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Abstract. We present three techniques for determining rigorous bounds for site percolation 
critical probabilities of two-dimensional lattices. A technique for finding lower bounds 
for critical probabilities of bipartite graphs is used to show that p,(  D )  L 0.5020 for the dice 
lattice D. Combining this method with Kesten's duality result simplifies Toth's derivation 
of the lower bound p , ( S )  2 0.5034 for the square lattice S. We also present a technique 
for deriving upper bounds for bipartite graphs. A technique of grouping sites is used to 
derive upper bounds for the critical probability of the hexagonal lattice H :  p,( H) G 0.8079 
and p,( H )  G . i p , ( S ) .  The grouping technique is applied to the dice lattice to find the upper 
bound p,( D )  G 0.7937. 
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1. Introduction 

For many years following the introduction of percolation models by Broadbent and 
Hammersley (1957) the major focus of mathematical percolation theory was the exact 
determination of critical probabilities (also called percolation thresholds). A heuristic 
method of Sykes and Essam (1964) conjectured the value f for the square lattice bond 
model and the triangular lattice site model, 2 sin( n/ 18) = 0.347 for the triangular lattice 
bond model, and 1-2s in(n / l8)  for the hexagonal lattice bond model. Rigorous 
proofs were obtained much later by Kesten (1980,1982) and Wierman (1981). Wierman 
(1984) derived exact bond percolation critical probabilities for an additional dual pair 
of lattices. Even though very little is known about the relationship of the critical 
probability to the detailed structure of the lattice, much recent work on percolation 
has emphasised the critical exponents of the percolation model, which are believed to 
be identical for large classes of lattices (called universality classes). Further study of 
the critical probability is necessary to obtain a complete understanding of percolative 
behaviour. 

Several techniques have been used to gain information about site percolation critical 
probabilities, as follows. 

Connectivity constant. For a fixed vertex U E G, letf, denote the number of self-avoiding 
paths in G of length n starting from U. The connectivity constant, denoted A (G),  is 
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defined by 

A ( G )  = lim inff!,’”. 
n - x  

(For a connected graph G, A ( G )  is independent of the initial vertex U,) Hammersley 
(1957) showed that p,(G) 5 1 / A  (G) .  A crude lower bound is provided by p,( G) 
l / (A(G)-1)  where A(G) is the maximum degree of a vertex in G, since A(G)G 
A(G)-1.  

Bond -site transformation. By the bond-to-site transformation (Fisher 1961), a bond 
percolation model on a graph G is converted into an equivalent site percolation model 
on the line graph (or covering graph) of G, so the two models have equal critical 
probabilities. For example, the site percolation critical probability of the Kagome 
lattice is equal to the bond percolation critical probability of the hexagonal lattice, 
which is known to be exactly 1 - 2 sin( T/ 18) = 0.6527. However, the bond-to-site 
transformation is not invertible, so there exist site models for which there are no 
corresponding bond models. Thus, rigorous solutions for all bond models would still 
not supply solutions for all site models. 

Bond model bounds. Hammersley (1961) showed that for any graph, the bond percola- 
tion critical probability is a lower bound for the site percolation critical probability. 
For an alternative proof, see Oxley and Welsh (1979). Exact bond percolation critical 
probabilities of several lattices (mentioned above) are exactly known, and, except for 
the square and triangular lattices, provide the best known rigorous lower bound for 
the site percolation critical probability. 

Inclusion principle. If G, E Gz,  the critical probability of G, is at least as large as that 
of G2. This ‘inclusion principle’ provides critical probability relationships by compar- 
ing lattices. Kesten ( 1982) has shown that, under certain regularity assumptions, the 
inequality is strict, and Menshikov (1987) has developed a method for finding a lower 
bound on the difference. Using this method, Zuev (1987) has found that 0.5095s 
p,( S )  =s 0.6819 for the square lattice. 

