}(0) is deterministic in the middle
expectation, but random in the outer expectation. The situation is entirely
analogous for gn and RN.
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2.2. Bounds in x-Space for Each Term of the Expansion

Having completed the derivation of the expansion in the previous section, we now
turn to the problem of obtaining bounds on each term in the expansion. We use the
van den Berg-Kesten inequality [9] (in the form of (1.33)) as our principal tool, and
obtain the bounds given in the following proposition. Before stating the
proposition we introduce the following notation:

Ao(0,*) = τ(<U) 2 -<$ 0 f X , (2.10)
n

hn{0,x)= Σ ••• Σ ^ ( O . M t , ^ ) Π A2(ui.i,vi^uui,vi)A3(un,vn,x

" 1 " 1 """" i 2 (2.11)

where

A2(ui-l9vi-.l9ui,υi) =

= Σ Pyiy'i Στ(ui-i>yi)
(yι,yΊ) Zι

+ Σ Pytyί Στ(vi-i>
(yi,yί) zi

-τiyltVi) ZiUi-^Vi-^yttZi), (2.13)

where
-, x ΓO if x = y = z = w
Z(x,y,z,w) = <4 . J.v '^' ' y (1 otherwise,

and

A3(un,vn,x)= Άrχ =τ{x,υn)τ{υn,un)τ{un,x). (2.14)

Figure 5 shows the diagrammatic representation for ho,h1, and h2. The
diagrams which occur are closely related to the one particle irreducible Feynman
diagrams of a φ3 field theory. The diagrammatic notation was introduced in
Sect. 1.4. In particular, for an unshaded loop the summation over the unlabelled
vertices is constrained to disallow the coincidence of all vertices on the loop,
whereas a shaded loop has no such constraint. Note that any loop containing one
of the summation bonds (yi9yl) cannot possibly shrink to a point and hence will
always be unshaded. With this notation we are now ready to state the bounds on
the terms in the expansion of Proposition 2.3.
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hΩ(o,x) =

h,(o.x) =

hJo.x) =

Fig. 5. Diagrammatic representation for h0, hl9 and h2, using the notation introduced in
Sect. 1.4

Proposition 2.4. The quantities gn, Πn and RN in the expansion (given in Proposi-
tion 2.3) for the two-point function τ (0, x) satisfy the following bounds, for n,N^±0:

0£/7.(0,/) ££/>,,AM,

0 ^ RN (0, x) ^ Σ Pyy hN (0, y) τ (/, x).

(2.15)

(y,yf)

Proof We begin with g0 and Πo. By definition,

go(0,x) = Prob(0<c=r>x) - δ0tX9

and by the van den Berg-Kesten inequality the right side is less than
τ (0, x)2 — δOx = ho (0, x). This is the desired bound on g0. Hence, by definition of
A) (2.8a),

Σ
This is the desired bound on 77O. The bound on Ro is similar.

To bound gn,Πn and RN for n,N^ 1, we use the following lemma:

Lemma 2.5.
(a)

(b)

(2.16)

(2.17)

The proof of Lemma 2.5 is deferred to the end of this section. Now we show
how the lemma can be used to complete the proof of Proposition 2.4. The basic
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idea is simple: the nested expectations given for gn,Πn, and RN in Proposition 2.3
are estimated using Lemma 2.5, working from the inside out.

We begin with gn, and consider the formula for gn given in Proposition 2.3. We
fist estimate the innermost expectation </D>(π) using Lemma 2.5 (a). (Within this
expectation, Cί^'/^O^-i) is deterministic; it is random within the next expec-
tation.) This gives

</B (y'n, x; C<V"1 (y'n-1)>(», ^ Σ I[un e C ^ 0ί_ J ]
Un

Then we estimate the next expectation (which now contains a factor
φ ^ C ^ ^ ^ - i ) ] due to the above bound on (ID}in)) using Lemma2.5(b).
This gives

Repeating this process gives the estimate for gn given in Proposition 2.4.
The bound on Πn then follows from the fact (Proposition 2.3) that

y

Finally, we bound RN using the formula given in Proposition 2.3 and the
inequality

O£τ(/9x)-τΛ(y',x)£τ(y'9x) (2.18)

to obtain

RN(0,x)^ X ΠN(P,y'N+1)τ(y'N+l9x). D

This completes the proof of Proposition 2.4, given Lemma 2.5. Now we give
the proof of Lemma 2.5.

Proof of Lemma 2.5.

(a) By definition (Eq. 2.9, see also Fig. 4),

(ID(y\x;A)} = </[/ and x are doubly connected through A])
+ </[Ξ3 z + yf such that z is connected to y' in Έd\A,

z is an endpoint of a pivotal bond for the connection of y' and x,
and z is doubly connected to x through A]}.

For any bond configuration contributing to the first term on the right side, there
exists a site us A and three distinct occupied paths connecting y' and x, y' and w, u
and x respectively. Therefore by the van den Berg-Kesten inequality the first term
on the right side is bounded above by

X τ(/,w) τ(u,x) τ (*,/).
ueA
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Furthermore, for any bond configuration contributing to the second term on
the right side of (2.19), there is a site u e A and four distinct paths connecting y' and
z, z and x9 z and u, u and x. Note that z Φ / . Thus by the van den Berg-Kesten
inequality the second term is bounded above by

£ £ τ(y'9z)τ(z9x)τ(z,u)τ(u9x).
ueA z

Combining these two gives (a),

(b) By definition of ID,

i and y\ are doubly connected through A, and υ is connected to
+ </[3 a last pivotal bond (z, z') for the connection from y\ to >>i+γ, z' and

>>ί+1 are doubly connected through Λ, z and j>ί are connected in Έ\A9

and t; is connected to j> ]>. (2.20)

We first consider the case y[ +yi+ί. For a configuration contributing to the first
term on the right side of (2.20), there are sites ue A and weZd and five distinct
occupied paths joining y[ iou,utoyi+ι, y\ to w, w to yt + x, and w to ι;. (Since ĵ j + ί

and j are doubly connected through A, each path connecting y\ to ^ ί + 1 goes
through A, and hence ueA can be chosen such that w and w lie on distinct paths
from^ toyi+ί.) Thus by the van den Berg-Kesten inequality the first term on the
right side of (2.20) is bounded above by

(2.21a)
u e A ^ u < 1 yi+1

The second term can be bounded similarly by

v y[ v

or kξ'

« yι+ι u yi+i

y'i z' v y'r

Prob 3z'eZd,ueA such that

^ Σ
ueA

z'eZd

u yi+1

(2.21b)

using the van den Berg-Kesten inequality in the last step. In (2.21 b), y[ φ z',
because z' is the latter endpoint of a pivotal bond. Combining these two estimates
gives (2.17) for the case y\ φ yi+ x, apart from checking that the loop in the first
term on the right side of (2.21 b) cannot shrink to a point. However, the case where
that loop skrinks to a point is already accounted for in the second term of (2.21 b).
(The loop in (2.21 a) cannot shrink to a point when y\ Φ yi+ x.) This proves (2.17)
for the case when y\ ή=yi+1.
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When y[ = yi+x, it follows from the definition of ID that

<iD(yi>yt+ύA)i[Όe&"+>-«+J(ji)]y£

UI[yf

teA] Prob( Λ υ)ZI[y'teA] τ(yf

i9v). (2.22)

However the upper bound (2.22) is bounded above by the second term in (2.21 b)
(which includes it as the case y[ = z' = u = yi+1). Thus (2.17) holds also in the case

2.3. Bounds in k-Space for Each Term of the Expansion

In this section we obtain bounds on gn(k), Πn(k) and RN(k) which will be used in
Sects. 4 and 5 in deriving the infrared bound. These bounds are given in
Proposition 2.6, and follow in a straightforward way from the x-space bounds
obtained in Sect. 2.2. In the statement of the bounds, derivatives with respect to kμ

are denoted by dμ, and | x | (= || x \\ 2) is the Euclidean distance from x to the origin.

