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Abstract

A probability measure p on R is defined 10 be strongly new better than used
(sNBU) if (A + B)= u(A)u(B)for all increasing subsets A, B C R,.Forn =1
this is equivalent to being new better than used (NsU distributions play an
important role in reliability theory). We derive an inequality concerning
products of NBU probability measures, which has as a consequence that if
My iy © * . i, aTe NBU probability measures on R,, then the product-measure
=@, X p, X Xpu, on R is SNBU. A discrete analog (i.e., with N instead of
R,) also holds.

Applications are given to reliability and percolation. The latter are based on a
new inequality for Bernoulli sequences, going in the opposite direction to the
FKG-Harris inequality. The main application (3.15) gives a lower bound for the
tail of the cluster size distribution for bond-percolation at the critical probabil-
ity. Further applications are simplified proofs of some known results in
percolation. A more general inequality (which contains the above as well as the
FKG-Harris inequality) is conjectured, and connections with an inequality of
Hammersley [12} and others ([17], [19] and [7]) are indicated.

CORRELATION INEQUALITIES; FKG INEQUALITY; NEW BETTER THAN USED

1. Definitions and main results

Because our main theorem holds for R, =[0,) as well as N={0,1,2,---} we
shall use the symbol R to denote either of these sets. M

Ifx=(x, - x.)and y =(yi, - ~.y.), thenx =y means ; =y, i =1,---, n
A function f on R" is called increasing if x Z y implies f(x)= f(y). A subset A
of R" is called increasing if its indicator function (denoted by I.) is increasing. If
A and B are two subsets of R", then A+ B={a+b [a € A, b € B}. It follows
from Dellacherie and Meyer [7], Theorem I11.18 and Section 111.33a, that A + B
is universally measurable when A and B are Borel sets of RI. In particular,
A + B belongs to the completion of the Borel o-field of R} with respect to each
probability measure.
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A probability measure u on R" is strongly new better than used (sNBU) if

(1.1) #(A + B)= p(A)u(B),

for all increasing Borel sets A BCR"

For n =1 and R = R, this is equivalent to the usual definition of a new better
than used (NBU) distribution. Therefore, in the one-dimensional case, we can say
NBU instead of SNBU (see also Section 2).

Let n = 2. For an increasing set A C R" and i, j = n, i # j, we define the image
of A under (i, j)-identification as the set of all x € R" for which there exists an
a € A such that x; = a; +a; and x. Z a,, k# i, ].

This definition is illustrated by the following example.

(1.2) Example. Suppose someone receives a certain amount n, of apples, n,
of pears and n, of bananas. He is satisfied if, for a certain increasing set A C N,
(., ny, n) € A. However, if he changes his mind, and wants each pear to be
replaced by an apple, then he is satisfied if (n.,n,,n,) € A* where A* is the
above-defined image of A under (1,2)-identification.

The above definition has the following natural extension. Let A be an
increasing subset of R" and let ¥ be a partition of the set {1,2,- - -, n}. Choose
for each class FE % a representative ir € F. Now the image of A under
identification acccording to the pair (F,{ir : F € #}) is defined as the set of all
x € R" for which there exists an a € A such that for each class F: x;,. = Zjcra;.
Again, Theorem II1.18 and Section II1.33a of Dellacherie and Meyer {7] show
that for a Borel set A of R} its image under identification belongs to the
completion of the Borel sets with respect to any probability measure.

(1.3) Lemma. Let p.,---, . be NBU probability measures on R" and let
L] =n, i#]j be such that w; = p;. Then for all increasing Borel sets A CR"
(1.4) r(A)=Z pn(AY),

where A* denotes the image of A under (i,j)-identification, and u is the
product-measure p X ;X - X, on R".

