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A transfer-matrix approach is introduced to calculate the ‘Whitney polynomial’ of a planar
lattice, which is a generalization of the ‘percolation’ and ‘colouring’ problems. This new
approach turns out to be equivalent to calculating eigenvalues and traces of Heisenberg type
operators on an auxiliary lattice which are very closely related to problems of ‘ice’ or
‘hydrogen-bond’ type that have been solved analytically by Lieb (196%7¢ to d). Solutions for
certain limiting cases are already known. The expected numbers of components and circuits
can now be calculated for the plane square lattice ‘percolation’ problem in a special class of
cases, namely those for which py + py = 1 where py and py are, respectively, the probabilities
that any given horizontal or vertical bond is present. This class of cases is known, from the
work of Sykes & Essam (1964, 1966), to be critical in the sense that a connected path across
a large lattice exists with probability effectively unity whenever pgz+py = 1. Relations
with other problems involving the enumeration of graphs on lattices, such as the tree,
Onsager and dimer problems are pointed out. It is found that, for the plane square lattice,
the treatment of problems of ‘ice’ type is very considerably simplified by building up the
lattice diagonally, rather than horizontally or vertically.

The two available analytic methods of handling these problems, the Bethe—Hulthen
‘ansatz’ approach and the Kaufman—Onsager ‘spinor’ approach are compared.

1. INTRODUCTION

A very wide variety of physical and technical problems associated with repeating
networks or crystals can be reduced to graph-theoretical form, involving enumera-
tions of arrangements of points and lines on a lattice subject to certain restrictions.
Throughout this paper, the word ‘lattice’ is used in the physical and not in the
mathematical sense and we shall use the regular plane square lattice, in which each
‘point’ or ‘node’ or ‘site’ is connected by ‘lines’ or ‘bonds’ to four nearest neigh-
bouring points, by way of illustration. (Unless otherwise stated, the word ‘line’ or
‘bond’ refers to one connecting a pair of nearest neighbouring points of the lattice.)
By a ‘graph’ we mean a collection of such lines, together with the points that they
intersect and any remaining isolated points of the lattice. A ‘subgraph’ is obtained
from a graph by deleting one or more of its lines without removing any of the points.
A ‘component’ (of a graph or subgraph) is a maximal connected portion of the
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graph. The words ‘circuit’ and ‘tree” have their usual meanings, a ‘forest’is a collec-
tion of disconnected trees and isolated points. It will be assumed that the reader is
familiar with Euler’s notion of independent circuits. The ‘cyclomatic number’ or
‘nullity’ of any graph or component is the number of independent circuits in it. We
shall often imagine the lattice to be progressively built up row by row, neighbouring
points in a row being added one at a time, and we shall then use the expression
‘lattice’ as an abbreviation for ‘the graph consisting of all the points added so far,
together with all the nearest neighbour bonds between pairs of these points’. We
do not postulate the addition of a line to a graph unless both its end-points have
already been added to the lattice.

In some problems we shall be concerned with directed lines and we shall denote
these by arrows or by positive or negative signs, but we shall never introduce
multiple lines between a pair of points. We shall also recognize the possibility that
points on the lattice may be ‘coloured’ in two or more different ways.

2. TYPES OF PROBLEM OF PHYSICAL INTEREST

It is obvious that a very large number of mathematical problems can be posed
about arrangements of points and lines on a lattice. In this paper we shall be con-
cerned with relations between four types of problem of physical interest.

A. The enumeration of trees and forests is possible for any lattice, planar or not,
the general theory having been laid down by Kirchoff and Sylvester. More compli-
cated problems, however, arise if individual trees are to be weighted according to
certain prescriptions. See, for example, Tutte (1954).

B. The enumeration of the number of ways of disposing 1L black points on a plane
square lattice of L points with a specified number of nearest-neighbour black pairs
was accomplished by Onsager (1944). The results, which are of considerable interest
in a number of branches of physics, for example magnetism, metallurgy, theory of
solutions, adsorption, have since been extended to virtually all regular planar
lattices and have been re-derived by a variety of different methods, but with only
marginal improvements on the scope of Onsager’s original results. (For example,
a little is now known about arrangements involving three or four colours (Betts
1964) and about correlations at various distances (Kaufman & Onsager 1949).)

C. Recently Lieb (1967a to d) and others have given a unified treatment of a set
of physical problems of ‘hydrogen-bond’ or ‘ice’ type. The simplest such problem
is to ask for the number of ways in which arrows can be assigned to bonds on the
lattice, in such a way that exactly two arrows point to every node. This models the
situation for hydrogen-bonded molecules. In ice, for example, each hydrogen atom
can occupy one of two positions between a pair of oxygen atoms, but, in the neigh-
bourhood of each oxygen there are always the same numbers of hydrogens in the
‘near’ and ‘distant’ positions. These numbers are obviously two each if we ‘model’
ice by putting oxygens on the points of a plane square lattice, the hydrogens each
occupying one of the bonds in two possible positions subject to the above. There are
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six types of node, 1 to 6 of figure 1, satisfying the above restriction. More sophisti-
cated problems of this type, in which different statistical mechanical probabilities
are assigned to the six types of node satisfying the ice condition have also been
solved; Lieb (19670b, ¢), Sutherland (1967), Sutherland, Yang & Yang (1967), Yang
(1967). These serve as models of ferroelectric and antiferroelectric assemblies, with
or without an applied electric field.

(1) @) C)) 4) ©) (6) U] (®)
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Ficure 1

D. The problem of the number of ways of colouring the points of a lattice with
k colours in such a way that no two neighbouring points are coloured alike was
studied and generalized by Whitney (1932). The problem is trivial for & = 1 or 2.
For k& = 3 the problem on the plane square lattice is equivalent to the ice problem
(Lieb 1967d). No other exact result is known at present. Whitney’s generalization
turned out to be closely related to the ‘percolation’ problem, which amounts to
asking for the expected number of connected components of a random graph, each
bond on the lattice having a chance p or 1—p of being selected or rejected for
inclusion in the graph. This is closely connected with various problems in magnetism
and is also of interest in communication and porous medium problems, when we
think of each bond as being ‘open’ or ‘blocked’ and ask for the probability that
a continuous path exists through the whole lattice. Sykes & Essam (1964, 1966)
rediscovered a result of Whitney (1932), a dual transformation very similar to that
known to exist for the Onsager (1944) problem, and were able, for several lattices,
to determine the critical value of p above which a long path through the lattice (or
equivalently, a large connected domain of ‘open’ bonds), might be expected to
occur with a probability of effectively unity. This was a very important piece of
information, but left outstanding the more general problem, namely that of deter-
mining in general the number of ways of choosing M lines which have points in
common in such a way as to give rise to N disconnected components. (Obviously
there are two different versions of the problem according to whether or not we count
an isolated point in the lattice, not intersected by any of the M lines, as a ‘component’
of the graph.) The related ‘dimer’ problem (Kasteleyn 1962; Temperley & Fisher
1961), in which we ask for the number of ways of choosing 1L lines from a lattice
of L points in such a way that no two of them pass through the same point on the
lattice, so that there are no isolated points and L. components each consisting of
one line, can be solved (by a variety of methods) for any regular planar lattice, but
it is only for this limiting case that an analytic solution is known at present. (In
graph-theoretical terminology this problem amounts to determining the number
of 1-factors of a lattice.)
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3. GENERAL RELATIONS BETWEEN THESE PROBLEMS

We shall interest ourselves only in the analytic form of the solutions of these
problems in the limiting case where L, the number of points on the lattice, is very
large. A very considerable amount of information about all these problems is also
available from series expansions of various types, obtained by direct enumeration
of configurations involving relatively small numbers of points and lines, followed by
attempts to deduce trends for large graphs. In this paper we shall make only one
comparison with this approach. We are far from attempting to deny its utility.
Indeed, until quite recently, the number of analytic results available was quite
small, and it is enough to say that, in all cases where comparison of series and
analytic results has been possible, agreement has been very close indeed.

Lieb (1967a to d) showed that there is a very close analytical connexion between
problems of ‘generalized ice’ type (type C above) and another problem that has an
extensive literature, namely a one-dimensional array of ‘spins’ each interacting
with two nearest neighbours with a Heisenberg type interaction. He was able to
exploit various known results about this one-dimensional array and to obtain exact
solutions for the various ‘generalized ice’ problems.

In this paper we shall do two things. We shall exhibit the relationships between
these types of problem in a new and physically more transparent light. We shall also
derive a transfer-matrix approach to Whitney’s (1932) problem (generalization of
the percolation and chromatic polynomial problems), and we shall show that this
problem, too, can be reduced to problems of ‘generalized ice’ type which might be
soluble by similar means. Various relations with Tutte’s work (1954) on the Whitney
problem and with the Onsager problem (1944) will also be exhibited, and we shall
show how to calculate the expected numbers of components and circuits for the
critical cases of the ‘percolation’ problem.