Duality. Sykes and Essam (1964) introduced the concept of matching pairs of graphs 
to extend duality theory to site percolation models. Kesten (1982) proved that site 
percolation models of matching graphs sum to one if the graphs are periodic and have 
at least one axis of symmetry. Obviously, a bound on the critical probability of one 
graph implies a bound on the critical probability of the matching graph (in the opposite 
direction). 

In § 2 of this paper, we introduce three additional techniques for obtaining bounds 
for critical probabilities. For bipartite lattices, we provide a method for constructing 
a related lattice, plus two techniques using this related lattice which yield lower and 
upper bounds for the critical probability. In some cases, results may be improved by 
using the fact that the critical probabilities of a matching pair of lattices sum to one. 
Toth (1985) uses a similar argument to find a lower bound of 0.5034 for the square 
lattice site percolation critical probability. Our argument gives a simpler proof for the 
same bound. A third technique, involving grouping of vertices, is used to obtain an 
upper bound of 0.8079 for the critical probability of the haxag mal lattice, and 0.7937 
for the dice lattice. 
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Section 3 summarises the results of applying these techniques to the square, 
hexagonal and dice lattices, which are used as examples in 0 2. We believe that our 
results provide the best upper bound for the hexagonal and dice lattices, and best 
lower bound for the dice lattice. To the best of our knowledge, the best known rigorous 
numerical bounds are 

0.5020 s pc(  D )  5 0.7937 

0.6527 s p c ( H )  s 0.8079 

0.5095 s pc(  S) S 0.6819. 

2. Techniques and examples 

2.1. Bipartite graphs 

A bipartite graph G is a graph for which the vertex set can be partitioned into two 
sets, A and B, in such a way that every edge of G has one endpoint in A and one 
endpoint in B. An equivalent characterisation is that G is bipartite if and only if it 
contains only even cycles. 

Consider a bipartite lattice L with bipartition (A, B ) .  Define LA to be the lattice 
with vertex set A with edges between a pair of vertices of A which have at least one 
common neighbour in L. LB may be defined similarly. 

Since existence of an infinite open path in L implies existence of an infinite open 
path in LA, then 

p c ( L )  pc(LA). 

A heuristic argument due to Shalitin (1982) suggests that if LA = L B  the inequality 

holds, and that pc( L )  is near this upper bound. 
For a bipartite lattice L, we construct another related lattice as follows. Suppose 

that the degree of each vertex in A is a, and the degree of each vertex in B is b. Let 
L' denote the lattice obtained by inserting a vertex on each edge of L. In the two 
methods described below, we essentially replace each vertex U of B by the set of 
vertices inserted on edges incident to U, so we will refer to the inserted vertices as parts 
of U. 

2.2. Lower bounds for bipartite graphs 

To obtain a lower bound for the critical probability of L, we relate site percolation 
configurations on L, L' and LA by the following procedure. 

( i )  Generate a configuration on L+ by declaring each vertex in A to be open with 
probability p ,  and each part of each vertex of B to be open with probability p' lb .  
(Each vertex of B is open with probability one.) 

(i i)  Construct a configuration on L by declaring each vertex in A to be open if it 
is open in L+, and each vertex in B to be open if all its parts are open in L+.  

(iii) Construct a configuration on LA by declaring each vertex in A to be open if 
it is open in L' and at least two of the neighbouring parts of vertices of B are open. 
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By construction, every vertex in L is open with probability p ,  and every vertex in 
LA is open with probability 

Suppose p > p,( L ) .  Then, with probability one, there exists an infinite self-avoiding 
open path uo,  u l ,  u 2 , .  . . in L. In this case, either u l ,  u 3 ,  u 5 , .  . . or u 2 ,  u 4 ,  u 6 , .  . . is an 
infinite self-avoiding open path in L A .  Since each vertex of LA is open with probability 

we have 

Therefore, p,( L) 2, p o ,  where po is the unique root of the equation 

Note that p is multiplied by a factor which is strictly smaller than one, so we obtain 
the strict inequality pc(L)  >  LA). 

We now illustrate with a few examples. 