Proposition 2.6. The following bounds are satisfied:

+ d~1 ΣPovΣhN(0,x) Σl^l 2 τ(O,^), 5=1,2.
v x y

Proof These bounds all follow in a straightforward way from the x-space bounds
given in Proposition 2.4. Beginning first with the bounds which do not involve
derivatives, it follows from Proposition 2.4 that

eikx gn(0,x)

\Λm(k)\ =
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To obtain the bound on dμ gn (k), s = 1,2, we use symmetry and Proposition 2.4
as follows:

The bound on ds

μϊϊn(k) is obtained in much the same way. We first note that

\ud~1 Σ\y'\2 ΠnίW

By symmetry the cross term 2y υ gives no contribution to the sum on the right
side, and hence

The bounds on \ds

μRN(k)\ can be obtained in a similar fashion.
Finally, again using symmetry, we find

L y' \μ=ί

Kkv Σ Pov(yμ + vμ) (yv -f vv) hn(0,y)
μ, v y,v

d

μ= 1 y,v

Id
(2.23)

y,v

Note that for the nearest neighbour model this expression gives the upper bound

( 0 ) - π n ( k ) ^ (l -D(k)) 2dP Σ (\y\2 +1) hHφ,y), (2.24)
H y

since

The corresponding expression for the spread-out models will be given in Sect. 5. It
follows immediately from the first equality in (2.23) that the left side is
nonnegative.

This completes the proof of Proposition 2.6. •
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3. Diagrammatic Estimates

In the last section bounds were obtained for ds

μgn(k), ds

μϊϊn(k) and ds

μRN(k),
s = 0,1,2, in terms of Σ hn (0, x) and £ | Λ; | 2 /zπ (0, x), for any Zd-invariant model.

X X

The definition of hn(0,x) is given in Eqs. (2.10) and (2.11).
In this section we derive upper bounds (also valid in any ^-invariant model)

on ^/zπ(0,x) and Σ \x\2 hn(0, x), in terms of quantities Γ, J^and /f which are

introduced in the next definition. These quantities will figure in the precise version
of (1.18) and for the nearest neighbour model should be thought of as being
O (d~*) uniformly inp < pc. Indeed we will prove that such uniform bounds hold
in Sect. 4. (Related estimates which show that Γ, W and H go to zero as L
approaches infinity will be obtained in Sect. 5 for the spread-out models.)

Definition 3.1. For α, aγ, and a2 in Έd we define

Ta = Στ(0,x)φ,y)τ(y,a)-δa,o, (3.1)
x,y

Wa = Σ\x\2τ{0,x)τ(x,ά), (3.2)

a ι , a 2 = Σ M 2 jL = Σ W2τ(0,x)τ(x,j;)
x,y,z ••V/\/\̂ 'CSΛJN>V?5K/V'V, x,y,z,

z 0 x y ",v

-τ(x9u) τ(0,w) τ(0,z) τ(u,v) τ(v,y + a2) τ(v,z+ax). (3.3)

We write To and ̂ 0 simply as T and P .̂ We also define

fl,^= sup Haua2. (3.4)
aeΊLd aeTLd aι,a2eZd

Finally we define

and

W = sup W;.
α

We simply write W for WQ .
In Sects. 3.1 and 3.2 the following lemma is proved.

Lemma 3.2. ^
(a) 0^Σho(0,x)ύ{,

x J

and for n^.ί9

0 ̂  ΣΛn(0, x) ̂  (1 + Tf ^ />Oβ f + 2 (Σ ^ 773)1'2 +
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where

and

(b)

and for n ^ 1,

where [x] denotes the largest integer which does not exceed x.

Remark. The exact form of the upper bounds in the lemma is not important unless
a good value of d0 is sought. Otherwise the relevant feature, for the nearest-
neighbour model, of these bounds is that under the assumption that T, ίV, JV\ H
are all O(d~ι) and 2dp is 0(1), the bounds imply

(b) osEWMMs

(The n ^ 2 bound in (b) is believed not to be optimal, but it does suffice for our
purposes.) An analogous remark applies for the spread-out models, as described in
Sect. 5.

The proof of Lemma 3.2 (a) is given in Sect. 3.1 and the proof of part (b) in
Sect. 3.2. Finally in Sect. 3.3 we prove the following bounds on Ta and JVJ:

Lemma 3.3.

T ί 7Λ1/2

3J. Bounds on

In this and the next section we make extensive use of the graphical notation
introduced in Sect. 1.4 and the graphical representation for hn given in Eqs.
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(2.11-14) and Fig. 5. This section is devoted to the proof of Lemma 3.2(a). The
proof uses translation invariance and repeated application of the simple inequality

Σ /(*) g(χ)
X

This inequality is used to reduce £/zM(0,x) to a product of basic units.
X

The case n = 0 is the simplest. We just observe that

T=Σ τ(0,x)τ(x,y)τ(y,0)-i^3 Y τ(0,x) τ(x,O),

(3.5)

x + 0

and hence

xΦO

For n ^ l we use translation invariance to rewrite (2.11) as

(3.6)
i = 2

where

(α, β') = Σ Λ2 (0, β, x, x + a') =

x + a'

(3.7)

(3.8)

The last factor on the right side of (3.8) is 1 + T. To complete the proof of
Lemma 3.2(a) we use (3.8) and the following lemma.

Then we apply (3.5) repeatedly to obtain

Σ K(0, x) S (supΛx (aή (sup JΣ A2 (a, a'

Lemma 3.4. The following inequalities hold for any aeΈd:

(b) I ^ y / 7 O υ f + J p ,

(a) + 2^,



0
g (l + r) [ Σ Pθv Tβ + 2 (Σ P2

0V τβj2 + 2/?],
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(c)

(d)

(e)

g(i + :
|~VN~()

Proof, (a) Using the Schwarz inequality and the inequality used to bound
Σ ho (0, x) we obtain

= ΣPov τ(v,x) τ(x,a) = ΣPov\ Σ τ(v>χ) τ(x9a) + 2τ(v,a)
x,v v L.xΦv,a J

^ Σ Pov Tβ + 2 Σ /»o. τ(», β) + 2pOa

l/2

(b) Using translation invariance the left side is equal to

By considering separately in the sum over v the term v= — a, we obtain the upper
bound

Σ POv

(c) By (3,5),

^ <?;i sup

x + a' a

WΛΛΛΛΛΛ f

The first factor on the right side is equal to 1 + T, and the second can be bounded
using (a) and translation invariance.
(d) and (e) are proved similarly. D

Now the desired bound on ΣhnΦ>x) follows immediately from (3.8) and
X

(c-e), and the proof of Lemma 3.2 (a) is complete. D
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3.2. Bounds on £ \x\2hnφ,x)
X

In this section we prove Lemma 3.2 (b). The proof is similar to the proof of
Lemma 3.2 (a) given in the last section, although the situation here is more
complicated due to the presence of the factor \x\2.

The case n = 0 is the simplest, since by definition of W

For higher order terms the basic idea is to use (3.5) together with the triangle
inequality, as we now illustrate for the case n = ί. By definition of hγ,

(3.9)

and by the triangle inequality

\x\2S(\x-u\ + \u-z\ ^3 (\x-u\2 + \u-z\

We insert (3.10) into (3.9) and consider separately the case where both of the
shaded triangles in (3.9) are points. In this special case (3.9) contributes W\ and
hence

(\x-u\ \u-z\

where at least one of the shaded triangles on the right side is not a point. Each of
the three terms in the summation on the right side is now treated separately, using
(3.5), translation invariance and Lemma 3.4. For example,

/ XVΛΛ a \

= a \ \ /

The term involving \x — u\2 is handled similarly, and satisfies the same upper
bound. The remaining term is

0
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where we have used the fact that one of the two triangles is not a point. As a result,

which is the desired bound.
The case n ̂  2 can be handled in a similar fashion, although the additional

factors of A2 make the analysis more involved. It is at this stage that it becomes
necessary to work with the quantity H, as we are unable to bound the diagrams
encountered solely in terms of T and W.