4. ANALYTIC METHODS AVAILABLE

Much confusion exists in the literature about notation. One can work with Pauli,
Fermi, Heisenberg or permutation operators or with creation and annihilation
operators. Throughout this paper we shall use Onsager’s (1944) definitions and
notation. We describe our assembly by a set of ‘spin variables’, u,, each of which
assumes only the values + 1, and for each spin the operators C;, S; have the pro-
perties: C; 11, C;p;—>— p;, S; 1> pz, S;ph;—> 1. Since uf = 1 we are never concerned
with powers of g, higher than the first, and the two possible ‘states’ of ‘spin’ ¢ are
represented by 4(1 + ;) and 4(1 — ;). We can represent C; and S; as direct products
of 2 x 2 matrices of Pauli type thus

01
Oi=I><I><...l1 O><I><...,

1 0
Si=I><I><...}O_1 xIx...
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The Onsager interaction operator is exp (HS;S,) and it will be seen that it has the
effect of multiplying a term like £(1+ ;) (1+ p5) or }(1— ;) (1 — pi,) by e, and any
term of the form (1 —u,) (14 ) or 1+ u,) (1 —u,) by e, thus distinguishing
between pairs of like and unlike neighbours, in the same row.

The Heisenberg interaction operator can be written

0, Cy— C,Cy8, 8y + A8, S, (1)

If two neighbouring spins are alike, it simply multiplies the term }(1 + p,) (1 + u,) or
(1 —py) (1 —py) by A. If they are unlike it has the effect

114 ) (L= o) = 51— pag) (L + ) — 2A(L + pg) (1 — ). (2)
For 4 =1, it can be simply expressed as 2T;,—1 where T, is the operator that
changes u, into u, and vice versa. This is usually known as the isotropic Heisenberg
case. (Note that all operators are to act on quantities appearing to their right, never
to their left. Therefore we make the convention that B4 is to be interpreted as:
First operation 4, then operation B.)
Although many variants of them exist in the literature there are, in effect, only
two basic methods of tackling these problems. We can express Onsager’s operators
in terms of anti-commuting ‘spinors’ in various ways, for example

S;=h 8,0 =0,
8.0, = P, 8,001 = @, (3)
S30102 =5 83030201 = Qs,
ete.
so that Ci=PRQ 858=-h 0S8 =~-F0,
Co=PFQy 8:8=—-FQ, CU0;8,8 =-F0, (4)

and, for any problem that be expressed as that of finding the trace of a product like
trexp (A1 @) x exp (BF, @) x exp(C Py @) x exp (DP3 @p) x ..., (5)

in which we have exponentials of second-order products of these spinors, we can
exploit the isomorphism of the spinor and rotation groups (Kaufman & Onsager
1949) to infer the eigenvalues and hence the trace. Various other approaches, using
determinants, vacuum to vacuum expectations, Wick’s theorem, Pfaffians etc. are
all nearly equivalent and apply to the same types of case.

For the ‘ice-like’ problems, the ‘ansatz’ method introduced by Bethe (1931)
exploits the fact that, while the Heisenberg operators (1) may introduce numerical
factors, none of them ever changes the total number of plus or minus spins in a row
of spins. At most, it permutes pairs of unlike spins, changing (+ —)to (— +). It is
this property of a sum (or product) of Heisenberg operators that makes possible the
methods used by Bethe (1931) and Hulthen (1938) and a large number of later
workers for electron assemblies and applied by Lieb (1967 a to d) to the ‘ice-like’
problems.
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5. A TRANSFER MATRIX FOR THE WHITNEY AND
PERCOLATION PROBLEMS

Theprinciple of the transfer-matrixisnowwellknown as a result of Onsager’s (1944)
and other work. Imagine the lattice built up row by row and point by point. In the
Onsager model (1944) the interactions are between nearest neighbours only. Then,
if (figure 2) we add to the lattice a point such as D’, the spin on it interacts with
those on points €’ and D, but with no others. At each stage we keep, in terms of
the u’s, a record of all the possible configurations of the spins on all the ‘outside’
points (that is to say of 4’,B',C", D', E, I, ..., at the stage shown in figure 2) each

A" B ¢ D
4 B ¢ D E F
Ficure 2

configuration weighted with the appropriate Boltzman factor due to the inter-
actions. (These ‘outside’ points are nearest neighbours of points that will be added
at a later stage. We call all other points such as 4, B, C ‘inside’ points, and we need
not specify the configuration of their spins.) In terms of the u’s our generating
function will contain two sets of terms one corresponding to x;, being negative, the
other to u,, being positive. These may be written

& = 31— pup) f(ias 13 11005 fgs o) + 3L+ pop) g(as o 1105 fs o)

Apply the operator exp (HSp,Sp) which gives a factor e for a like pair, e~ for an
unlike pair and sum over both configurations (#,= + 1) of spin D that is now on
an ‘inside’ point. The relation between the generating functions before and after
adding point D’ and putting in the effect of the interaction (D —D’) is
b (Wa> 3s 110 > ---) = (€7 + Cp ™) Yy, i, foc o ---)-
The interaction (C’'—D’) can be taken care of simply by operating with
exp (HS8¢8p). No summation is performed, since ¢’ and D’ are both still ‘outside’
points. The total effect of adding point D', summing over both configurations of
the spin on point D and then allowing for the factor in the partition function due
to the interaction (C' — D’) is precisely given by operating on ¢ with
exp (HS¢8p) (eH +Cpe~H)

and we get a similar pair of factors each time we add a point to the lattice. Operators
like O, 83 S are all expressible as quadratic products of spinors as shown by (3) and

(4), hence the Onsager problem is soluble.
These considerations are well known, but we have set them down because they

give a clue on how to set up the transfer operator for the Whitney problem. Whitney
(1932) defined a polynomial for any lattice (which need not be regular)

W(x,y) = g are yse, (6)
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where G runs over all subgraphs of the lattice, including the null graph and multi-
component subgraphs. 7, and sy are respectively the rank and nullity of G. The
nullity of G is defined as the number of independent circuits in ¢ (independent in
Euler’s sense). The rank is best defined indirectly. If we add a line to a subgraph G
in such a way as to connect two points already joined in G we form a new circuit,
and the rank is unchanged. Otherwise it is increased by one by adding a line. Thus
7q+ g is simply the total number of lines in @, Euler’s relation then gives the
number of components of G as L — rg, if we make the convention that each isolated
point counts as a ‘component’ of G.

It must now be shown that the chromatic polynomial and the generating function
for the number of disconnected components in a random graph on the lattice are
both particular cases of (6). The result for the latter is immediate. For a lattice of
L points, the number of disconnected components is L —r4, and since the total
number of lines in @, I, is just ro+ sg, we have

0
}(;, rale = [x% W(w,y)] . (6a)

y=x
Dividing this expression by W(x, ) gives us the expected rank (L minus the expected
number of components) of a random graph, if we put p = x/(1+ ). This is one of
the problems of ‘bond’ type studied by Sykes & Essam (1964, 1966).

To derive the chromatic polynomial, we use the inclusion—exclusion method,
following Whitney (1932). The number of ways of colouring the lattice in £ colours
without restriction is just k. From this we subtract the number of ways of colouring
it so that at least two nearest neighbours are coloured alike, which is kU~1 x (the
number of lines in the lattice). We have now subtracted twice over the number of
ways in which the points on a subgraph of type [ , are coloured alike which we
correct for by adding k-2 for each subgraph. We make similar corrections for larger
subgraphs. When the graph contains circuits the argument becomes more elaborate,
and the reader is referred to Whitney’s (1932) paper for details, but the final result is

‘ p(k) = E“W(—1/k, —1). (6b)
This asserts that there is a (1-1) correspondence between the terms of the Whitney
polynomial and the terms occurring in the subtraction process that we use to
eliminate those cases in which one or more neighbouring points are coloured alike.

In order to derive a transfer operator for calculating (6) we (figure 2) consider the
effect of adding point D’ to the lattice. We may, but need not, add one or both of
the lines D D’ and €’ D’ to each of the subgraphs @. Therefore, we need a record of
whether or not ¢’ and D were previously connected by lines in the subgraph G. Later
on we shall need similar information about D’ and E and so on as we go round the
lattice, adding a point to each column in turn. How do we specify the sets into
which these ‘outside’ points are connected up by the lines in each G? We can
describe a typical situation by a notation like ¢ = (4 B) (C) (D F G) (E), which means
that 4 and B are connected C and E are isolated, while D, F and G form a connected
group or set.
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Consider now the possibilities relating to the line DD’ (figure 2). If we add this
line to any graph @, the point D’ will now be connected to just the same ‘outside’
points as was D by the lines in (7, and to no others. The effect is to increase 74 by one.
Now suppose that we omit the line D D’. Point D’ will now be unconnected with any
of the other ‘ outside’ points and two cases arise. If D was connected to other ‘outside’
points, we must replace, e.g. (DF G) by (D) (F ). If D was isolated, we simply
replace (D) by (D’). We describe these three possibilities by the factor (x4 Dy, + £ ),
where D, corresponds to selecting those graphs in which D was isolated while £,
corresponds to an operation like (D F G)— (D’) (F (), that is to isolating D’ if D was
not previously isolated. Similarly, we can examine the effect of adding the line C’ D’
or omitting it. If we omit it, the rank, nullity and the connectivity situation are all
unchanged. If we add this line, there are two possibilities. Either C* and D’ were
already connected by lines in @, in which case the number of circuits is increased
by one, or else C" and D’ were not connected by lines in &, in which case the addition
of this line will increase the rank by one. Thus we can describe the three possibilities
by the factor (1 + 5 Pypy + 2Q o-p,) Where operator Pp.p, selects graphs in which points
C’" and D’ are joined, while the operator ¢, selects graphs in which C” and D’ are
not joined, and then joins them.