Proof. Without loss of generality we may assume i =1, j =2. In terms of
random variables (1.4) is equivalent to saying that if X, X5, - - -, X,, are indepen-
dent random variables whose distribution on R is NBU, and X, and X, are
identically distributed, then

(1.5) Pr{(X, Xo, - -+, Xo) E A)Z Pr{(X), X5, Xa, - -+, Xa ) E A'],

where A’ ={(x:+ X2, X3, X4, * *, Xa ): (X1, %2, * ", X, ) E A}C R"™". This inequality
can now be proved as follows. Given X; = x;, X, = x4, - -, X,, = x.,, the condi-
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tional probability of the event in the left-hand side of (1.5) is, for each x,, x, with
(x1,%2, X3, *, X, ) € A, larger than or equal to Pr[ X, = x;, X: = x,]. Since X; and
X; are i.i.d. this probability equals Pr[X; = x;]Pr[ X = x,]. Hence the above-
mentioned conditional probability is at least

sup{Pr[X; = x:]Pr[ X = x2]: (%1, X2, X3, -+, X. ) E A}.

On the other hand, the conditional probability of the event in the right-hand side
of (1.5) is exactly Pr[ X, € {x; + x,: (x1, X2, X3,  *, X, ) € A}] which, because X is a
one-dimensional random variable, equals

sup{Pr[ Xi = x: + x2): (x1, X2, X3, - -, X, ) E A}
and this is, by the NBU property, at most
sup{Pr[ X = x:]Pr[ X, = x2]: (%1, X2, X3, -, X ) E A}

(1.6) Theorem. (i) Let p,, p2,- - -, s be NBU probability measures on R and let
F be a partition of the index set {1, - - -, n}, with the property that p;’s with indices
in the same class are identical. Further, choose for each class F € ¥ a representa-
tive ir € F and let, for an increasing Borel set A C R", A* denote the image of A
under identification according to (¥,{ir: F € ¥}). Then

(1.7) B(AY)=p(A),

where w is the product-measure p; X pz X+ +X w, on R".

(ii) Let vi,v,,---, v, be NBU probability measures on R. Denote by v the
product-measure viXv;X---Xwy, on R", and let A,A,---,A« and
B, B,, - - -, By be increasing Borel sets of R™. (Hence U i<« (A: X B;) is a subset
of R* and v X v is a probability measure on R*™.) Then

(1.8) V( U (A,+B,))§(VXV)( U (A,'XB,')).
1sisk 1sisk
(iii) Let g1, 42, 4. be NBU probability measures on R and p =
M1 X g X -+« X w, the product measure. Then, for all increasing Borel sets A, B C
R",
(1.9 p(A +B)=pu(A)u(B),
i.e., i is SNBU.

Proof. (i) follows by applying Lemma 1.3 successively to all pairs (i, j) with,
for some class FE %, i =ir and jEF, j#i

(ii) If we take, in (i), n =2m, @1 = Vi, 2= Vo, * * *, fhon = Vs m+1 = V1, hinsz =
Vst Mom = Um (hence g =v Xp), F the partition with classes {l,m + 1},
{2,m+2},---,{m,2m}, and set of representatives {1,2,---,m} and A =
U ==« (Ai X B)), then according to (1.7) we get
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¥ xv)(AH)=(v Xv)(A).
This reduces to (1.8) because, as is easily seen,
A*= ( U A +B,~))><R"‘, so that (v X ¥)(A*) = V( U A +B.-)) .
I=i=k 1=isk
(iii) follows immediately from (ii) by taking k =1.

(1.10) Remarks. (a) Originally we had a different proof, of part (iii) of the
above theorem only. We later noticed that the special case of (iii) with all u;
concentrated on {0, 1} can also be derived from results in [12], [17] (or [18]), [19]
or [7] (see also Remark 3.5(b)).

(b) We have also proved that if p is an SNBU probability measure on R" and »
is an NBU probability measure on R, then the product measure u X v on R"*" is
sNBU (the proof of this involves some more technicalities than that of (iii)).
However, the following problem, which arises naturally in the context of the
above results, is still unsolved.

(1.11) Problem. Let u and v be sNBU probability measures on R" and R™
respectively. Is the product measure on R™"™ always SNBU?