It is convenient to use the following expression for hn (0, x), which is equivalent
to (2.11). To write the expression we recall the definition of A3 (w, υ, x) in (2.14) and
define

B1(s,t,u,v)= (3.11)
S WWVΛΛΛ U

and

(3.12)

Then (2.11) can be rewritten

sk,tk i=l i = 2

^ΣKΦΛtMx). (3.13)

To bound Σ\x\2hn(0,x) we use the triangle inequality as for the case n = ί:

+ {[l^-"J2 + l«π-x|2]or[|/n- l;n |2 + |ί;π-x|2]}), (3.14)

where in the term in brace brackets in (3.14) the first expression is used if n is even
and the second if n is odd.

The effect of each term on the right side of (3.14) is treated separately, and we
proceed term by term. Beginning with the | tγ \

2 term, and using an unlabelled sum
to denote summation over all vertices, a minor change in the organization gives

1 ^sup Σ^2(a,a)j Σ ^ 3 ( β ) . (3.15)

Now Lemma 3.4 applies as before.
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The \vί — t^2 term is treated as follows:

l * l 2

(3.16)

and again Lemma 3.4 can be applied.
The term involving \s2 — vι\

2 can be organized as follows:

-Σ
ao

0 ywwwv;

> //sΛΛΛΛΛΛ

Ά2(ai-1,ai) Ά3(an)

β / \ a a'
sup

O|fwwwv\

0ô www>5 /

vΛΛΛΛΛΛΛ/ Q

sup
I «2

Now Lemma 3.4 can be applied.
To estimate the term involving \u2 — s2\

2 we define

and write

n-2

^ Σ ^ 3 ( ^ o ) ^2(^0^1) 1 i ̂ i2) Π

Σ ^ 3 ( Λ ) sup J] A'2(a,a') sup ̂  A2(a, a')
I \ a 1 I \ a'

Now Lemma 3.4 can be applied.
Finally we treat the term \u2 — t?)\

2, which is the most complicated one, and in
which we use H. The contribution due to the term involving the second term on the
right side of (3.12) is equal to

/wwwv θ λV~\/ww

\y\2

fl2ΛΛΛΛΛΛΛ,)Ίl)y \f) L V W Λ Λ Z + flj
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which can be bounded above as was done for the \s2 — v1\
2 term. The contribution

due to the first term on the right side of (3.12) is equal to

x + a1

A2(ai.l9ai) A3(an)

sup Σ A'2(a,α')) ( sup £ Λ{a,a')

and again Lemma 3.4 can be applied.
This illustrates the method for bounding £ \x\2hn(0,x). By applying

X

Lemma 3.4 and carefully counting the number of terms of each type which occurs,
the upper bound in the statement of the lemma can be obtained. We omit the
straightforward but tedious details. D

3.3. Proof of Lemma 3.3

In this section we prove Lemma 3.3. We begin with the inequality for Ta. Fix a + 0.
Using the fact that τ(k) ^ 0 [6],

Ta = (2πyd [ddk[τ{kf-\] eik'a

= (2πyd ϊddk[τ(k)-ί]2 [τ(k) + 2] eik'a + 3τ(0,a)

^ (2πyd [ddk [τ(k) - I ] 2 [τ{k) + 2] + 3τ(0,α) = Γ + 3τ(0,α).

Now for a =j= 0 it follows by symmetry that there are at least 2 d terms which give the
same contributions as τ(0, a)2 in

B^ X τ(0,x)2STβ.

This leads to the desired inequality for Ta.
To obtain the inequality for W we argue using the Schwarz inequality as

follows:

τ(0,x)τ(y,x)\x\\y\ + τ(0

Σ τ(0,

1/2
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Finally, the bound on W'a is obtained similarly:

χ,y

χ,y

Σ
xΦO, -y-a

pOy\y\2τ(a,y) + 4pOOy\

1 / 2

y y \ y=t=α

The desired bound now follows from the inequality B^ T/3. D

4. Proof of the Main Results (Theorem 1.1) for the Nearest-Neighbour Model

In this section we use the results of Sect. 2 and 3 to prove Theorem 1.1. The general
structure of the proof follows the outline given in Sect. 1.3 and is described in
Sect. 4.1. Throughout this section we consider primarily the nearest-neighbour
model, for which pOv

=P if M = 1 a n d Pov = ® otherwise. In particular,
YJPov = 2dp. We use this and similar facts in the bounds given in Lemma3.2,

V

without further mention. However since Lemmas 4.1 and 4.2 hold quite generally,
we state and prove these lemmas for both the nearest-neighbour and the spread-
out models introduced in Sect. 1.1.

We use the notation

for the spread-out models at the gaussian critical valuepG, i.e., the value ofp for
which DL(0) = 1. For the nearest neighbour model at its critical valuepG = l/2d
we write simply

in place of DL(k), and we use DG to represent either D or DL.

4.1. General Structure

The fact that the triangle diagram V(p) is bounded uniformly inp<pc is proved
using the following three results. Lemmas 4.1 and 4.2 are valid for both the nearest
neighbour model and the spread-out models introduced in Sect. 1.1. Proposi-
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tion4.3 is valid as stated only for the nearest-neighbour model; a variation valid
for the spread-out models is proved in Sect. 5.1.

Lemma 4.1. For both the models (i) and (ii) of Sect. 1.1, if O^P^PG
 t n e n

τ

P(
χ> y) ύ CG{x, y), where CG(x,y) denotes the gaussίan propagator at p—pG:

ik (y-x)

ddk •
ί-DG(k)'

Lemma4.2. For both models (i) and (ii) of Sect. 1.1, T, Wa, and Hau02 are
continuous in p, for p<pc and for all a, aί9 a2e TLd.

Proposition 4.3. For the nearest-neighbour model (i), there is a universal constant
d0 > 6 such that for d^d0 and for any fixed p e[l /2d, pc), P 4 =>P 3 , where Pa is the
statement that the following set of inequalities holds:

for \\a\\1S2χ(p){(d+2)ln[5χ(p)] + 2ln

for
a u a 2 ^ w | | i | | 1

In Proposition 4.3 Kτ and Kw are universal constants such that for d^ 7,

and

The existence of such constants follows from Appendix B of [20] or Lemma 3.1 of
oo

[31]. (In the notation of [31], C(0,x)= X N0(x,T).) The constant K'w is a
τ = o

(large) universal constant which depends only on Kτ and Kw and is determined in
the proof of the proposition. The statement Pα, for fixed p<pc, involves only
finitely many inequalities, since χ(p)<oo. For | | α | | x or \\ai\\x violating the
inequalities in Pa, it follows from the exponential decay of τp (x, y) that Wa^d~x

and Haua2 ^ d~1; see the proof of Lemma 4.4.
It follows immediately from Lemma 4.1 that for pe[0, l/2d] the first three

inequalities in the definition of Pa hold with α = 1. The other inequalities in the
definition of Pt can be proved for/?e[0,1/2 rf] by using Lemma 4.1 to bound all
propagators by the gaussian propagator, and then analyzing the resulting
gaussian quantities. This can be done using the method of Sect. 4.3.3 (d-e), by
putting G = 1 and Π = 0 there. It follows from the fact that P1 holds for p <*ί/2d,
together with Lemma 4.2 and Proposition 4.3 that there are forbidden regions in
the graphs of T, W, Wa and Hai a2 as a function of/?, for/? <pc, as illustrated in
Fig. 1. Therefore P3 holds and so in particular V(p)=T(p) + ί is bounded
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uniformly inp<pc. Since τp (x, y) is an increasing and continuous function of/? [5],
it then follows from the monotone convergence theorem that

F(/?c) = lim V(p)S3KTd~1 + U
P]Pc

and hence the triangle condition is satisfied.
In the course of the proof of Proposition 4.3 it is shown that if P4 holds, then

the infrared bound stated in Theorem 1.1 follows. But as we have noted it follows
from Lemmas 4.1 and 4.2 and Proposition 4.3 that in fact P3 holds, and hence the
weaker statement P 4 holds, and the infrared bound follows. Also, it follows almost
automatically from the proof that the relation ξ2(p)2 ~χ(p) holds, and hence
v2 = l/2.