Thus, we have a pair of operators the product of which takes account, for each
subgraph @, of the possible contributions to the Whitney polynomial W(x,y) of
adding, or omitting, the two extra lines incident on a point such as D’ (figure 2) and,
at the same time, these operators ensure that a proper record of the connectivity of
the set of ‘outside’ points is maintained for all cases. Consider the simple case of
a lattice with three points in each row. There are five possibilities: All three points
are isolated which we describe by [(4) (B) (C)]. All three points are connected which
we describe by [(4 B C)]. Two points are connected, but the third is isolated, which
we describe by [(4 B) (C)], [(4 C)(B)] or [(4) (B C)]. Plainly there is a 1-1 corre-
spondence between the possible ways in which M points in a row can be ‘connected
up’ and the partitions of these points into sets. The rows and columns of the transfer
matrix will correspond with these possible partitions, and the matrix elements of
the operators we have just been discussing are readily written down. For example:

P,pl(4 B)(C)] = [(4 B) (O],
Q4[4 B)(O)] =0,
Pypl(4)(BC)] = 0,
Q45[(4)(BC)] = [(ABO)],
D 4[(4 B)(C)] = 0,
D 4[(4)(BO)] = [(4)(BOY],
E4[(4B)(C)] = [(4)(B) ()],
E[(4)(BC)] =0,
correspond to the above definitions of the operatorsin words. In this representation
the P’s and D’s are wholly diagonal, the E’s and @’s are wholly non-diagonal.

(7)
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We can now verify that the operators described above do take proper account
both of the changes in connectivity of the ‘outside’ set of points and of the weights
to be given to each possible subgraph in the Whitney polynomial as we build the
lattice up one point at a time. The transfer matrix is thus a product of pairs of such
operators. (We make the usual assumption that the lattice is wrapped round a
cylinder, so that column M+ 1 is identical with column 1. For M large, it makes
little difference whether we dispose our points on the cylinder in ‘screw’ fashion or
in successive rings, and the difference can easily be investigated in a particular case.)

We impose a further boundary condition (standard in this type of problem) that
the initial and final connectivities are to be the same after a large number of lattice
points have been added, in other words that if we begin with the connectivity
(4) (B) (C) we restrict ourselves to graphs in which the last three points added are
also isolated from one another, and similarly for other initial connectivities. This
means that we must work with the irace of the transfer matrix. As usual, this
corresponds simply to identifying the first row of points with the (N + 1)th. Since
the transfer matrix is effectively the N-th power of an operator corresponding to
adding one row, and we are concerned with the case of large N, the problem is also
that of finding the largest eigenvalue of the transfer operator for one row, which
itself consists of a product of M pairs of operators of the type described above.

6. ABSTRACT PROPERTIES OF THE TRANSFER OPERATORS

Certain results can be proved from the abstract properties of these operators
without use of any representation of them. We have, for example,

Pip=Pup @Qup=0, PipQip=Qup QipPup=0
and analogous properties of the D’s and E’s. Also
DyP,p=PgD,;=0, D,Qup=0, Pygk,=0. (8)

We notice from (7) that the P’s and D’s leave the number of parts of any partition
the same, every @ reduces the number of parts by one, while every X increases the
number of parts by one. Therefore, if any product of such operators is multiplied
out, the only terms that can contribute to a trace are those which contain equal
numbers of @’s and £’s. It follows that the trace of any such operator is unaffected
by the transformation

Quy—>aQy o H, (9)
(provided that o is independent of ¢ and j and is a number not an operator). The
interpretation of the terms in the transfer matrix that arise solely from products
of the @’s and E’s is immediate. Consider the product

(4 25Qpc) @y + Ep) 1 +25Q45) @y +H 4).... (10)

We have made a distinction between horizontal and vertical lines of the lattices by
giving them separate selector variables x;; and x;, but otherwise this operator is

17 Vol. 322. A.
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obtained from the product of operators that generates the Whitney polynomial by
omitting all the terms involving P’s and D’s. Which subgraphs does the trace of (10)
enumerate?

If we start and finish with all M points in a row connected we enumerate just the
trees on the lattice. The absence from (10) of all terms involving the P’s means that
the graphs involved cannot contain any circuits, while the fact that there are no
terms involving 1’s means that we are concerned only with one-component graphs.
(We give in the appendix the straightforward, but rather lengthy, graph-theoretical
argument on which the last statement is based. For the plane square lattice, it
follows also from the duality relations that we shall prove shortly.) Other matrix
elements making up (10) correspond to our starting and finishing with graphs
containing more than one component, that is to say with ‘forests’ of two or more
non-overlapping trees. By using relations (8), the operators for the Whitney poly-
nomial can be factorized, and instead of (10), we have, for the whole transfer

operator (1425 Qo) (1 +9Pge) (@ + Hg) (1 + Dyay).... (11)

The trace of any product of the ’s and E’s either vanishes, or designates a tree
(together with the ‘forest’ generated from it by omititing one or more of the branches
in the first and last rows of the lattice). The effect of the factors involving the P’s
and D’s is to weight some of the trees with factors of the type 1, 1+ or 1+1/xp,
the precise number of such factors depending on the particular tree and on the order
in which the factors come in (11). Tutte (1954) showed that, if we take all the trees
in the lattice and weight each one of them according to a rather complicated pre-
scription based on putting all the lines in the lattice in some sort of dictionary order,
looking at each tree and weighting each line in the lattice using, for each, one of
these factors 1, (1-+y) or (1 + 1/z), we arrive at what Tutte calls the ‘dichromate’ of
the lattice, which, to a factor, is just the Whitney polynomial (6). It can, in actual
cases, be explicitly verified that the process indicated by (11) is equivalent to
numbering the lines of the lattice in a particular way and then applying Tutte’s
prescription. (1954) (the result of which he proved to be independent of the num-
bering convention actually used).
4 B ¢ D
iy ¢y

Ficure 3

To derive the dual relations between these operators let figure 3 represent a small
portion of the original lattice denoted by letters. As usual, the dual lattice is built
up of points, one for each empty polygon, which are denoted by numbers. Corre-
sponding lines, e.g. 1’2" and 4 4’, or 22’ and 4 B intersect at right angles. We
associate graphs on the original lattice with graphs on the dual lattice according to
the following rule. If aline, e.g. 4 A’, is present in the original graph its counterpart
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1’ 2" is absent from the associated graph on the dual lattice and vice versa. In figure 3,
we suppose that the dual lattice has been built up as far as the lines 1’ 2’, 2" 3’, 3" 4/,
ete., so that 1’, 2’, 3’, ete. are ‘outside’ points and that the original lattice has been
built up as far as the lines 4 A’, BB’, C (', so that A’, B’, C" are ‘outside’ points in
the original lattice. (Lines like A’ B’, B’ C' have not yet been added.) In the dual
lattice the operator P, selects just those graphs for which the points 2, 3’ are con-
nected, either directly by the line 2’ 3’, or else indirectly by paths like 2" 23 3", The
assertion that there is, in the dual lattice, such a direct or indirect path connecting
2" and 3’ is equivalent to saying that, in the original lattice, there is no path con-
necting B’ with either 4" or ¢ nor, for that matter, with any of the other ‘outside’
points like D’ in the original lattice. Furthermore any path connecting B’ and ¢’
on the original lattice (with the exception of the direct line B’ C” which has not yet
been added to it) must inevitably cross somewhere any path that connects 2’ and
3’ on the dual lattice (since we may not use lines like B’ C").

In other words, if we associate graphs on the original lattice with graphs on the
dual lattice by the rule just given, the operator P, selecting graphs in which
2" and 3’ are joined in the dual lattice, is equivalent to the operator Dy, which selects
graphs on the original lattice for which B’ is isolated from all other ‘outside’ points.
Reciprocally, we can infer the equivalence of Dy and Py (., etc. We can also infer
the equivalence of operators like ¢)y.5 and E .. For @, selects those graphs in which
2" and 3’ are not connected in the dual lattice and then introduces such a connexion,
and this is easily seen to be the counterpart of selecting those graphsin which B’ is
connected to at least one of the outside points 4’,C’, D', ..., on the original lattice
and then isolating B’ from all of them.

It is easily verified that this dual relationship between operators has the
relationship of Whitney (1932)

W) = oy W (5. 2) (12
y @
as a particular consequence. Sykes & Essam’s (1964) relations between the genera-
ting functions for the expected numbers of components of a graph and its dual then
follows as a particular case, using (6a).

