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A note on percolation theory 

J van den Berg? 
Department of Mathematics, University of Utrecht, The Netherlands 

Received 6 May 1981 

Abstract. In percolation theory the critical probability P,( G )  of an infinite connected graph 
G is defined as the supremum of those values of the occupation probability for which only 
finite clusters occur. 

An interesting question is the following: is each number between 0 and 1 the critical 
probability of some graph? It will be shown that the answer is positive. 

A remarkable intermediate result is that for an important class of graphs the following 
holds: for each p aPc(G)  there exists a subgraph of G with critical probability equal to p. 

1. Introduction 

Percolation theory, introduced by Broadbent and Hammersley in 1957, has become a 
fascinating field. It has many applications, especially in physics, where it gives insight in 
cooperative phenomena (e.g. spontaneous magnetism in a dilute ferromagnet) but also 
in biology (epidemics in a large orchard), geology and chemistry. Many such examples 
are described in Frisch and Hammersley (1963) and Shante and Kirkpatrick (1971). 

Let G be an infinite non-oriented connected graph of which each vertex is the 
starting point of only a finite number of bonds. To this graph the following random 
mechanism is attached. Each bond is, independently of all other bonds, undammed 
with a fixed probability p and dammed with probability 1 - p .  The terms dammed and 
undammed have been introduced by Broadbent and Hammersley for reasons of 
clearness (they describe the process as water, which is supplied to a given vertex and 
spreads from there through the undammed bonds). However, we prefer to use the 
terminology of Sykes and Essam (1964), and replace the words undammed and 
dammed by black and white respectively. Consequently, a walk is said to be black 
(white) if all its bonds are black (white). Further, the following definitions are 
important. For each vertex 0, P , ( p ;  v )  denotes the probability that there are at least n 
vertices that can be reached from v via black walks. Obviously, P, (p  ; U )  is decreasing in 
n and hence the limit P , ( p ;  v )  exists. This limit is denoted by Pm(p; v ) .  

The critical probability is defined as follows: 

Broadbent and Hammersley, who dealt with the more general case of partially 
oriented and not necessarily connected graphs, proved that if u1 and v z  are two vertices 
such that there exists a walk from ul to v2  and also a walk vice versa, then Pc(v l )  = Pc(vz). 
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Hence, since we consider only connected graphs, in our cases all vertices of a graph G 
have the same critical probability, which we denote by P,(G). 

In another percolation model not the bonds but the vertices are randomly coloured. 
In this so-called site model we can give analogous definitions as for the bond model. 

In general the critical probability for the bond process is not equal to that of the site 
process. Therefore, to make a distinction, we denote them by PLb’(G) and P?’(G) 
respectively. 

It can be shown (Fisher 1961) that the bond-percolation process on a graph G is 
equivalent with the site process on the so-called covering graph G‘ of G, i.e. 
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P ~ b ’ ( G ) = P ~ ’ ( G ‘ ) .  (2) 

We now turn to the central question of this paper: is any number p (0 s p s 1) the 
critical probability of some graph G? It will be shown that this is indeed the case. From 
(2) it follows that it is sufficient to give a proof for the bond model. This proof is based on 
some well known results concerning the bond-percolation process on the square lattice, 
which we shall discuss in 0 2. 

2. The bond percolation process on the square lattice 

The square lattice, denoted by S, consists of vertices { (n ,  m)ln, m E a}, which all have 
one bond with each of their four neighbours. 

The so-called dual lattice Sd of S is constructed as follows (see figure 1). Put one point 
in the centre of each face of S. These points { (n  + 1, m +$)In, m E Z) form the vertex set 
of Sd. As we see, this graph Sd is again a square lattice, so that S and its dual are 
isomorphic. (This is generally not the case, e.g. the dual of the trianguIar lattice is the 
honeycomb lattice.) Therefore S is said to be self-dual. 

Each bond of S crosses exactly one bond of Sd so that the bond set of S is in 1-1 
correspondence with that of Sd. So each colouring of the bonds of S induces a colouring 
of the bonds of Sd. 

The following lemma is intuitively obvious, A proof is to be found in W h e y  
(1933). 