(c) Note that (1.8) proves a stronger property than snBu for the product
measure v. The following simple argument shows that if v is a probability
measure on R” then v has property (1.8) if and only if » is the product of its
one-dimensional marginals and the marginals are NBu. The ‘if’ part is Theorem
1.6(iii). For the ‘only if’ part, consider the following events:

A1={Xléa1,'",X,‘_lé‘a,._l}, B1=Rn, A2=Rn, B2={X %an}.

Then (A, + B,)U (A:+ B;) = A, U B, and therefore (1.8) implies
v(A)+v(B:)—v(ANB,)
=v(A,UB5)
= (v X v)((A1 X B))U (A2 X By))
=(v X v)(A1 X B)+ (¥ X v)(A: X B;)— (v X ¥)((A1 X B)) N (A, X B,))
=p(A)+ v(B)— v(A)v(B.),
hence
V(AN B)Z v(A)v(B).
On the other hand A, N B, = A, + B,, and hence, by (1.8),
v(A, N B) = v(A)v(B,).
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Consequently

v(Xiza,1si=n)=v(XiZa,1=si=n-1wX.Za)=" =[] v(X 2 a).
i=1

2. Applications to reliability

In reliability theory (for a description of the subject see e.g., Barlow and
Proschan [3]) a non-negative random variable T is called nBu if its corresponding
probability measure on R. is NBU which means that (see Section 1), for all
t,5,=0,

2.1) P[T>t+6|T>t]=P[T>1t),
or equivalently,
22) P[T >t,+ ;)= P[T > 4]P[T > t.].

Marshall and Shaked [14] introduced a multivariate extension of (2.2) by
defining a random vector T = (T, - - -, T,) to be multivariate new better than used
(MnBU) if, for all increasing Borel sets A C R} and all A, x =0,

2.3) P[TE( +p)A]=P[TENAIP[TEpA],

where AA ={Aa: a € A}. The main result in their paper was that if $ and T are
MNBU and if T and S are independent, then (S, T) is also MNBU (compare with
Problem (1.11)). This yielded the following corollary.

Corollary. If T,,---, T, are independent NBU random variables, then

(i) T=(T,---,T,) is MNBU,

(ii) g(T,---,T,) is NBU, whenever g is a non-negative measurable sub-
homogeneous increasing function.

(A function g on R is called subhomogeneous if g(ax)= ag(x) for all x ER}
and all « = 1.) This corollary is improved by the following corollary of Theorem
1.6(iii).

(2.4) Corollary. If Ty,---, T, are independent one-dimensional NBU random
variables, then

(a) For all increasing Borel sets A, B C RY,

P(T,, -, T.)EA+B]=P((T,,---, T.)EA]IP[(T,,---, T.) E B].

(b) g(Ty,---,T,) is NBU whenever g: R:—R. is a measurable increasing
function with the property
2.5 g (a+bo)C g (a,©)+g '(b®), VYa,b>0,

where g7'A ={x |g(x)E A}.
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Proof. (a) follows immediately from Theorem 1.6(iii).
(b) Suppose Ti,---, T, and g fulfill the conditions. Then:

Plg(T\, -, T.)>s+1¢]
=P[(T\,- -, T.)Eg (s + 1,»)]
=P[T, -, T.)EL (s,2)+ g '(1,2)]
=P[(Ty, -+, T.)Eg (s, ))PUT, -, T.) Eg'(£,)]
= Plg(T\, -, T.)>s]P[g(T, -+, T.) > t].

(2.6) Remarks. (a) Part (a) of the corollary implies (i) because (A +u)A
CAA + pA. Part (b) implies (ii) because each increasing non-negative sub-
homogeneous function has the property (2.5), which can be seen as follows. Let
g: Ri—R. be increasing and subhomogeneous and let, for certain a,b >0,
xEg (a+b,®), ie., g(x)>a+b. Then g((a+b)'ax)=(a+b) ag(x)>a
and, analogously, g((a +b) 'bx)>b. Hence x =(a+b) 'ax +(a+b)'bx is
the sum of an element of g~'(a,®) and an element of g~'(b, ).