7. PARTICULAR REPRESENTATIONS OF THE TRANSFER OPERATORS

A fairly obvious principle to try out is to represent the nodes of connexion among
the points, 4, B, C ... as follows:

(4) by (l%@) (4B) by (ﬁi‘;ﬂ-@), (ABC) by (ﬁfﬁgﬁ@),etc. (13)

so that, for example the mode of connexion

(4) (BCD) (EF) is represented by (1 +2’U'A) (1 +'LL1;'LLC’MD) (1 +'L62E'MF) .
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It is then easy to obtain related representations of particular combinations of the
operators P and @ and of D and E. For example, it is readily verified that D, + ¥ ,
is represented by %(1+8 ) because this operator sends

(1+/u) . (Hm). (M)%(l +/h4)(1 +ﬂ3ﬂo), (14)

2 2 ’ 2 2 2

i.e. it sends (4) (BC...) into itself and (ABC) into (4) (BC), ete. Moreover, 1 +C,Cp
can represent 2P,z + () 5 because it sends

(1 +,u,4) (1 +ﬂ3) N (1 +/I’AﬂB>; (1 +mﬂ3ﬂo) o (1 +ﬂAﬂBﬂo) a5

2 2 2 2 2

However, these results proved difficult to generalize, the factors of 2in (15) are very
troublesome and a fundamental flaw in this representation was found. We have seen
that for M = 3 there are five different possible modes of connexion but the above
representations of them are not, as they should be, linearly independent. For M
large, there are too few linearly independent functions of the p’s, 2™ in fact, to match
the number of possible modes of connexion of a row of M points, which, as we shall
see presently, is asymptotically proportional to 4™ for a planar lattice.

However, some of the results suggested by (14) and (15) are, in fact, correct. If
these representatives were truly linearly independent, the problem of calculating
the trace of the corresponding transfer matrix would become equivalent to the
solution of the Onsager problem (1944) (after making the transformation of oper-
ators C,—8,; S, —C,). In fact Kasteleyn & Fortuin (1969) have shown, by an entirely
different method, that the Onsager problem without magnetic field is, in fact,
equivalent to the result suggested by (14) and (15), namely to an enumeration of
the subgraphs of the lattice according to their numbers of lines, an extra factor of 2
being inserted for every independent circuit in each subgraph. (According to (15)
a factor 2 is associated with each P type operator.)

The above suggests that we need 2M spin variables to form the basis of a represen-
tation of all the distinet ways in which M points 4, B, C, ... in an open row can be
connected. We first classify those ‘modes of connexion’ that are possible on a planar
lattice. (Already, for M = 4, we notice that the mode (4C) (BD) is impossible, since
it certainly implies some crossing of bonds. We are already aware of quite a number
of enumeration problems that become impossible if the lattice is non-planar so we
shall be wise to take account of this point.) Point 4 in the row is either isolated, or
is connected to one or more other points in the row. Choose the farthest of these
from A, say K, then K cannot be connected to any point to its right but may be
connected to any or all of the points between it and 4. Because of the existence of
the connexion between 4 and K none of the points between 4 and K can be con-
nected to points to the right of K without some crossing of bonds. Let f(n) be the
number of ways of connecting up n points in a row, subject to the above restriction.

Then Fn) = Fn—1)+fn—2) +f(n—3) f(2) +f(n—4)f3).... (16)
mode (4) mode (AB) mode(4C) mode(AD)
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The first term corresponds to point 4 being isolated. There are then f(n — 1) ways of
connecting up the remaining points. If 4 is connected solely to B, there are f(n — 2)
ways of connecting up the remaining n— 2 points. If point 4 is known to be con-
nected, at the farthest, to point C, point C may, or may not, be connected also to
point B hence the factor f(2). The factor f(n— 3) then describes possible modes of
connexion of the n — 3 points to the right of C. If point 4 is known to be connected,
at the farthest, to point D, point D may, or may not, be also connected to either or
both of points B and C, hence the factor f(3) and the factor f(n—4) describes the
modes of connexion of n — 4 points to the right of D, ete. Equations such as (16) occur
in a large number of enumeration problems, and the generating function is of
a well known type.
Defining ©

we find easily from (16) that

g(z) = 1;%;2“9—% (17)

Equation (17) confirms the statement that the number of possible modes of con-
nexion is ultimately proportional to 4M.

We have already stated that a very large number of sets of objects of mathematical
and physical interest are enumerated by (17). For example:

The quantum states of an assembly of 2M electrons, with total spin zero (which
implies a magnetic moment of zero).

The number of independent commutators that can be formed of M + 1 operators.

The number of ‘lattice permutations’ (in the mathematical sense) of 2M numbers
in an (M x 2) Young tableau.

The number of even—odd pairings of 2M points round a circle that can be realized
without any crossing of the straight lines joining the M pairs.

The number of one-dimensional random walks of 2M steps, each of which may be
to the right or the left, that eventually return to the origin, subject to the condition
that no part of the walk ever goes to the left of the origin.

We follow the treatment of the Heisenberg problem used by Hualthen (1938) and
others. We study an assembly of 2M spins which we label by numbers and use the
bracket notation [1 2] to mean (u;—u,), etc. We can show inductively that there is
a (1-1) correspondence between their wavefunctions with total spin zero and the
possible modes of connexion of an ‘outside’ row of M points on a planar lattice.
Using the classification (16), we begin with [1 2] whenever the first ‘outside’ point 4
in the lattice is isolated, we begin with [1 4] whenever the mode of connexion on the
lattice is of type (A B), with [1 6] whenever the mode of connexion is of type (4 C),
with [1 8] whenever it is of type (4 D), ete. Proceeding inductively, we can infer
from equation (16) a 1-1 correspondence between Hilthen type wavefunctions
involving 2M spins and possible modes of connexion involving a row of M points on

17-2
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a planar lattice given that it exists for smaller values of M. Specifically, we have
for M=2 [12][34]>(4)(B),[14][2,3]> (4 B),

and for M=3 [12][34][66]>(4)(B)(C),
[12][36][45]—(4)(BC),
[14][23][566]— (4 B)(C), (18)
[16][23][45]—>(4ABC),
[16][25][34]—~ (4 C)(B).

Hualtheu (1938) studied the problem of a one-dimensional array of electrons with
a nearest-neighbour interaction of Heisenberg type, with 4 =1 in (1). Such an
‘isotropic’ Heisenberg interaction can be reduced to a permutation operator 1 —T,,
where T, sends g, and u, into one another. We have, in fact

(1-Ty,)[12] = 212],
(1T [12][34] = [41][23], (19)
(1—T,,)[41][23] = 2[41][23].

That is to say that these permutation operators are of just the type we require for
discussing connexion problems on a lattice. (1 —T;,) always has [1 2] as end-result,
corresponding, according to (18), to configurations with point 4 isolated and must
therefore represent 2D ,+ E 4. Also, according to (19), (1—T,;) will always have
[2 3] as end result. ixamination of representation (18) shows that [2 3] always means
that points 4 and B on the lattice are connected (and analogous results are true
generally) and we conclude that operator (1 —T,;) represents 2P, 5+ Q 5.

Thus, we are saddled with unwanted factors of two of the same type as that which
appeared in (15). However, we have got over the fundamental difficulty that vitiated
representations of the type (13), since we can now prove formally that the number
of independent Hulthen wavefunctions for 2M spins is precisely the same as the
number of admissible modes of connecting up M points in a row on a planar lattice.
(An inductive argument, based on a comparison of expressions (16) and (18), in fact
shows how to set up a (1-1) correspondence between these two sets of entities.) We
are led to look for transformations of these operators which nevertheless retain the
form of the relations (19), but with different numerical coefficients. Such trans-
formations indeed exist, but the transformed operators are complicated.

The most useful type of operator to replace (1-T,,) in (19) seems to be the

following:
14s)(1— _
Uy, = [24_0102} LL{;@.F [54.0102] (i_ﬁ)z(_l_si), (20)

which was found by a systematic study of operators obeying relations like (19). The
Hilthen type wavefunction is replaced by

ey =4 +ﬂ1)4(1 —#) A —ﬂ1)4(1 +i) (20°)
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which reduces to ; — yy if » = —s = 2 for which case (20) reduces to (T;,— 1) and we
recover (19). Using these new operators and Halthen symbols it will be found that,
instead of relations (19) we have, for example,

U [34] = (£+;—f) [34],

Uy[23][45] = [25][34], (19)
Uy[3 6114 5] = [34][56],
Uy[14][23] = [12][34].

In these relations, we suppose that the 2M electrons are arranged in a ring and are
numbered in aline 1,2, 3, ...,n— 1, n. The last three relationships can be represented
graphically. They correspond to the three situations that can occur if 3 and 4 are
in different brackets. The two points joined to 3 and 4 can be both to the left of 3,
both to the right of 4, or 3 can be joined to a point on its left and 4 to a point on its
right. These situations are shown graphically in figure 4.
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Ficure 4

This represents the three topologically distinct ways in which electrons 3 and 4 can
each be associated with one other electron, without any crossing of lines, that is,
excluding functions like [14][25]. It is known that sets of wavefunctions such as
(18), in which each bracket contains one odd and one even number and ‘crossings’
are not allowed, form a linearly independent set. In the appendix, we prove that the
more general functions formed out of ‘generalized Halthen brackets’ like (20’) are
also linearly independent. Relations (19’) differ slightly in form from (19) in that
in (19') two numbers in a bracket always appear in their natural cyclic order.