Lemma 1. Each finite black cluster of S is surrounded by a white circuit of Sd. (This 
remains true after changing the terms black-white and/or the terms S-Sd.) 
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We shall now pay attention to the value of the critical probability P:h’(S) of S. 
Hammersley (1957), using the self-duality of S, proved that e-” sPLb’(S) s 1 -e-”, 
where u is the so-called connective constant of S. The lower bound has been improved 
by Harris (1960), who showed that Prb) (S) 3 f. Although for a long time there had been 
many indications that in the last expression even equality holds (see e.g. Sykes and 
Essam, 1964), only recently a correct mathematical proof has been given, namely by 
Kesten (1980). 

So we have 

P?) (S) = f. (3) 
It has been proved by Harris (1960) that, for p almost surely (AS) there 

exists exactly one infinite black cluster. Hence, by (3) we have 

Lemmu 2. If p > f, then (AS) there is exactly one infinite black cluster in S. 

Because this lemma plays an important role in the rest of the paper we let the proof 
(in a slightly different form) follow here. First note that the set of bonds of S is 
countable. When we denote the colour black by the number 1 and white by 0, then we 
can associate each bond bi with a random variable xi, which has the value 1 with 
probability p and the value 0 with probability 1 - p ,  and such that {xili E N} is a set of 
independent random variables. In these terms the event that there exists at least one 
infinite black cluster in S is a tail event of the sequence ( x i ) ,  i E N (because, for each n, 
the existence of such a cluster does not depend on the colours of the bonds 
bo, bl,  . , . , b,,). Hence, by Kolmogorov’s 0-1 law, the probability of this event is either 
0 or 1. Now for p >$this probability is, by (3), larger than 0 and therefore equal to 1. 

The fact that, for p > f (AS) not more than one infinite cluster exists can be seen as 
follows. Let u1 and uz belong to the infinite black clusters C1 and Cz respectively. The 
probability of a bond to be white is 1 - p, which is smaller than f, so that (AS) all white 
clusters in S* are finite. 

But then it can be derived from lemma 1 that (AS) each finite set of vertices of Sd is 
surrounded by a black circuit in S, so (AS) there exists a black circuit in S which has both 
vertices u1 and uz in its interior. It is obvious that this circuit connects C1 and Cz, hence 
these clusters are one and the same. 

3. A proof for the interval ti, 11 
In 0 2 it has been stated that, for p larger than f, there exists (AS) exactly one infinite 
black cluster in S. It will appear that (AS) the critical probability Prh) of this cluster is 
equal to f / p .  Then, by varying p in the interval (f, 13, we can, for any value in [f, l), 
‘create’ a subgraph of S of which the critical probability is equal to that value. 
Subsequently, by a kind of trick, namely multiplication of the bonds of S, this result can 
be extended to the region (0,l). Next, only the trivial numbers 0 and 1 rest. As to the 
value 1, the easiest example of a graph with this critical probability is the linear chain 
consisting of vertices ul, vz, u 3 , .  . . and one bond between any pair (U,,, v , + ~ ) .  (In fact 
this graph can be considered as the section graph of S with vertex set { (x ,  0)Ix E N}.) 
Finally, the tree-like medium in figure 2 with vertex set {un,,,,n a 1, m s n !}, contains, 
for each k, the Bethe lattice of order k, so that its critical probability is, for each k, not 
larger than l/k and hence equal to 0. 
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Figure 2. Example of a graph with critical probability 0. 

We shall now prove the statement at the beginning of this section that, for p > 1, the 
critical probability of the infinite black cluster is (AS) equal to $ / p .  

Let p1 be a number in the interval ($, 11 and let {b,li E N} be the set of bonds of S. To 
this set corresponds a set X = {x,li EN} of independent random variables, such that 
Pr {x ,  = 1) = 1 - Pr{x, = 0} = p l .  

The value 1 (0) of each random variable x,  corresponds with the state black (white) 
of its corresponding bond b,. Further, let p 2  be any number in [0,1] and let Y = 
{yl Ii E N} be a set of independent random variables such that Pr{yl = 1) = 1 - Pr{y, = 0) = 
p2 and X and Y are independent sets of random variables. Finally, define Z = 
{zIIzl = x,y,; i E N}. 