(b) In studies of NBU random variables these variables usually represent life
lengths. However, the following interpretation of Corollary (3.1)(a), in which the
variables represent amounts of certain products, might also be interesting.
Suppose two people, say A and B, have to share the random output of a certain
producer. A wants at least an amount a, B at least an amount b, If the output
has an NBU distribution, then, by the definition of NBu, the following statement
holds: the probability that the output can be shared such that A and B are both
satisfied is not larger than the product of the probability that A would be
satisfied if he had the total output for himself and the analogous probability for
B. Now consider the case of n producers with independent random outputs,
each having an NBU distribution. If A (B) wants at least an amount a, (b,) of the
first product, a. (b.) of the second product, etc., then by the independence of the
variables, it is obvious that the probability that A and B are both satisfied is still
no larger than the product of the probability that A (respectively B), is satisfied.
However, Corollary (2.4)(a) says that the statement still holds in the case that A
and B are, within certain limits, willing to obtain somewhat less of one product
in exchange for somewhat more of some of the other products.

3. Applications to Bernoulli sequences and percolation

Let O ={0,1}". An event in Q is called increasing or positive if its indicator
function is an increasing function on 1 (i.e., increasing in each coordinate
separately). An event is called decreasing or negative if its complement is
increasing.
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If A and B are positive events we denote by A o B the event that A and B
‘occur disjointly’. More precisely, A °B is defined as follows. Each @ =
(o1, +, 0,) EQ is uniquely determined by the set K(w)C{l,---,n} of all
indices i for which w; = 1. Now @ € A ° B if and only if there exists a K' C K(w)
such that o', determined by K(w') = K’, belongs to A, and ", determined by
K(0")= K(@)\K' belongs to B.

Example. If A is the event {at least k, of the w;’s are equal to 1} and B the
event {at least k, of the w;’s are equal to 1}, then A - B is the event {at least
k,+ k, of the w:’s are equal to 1} (see below for further examples).

It is clear that A o B is contained in A N B. Further, notice that AcB=B-°A
and Ae(BoC)=(A°B)-C.

Now let P be the probability measure on  under which i, w. are
independent and P[w; = 1]=1— P[w; =0]. Harris [11] proved that

(3.1) P[ANB]=P[A]P[B], if A and B are both positive events,
or, equivalently,
3.2) P[A N B]=P[A]P[B], if A ispositive and B is negative.

This inequality, which is one of the basic tools in percolation theory, is now
usually considered as a special case of the FKG inequality first proven in [9]. We
now show that the inequality (3.1) is reversed if A N B is replaced by A o B. This
new inequality turns out to be a special case of Theorem 1.6(iii).

(3.3) Theorem. If A and B are positive events, then
34) P[A - B]= P[A]P[B].

Proof. In order to use Theorem 1.6(iii) we imbed the state space () in
N*={0,1,---}". We still use P to denote the image measure under this
imbedding. Thus P[N"\Q] =0 and P[{x}] is unchanged if x € ). Further, we
replace each positive event A C () by the smallest increasing subset A of N*
containing A. Thus A is replaced by

A ={y EN": 3x € A such that x = y}.

This operation does not change the probability of A because only a set of
probability 0 is added. One now easily sees that A o B differs from A + B by a
set of probability 0. In fact z = (z1,- -, z.) € A + B can have positive mass only
if each z; equals O or 1. Thus, if z =x +y, x € A, y € B, then one must actually
have x € A, y € B and the ones among the coordinates of x and y cannot occur
at the same place (since x; =y =1 implies z; =2). Finally, noting that a
probability measure on N with all mass concentrated on {0, 1} is always NBU, the
theorem follows directly from Theorem 1.6(iii).
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(3.5) Remarks. (a) Analogously, a special case of Theorem 1.6(ii) is that for
positive events A,, By, Az, By, -+, Ay, B« C{Q,

P[A1°B1UA2°B2U"'UAk°Bk]

(3'6) é(PxP)[AlXB1UA2XBzU"'UAkka].