We now suppose that these electron spins are disposed on the lines of an auxiliary
lattice, which is related to the points on the original lattice (shown in brackets as
(A4)(B)(0), etc.) in the manner shown in figure 5. This exhibits a relationship
between a row of M points in the original lattice and a set of 2M lines that we group
into odd-even pairs, according to Hilthen’s formalism. As exemplified in expres-
sions (18), each possible way of grouping the lines into odd-even pairs is associated
with a mode of ‘connecting up’ a row of M points on the original lattice by bonds in
this lattice. Thus, the presence of [12] means that point (4) is isolated, the pres-
ence of [2 3] means that points (4) and (B) are joined, ete. It can be verified that

17-3
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operators (20) represent the following abstract operators (see the definitions of Pz,
Q45 D4 B4 in §5).

r s ros
Uy, = (g+;) Dy+Ey; Uy= (;4';) Pip+ Qs

The u’s in (20) and (20’) are associated with the lines of the auxiliary lattice shown
in figure 5.
We shall be interested in finding the trace of a product such as

cei(L+2Ug) A+ 2ly) ... 1+ XUs,) (1 +XTy) ..., (21)
where the selector variables z and X are usually different for a problem of ‘percola-
tion’ or ‘ chromatic’ type. Also in the ‘percolation’ problem we are interested in the
case r/s+s/r = 1,1i.e. r/sis complex. We shall show presently that, apart from these
analytic complications, the finding of the trace of an operator such as (21) is effec-
tively equivalent to solving problems of ‘generalized ice’ type as effected by Lieb
(1967a to d).

(4 &) . () (D)
5 6

(4) B (0 (D)

Ficure 5

Both the mathematical treatment and the interpretation of ‘ice-like’ problems
are very much simplified if we build up our lattice diagonally instead of horizontally
or vertically. Lieb (1967 a to d) solved his problems by setting up operator relations
between ‘arrow configurations’ in successive rows of vertical arrows (thus losing
the symmetry between vertical and horizontal). Their operator structure is compli-
cated, and their relationships with Heisenberg type problems only become apparent
when their eigenfunctions are found. From the new point of view, the relevant
Heisenberg-like operators can be written down almost directly, for an ‘ice-type’
problem or for the problem on the auxiliary lattice that we associate with a
“percolation type problem’.

We use a new method of building up a plane square lattice, line by line this time.
We associate a ‘spin’ variable with each line, according to the direction of its arrow,
and we number the lines according to the conventions shown in figures 5 and 6a.
We turn the plane square lattice anticlockwise through 45° (compare figure 6b).
Each row of lines is built up, one line at a time, and the lines are added in the order
123...1°2'3"...1"72" 3" (figure 6a). These remarks apply both to the actual lattice
in an ‘ice-like’ problem or to the auxiliary lattice that we use in a ‘percolation’ type
problem. An arrow (or spin variable) is associated with each of the lines in
figure 6 or 6b.
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We restrict ourselves again to arrangements of arrows such that, at each node
of the lattice shown in figure 5 there are 0, 2 or 4 arrows in the positive directions.
We use the convention that a positive direction of arrow is upwards or to the right
(figure 6b) and is associated with 4 = + 1, or with (1 + ). The result of this restric-
tion is that there are again eight possible types of node (figure 7). If we wish to assign
different weights to them, we can do this by means of operators of generalized

5/
4’ 5
3’ 4
2! 3
o 2
1
[y
Ficure 6a Ficure 60
(1) (2) (3) (4) (5) (6) (7) (8)
+ - - + + - + -
++ - +4+ —r= Fr= =t =4 -
+ — - + — + - +

Figure 7

Heisenberg type. Suppose that we have added all the lines forming the row
(12345...) in figure 6a. The operator describing the possible ways of adding the
pair of lines 1’ 2’ can now be written down as a sum of terms, one term corresponding
to each permitted type of node. The conventions for distinguishing node types are
exhibited in figure 7 in terms of positive and negative signs and will be found to
agree with those of figure 1 (which are expressed in terms of arrows).

The form of operator that we now use is associated with a sum of terms, one
corresponding to each of these types of node. The operator associated with the node
of type (4) is, for example, C; Cy(1+8,) (1 —8,)/4. In words, we first select from all
the possible configurations of the row (1234...) (figure 6a) those corresponding to
bond 1 being positive and bond 2 negative, by means of the operator (1 + ;) (1 —8,).
The further operator C; C, now changes %(1+ ;) (1 —u,) to (1~ u3) (1 4 u3) in view
of the fact that this correctly describes the configuration (1’ negative, 2’ positive)
of the two remaining bonds at a node of type (4) (see figures 6b and 7). For some types



268 H. N. V. Temperley and E. H. Lieb

of node the operator C; C, is absent, for example the operator corresponding to the
addition of a node of type (1) is just £(1+8;) (1 +48,) (see figure 7). The effect of
restricting ourselves to nodes with even numbers of positive arrows is that operators
O, and C, never appear separately.

Rather than writing down these ‘Heisenberg-like’ forms of each of the operators
corresponding to nodes of types (1) to (8), it is more illuminating to define each of the
operators J; to J; as the effect of adding the corresponding type of node to the lattice
in the position (12,1’2) and to express operators such as C; C,, S;8,, ete. in terms

of them.

TaBLE 1
I =J+J,+J,+J
8,8, =Ji+Jy—J,—J,
S, = J —Jy+J—J,
Sy =J—Jy—J;+J;
0,0, = S+ +d5+Jd
CyCy8, 8y = —dy—Jy+J5+J;
0,0,8, = _J3+J4+J5—Je
0,C,8, = “Ja_J4+J5"J6

For the first four ‘diagonal’ operators the configurations of the ‘initial” pair of
bonds (12) and the ‘final’ pair of bonds (1'2’) are the same, for the last four
‘off-diagonal’ operators the signs of bonds 1 and 2 are both reversed.

In the original ‘ice’ problem we excluded nodes of types 7 and 8 because (see
figure 1) they correspond to all arrows pointing respectively away from the node or
towards it, which are excluded by the ‘ice’ condition. All the other types of node
from 1 to 6 are permissible and are weighted equally. Therefore, the problem of
calculating the entropy of the ‘ice’ model reduces to that of calculating the trace
of the product of operators of the type [$(1+8,8,)+ C,C,], one such operator for
each node of the lattice. Similarly, for the generalizations of the ‘ice’ problem
studied by Lieb (1967a to d), the relevant operators are now weighted sums of the
operators J; to Jg, the relative weights given to them being the various Boltzmann
factors appropriate to each type of node.

Obviously, the operator forms of these problems are greatly changed by this
device of building up the lattice in a diagonal, rather than in a horizontal or vertical
direction, and should lead to simpler treatments. We have shown that problems of
the ‘colouring’ or ‘percolation’ type are also reducible to these ‘generalized Heisen-
berg’ problems. We have, however, the additional complication that the addition of
one row of nodes 1 to M to the original lattice corresponds to the addition of a row
of 2M lines to the auxiliary or ‘Heisenberg’ lattice shown in figures 5 and 6 and we
have further pointed out that such problems will, in general, involve different selec-
tor variables for operators of the two types, Uy, Usy, U, ete., and U, Uy, Uy, ete.

It has been pointed out by Fan & Wu (1970) that symmetry and other relations
lead to a very large number of possibilities of transforming these ‘ice-like’ problems
into one another. The device of building up the lattice diagonally rather than
horizontally or vertically obviously opens up a whole fresh set of such possibilities.
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8. THE GENERAL WHITNEY PROBLEM IN OPERATOR FORM

We set out below the Whitney problem for a plane square lattice, express it in
operator form and then convert it into a Heisenberg-like problem on the auxiliary
plane square lattice. The problem will then be specialized to the ‘percolation’ and
‘chromatic polynomial’ cases.

The full Whitney problem is to evaluate the sum (over all subgraphs ¢ of the lattice
containing L points)

S = ZCeYSe Balf W (wyy, vy, Z, Y), (22)
G
where (L. — () and S, are respectively the rank and nullity of @, and I, I, are the
numbers of horizontal and vertical bonds in ¢. Z, Y, xy, 2}, are the corresponding
selector variables. Because of the Euler relation.

one of these four selector variables is redundant. (We have three independent
selector variables compared with Whitney’s two because we desire to keep separate
records of the vertical and horizontal bonds in G.)