The proof of Theorem 1.1 has now been reduced to proving Lemmas 4.1 and
4.2 and Proposition 4.3, and showing that the infrared bound follows from P4.
This is done in the remaining subsections. The two lemmas are elementary and do
not use the expansion. The proof of Proposition 4.3 is the significant part of the
analysis.

4.2. Proof of Lemmas 4.1 and 4.2

In this section we prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. Fix any p e [0,/?G]. Any bond configuration in which x and y
are connected contains an occupied path ω from x to y. We denote the sum over all
paths from x to y by Σ' , and the sum over all simple (not necessarily self-

ω:x^>y

avoiding) walks from x to y, consisting of bonds for which pb Φ 0, by Σ Then
ω:x^y

τp(x,y)^ Σ' Probp(ω is occupied) = Σ' Π f t

ω:x-+y ω:x^y beω

ω x-^y beω

where in the last inequality we used pύpG- Π

Proof of Lemma 4.2. In [18] it was proved that for quite general finite range
models, if χ{p) < oo then τp(x,y) decays exponentially. Moreover in [6] it was
shown that

τp(0, x) £ exp [- || x \\ JX(p)] for model (i).

For model (ii) a similar exponential decay holds if g has compact support, and for
general exponentially decaying g exponential decay of τp(x, y) (for/? <pc) can be
shown using the same argument as that used for the Ising model in [7]. The
exponential decay of the two-point function implies that Γ, Wa, and Haua2 are
finite for p<pc.

Continuity of these quantities for/? < pc then follows from the fact that τp (x, y)
is monotonic and continuous in /?e[0,1] [5], together with the monotone
convergence theorem. D
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4.3. Proof of Proposition 4.3. In this section we restrict our attention to the
nearest-neighbour model. We prove Proposition 4.3 and show that the infrared
bound follows from P 4 , thereby completing the proof of Theorem 1.1. We begin
with a preliminary lemma in which bounds on Γ, PFand /fare obtained from the
assumption P4.

4.3.1. Bounds on T, W9 and H. In this section we prove the following lemma.

Lemma 4.4. If p < pc and we assume P4, then

W ^

Here Wί denotes Wa where a is any nearest neighbour of the origin. Note that the
constants cl9 c2, c3 and c4 depend only on Kτ and Kw, and not on K\y.

Proof By Lemma 3.3, for any aeZd we have

Ta^T+[3T/2d]1/2,

and the bound on T then follows if we assume P4.
To obtain the inequality for Wγ we proceed as follows: Denoting a nearest

neighbour of the origin by e,

g £ | x | τ(β,x)\x-e\ τ(e,x)+ Σ 1*1 ^(0,x) \e\τ{e,x)
x xΦe

+ \e\τφ,e)\e\τ(e,e).

Applying the Schwarz inequality to the first two terms on the right side, and using
the fact that

xΦO

gives
Γ Ί 1 / 2

IW Σ τ(e,x)2\ + (T/6d)ί/2 S W+[WT/3]ί/2+ (T/6d)ί/2.
L xΦe J

The assumption P4 then gives the bound W1^c2d~x.
We next give the proof that P 4 implies the bound W^ 4Kψd~1. Although P4

only involves Wa for \\a\\± ^2χ(p) {(d+2)ln[5χ(p)] + 2lnd}, it is possible to
estimate W= sup Wa by using the exponential decay of the two-point function to

a

bound Wa for large values of || a \\ ί . In fact, we shall show that

Wa^d~ι for \\a\\^2χ(p) {{d+2)\n[5χ{p)] + 2\nd}. (4.2)
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Given (4.2), it follows that

To prove (4.2) we use the fact [6] that τ(0, x) ^ exp [— || x \\ Jχip)] to obtain

» ς ^ Σ | x | 2 e x p [ - ( | | x | | 1 + ||x-fl||1)//Cp)]
JC

g £ | x | 2 exp[-ΛxWiβχ ip) ] e x p [ - JlβlU/

The inequality for /Πs proved similarly, and we omit the proof. The bounds on
W and W follow from P 4 and Lemma 3.3. D

4.3.2. Bounds on τ{k). In Proposition 2.3 an expansion was given for the two-
point function τ(0,x). Since τ(0,x) decays exponentially for/? <pC9 the Fourier
transform τ (k) exists. Taking the Fourier transform of both sides of the expansion
and solving for f (k) yields

f (]Λ = G{N)(k)

for any pe[0,pc) and for any nonnegative integer N, where

and

77^(fc)= £ (-i)nΠn(k).
n = 0

In this section we prove the following lemma.

Lemma 4.5. Fix pe[l/2d,pc) and N^O, and assume P4. There exists a d0 > 6,
independent of p, such that for d^d0,

\ΠiN)(k)\ S cd~\ \ds

μΠ
{N\k)\ ^ c'd'2, 5 = 1,2. (4.4)

If in addition N is sufficiently large (depending on d and p), then

F(k) = 1 - 2dpD(k) - Π{N)(k) ^ (1 - c"d~x) (1 -D(k)), (4.5)

\G{N)(k)~ 11 = cd~\ \3s

μG
{N)(k)\^ c'd~\ s= 1, 2, (4.6)

and
0 ^ τ(fc) ^ (1 +c/ / /ί/"1) (1 -Dik))-1. (4.7)

77ze constants c, c\ c" and c'" depend only on KT and Kw (and not on Kψ, /?, or d).

Remark. For pe[0, λβd], τ(k)^τ(0)=χ(p)^χ(l/2d)<ao. (It is known that
τ (A:) is nonnegative [6].) Together with (4.7) this shows that for large rfthe infrared
bound stated in Theorem 1.1 is a consequence of P 4 .
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Proof of Lemma 4.5. The bounds (4.4)-(4.6) are simply a combination of the
results in Proposition 2.6, Lemma 3.2, and Lemma 4.4 with the assumption P 4 . In
the course of the proof, we use c and c' to denote universal constants which may
depend on Kτ and Kw, but not on Kψ p, or d. These constants may take on
different values in different occurrences. First, by Lemma 3.2, Lemma 4.4 and P 4 ,

and

Now using Proposition 2.6 and (4.8-9) we immediately obtain

The bound on ds

μΠ
(N)(k) is obtained similarly.

To bound | G(N)(k) — 11 we use Proposition 2.6 to obtain

and then note that the first term on the right side is bounded above by cd~1, while
the second is bounded above by 2dpχ(p) (c'd~ X)N. For TV sufficiently large, this
last quantity is bounded above by cd~ \ and the desired bound on | G(N)(k) — 11
follows.

The bounds on \ds

μό
(N)(k)\ are obtained in a similar fashion. To estimate

Idμ RN(k)\ we use the bound from Proposition2.6 and the inequality

To obtain (4.5) we first observe that by (4.6),

ί -2dp-ΠiN)(0) = GiN)(0) χ(p)-1 ^0.