Roughly speaking, this means that the probability that, for at least one i, A; and
B; occur disjointly, is smaller than the probability that, for at least one i; A; and
B: occur on independent copies of the probability space.

(b) In the same way the following result, appearing in various forms in [12],
{17], [19] and [7] can be derived as a special case of Theorem 1.6(i). Let ¥ be a
partition of {1,- -+, n} and let € be a family of subsets of {1,- - -, n} such that for
each C€ € and F € %, C N F contains at most one element. Consider, for a
given p €[0, 1], two probability measures P, and P,s on () under both of which
each w; is equal to 1 with probability p and equal to 0 with probability 1—p
(i=1,---,n).Under P, the w;, i =1, -, n are independent. Under P, s, all w:’s
with indices in the same class are equal with probability 1, while the families
Ve:={w;: i E F}, F € ¥ are independent. Now let A be the event that, for at
least one CE€ €, w; =1 for all i € C. Then

(3.7) P,s[Al=P,[A]

In order to show that this follows from Theorem 1.6(i), imbed (} again in N",
and replace A by A, exactly as in the proof of Theorem 3.3. Denote the image of
P, under the imbedding of Q in N* by P,. Choose a representative ir for each
class F € %, and form (A)* from A by identification according to (%, {ir}). One
can verify that

AIAY1=5|(
dl
|

(In the second equality we use the fact that C N F is either empty or consists of a
single element only.) Thus by (1.7)

Pp,Sf[A]=Pp[(A)*]§PP[A]=PP[A],

which is just (3.7).

Conversely, it is possible to derive (3.4) and (3.6) from (3.7) by applying (3.7) in
the space )’ with suitable choices of ¥ and €.

(c) Ahlswede and Daykin [1] have presented a rather general theory of

U {x:xi=1foreachi€ C})*]

cee¢

U {x: x,, =1 for each F with FN C# @}]

ce%€

U {x:xi=1foreachi € C}] =P,s[A]

Ce%
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correlation inequalities, including the FKG inequality. However, it seems that
(3.4) does not fit in this framework and it might be the first step in a new
direction (see also (d)).

(d) The operation ° has been defined for positive events only. However, define
for arbitrary events A and B CQ the event AB as follows. First, for
o =(w, ,w)EQand KC{l,---,n}, let C(K, w) denote the cylinder event
{0 0’ €EQand 0= w, forall i € K}. Let K denote {1, - - -, n}\ K. Now define

(3.8) \“ AOB ={w:3K C{l,:--,n}suchthat C(K,w)C A and C(K, ®)C B}.
Clearly AL1B C A N B. We have the following conjecture:
3.9 W P[AOB]=P[A]P[B] forallevents A and B.

It is easily seen that if A is positive and B negative, A (1B is exactly A N B, and
if A and B are both positive it equals A e B, so that (3.9) includes the
FKG-Harris inequality as well as our inequality (3.9). Moreover, if the answer to
problem (1.11) is affirmative for the case that & or v is a probability measure on
N, concentrated on the elements (1,0) and (0, 1), then (3.9) follows in a way
comparable with the derivation of Theorem 3.3 from Theorem 1.6(iii).

(e) Several special cases of (3.9) are proven in [5].