In operator form the evaluation of W is equivalent to finding the trace of the
product of the following type

W, 2p, 2, Y) = tr U (xp+ZD 4+ [E4[a]) 1 (1 + Yoy PyptoxgQup),  (23)

one factor for each horizontal or vertical bond on the lattice, where, as we have seen
from equation (9), « is a parameter that can be chosen arbitrarily without affecting
the trace. We can write this relationship slightly more symmetrically thus

/ B,

oW =+trll... (1 +x—VDA+a—~%) NA+Yxyg Pip+oxgQug)- .. (24)

and the dual transformation can be shown, by applying the argument that led to
equation (12), to send

— ’ — ’
gt —>xp, aplozyg, Y 1>Z', Z71->Y, (25)

i.e. the dual transformation interchanges horizontal and vertical lines present and
absent and also components and independent circuits present and absent. Equation
(12) is a particular case of this.

For the theory given above to be applicable, the ratio of the coefficients of D , and
E_, must be the same as the ratio of the coefficients of P, and @ 45, which implies
a? = YZ. If, in expression (20), we write e’ for r/s and use (19) we conclude that

U, represents 2cosh6D, + % ,,
U,; represents 2cosh0P,p+@Q 5.

With the above choice of «, the selector variables appearing in expression (20),
that is in the operator product

(L +XUL,) (1 4+ XUy, ... (1 4+2Uy) (1 +2Uy) ... (26)
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are related to the selector variables occurring in the Whitney polynomial (22) as
follows
X = 74| Yia,, x= Yixy/ZE 2coshl = (YZ)h (27)

The chromatic polynomial is, to a factor, the Whitney polynomial for the
following special values of these variables: Z =1, Yz = —1 (a weight of —1 for
each line completing a circuit), 25 = @, = — 1/k (a weight of — 1/k for each other
line) from which we conclude that in (26) X = —k~%, ¥ =k, v = — k%, 2cosh 0 = k3.
In terms of the J operators, Table 1 and expression (20) of text, we have

Uy = Jy+Jy+e 0T+ e .

For the particular choice of selector variable occurring in the chromatic polynomial
the weights given to each type of node by the operator 1+ XU, are indicated by

1+ XUy = Jy+ Jp— Ty — I+ (1 - b e~0) I, + (1 — ki ) J, (28)

1+aU,, having an analogous expansion with k* replaced by k—%. [The operators
J; ... Jy are of course different in the two cases operating respectively on (u;; p,)
and on (s ft3). ]

We can also formulate the percolation problem as a particular case of the general
Whitney problem expressed in operator form in (23) and (26). We are interested
mainly in the expected number of disconnected components on the lattice as a

function of z;; and x;,. This is given by

o 7}
Ce= [Z—éz{ln Wz, 2y, Z, Y)}J , (29)

V=2z=1

or we can calculate the sum of the expected numbers of components and circuits

as follows

~ T 7

oz z=1
where W is given by (23). The calculation of W itself is trivial for the special case
Y = Z = 1, for we have simply that any of the L horizontal lines may be present
or absent, so may any of the L vertical lines, and the generating function for all the
subgraphs is simply
W(xH’ Ly L, 1) = (1 +xH)L (1 +xV)L>

since Y = Z = 1 weights all the subgraphs equally. The percolation problem is
equivalent to calculating the differential coefficient with respect to Z, afterwards
putting Z equal to 1. A more general version of the problem is to calculate W as

a function of xy, x;, and Z.
According to (24) this is the problem of calculating

Z 1
xT;LW(xH’ Ly Z’ Z) =trll (1 +;,DI+ZU—VEZ) x IT (1+ZxHBm+xHQIm)’ (31)

where we have put the disposable constant a equal to unity.
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At present, we can give an exact solution of this problem in only one set of cases,
that in which x;; = 1/, = « (say). These are known (Sykes & Essam 1964, 1966), to
be the critical cases of the percolation problem, for we have p, the probability that
any given horizontal line is present is p; = /(1 + @) with a similar relation for p;,.
Thus, for these cases 2, = 1 implies py +p, = 1, and py+pp > 1 is the critical
condition for large connected domains to form.

To evaluate W(x, 1/x,Z,Z) in the form (24) we want to calculate

trll 1 +xZF,,+2Q,,) ... 11 1 +2ZD,+xE)) ....

Using the representation (20) we conclude that this is equivalent to calculating

tr Il (1+2Usy)... I (1 +2U) ..., (32)
where U, represents 2cosh0D ,+FE, and U,; represents 2cosh0P, z+ @ 5 as
before. For this problem 7 — 2cosh . (33)

In terms of the J operators (table 1) we have
Uiy = Jy+JytelJ;+elJg
with a similar expression for Uy. Also using table 1, we see that the operator 1+ 20,
is represented by

V2l = Jy+dy 4wyt ady + (L+we ) Jy + (L+e?) J, (34)

and we suppose that the auxiliary lattice shown in figure 4 to be built up diagonally
in the way shown in figure 5@ and described above in words (p. 266). The addition
of the lines (1’, 2’) in figure 5a corresponds to the application of the operator 1 +xU,,
the addition of the lines (3’, 4) to the application of the operator 1 +xU,, and so on.
Proceeding to the next row of lines, the addition of the pair (2", 3") corresponds to
applying (1+aU,), the addition of the pair (4”,5") corresponds to applying
(14+2U,) and so on. That is to say that the addition of two rows of lines to the
auxiliary lattice corresponds precisely to the successive application of the two
operator products II(1+xU,,) and II(1 4+ xU,,), which, in turn, corresponds to the
successive application of the two operator products in (32) that is, to the addition
of a row of points, and some or all of the lines incident to them, to the original lattice.

In the special case we are considering, 1/x, = x; = z, the operators 1 +zU;, and
1+2U,, both assign the following weights to the various types of node in the
auxiliary lattice:

TABLE 2
node type H @ 6 @ B (6 () (8)
weight 1 1 x x 0 0 I+4+xze® 1+4xef

these weights being the same for both sets of operators. By taking two further steps,
we can reduce this to a problem whose solution is known. We revert for a moment
from a description of the node types in terms of spin variables (figure 7) to a descrip-
tion in terms of arrows (figure 1). Of the permitted types of node type (8) corresponds
to a ‘sink’ of arrows, type (7) to a ‘source’ of arrows, all others corresponding to the
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specification ‘two in and two out’. We can therefore infer that, at all events if we
have a ‘torus’ or ‘screw’ type of boundary condition so that there are no ‘raw edges’
of the original or of the auxiliary lattices, the numbers of nodes of types (7) and (8)
must be exactly equal. It will, therefore, make no difference to the eigenvalues and
traces of our operators if we replace both the weights (1+ze~%) (1+xef) by the
square root of their product (1 + 22+ 2z cosh 0):. We now apply the transformation
corresponding to reversal of all the horizontal arrows in figure 1 which sends J; < Jj,
Jy g, Iy oy, Jg > Jg, and changes the weights from those given in table 2 to those
given in table 3 below. These are compared with the weights assigned to a ‘general-
ized ice’ problem of which the solution has been given by Sutherland (1967).

TABLE 3
node type 1 @ 6 (5) & (6) (7) & (8)
weight in transformed problem x x 1 1 (1+422+2xcoshf)* 0
AT ORT o=0/2T o-8/2T o6l 0

weight in Sutherland’s problem

Comparison of these makes it evident that the problems are equivalent, if we make

the identifications
x=¢eT; 1+a%42xcoshl = e¥/TedlT (35)
and introduce a multiplying factor 2? for each node in the auxiliary lattice.

It is only in the special case x5 2, = 1 that we can, at present, reduce the percola-
tion problem to an ‘ice-type’ problem whose solution is known. If x; differs from
1/z;, we can still carry through the same steps but we arrive now at what might be
called a ‘staggered ice’ problem. By this we mean that now the auxiliary lattice has
to be divided into two interlacing sublattices, with two different sets of weights for
the six node types on the two sublattices. (Reference to figure 6a shows that the
two sublattices in fact correspond to successive rows of nodes of the auxiliary lattice
if we follow the plan of building it up diagonally described above.) This ‘staggered
ice’ type of problem is akin to the antiferromagnetic Onsager—Ising problem. It can
be handled by a suitable modification of the Bethe—Hulthen ansatz method, but we
reserve discussion of this for another paper. For the present, we confine ourselves
to deriving some exact results for the percolation problem in the critical cases
2y = 1. (It is very reasonable that the critical cases of the percolation problem
should correspond to equal weightings of the nodes in the two sublattices that make
up the auxiliary lattice. In the Onsager—Ising antiferromagnetic problem the two
sublattices become indistinguishable at the critical temperature.)

9. EXACT RESULTS FOR THE CRITICAL CASE OF THE
PERCOLATION PROBLEM
Sutherland’s (1967) result is that the transfer-matrix problem specified in table 3
has the same eigenfunctions as a Heisenberg type Hamiltonian with anistropy
parameter 4, where 24 = 2cosh (§/T)—e*/T which, using (35) and (33), gives
A =—coshl =—1Z;el" = g. (36)
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In using the result given by Sutherland (1967) to evaluate the Whitney poly-
nomial W(x, 1/x, Z, Z) for the limiting case of a large lattice, the following points
must be remembered: ,

(@) The auxiliary lattice has twice as many nodes as the original lattice (see
figure 5, where letters represent nodes of the original lattice and numbers lines of
the auxiliary lattice).