Hexagonal lattice. Let H denote the hexagonal lattice. Then HA and H B  are both the 
triangular lattice, so a = b = 3 and p,( HA) = 4 (see Kesten 1982). Solving the equation 

p [ 3 p 2 l 3 ( 1  - ~ ' / ~ ) + p ]  

we obtain the lower bound 

pc( H )  3 0.5477. 

Dice lattice. Let D denote the dice lattice. DA is the triangular lattice, as in the first 
example, but here a = 3  and b=6.  We obtain the lower bound pc(D)3O.5O09 by 
solving the equation 

p [ 1 - ( 1 - p ' i 3 ) 6 - 6 p 1 ' 3 ( 1 - p 1 / 3 ) 5 ] = ~ ,  

However, by a slight modification of the technique, the bound can be improved to 
p , (D)  a 0.5020, the root of the equation 

p [ 1  - ( I  - p ' / 3 ) 6 - 6 p 1 / 3 ( 1  - p ' / 3 ) 5 - 2 p 2 / 3 ( 1  -p1/3)4] = f a  

Square lattice. Let S denote the square lattice. Then SA is the matching lattice of the 
square lattice, denoted S', and a = b = 4 .  Since the critical probability of S M  is 
unknown, we continue by using pc( S )  + p c ( S M )  = 1, which is a consequence of Kesten's 
(1982) fundamental theorem. The previous analysis shows that for p > p c ( S ) ,  

p [ 6 p 1 l 2 (  1 -p114)2 + 4 ~ " ~ (  1 + p ]  2 p,(  S M ) .  
Thus, if p > p , ( S ) ,  then 

p + p[6p1/'( 1 - P " ~ ) *  + 4p3'4( 1 - p l i 4 )  + p ]  2 pc( S) + pc(  S"' ) = 1 .  
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Finally, we obtain the lower bound p , ( S )  3 0.5034, which is the root of the equation 

p + p [ 6 p ' 1 2 (  1 - P ' / ~ ) ~  + 4p314( 1 - P " ~ )  + p ]  = 1 .  

This bound was obtained by a somewhat more complicated procedure by Toth (1985). 

2.3. Upper bounds 

Let O S  q s 1 .  In L+, let each of the parts of vertices in E be open independently with 
probability q, and each vertex of A be open independently with probability 

Define configurations on L and LA as follows. 
(i) Construct a configuration on L by declaring each vertex in A to be open if it 

is open in LA, and each vertex in B to be open if at least two of its parts are open. 
(ii) Construct a configuration on LA by declaring each vertex to be open if it is 

open in L+ and all parts of its neighbours that lie on edges incident to it are open. 
With these relationships, each vertex of L is open with probability p ( q ) ,  and each 

vertex of LA is open with probability q b p ( q ) .  
If q b p ( q ) 3 p c ( L A ) ,  then with probability one there exists an infinite open path 

uo,  u l ,  u 2 ,  u 3 , .  . . in LA. This implies the existence of an infinite open path 
uo,  wo, ul, w ,  , u 2 ,  w 2 ,  . . . in L, so we have p ( q )  3 p,( L ) .  Thus, 

where qo is the root of the equation 

Example. For the hexagonal lattice, we obtain qo = 0.8182 as the root of 

qb[q3+3q2(1 - q ) ] = i  

which implies the upper bound 

2.4. Grouping 

By grouping the sites of a lattice, then studying the connectivity between groups, one 
can often relate a graph with unknown critical probability to a graph for which the 
critical probability is either known or bounded appropriately. A rigorous bound is 
obtained from the relationship that is found. We illustrate with four examples. 

Square latrice. Choose pairs of adjacent sites of S as groups, as shown in figure 1,  and 
consider a group to be open if both sites are open. Two groups are adjacent if there 
is an edge with one endpoint in each group, producing the triangular lattice T. If there 
is an infinite path of open groups in T, then there is an infinite open path in  S. Thjs,  
p 2  > p,( T) = f implies that p > p,( S), so we obtain the upper bound p,( S) s 1/42 -- 
0.7072. 
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Figure 1. Square lattice. Figure 2. Hexagonal lattice. 

