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DISJOINT OCCURRENCES OF EVENTS:RESULTS AND CONJECTURES
J.van den Berg1

ABSTRACT.In a recent joint article with H.Kesten the notion "disjoint
occurrences of events" has been intoduced. In the present note we give
a brief outline of some results and problems presented in the above
article and in a joint article with U.Fiebig.

1. INTUITIVE APPROACH. To explain the notion "disjoint occurrences of

events" we start with the following example from percolation theory.

(1.1) EXAMPLE. Consider a finite or countably infinite graph G of which each
bond b, independent of the other bonds, is open with probability Py and closed
with probability 1-pb. Let Q,R,S and T be sites of G. It follows from a
correlation inequality of Harris [ 9 ] (which is a special case of the well-
known FKG inequality [ 5 1 ) that the event that there exists an open path from
Q to R and the event that there exists an open path from S to T are positively
correlated, i.e.

(1.2) P{Q+R, S+T}=2P{Q~+~R}P{S~>T},
or, equivalently,

(1.3) P{Q ~ R} S + T} = P{Q » R}.

This is intuitively plausible because, roughly speaking, the information that
there exists an open path from S to T makes the bonds of G more likely to be
open, which, in turn, makes it more likely that there exists an open path from
Q to R. One would also intuitively expect that, on the other hand, the
probability that there are open paths from Q to R and from S to T which are
disjoint (i.e. have no bonds in common) is smaller than the product of the
individual probabilities, i.e.

(1.4) P { there exist disjoint open paths from Q to R and from S to T }
sP{Q->RIP{S>T}.
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This is indeed true and follows from more general results in [ 3 ] concerning
products of so-called NBU distributions. The following proof, related to that of
the clutter theorem (see e.g, [ 4 1,[ 8 ] and [10 ] ) is more direct. First

note that, by obvious Timit arguments, we may restrict ourselves to the case

that G is finite. Let b be a bond of G.Now replace b by two parallel bonds b'

and b" which are both, independent of each other and of all the other bonds,

open or closed with the same probabilities as the original bond. Suppose that,

in the new graph thus obtained, we allow only those paths from Q to R which do
not contain b" and those paths from S to T which do not contain b'. Moreover,

we apply this splitting operation step by step to all the bonds of G and at each
step we allow only those paths from Q to R which contain only unsplit and '-bonds
and those paths from S to T which contain only unsplit and "-bonds. One can

check that at each step of this splitting process the 1.h.s. of (1.4) increases
(i.e. strictly increases or remains unchanged) while both factors in the r.h.s.
remain unchanged. The inequality now follows from the above argument and from the
following facts: When all bonds have been split, we have obtained two separate
copies G' and G" of G so that the event in the 1.h.s. of (1.4) is replaced by

{ there exists an open path from Q to R in G' and an open path from S to T in G"}.
The probability of this event is, by independence and symmetry, equal to the r.h.s.
of (1.4). , .

REMARK. It is also easy to check that at each step in the above splitting
process the 1.h.s. of (1.2) decreases so that this method yields an alternative
proof of (1.2).

(1.5) EXAMPLE. Consider again the situation in the first example. However, this
time we are not interested in open paths but in alternating paths, i.e. paths
which, if followed from one endpoint to the other, exhibit an alternating
sequence of open and closed bonds.(These and related models have recently been
studied in, e.g. [ 6 ] ). Simple examples show that the analog of (1.2) fails in
this new situation, but we believe that the analog of (1.4) holds. This belief
is part of a more géneral conjecture stated in [ 3 ] which will be discussed in
the next section.

2. FORMAL STATEMENT OF RESULTS AND CONJECTURES. let 9 = Sy X.. x Sn and
SHY X e X ug s where Si is a finite subset of N and uy a probability
measure on S., i=1,...,n. Elements of @ are denoted by w = ( wl,...,mn).
A set A c q is called increasing (decreasing) if w € A, w' € @, m% 2wy, i=1,..,n
implies w' € A.
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Harris' inequality, mentioned in section 1, is the following:
(2.1) THEOREM. If A,B = o are increasing, then

(2.2)  w(A nB) = u(A) u(B).