(b) The initial factor 2% for each node of the auxiliary lattice, to allow for the
differences between the weighting of the nodes in Sutherland’s problem and in the
transformed form of our problem. (See the comparison in table 3.)

(¢) The version of Sutherland’s problem which is of interest to us corresponds to
an ‘ice’ type problem with electric field zero. For this, the relevant value of
Sutherland’s parameter, y, corresponding to the largest eigenvalue of our problem,
is zero.

We can now use table 3 and relations (36) to transcribe Sutherland’s result to our
notation. We find, using (31), (32) and (34):

W(Z’, 1/%’, Z, Z) — 2L exp I:pr(k) dkin {(Z"l‘x)?—f- 1 +2(Z+x) Cos k’}] , (37)

x+1jz—2cosk

where p(k) is a function related to 4, that is to say to Z in this problem, by an integral
equation (Yang & Yang (1966), equation (6a)). For the case y = 0 that we are
interested in, this integral equation can be solved explicitly by changing the
variable from % to « by the transformation

i __ e
ol — & % (38)

extin 1’
where cosy = —A = }Z. In terms of this new variable, the Yang & Yang integral
equation is soluble by Fourier transforms, and we find

de e
plk)dk = Yy sech (@) , (39)
which is valid for the interesting range of values —1 < 4 < 1 (i.e. Z between 2 and
—2). Using (38) and (39) in (37) together with the fact that the integral of p(k) is %

(in conformity with the fact that for y = 0 there are just 1L factors in Sutherland’s
product expression for the largest eigenvalue of the transfer matrix), we find finally

Wz, 1/x,Z, Z) = x“exp [%/;fw da sech (;—Z)

1 (1 + 22 cos p + 22) cosh oc — cos 3 — 22 cos 2 — x cos y (40
(14 2z cos pt+x?) cosh e — (2% + 1) cos pp — 2 ’ )

where cosy = $Z = cosh 6.

It is straightforward, but tedious, to verify that, in the special case Z = 1, this
reduces to the required form (1+x)2%/«L. [By the substitution s = sinh (}e) (40)
reduces to straightforward contour integrations for this special value of x.]
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For the special case = 1, that is to say with horizontal and vertical bonds each
open with a probability %, the critical value in the symmetric case, (40) simplifies
to the following generating function:

+oo -
W(1,1,Z,Z) = exp [% _wda sech (12%) In (%(f—sl%)]. (41)

This integral has not yet been evaluated in closed form but its analytic behaviour
is known, since it has already appeared in the exact treatment of Rys’s F-model
of an antiferroelectric (Lieb 1967b).

10. DISCUSSION OF THE PROPERTIES OF GENERATING FUNCTION (41)

The integral can, in principle, be evaluated whenever x is a rational multiple of r.
The exact values in table 4 are enough to give a general idea of the behaviour of

InW as a function of x or Z.

TABLE 4
w l Z l (1/L)InW
o | 2 4In[I(})/20(3)] = 1.56632...
im 1 In4 = 1.38629...
b 0 (4/1) x Catalan’s constant = 1.16624 ...
2 -1 ‘ 3In% = 0.86304...
™ —2 0

Professor Cooper’s results are given in the appendix (table 6). The case Z = 1, for
which the generating function is trivial, is discussed above. The case Z = 0 is the
problem of the number of trees on a plane square lattice, and checks with the value
obtained from Kirchhoff’s determinant (Temperley 1958). For Z = —1, table 3
shows that we recover the ice problem, all nodes being weighted equally for z = 1.

We infer that the form of In W as a function of Z has a radius of convergence of 2.
At Z = 2 the function has a natural boundary but all derivatives with respect to x
are finite (Lieb 19670). At Z = — 2, the generating function becomes oscillating, the
contributions from even and odd values of C;+S,; cancelling out.

As already stated, (41), considered as a function of Z, is the generating function
for Oy + 84. At critical conditions the expected number of bonds is just L (2L bonds
present each with probability %),so the expected numbers of circuits and components
are equal. The integral is awkward to handle numerically, because of the logarithmic
singularity at « = 0. Professor D. C. Cooper has kindly tabulated the integral for us
and estimated the first two derivatives with respect to InZ at Z = 1, which gives
the expected values of Oy + 8, and (Cy+Sg)? for the percolation problem in the
critical case. Unfortunately, the only comparison that is possible at present with
series expansion work is with the two types of expansion, ‘perimeter’ and ‘irredu-
cible diagram’ given by Sykes & Essam (1964, 1966). The convergence of either type
of series af the critical probability § is a matter for speculation, however, M. F. Sykes
& J. W. Essam give (private communication) the following estimate for O on the
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basis of much longer expansions now available. This is compared with the value
obtained from (41) (table 5). Agreement can be considered excellent. Information
is also available on mean sizes of components, but it is not easy to see how to make
a valid comparison with (41), since (41) includes the contribution from isolated
points in the subgraph, each isolated point contributing 1 to C,;.

TaBLE 5
Estimates of g, the expected number of components for p = _
from Professor Cooper’s estimate of the derivative of (41) O = L x0.0980,
from eleven terms of perimeter series Ce > L x0.0939,

estimated contribution of remaining terms (from extrapolation) L x 0.004,

11. PROSPECT OF FURTHER ANALYTIC TREATMENTS OF
INTERESTING PROBLEMS

We still have available only two basic analytic methods mentioned above, the
Bethe—Hulthen ‘ansatz’ method and the Kaufman—Onsager ‘spinor’ method. The
Bethe-Hulthen method depends for its success on fulfilment of the ‘ice’ condition
or something equivalent, because, as we build up a lattice row by row, we must be
able to assert that the total numbers of up and down spins remain constant from
row to row. We have shown that a particular case of the percolation problem can be
reduced to a problem of this type. Thus some versions of the Whitney polynomial
problem can definitely be solved now for certain ranges of the selector variables.
To what extent these ranges can be extended by analytic continuation and trans-
formations of the problem still remains to be seen.

The situation of the Kaufman—Onsager (1949) method is rather different. We
might expect to be able to factorize operators such as (20) (into the required form
of products of exponentials of quadratic spinors) in special cases only. (We recall
that the Onsager (1944) problem has itself only been solved for zero applied
magnetic field.) Thus, if we use transformations like (19), we might expect to fac-
torize an operator like (20) only if there were some definite relation between the
selector variables, e.g. those for numbers of lines and numbers of circuits. If we
congsider the percolation operator (34), it can only be so factorized in the limiting
case Z = 0, which, as has been pointed out above, enumerates trees and forests on
the lattice, an already solved problem.

Since the Kaufman-Onsager method does not depend on the ‘ice’ condition, it
is to be expected that it will solve problems outside the scope of the ‘ansatz’ method.
An algebraic criterion determining whether or not an operator of the type occurring
in (20) (when U is some linear combination of operators J; to J;) can be so factorized
would be very valuable.

Although it does not lead to anything new, it is, from this new point of view,
instructive to look at the Onsager model with first and second nearest neighbour
interactions. This can also be reduced to a ‘generalized Heisenberg’ type of problem
in the manner of Fan & Wu (1969). Let the spins be arranged on a plane square
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lattice. Draw all the bonds on the dual lattice that separate positive and negative
spins. These boundaries form closed domains, and 0, 2, or 4 lines therefore pass
through every node. Thus we have a problem to which the formalism (21) can be
applied. Identifying positive arrows with lines and letting e*#1, e*H: be the
Boltzmann factors for like/unlike pairs of first/second nearest neighbours, we assign
the weights shown in figure 8 to the eight types of node on the dual lattice.

(1) (2) 3 @ (5) (6) (7) (8)
weight e 2h+2H,  (2H 42, 2H, o°2H, 1 1 1 1
Ficure 8

(The enumeration of pairs of first and second nearest neighbours is easily checked
for each node.) The operator for each node on the dual lattice is easily written out,
and it is readily verified that, for these weights, it can be factorized into

$(e2H2+ 1) exp [ — $H,(8; +8,)][1 + C, Cy e~2H2]
X [1+ 8, Sytanh Fylexp[ — bE(S, +S,)].  (42)

The problem cannot be solved by the ‘ansatz’ method, because all eight types of
node are involved. Although the operator has factorized, we cannot express all of
81, 8, €1 Cy, 8,8, in the required form as quadratic spinors ! In the two limiting cases
H, = 0 or H, = 0, we are concerned respectively with the smaller sets C,C,, ..., S, S,
or with C;C,, ..., 8}, 8,, ..., either of which can be so expressed. In either of these two
cases we recover the Onsager (1944) problem.

It does not seem to be possible to derive the dimer problem directly as a limiting
case of the Whitney polynomial. This contains terms of the type Zi“zlZ 2%f with
lg +1y = 3L, but many graphs of different structure also give rise to terms with the
same powers of the selector variables. However Lieb (1967¢), using a slightly
different formalism, has shown that the dimer problem can be reduced to the
estimation of traces of products of operators like 1 +pC,Cy(1+5S;) (1+5S,), which
closely resembles the limiting form of (26) when the parameter o becomes large.