Therefore 2dp ^ 1 + cd~ 1

9 and also

1 - 2dpD(k) - Π(N)(k) = 1 - 2dpD(k) - ΠiN)(k) - [1 - Idp - Π{N)(0)]

+ [l-2φ-77 ( N )(0)]

^ 2dp[ί-D(k)] + Π{N)(0) - Π{N)(k).

By Proposition 2.6 and (2.24),

π

n:odd
2

- Σ
n:odd

Now, using (4.8-9) gives (4.5).
Finally the infrared bound (4.7) follows from (4.3) and (4.5-6). D
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4.3.3. Proof that P4=>/>

3 . In this section we use the consequences of P 4 given in
Lemma 4.5 to derive P3. This completes the proof of Proposition 4.3 and thus of
Theorem 1.1. We fix an N large enough (depending on/?) that (4.5-7) hold, and
omit the superscript (N) to simplify the notation. As usual we use c, d and d' to
denote universal constants which depend only on Kτ and Kw, but not on K^,p, or
d. These constants may represent different values in different occurrences.
Throughout this section we fixpe[l/2d,pc).

The statement P3 consists of five inequalities (given in Proposition 4.3). We
obtain these one by one, beginning with 2 dp ̂  3

(a) 2 φ ^ 3 : In the proof of Lemma4.5 it was shown that for pe [1/2d,pc),

\-2dp- 77(0)^0,

and hence by (4.4)

2dp S 1 - Π(0) ^\+cd~ι. (4.10)

The right side of (4.10) is less than 3 for d^ c/2.

(b) The bound on T: By definition

T= (2n)~d [ddk [τ(k)3 - τ(0,0)3]

= {2π)-d^ddk [(2 + τ(k)) (τ(k) - I) 2 - (2 + τ(0,0)) (τ(0,0) - 1 ) 2 ] , (4.11)

and TG is obtained by replacing τ(k) by [1 — D(k)]~1. (In fact, for percolation
τ(0,0) = 1 and the second term on the right side of (4.11) is zero.) By (4.7), for

1. (4.12)

Also,
2φ/)(fc) + (?(fc)-l+fl(fc)

V ; \-2dpD(k)-Π(k)

We define

F{k) = 1 - 2dpD(k) - Π{k). (4.13)

Then by (4.4-6),

+ dd-2), (4.14)

for d sufficiently large. Using the fact that the integral of [1 — D (k)] ~ m is bounded
uniformly in d^ 1 for m = 1,2, 3 (see Appendix B of [20] or Eq. (3.12) of [31] for a
proof), it follows from (4.11), (4.12) and (4.14) that

S 25 TG + d'd~2 ^ Kτd~* + d'd'2 ^
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for d sufficiently large, where we used the fact that C(0,0) — 1 ̂  cd~ι (which
follows from Appendix B of [20] or Lemma 3.1 of [31]) together with the form of
TG described below (4.11).

(c) The bound on W: By definition and the Parseval relation,

W=ΣUx\τ(0,x)]2= Σ (2πydϊddk[dμτ(k)]2. (4.15)
x μ=l J

Differentiation of (4.3) gives

dμτ(k) = F{k)~2 G(k)2dpdμD(k) + Fik)'1 dμG(k)

+ F(ky2G (k) δμ Π(k). (4.16)

By (4.15-16)

W± X 3(2πΓd[ddk {F(ky*9[G(k) dμD(k)]2 + F(kΓ2(dμG(k))2

μ=l J

+ F(ky*(G(k)dμΠ(k))2}. (4.17)

We use (4.5) to estimate the powers of F(k) occurring in the three terms on the
right-hand side. By (4.6), the first term (including the sum over μ) is bounded by
30 WG for d sufficiently large, and by (4.6) the second is bounded above by cd~3.
To bound the third term, we first note that by symmetry dμΠ(k) is equal to zero for
any k for which kμ = 0. Denoting by £the result of replacing the μth component of
k by zero, it follows from Taylor's theorem that

dμί7(k) = dμΠ(k) - dμΠ(£) = kμd
2

μ Π(k*),

where k* is a point on the line segment joining k and £ By (4.4) and (4.6), the third
term in (4.17) is bounded above by

cd~4 (2πyd\ddk [1 -D(k)Γ4k2.

π2

Since k2d~x^— [1 — D(k)], this is bounded above by c'd~3. This gives the

desired bound on W, for d sufficiently large.

(d) The bound on Wa\ For \a\ = 1, it was shown in Lemma4.4 that Wa ^c2d~1

and hence Wa ̂  3K^d~x if we take Kψ ^ c2/3.
For the case | a \ > 1 we again use Fourier transforms and write

,ά)= -(2πydL
J

τ(0,x) τ(x,ά)= -(2πydLdk τ(k) Σ τμμ{k)eika, (4.18)
J μ=l

where we have used subscripts to denote partial derivatives with respect to kμ.
Now

τμμ(k) = F-ίGμμ-2F-2GμFμ-F-2GFμμ + 2F-3GF2, (4.19)

with
Fμ = -2dpD μ -Πμ = 2p sin kμ - Πμ
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and

Fμμ = -2dpDμμ - Πμμ = 2p coskμ - Πμμ .

Therefore

d r

Wa=- X (2πyd\ddkeίka

• [ τ 2 G - 1 G w - 2 f 3 G - 2 G μ J F ί l - τ 3 ( ? - 1

J F μ ί ί + 2 τ 4 G - 2 F , 2 ] . (4.20)

We estimate the terms on the right side using (4.4), (4.6) and (4.7), together with
the fact that the integral of [1 — D(k)] ~m is uniformly bounded for m ̂  3 and d ̂  7.
The first term (including the sum over μ) is less than c d~1, and since Fμ^crd~ι the
second term is less than cd~2. The estimate on the third term is more involved.

The contribution to Wa arising from the gaussian part 2pcoskμ of Fμμ in the
third term on the right side of (4.20) is

r d

Aa = 2dp(2πyd\ddkτ(k)3[l+G(ky1-l]d-ί X cos^^Λ
J μ=l

To estimate the contribution A'a to Aa due to the 1 in the square brackets we write

μ

μ=l v,\v\ = l

to get

\A'a\^2dp{2dyι X (2π)-dϊddkτ(k)3

 e

ίk'{a+v)

v,\v\ = l J

= 2dp(2dy1 Σ T^^T^c^'1.
υ,\υ\ = l

(Note that a + v φ 0 here since | a \ φ 1.) Then by (4.6-7) and the fact that 2dp ^ 3
we have

\Aβ\Z\A'β\ + \Aa-A'a\^Zc,d-' + cd-^c'd-'.

Using (4.4) and (4.6-7) it is not difficult to see that the contribution to Wa due to
the Πμμ term in Fμμ in the third term on the right side of (4.20) is also bounded by
cd~\

Finally the last term on the right hand side of (4.20) can be bounded above by
cd~ * using an argument involving Taylor's Theorem which is similar to that used
in the last paragraph of (c). (Note that it is necessary to exploit the fact that
Fμ(0) = 0 if we are to avoid quantities which diverge in more than six dimensions.)
All the constants c and c' encountered here depend only on KT and Kw, so it is
possible to choose Kψ (depending on Kτ and Kw) sufficiently large that the desired
bound Wa ̂  3Kψd~ι holds, and that the corresponding gaussian quantity is less
than Kψd~ι (as claimed in Sect.4.1).
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(e) The bound on H: Using the Fourier transform, and then integrating by parts,
we can rewrite Eq. (3.3) as

'<*><"-^> τ{k{)2 τ(k2)
2 τfa-kj τ^

k3-k2)\-Σd2

μτ(k3)]
L μ=l J

* 1 - - * 1 - ^ τ(/cx)
2 τ{k2)

2 τ{kγ-k2)

•

d C 3 ddk

Σ l -I—r M /v

μ = ι J ;=i (2π)

• {τ(kx-k3) (dμτ(k3)) (dμτ(k3-k2)) -τ(k3-k2) (dμτ(k3)) {βμτ{k^k3))}.