If weoand Ke { 1,...,n } then the cylinder
[m]K is defined as the set { w'l w% = wi,i € K}. K is called the support of the

cylinder.
The set A o B of disjoint realisations of A and B is defined as

(2.3) AoB={owl3KbLc{l,...;nls.t. KntL-= ¢,,[m]K c A,[w]L cB}.

It has been shown in [ 3 1 (as a corollary of results concerning
products of NBU distributions) that the probability that two increasina events occur
disjointly is smaller than the product of their individual probabilities. In
fact [ 3 ] only gives a proof for the case that q = {0,1}n but that can easily
be extended. So we have:
(2.4) THEOREM, If A,B c q are increasing,then

(2.5)  w( Ao B ) <u(A) u(B).
In [ 3] also the following stronger result has been shown:

(2.6) u( v Ai o Bi) < (uxp)( U

1<izk 1<i<k

Ai X Bi)’

where Ai’Bi are increasing subsets of @, i = 1,...,k.

Coming back to the example in section 1, if we take 9 = {O,I}E, where E is
the set of bonds of G and take wp = 1 or 0 according as the bond b is open or
closed, then it jis clear that (1.2) is a special case of Harris' inequality(2.1)
and that (1.4) is a special case of theorem (2.4).

An interesting conjecture in [ 3 1 is that the monotonicity condition
in theorem 2.4 is immaterial, i.e. that (2.5) holds for all events:

(2.7) CONJECTURE. For all A,B c @

(2.8) u(A o B) < u(A) u(B).

REMARK. Simple examples show that (2.6) does hot hold for all events.

In [ 2 ] the above conjecture has been investigated and the following
theorem has been proved. First we need some definitions: An event A is called
convex if ( w,w" € A, w' € 2, w; < m% < mg »i =1,...,n) implies w' € A. It is
not difficult to show that an event is convex if and only if it is the inter -
section of an increasing and a decreasing event. An event A is called permutation
invariant if permutation of the coordinates of an element of A always yields

again an element of A.
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Two cylinders C and C' are said to be perpendicular to each other, denoted by

C | C', if their supports are disjoint.

(2.9) THEOREM. In the following cases inequality (2.8) holds:

a) A and B are both convex.

b) @ = fo,13" and A and B are both permutation invariant.

c) A= v Ci’ B = v Cj , where for each i € I and j € J,Ci and C& are cylinders
i€l Jjed

s.t. Cy l_C3 or C; N Cj = g,

d)yA=uU Ci’ where each Ci is a maximal cylinder of A and for all i,j € I
i€l
supp(Cy) = supp(C;) or supp(C;) N supp(C4) = 8.

Note that case a) above yields an extension of theorem 2.4 since each
increasing event is convex. The proofs of case a) and b) in [ 2 ] are based on
the splitting method mentioned in section 1. Ref. [ 2 1 also shows corollaries
and examples of theorem 2.9.

3.  APPLICATIONS. Theorem 2.4 appears to be useful in percolation theory.
Several inequalities in [ 1} and {7 1 follow easily from our theorem, as has
been shown in [ 3 1. Some of these inequalities can be strengthened. Our theorem
also yields that, for critical bond percolation on the square lattice,

P(B,) > 1/(2/n),

where Bn is the event that there exist sites at distance = n from (0,0) which
can be reached from (0,0) by an open path. Applications of inequality 2.6 to
first-passage percolation are shown in [ 11]. Conjecture 2.7 is interesting in
itself, but, if it appears to be true, it will probably have applications, e.g.
to alternative percolation models (see example 1.5). Example 1.1 in [ 2 1 shows
an interpretation outside percolation theory.
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