The problem of a mixture of monomers and dimers was formulated, though not
solved, by Lieb (1967¢), but only in terms of operators involving the C,, by them-
selves, and thus not strictly of ‘ice’ type. The problem of ‘rigid squares’ in which
a ‘molecule’ occupies a site on the lattice and the four neighbouring sites can also
be formulated in this way, but again only in terms of operators involving odd powers
of the C,, and thus not of the ‘ice’ type.
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APPENDIX. PROOFS OF CERTAIN RESULTS ASSUMED IN THE TEXT

We prove the assertion made in the text that, if the operator product (23) is
supposed to be expanded into individual products of operators of the type
w.D4Qpo ... each such operator either vanishes or corresponds to just one
possible subgraph on the lattice. Further, there is one D-type factor for every
disconnected component of the subgraph. If we take any particular subgraph on the
lattice, the rules given in the text tell us, at every step, which term to select out of
the three that occur in every factor of the operator product (238). Furthermore, since
the only operations deseribed by this operator product are the addition or omission
of bonds on the lattice, every term in this product must either vanish, if it calls for
an impossible sequence of operations like P, followed by D, or else must corre-
spond to a subgraph built up by such operations, that is to one of the subgraphs of
the lattice.

Consider any disconnected component of a subgraph. In it we can define a unique
point, which we call the summit, by the following rules:

(@) Take all the points that are connected, directly or indirectly by the lines in
this component.

(b) Take the highest row of points in the lattice that has at least one point in set (a).

(¢) Of the points in this row, take the one furthest to the right that is still in set (a).
This is the summit and there is exactly one summit for each component. Figure 9
represents a typical component of the subgraph. § is the summit of this component.
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We claim that, if the operation of adding the point S’ to the lattice is described
by the operator Dg, then S, the point vertically below §’, must be a summit.
Consider the situation when the point 8’ has just been added. The operator Dg
implies that: (a) 8’ isisolated after the addition of S’ to the lattice and that (b) S was
isolated immediately before S’ was added (that is to say immediately after the
addition of R’). Unless both these conditions are satisfied, the effect of Dg will
produce an impossible operation, and the corresponding term would vanish in the

operator product.

o P Q@ R & T U

Ficure 9

Now (b) implies that, immediately after the addition of R’, § was not connected
to R, @', P’ or O’, that is § was not connected to any point to its left in the row
immediately above it. Nor, since it was isolated, could § be connected to any point
to its right, such as 7" or U in the same row. Further S cannot be connected to §’,
since the operator Dy in the operator product (23) implies the absence of the line S§’,
and the two points cannot be connected indirectly since by (@) and (b) they are both
isolated from the set of points O, P’, @', R’, T, U through which any such indirect
path must pass. Since S is not connected to S’, not to 7' nor to U, ete., it cannot be
connected to any of the points 7", U’, ete., in the same row as and to the right of S*
that are later added in the process of building up this row. This row therefore forms
a barrier in the sense that no point in it can ever be connected to S. That is, we
conclude that § is in the topmost row of the component. That it is the right-hand
point follows easily. Suppose not. Then § is connected, via the bonds of the com-
ponent, with some point, say U in the same row and to the right of S. It would be
so connected at the moment of the addition of the point S’ and the appropriate
operation would then be Egrather than Dy, because Dg only gives a possible opera-
tion if § is isolated. Thus we have a contradiction and can conclude that § s the
right-hand point in the topmost row of the component.

Thus every summit point corresponds to a D operator. (A particular case of
a summit is an isolated point with no lines incident to it.) There is exactly one sum-
mit point per component.

It is also necessary to prove linear independence for the ‘wavefunctions’ used in
the text which consist of products of M ‘generalized Halthen brackets’. The general-
ized Hulthen bracket involves two of the spin-variables u;, x;.

[i,7] = (14 p) (1 —p5) + (1 — ) (1 +pe5)

1 (A1)

b
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where 7 and s are fixed constants. Our generalized ‘wavefunctions’ are products
of M such brackets taken according to the following rules:

(@) In any bracket i < j.

() Every number between 1 and 2M appears just once.

(¢) A pair of brackets [ac][bd] with @ < b < ¢ < d (which would correspond to
‘crossing of bonds’) never occurs.
We define ‘round bracket symbols’ (¢ j) by the relation

(1 +p) (L= p5)

(5 ) = SHEE ST (A 2)

and ‘basic wave-functions’ as products of M of these symbols not necessarily
obeying the rules (a), (b), (¢) but simply the conditions that there are exactly M
positive spins and that each spin is mentioned once.

A generalized wavefunction is uniquely determined if we specify the first numbers
in each of the M square brackets. Not all possible choices of these M numbers define
possible wavefunctions, but two different generalized wavefunctions can never
correspond to the same set of numbers.

Proof. Write the generalized wavefunction in the form

[@1b1] [@zbs] ... [anrby ],

with a; < @y < as.... (Also a; < b; because of (a) above.) Clearly a, = 1. We make
some choice of the other M — 1 ¢’s and try to choose the b’s so that we have a permis-
sible wavefunction. We must choose by = 1+ ay. If we do not we must have a
bracket [a;, 1+ay] with ; < ay and we cannot then choose any other number
for by without violating (¢). With the right-hand bracket fixed as [ay, 1+ ay],
a repetition of the same argument shows that the only permissible choice of by;_, is
‘the smallest number above ay;_, that is not ay; or by, that is, that has not already
been used’. We proceed inductively, filling up the brackets in turn from the right,
the choice at every step being determined by the rule: b; is ‘the smallest number
greater than a; that has not already been used’. It is easily shown inductively that
rule (¢) above is violated if any other choice is made for any of the b;. On the other
hand, it can happen at some stage that no b; can be so chosen, which means that the
corresponding choice of a;’s does not correspond to a permissible wave function.
Thus, we can label any generalized wavefunction by specifying the particular
choice of a;’s that gives rise to it. We can define a binary number by means of
the a,s, by replacing a; by the power 22=7. For example, for M = 3, the permitted
pairings are ordered in the following way:

[12][34][56]->25+23+2 = 42,

[12][86][45] 25+ 28+ 22 = 44,

[14][23][56]—25+24+2 = 50, (A 3)

[16][23][45]>25+ 24422 = 52,
. [16][25][34]>25+24+2% = 56.
We call this binary number f and we can use it to label the generalized wavefunctions
[square brackets]. We can also label the ¢’s (basic wavefunctions), by picking out
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the M positive spins and introducing, as in (A 3), the term 22~/ whenever spin j is
positive.

We now suppose the generalized wavefunctions to be expressed as linear com-
binations of the basic wavefunctions. Using (A 1) and (A 2) and remembering that
the two types of wavefunction are obtained by multiplying the corresponding types
of bracket together, we conclude, that if fis any binary number and ¢, ¢, are the
corresponding generalized and basic wavefunctions that

¥r; = r™¢, 4 other terms. (A 4)

The equality of the binary numbers specifying 1, and ¢, follows from (A 1) and the
methods of constructing the 1’s and ¢’s. Inspection of (A 1) shows that the ‘other
terms’ are obtained from ¢, by reversing the signs of the spins within one or more
of the brackets in the product of round bracket symbols that make up ¢,. Since, for
a permitted wavefunction i, a; is less than b, in any bracket, these interchanges
will produce from ¢, other ¢’s described by a binary number larger than f. This
means that the matrix relation between the ’s and ¢’s is triangular, with the
diagonal terms equal to 7™, any non-diagonal terms arising from ¢’s with a larger
binary suffix than f.

The linear independence of the ¢’s is obvious. That of the 3’s now follows from
(A 4), because, if f runs downwards in turn through the values that lead to a permis-
sible i, at every stage we have at least one new ¢ (namely ¢,) which has never
appeared in the previous equations. Further, it appears with the non-zero
coefficient #™. This proves linear independence, and in particular proves it for the
particular case r = —s corresponding to the Hilthen wavefunctions. We can now
also infer completeness, because the number of spin-zero wavefunctions for 2M

1 (2M
M+1\M

which also follows from generating function (17) of the text.

electrons is known. to be

TasLe 6. VALUES oF (1/L) In W cALcUuLATED BY COOPER FROM (41)

Z = 2co8p (1/L)InW Z = 2cos jt (1/L)yIln' W
~2.0 0 0 1.16624,
~18 0.41550, 0.2 1.21480,
—1.6 0.57220, 0.4 1.26077,
14 0.68757, 0.6 1.30450,
~1.2 0.78191, 0.8 1.34626;
~1.0 0.86304, 1.0 1.38629,
~0.8 0.93492, 1.2 1.42478,
—0.6 0.99988, 1.4 1.46190,
—0.4 1.05944, 1.6 1.49779,
~0.2 1.11464, 1.8 1.53258,

0 1.16624, 2.0 1.56632,
2
avz=1, LW (06, LW s,

L. oz L o073