Taking absolute values of the integrand on the right side and using the symmetry
between kί and k2 leads to

d r 3d (* ό

H < y π
11aua2— La 1 1

μ=l J j=ί

Rewriting this upper bound in x-space gives

^ Σ Σ l̂ μl l*μ-

Now we use the basic inequality (3.5) to bound the right side. First,

d

Σ Σl
μ— 1 x,a

(4.21)

a μ= 1 x

< w sup

\Xμ~aμ\ X

(1 + Γ) =? ̂ ( 1 + Γ) (1 + Γ), (4.22)
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where in the second inequality the sum over x was estimated using the Schwarz
inequality. The second term on the right side of (4.21) can be bounded similarly:

d

Σ Σl
μ=l x,a

= W. (4.23)

Now we use (4.7) to bound the diagram on the right side of (4.23) in terms of its
gaussian value:

J-1\6 (4.24)
gaussian

The gaussian diagram on the right side is finite for d > 6 and we have verified
numerically that it is bounded by 3 uniformly in d^. 9.

For d sufficiently large, depending on Kτ and Kw, it follows from (4.21-24)
that

W<30Kwd'1. (4.25)

This is the desired bound. Also, this calculation shows that the gaussian
counterpart of Hau(t2 is bounded above by 10Kwd~ι for d sufficiently large, as
claimed in Sect. 4.1. D

4.4. Proof that v2 = 1/2

By definition [Eq.(1.6)],

Since F'1 = G~ιτ, Fμ(0) = 0, and τ(0) = χ(p), it follows from (4.19) and (4.26)
that

ξ2(p)2=- Σ
l

= - Σ G(0)-'[Gμμ(0)-χ{p)(2p-Πμμ{0))]
μ = l



Percolation in High Dimensions 379

By Lemma 4.5 (since we have proved P3, P4 does hold), it follows that for
l/2d£p<pe,

and hence for some constant C > 0,

C-1χip)ύξ2(p)2^'Cχ(p) for pe[ί/2d,pe). (4.27)

Sinceχ(p)~ {Pc—pY1 follows from the triangle condition, ξ2(p) ~ (pc—p)~ί/2,
i.e.,v2 = l/2.

5. Proof of the Main Results (Theorem 1.2) for the Spread-out Models

In this section we prove Theorem 1.2 by adapting the proof of Theorem 1.1 to the
spread-out models introduced in Sect. 1.1. These models are defined by

pOx=P'L-dg(x/L),

where g is a nonnegative function on Rd such that d*g (d*g = f ] dμ g, Ia {1,2,..., d})
is piecewise continuous, which satisfies: μeI

$g(x)dx=ί, g-e^'^eLnfR*) for some <S>0,

§\dIg(x)\dx< co, where the derivative is interpreted as a distribution, /r jx

g is invariant under rotations by π/2 and reflections

in the coordinate hyperplanes.

To simplify the technicalities we have required that g be exponentially
decaying, although some weaker decay can also be handled. The fact that
Theorem 1.2 holds independently of the exact form of g is an illustration of
universality.

Just as for the nearest-neighbour model, pc = sup {p \ χ{p)< oo} e(0,1). The
only significant difference between the analysis of the model (ii) and the nearest-
neighbour model is due to the change in gaussian propagator. (The situation is
similar for the long-range weakly self-avoiding walk studied in [40], although in
that work the 1/r2 decay considered was sufficiently slow to change the upper
critical dimension, unlike the models under study here.)

The hypotheses on g are used indirectly, via certain of their consequences, to
prove Theorem 1.2. To state these consequences we introduce the following
notation. We consider simple random walks with transition probabilities

(5.2)

Here pL is defined so that DL(0) = 1, where

DL(k)^pLΣL-dg(x/L)eik'\ (5.3)
X

The gaussian propagator (in A -space) for the model is then

(5.4)



380 T. Hara and G. Slade

and we define TL and WL the same way that TG and WG were defined (under
Proposition 4.3), using this propagator. We also define

(As will be seen in Sect. 5.2, S=O(L2); clearly 5^1.)
To prove Theorem 1.2 we will use the following lemma.

Lemma 5.1. The hypotheses (5.1) on g imply that given d> 6 andε> 0, there is an
Lo, depending on ε andg, such that for L^L0 the following conditions are satisfied:

( 5 6>

(5.7)

(5.8)

ί-DL(k)^\k\2βπ2d, (5.9)

(5.10)

(5.11)

(5-12)

Λ\d'k Σ \d2D
J μ = l

(2π)-Λ\d'k Σ \d2DL(k)\[i-DL(k)Γ3^40ε, (5.13)

(5.14)

gaussian

The values of the constants appearing in these conditions are not sharp and
can be adjusted.

This section is organized as follows. In Sect. 5.1 Theorem 1.2 is proved,
assuming Lemma 5.1. In Sect. 5.2 the proof of Lemma 5.1 is given.

5.1. Proof of Theorem 1.2 Assuming Lemma 5.1

In this section we prove that the triangle condition and the infrared bound follow
if conditions (5.6-14) are satisfied, for ε sufficiently small. Theorem 1.2 then
follows from Lemma 5.1. The basic structure of the proof is exactly as in
Theorem 1.1: the result follows from Lemmas 4.1 and 4.2 and the following
analogue of Proposition 4.3, together with a proof that the infrared bound follows
from the analogue of P4. The proof that v2 = 1/2 proceeds the same way as for the
nearest-neighbour model in Sect. 4.4.

The analogue of Proposition 4.3 is the following.

Proposition 5.2. There is an ε0 > 0 such that if an independent bond percolation
model on ΊLd{d> 6) satisfies conditions (5.6-14) for some ε^ε0, then for any fixed
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PE[PL>PC)> P* implies P3, where PΛ is the statement that the following set of
inequalities holds:

^ 30β, — ^ α ,
PL

Wa^aK'ε for WaW^M^p),

Haua2^oc 500ε for max || at \\ x £ M2 (p).

The universal constant K' is determined in the proof of the proposition. The
quantities Mf (/?) are finite for p <pc and are defined such that

Wβ£e for Hαl l^M^), Haua2^ε for ma\\ai\\1^M2{p).

The existence of such constants follows from the exponential decay of τp (x, y)
(discussed in the proof of Lemma 4.2), as for the nearest-neighbour model.

Proof of Proposition 5.2. The remainder of this section is devoted to the proof of
Proposition 5.2. In the course of the proof it will be shown that the infrared bound
is a consequence of PA. The first step is the following lemma.

Lemma 5.3. If p<pc and we assume P4, with ε sufficiently small, then there are
constants c i 5 independent of p and K\ such that

Proof. The bounds on ϊ^and H follow immediately from P4 and the definition of
Mt(p). The bound on T follows from P 4 and the fact that by Lemma3.3,

TaST+(3T/2d)1/2.

The bounds on W and WJ also follow directly from Lemma 3.3, conditions (5.6-
14) and P 4 . To bound YJpOv\

v\ w e u s e the Schwarz inequality:

f
y PL

In conditions (5.6-14) the powers of S-are chosen in such a way as to cancel the
powers of S which arise from the bounds on W[ and Wά of Lemma 3.3. D

Lemma 5.3 combined with Lemma 3.2 yields the following bounds, in which c
and c' are constants independent of p and Kf, and ε is taken sufficiently small
depending on K\

ί cε/S for n = 0,1

β ( c , ε ) ( n _ 1 ) / 2 for^2 ' (5.15)

These bounds can be used in conjunction with Proposition 2.6 to control τ(A ),
just as in Sect. 4.3.2.
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Indeed, using the notation under (4.3), (2.2) becomes

?(jfc) = GiN)(k)/\l -£-DL(k)-ΠiN)(k)\.
L PL J

Proceeding exactly as in the proof of Lemma4.5 the following inequalities, in
which the constants c, c\ and c" are independent of d and K', are obtained.