The black subgraph corresponding to the x ,  is called B’,  and the one corresponding 
to the zl is called B”. 

By the results in 0 2 the following statements hold. 
(i) Because p1 > 4, B’ contains (AS) exactly one infinite cluster (see lemma 2), which 

we call C. 
(ii) B” is a subgraph of B’ and contains (AS) no or exactly one infinite cluster. In the 

last case that cluster is a subgraph of C. 
(iii) If p z  <$/ply then, for all i, Pr{zl = 1) = p l p 2  < and hence (AS) B” consists only 

of finite clusters. 
(iv) On the other hand, if p 2  > i /pl ,  then, for all i, Pr{z, = 1) > $ and hence (AS) B“ 

contains an infinite cluster, which, as stated in (ii), is a subgraph of C. 
Now from the above it follows by definition that, (AS) the critical probability of C is 

indeed equal to $ / p l .  Hence the class of those subgraphs of S which have critical 
probability $/pl is not empty. Next, by varying p1 in the interval (f, 11, and noting the 
example of a graph with critical probability 1 at the beginning of this section, we obtain 
the following theorem. 

Theorem 1.  Let p be a number in the interval [i, 13. Then there exists a connected 
subgraph L of the square lattice with critical probability P p )  (L)  = p .  

Remark. If G is a planar lattice, regularly built up of unit cells and possessing a pair of 
orthogonal symmetry axes, then it can be shown (see Fisher 1%1), that PLb’(G)+ 
PLb’ ( Gd) a 1, where Gd denotes the dual lattice of G. From this, by using the arguments 
in the proof of lemma 2, it can be pmed that the following generalisation of that lemma 
holds: if p > Pib’(G) then there exists exactly one infinite black cluster m G. This, in its 
turn leads to a generalisation of theorem 1. 
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Each p a PLb'(G) is the critical probability of some subgraph of G. 
An interesting question is whether this holds for all lattices. 

4. Extension of the result in 8 3 to the interval [0,1] 

Let S" be the graph obtained by replacing each bond of S by n parallel bonds, n 2 1 (see 
figure 3). For each colouring of the bonds of S" a colouring of the bonds of S can be 
defined as follows: each bond of S is coloured black if at least one of the bonds of the 
corresponding n-tuple in S" is black, otherwise it is coloured white. Hence, if p is the 
probability that a bond of S" is coloured black, then the probability of a bond of S to be 
black is 1 - (1 - p)". Further, note that there is an infinite black cluster in S if and only if 
there is one in S". From these reasonings it follows that p a P ? ' ( S " )  if and only if 
1 - (1 - p)" L P?'(S), which equals f, so that 

PLb'(S")= 1.-[1-pLb)(S)]1/" = 1-($)1/". (4) 

Figure 3. The lattice s3. 

Now we can apply the ideas of 0 3 to S", which leads to the following theorem. 

Theorem 2. 
py (S") = 1 - (i)"". 

Further, if the probability p that a bond of S" is black, is larger than PLb'(Sn), then (AS) 
there exists exactly one infinite black cluster in S" and the critical probability of that 
cluster is equal to pLb'(s")/p. 

Now because limn+m Prb'(S") = 0, the following theorem follows by varying n and p 
in theorem 2 (and again noting the example of the graph with critical probability 1 in 
§ 3). 

Theorem 3. For each p in the interval (0, 11 there exists, for a certain n, an infinite 
connected subgraph of S", of which the critical probability (bond case) is equal to p. 

Theorem 3, together with the example of a graph with critical probability 0 
(figure 2), completes the work. 

Remark. If we do not want to deal with graphs with multiple bonds, like the S", we can 
handle them as follows. Define (instead of S") S?* as the graph obtained by replacing 
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each bond of S by an n-tuple of series of two bonds (figure 4). It is easily seen that the 
critical probability of S”’ is equal to (P~b’(Sn))1’2 and a straightforward repeat of the 
arguments, earlier applied to S”, leads to an analogue of theorem 3. 

Figure 4. The lattice s3’ 
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