Hexagonal lattice. First, consider groups of two sites as in figure 2, and let a group 
be open if both sites are open. Two groups are adjacent if there is an edge with one 
endpoint in each group, so the resulting lattice is the Kagome lattice K .  Thus, 
p 2  > pc(  K )  = 1 -2 sin( T /  18) = 0.6527 implies that p > pc(  H ) ,  from which we obtain 
pc( H )  s 0.8079. 

If instead we group the sites as in figure 3, we find that the groups are connected 
as in the square l a t t i c d  Thus, p 2  > p c ( S )  implies that p > pc(  H ) ,  producing the 
relationship pc(  H )  s J p c ( S ) .  Since the value of p c ( S )  is unknown, we apply Zuev’s 
(1987) upper bound of 0.6819 to obtain pc(  H )  s 0.8258. Although this bound is larger 
than that found in the previous paragraph, it is improvable as better bou&are found 
for pc(  S ) .  Using the estimated value of p c ( S )  = 0.5927 yields a value of J p c (  S) = 0.7699. 

Figure 3. Hexagonal lattice with groups connected as in the square lattice S. 

Figure 4. Dice lattice grouped as the triangular lattice i7 
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Dice lattice. The dice lattice contains the hexagonal lattice, so by the inclusion principle 
and Kesten’s (1982) strict inequality result, we have p,( D )  S 0.8079 and p,( D )  < J p c ( S )  
from the hexagonal lattice bounds given above. We obtain another upper bound by 
considering groups of three sites as in figure 4. Each group is open if all three of its 
sites are open, and the resulting lattice is the triangular lattice T. An infinite path of 
open groups implies an infinite path of open sites in D. Thus, p 3  > p,( T )  = f implies 
p > p,( D ) ,  from which we obtain the bound p,( D )  S (f)’” = 0.7937. 

3. Summary 

We first collect the results for the three lattices used as examples in 8 2 .  

Square lattice. Many researchers have estimated the critical probability of the square 
lattice site percolation model by Monte Carlo simulation and renormalisation methods. 
See Ziff and Sapoval (1986) for a compilation of estimates for pc( S ) ,  with a consensus 
for a value near 0.5927. We obtain a lower bound of 0.5034 by the bipartite graph 
method, a value obtained earlier by Toth (1985). The best bounds, due to Zuev (1987), 
are 

0.5095 s pc( S )  s 0.6819. 

Hexagonal lattice. The critical probability of the hexagonal lattice is estimated-as 
0.6962 (see Stauffer (1985) p 17) while Shalitin’s conjectured upper bound is 1/J2= 
0.7072. In 9 2, we derived lower bounds by the bipartite graph method (0.5477), and 
a better lower bound may be found by the grouping method (0.6044). However, the 
best lower bound is the critical probability of the bond percolation model on the 
hexagonal lattice, which is 1 - 2 sin( T /  18) = 0.6527. The bipartite graph method yields 
an upper bound of 0.9129, while the grouping technique gives upper bounds of 0.8079 
and m. Thus, 

0.6527 s pc(  H )  s min(0.8079, J p c (  SI}. 

Dice lattice. By the bipartite graph method,we obtained lower bounds of 0.5009 and 
0.5020. Upper bounds of 0.7937 and J p c ( S )  were obtained in 8 2.4 by the grouping 
technique. Hence, 

0.5020 S pc( D )  s min(0.7937, J p c (  S ) } .  
The most notable observation is the lack of sharpness of the bounds. Other than 

the isolated cases that were exactly solved due to special properties, the bounds do 
not even determine the first digit for any of the lattices. 

Note also that both the bipartite graph lower bound technique and the grouping 
technique provide the best bound known for at least one of the lattices. 

Despite many advances within the thirty years since the introduction of percolation 
models, the exact determination of critical probabilities and of accurate bounds for 
critical probabilities remains an interesting and challenging open problem. 
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