\A{N)(k)\£cε/S9 \ds

μΠ
{N)(k)\^c'εld, j = 1,2. (5.17)

If in addition N is sufficiently large, depending on p, then for pe[pL ,pc),

F(k) = 1 - f DL(k) - fi™(k) £ (1 - c'fέ) (1 - DL(k)), (5.18)
PL

\G(N)(k)-l\Scε/S, \ds

μG
iN)(k)\^c'ε/d, s = l, 2, (5.19)

and
f^^α+^fiXl-Z)^))-1. (5.20)

The proof of (5.18) uses (5.9), and the fact that (5.19) holds for sufficiently large TV
uses the exponential decay ofτp(x,y).

We now turn to the proof that P 4 implies P3, and proceed step by step through
the five inequalities in the statement of P 4 . Most of the analysis is identical to that
of Sect. 4.3.3, using (5.17-20), and we refer the reader to that section. Now ε plays
the role of \jd. To simplify the notation we omit the superscript (N).

(a) — S 3: This is identical to the nearest neighbour case in Sect. 4.4.3(a).
PL

(b) The bound on T: This bound can also be obtained by the same argument as in
the nearest neighbour case, by faithfully following Sect. 4.3.3(b). Note that the
integral of (1 —DL)~m (m = 1,2,3) is bounded, in fact close to one, by conditions
(5.10-11) and the Holder inequality. In the last step (5.10) is used.

(c) The bound on W: This case follows 4.3.3(c).

(d) The bound on Wa\ The treatment of this case is the only one which differs
significantly from the nearest neighbour case. Direct calculation as in (4.20) gives

Wa=-Σ (2πyd\ddkeika

• [ τ 2 G - 1 G μ μ - 2 τ 3 G - 2 G f ( J F μ - f 3 ( ? - 1 4 , + 2τ4G~2Fμ

2], (5.21)

with n

Fμ(k) = - f dμDL(k) - dμΠ(k), (5.22)
PL

and

Fμμ(k) = -jj- d2

μDL(k) - d2

μΠ(k). (5.23)

In (5.21) the first term and the contributions to the second and third terms
from the derivatives of Π can be bounded just as in Sect. 4.3.3(d), using (5.17-20).
Their sum is bounded by O(ε).
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The fourth term is treated as follows. First we use

and for the second term use the mean value theorem and (5.17) to bound | dμΠ\ by
O(ε)\kμ\9 and then argue as in Sect. 4.3.3(d) to bound this contribution to (5.21)
by O(ε)2. The contribution from the first term is bounded by

d Γ

const X {2π)~d\ddk (dμDL)2 (1-DL)~* = const WL^constβ,

using (5.12).
Now we are left with two terms: the contributions from derivatives of DL in

the second and third terms of (5.21). We first consider the second term and use
(5.19-20) and the Schwarz inequality to obtain

X (2πyd\ddk2τ3G-2GμdμDL ίconst £ \ddk \GμdμDL\ (1 - Z ) L ) " 3

sί const β j ddk(dμDL)2 (i-DLy* Σ j d"l G2

μ{\ -Z)J-2J

Finally we consider the term

Σ {2πyd\d"k eika gconst [ Λ J |52£>L| (1 -DLy3. (5.24)

The integral on the right side of (5.24) is bounded above by O(ε), by condition
(5.13).

As a result of the above estimates, we have

where c is independent of ε and K'. Choosing K' = cβ gives the desired result.

(e) The bound on H: The argument of Sect. 4.3.3(e) can be used here. The
condition (5.14) is used. D

5.2. Proof of Lemma 5.1

In this section we prove Lemma 5.1, which together with Sect. 5.1 completes the
proof of Theorem 1.2.

5.2.1. Verification of Conditions (5.6-8). The gaussian critical value pL is given
by
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The sum over x in this expression is a Riemann sum approximation to || g || x = 1,
and hence

lim pL=ί. (5.25)
L->oo

By definition,

S = /7LL
2 X L~d(x/L)2 g(x/L) ~ Z2 || x 2g || t , (5.26)

JC

and hence S = O (L2). Since geL^, it follows from (5.2) that sup/jjg = O(L~d).
Since geL2,

Σ ( / > & ) 2 = ̂ ~ d Σ L-dg{xlL)2 ~L-d\\g\\2 = O(L~d).
JC X

This gives the condition (5.6), if L is taken sufficiently large.
Similarly, it follows from the fact that x2geLco that

which yields (5.7). Finally, the fact that x2geL2 implies

yielding (5.8). The big O notation is used to represent an upper bound involving
constants which are independent of L, but may depend on d and g.

5.2.2. Basic Properties of the Gaussian Propagator and (5.9). In this section we
show that the condition (5.9) is satisfied, and obtain some further results which
will be used to estimate ΓL, etc., in the following sections.

Recall the definitions:

and
CL(k) = [l-DL(k)Γ1.

For a function h defined on Rd, we define a transformation

In this notation, DL(k) = gL(k). We also use the notation |/ | to represent the

cardinality of a set /<= {1 ,...,</}, and write d1 = Y\ -z—. The expressions d1h and
ve/ Oχ\

|| d1h || j are to be interpreted in terms of distributions.

Lemma 5.4. Suppose that h vanishes at infinity, that -z—•= •=— is piecewίse
uXγ OX2 '' ' uX d

continuous, and that hL exists for all L. Then for L sufficiently large,

ΣIIAIU. (5.27)
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Also, for any I a {1, . . . , d) and for any k,

Π 2L sin(kv/2) . (5.28)
ve/

Proof The bound (5.27) follows from (5.25) and the fact that %L-d\h(x/L)\
X

-•II A||! as L->oo. The bound (5.28) is proved using summation by parts, as
follows. To simplify the notation, we assume that 1 el. Then

Γ d Ί
L (h\ n V1 T~dh(\-IT\ s?~iki/2r iki(xi + 1) ί̂fcixπ TΊίci-nίlr /9Ί1 ~ ! pvn V ik Ύ

L-"[h(x/L) -h(x/L-eί/L)]eikx, (5.29)

where eί = (1,0,.. .0). To avoid nonilluminating complications, we consider
henceforth only the case of continuously differentiable h\ the general case can be
treated similarly. By the mean value theorem (5.29) is equal to

-^ilίύikjl)}-1 Σ L~d dM*/L)ίkx

where x* is a point on the line joining x/L to (x — e^/L. Iteration of this procedure
gives

hL{k) = (-\)mpL Π [e-ikv/2/2Lism(kJ2)] J^L-'d'hix^/L) eikx,
ve I x

where \\(x**-x)/L||m ^LΓK Therefore

ve/ x ve/

This gives the desired bound. D

The following lemma is proved using Lemma 5.4. Fix M> 0 such that the
integral of g over the region || x \\ x ^ M is strictly positive. We write
δ = 3π\\d1g\\ί/2L and δ1=π/LM, and use c to denote a constant which is
independent of L and whose value may change from one occurrence to another.
We also fix a small ε > 0 (e.g., ε = 1/5). It seems likely that the bounds in which ε
appears, in the remainder of this section, can be strengthened to the corresponding
e = 0 bounds; however the bounds we obtain are sufficient for our needs.

Lemma 5.5.
lim DL(k) = 0, for allk + 0. (5.30)

L-> oo

For L sufficiently large, the following inequalities hold:

\DL(k)\^h for I I * I L ^ > (5-31)

l - D L ( k ) ^ c k 2 L 2 , for W k W ^ ^ δ i , (5.32)

\-DL{k)^ck2L2-\ for δ^WkW^^δ (ifδ,<δ), (5.33)
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[d D^l^ΊΠWd'ix^W, Πl 2 ί <sin(£ v /2)Γ\ for s = 0, 1,2 and all k, I,
vel

(5.34)

\dμDL(k)\^2L2\kμ\ \\x2g\\i9 for all k. (5.35)
Proof. Equation (5.30) follows from (5.28) with h = g and / = {μ}9 μ = ί,...,d.
To prove (5.31), suppose that \kv\^δ9 and let / = {v}. Then by (5.28) and the
definition of <?,

To prove (5.32) we suppose || k \\ m S δλ, and use symmetry to write

L-"g(x/L)(k-x)2

x:\k'x\gτt

Σ L-dg(x/L)(k>x)2

x:\\x\\i£LM

= pL2π~2k2L2 Σ L-dg(x/L) (xJL)2

x:\\x\\ιZLM

~2n~2k2L2 j g(x)x2ddx>ck2L2,

for L sufficiently large.
The inequality (5.33) is proved as follows. Fix k such that δί ^ || k \\ ^ ^ δ, and

let Xk = {x: 1 - cosk x > L~ε}. Then

xeXk xeXk

- Σ L-dg{xlL)\

It suffices to show that the sum on the right side goes to zero as L goes to infinity.
The domain of summation consists of those x for which 1 — cosk- x^ L~ε.
Since for any x we can find an integer n (depending on k-x) such that
1 — cos k - x §: 2π~2 (k x — 2nπ)2, this domain is contained in the set of all x such
that x/Le Yk, where

Yk = \yeZd: \£ y-2nπ\2 ^ £~Λ fo

Here we have written k = kL, with || k \\ „ e[π/M, 3π\\d1g\\ J2]. For R > 0, let
BR = {y- II y II» = ̂ } Sinceg decays exponentially, given ρ > 0 we can choose an R
such that

V L-dg(x/L)<ρ.

But then we can choose L sufficiently large that

X L-*g{xlL)<
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since the sum on the left side converges to zero as L goes to infinity, because g is
bounded and the measure of Yk n BR goes to zero as L goes to infinity. This proves
(5.33).

The inequality (5.34) follows from (5.27) and (5.28). To prove (5.35) we use
symmetry to write

v=l=μ

til \KμXμ\ ~ ^ \Kμ\ II Xμ g II 1 U

We now use the bounds given in Lemma 5.5 to estimate CL(k). These estimates
will in turn be used to estimate TG and WG. The condition (5.9) is an immediate
consequence of (5.37) below, if we take L sufficiently large.

Lemma 5.6. For

k Φ 0, CL(k) -> 1 as L -> oo . (5.36)

In addition

0<Γ (k)<ί3 if\\k\\m^δ

if\\k\\^δ

2 if WkWnZδ' ( 5 3 8 )

\d C (k)\<ί
lό»CLm-\0(L-2+2°)\kμ\\k\-* if Wkw^zδ ( 5 3 y )

Here the big O denotes upper bounds involving constants which are independent ofL,
but may depend on d or g. Also \k\ denotes the euclidean length ofk.

Proof. The limit (5.36) follows immediately from (5.4) and (5.30). For (5.37), we
use (5.31-33). Since CL(k)-l = DL(k)/[l-DL(k)l the first bound in (5.38)
follows from (5.31), and the second from (5.32-33) and the fact that \DL(k)\ ^ 1.
Similarly (5.39) follows from calculation of the derivative, (5.31-33) and (5.35). D

5.2.3. Conditions (5.10), (5.11), (5.14). The following lemma will be used to
estimate TG for this model.

Lemma 5.7. For d>2,

^ k I CL(k) - 11 <£

For d>2N, 7V^2,

^ k I CL(k) -1\N^O (L~d+εN)

The constants cd and c'ά depend only on d and remain bounded as d 12 in the first
bound and d 12 N in the second.
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Proof. We divide the domain of integration into two parts: || k \\ ^ ^ δ and

II k II oo = ^5 a n d u s e (5.38) to bound the integrand. This gives

f ddk\DL(k)\N

l l l l ί

11*11 oo^a

11*11 «*«

where Ωd is the volume of the unit sphere in IRA The first term on the right side is
estimated using (5.34), as follows.

The region || k || ̂  ^ δ is the disjoint union, over / c {1, 2, ... d}, /#= φ, of

< |ikv| < π for VG/, | ^ μ | ^ δ for

By (5.34),

(2πyd μdk\DL(k)\NS2N\\dIg\\N

1(2πyd \ddk Y\[π(2L\kv\yT
RΣ Λi vel

-C L w |^l/ld-ff) i(N>i'

This gives the bounds in the statement of the lemma. D

Corollary 5.8. For d>2,

\CL(0,0)-l\^O(L-d+ε)l(\nL)d + -^}. (5.40)

For d>6,

(5.41)

Proof. The first inequality is an immediate consequence of the first statement in
Lemma 5.7. The second follows from the second statement in the lemma and the
fact that by definition

τL = Σ 0.(0, x) cL{χ, y) cL(y, 0) - cL(0, o)3

x,y

= (2πyd^ddk (CL(k) + 2) (CL(k) - I) 2 - (CL(0,0) + 2) (CL(0,0) - I) 2 . D

In view of (5.26), Corollary 5.8 ensures that the conditions (5.10) and (5.11) are
satisfied for sufficiently large L. The condition (5.14) follows immediately from
the following lemma.
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Lemma 5.9. For d> 6,

= 1, (5.42)

where the lines in the diagram denote the gaussian propagator CL(k).

Proof. Fix d> 6. By (5.36) and (5.37), | CL(k)\ is bounded above by | / c | " 2 for k
near zero, and CL(k) approaches one pointwise as L goes to infinity. Since the
replacement of CL{k) by \k\~2 in the diagram in (5.42) yields a finite result for
d > 6, the conclusion follows by the dominated convergence theorem. D

A similar argument can be employed to prove that as L -> oo, TL converges to
zero and CL(0,0) converges to one. However this is not sufficient for the
conditions (5.10-11), and thus we presented the more detailed bounds of
Corollary 5.8.

5.2.4. Bounds on Quantities with Derivatives: Conditions (5.12) and (5.13). The
condition (5.12) on WL is an immediate consequence of the following lemma.

Lemma 5.10. For d>6,

WLSO(L2 + 4ε~d) (l+-£±Λ. (5.43)

Proof. By definition,

(2πyΛ\dΛk(dμCL{k))2.
J

WL=Σ

We divide the domain of integration as in Lemma 5.7 and use (5.39) to obtain

WL^Sl(2π)~d J ddk\dμDL(k)\2 + 0 ( Z Γ 4 + 4 ε ) J ddk\k\~6.

The second term on the right side gives the second term on the right side of (5.43).
The integral in the first term on the right side can be estimated by writing the
integral as a sum over integrals over Rj, exactly as was done in the proof of
Lemma 5.7, and using (5.34) with s = 1. The only difference here is the extra factor
of L2 which arises from s = 1 in (5.34). D

Finally we prove the following bound, which gives the condition (5.13).

Lemma 5.11. For d> 6,

(2π)-d^ddk\d2DL\(l-DL)-3 ^O(L2 + 3ε~d) Γ(lnL)d + ̂ Ί . (5.44)
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Proof. Using (5.37) and (5.33) gives

I ^ddk\dJDL\

+ 2) J ddk\k\~6.
11*11 co^3

The second term on the right side gives the second term on the right side of (5.44).
For the integral over || k || ̂  ^ δ we use (5.34) with s = 2, as in Lemmas 5.7 and 5.10,
to obtain the desired result. D
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