Examples and applications in percolation theory. Let 4 be a finite or
countably infinite graph. A path from site s to site s’ is a finite sequence of the
form (s, =y, e,8:, €2, ", 5.1, 5. =s'), where each ¢; is an edge connecting the
sites 5; and s;... There is no loss of generality for our purposes if we restrict
ourselves to paths which are self-avoiding (which means that all s,’s in the above
sequence are different). The length of a path is the number of edges it contains.
Now suppose that the edge is open (or passable) with probability p. and closed
with probability 1—p., and that all these events for different edges are
independent. A path or, more generally, a subgraph, is said to be open if all its
edges are open. An open cluster is a maximal connected open subgraph of ¥.
Percolation theory (introduced by Broadbent and Hammersley [6]) studies
questions like: what is the probability of the existence of an open path between
two specified sites, and (in the case where ¥ is infinite) do there exist, with
positive probability, infinite open clusters? The above case is called bond-
percolation. If, instead of the edges, the sites of ¢ are randomly open or closed,
one speaks of site-percolation. For a recent introduction to these problems see,
for example, [14], Chapter 1. Also models have been studied in which the edges
are only passable in one direction (see for example [9]).

The following special case of Theorem (3.3) is useful in percolation theory (see
also (3.12) below).

(3.10) Corollary. Let, for some k=2, V,, V,,--, Vi be sets of paths of a
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graph 9. Assume that all the edges (sites) of 9 are independently open or closed.
Call two paths disjoint if they have no edge (site) in common. LetE;, i =1,-- -k,
be the event that at least one of the paths in V; is open. Then:

P[there exist pairwise-disjoint open paths 71 € Vi, m € V3, - -, m € Vi]

3.11) = P[E1]P[E2] e P[Ek]-

Proof. We may restrict ourselves to the case where ¥ is finite (by obvious
limit arguments). Now if we take = {0, 1}*, where E is the set of edges of ¢
(Q=1{0,1}°, where S is the set of sites of ¢) and take w. =1 or 0 (o, =1 or 0)
according as the edge e (site s) is open or closed, then it is not difficult to see that
the event in the left-hand side of (3.11) corresponds with E ¢ E,°- - - o E, and the
result follows by repeated application of Theorem (3.3).

(3.12) Remark. By using (3.6) or (3.7) one can also derive a similar result in
first-passage percolation (see [13], Section 4).

The following result is a simple proof of the first tree graph bound of
Aizenman and Newman ([2], Proposition 4.1). Their bounds for higher connec-
tivity functions can be derived in the same way. Let ¢(v, w) = P [v is connected
to w by an open path].

(3.13) Corollary. Consider bond-percolation on a graph 4. Let 5., s, and s; be
sites of 4. Then

P[s1, s; and s; belong to the same open cluster]

(3.14)
= z t(s1, $)t(sz, $)t(ss, 8).

s asite
of §

Proof. The result follows by using Corollary 3.10 and the observation that s,
s, and s; belong to the same open cluster if and only if there exists a site s (which
may be equal to one of the s;’s such that there are disjoint open paths from s; to
s, from s, to s and from s; to s, respectively.

The nicest application is an improvement of a result for critical percolation in
two dimensions. As an example we consider bond percolation on the square
lattice, which is the graph with sites {(n,m)|n,m €Z}. (It is easy to derive
analogous results for other two-dimensional lattices.) On this graph each site
(n, m) has exactly four edges incident to it, namely those between (n, m) and the
sites (n £ 1, m = 1). Suppose all edges are independently open with probability p,
and denote the corresponding probability measure by P,. Let B, be the event
that there exists an open path from the origin to some site at distance = n from
the origin. (The distance from (n;,n;) to (m;, my) is defined as |n,—m|+
|n,~ m,|.) Clearly P,[B.] is decreasing in n. It is known ([12], p. 54 and Theo-
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rem 5.1) that for p <3 there exists a A (P) < 1 such that P,[B,] < A "(p), while for
p >3 lim,... P,[B,]>0. When p is equal to the critical probability ; then P, [B,]
tends to 0, but not exponentially. Smythe and Wierman ([16], p. 61) gave an easy
proof of Py[B.] = 1/2n. Later Kesten ({12], Theorem 8.2) showed that there exist
C, v >0such that Pj[B,]> Cn™'"". However, the value of y which follows from
his calculations appears to be very small. It is believed that PyB.]~ Cn™® for
some C >0, 0<8 <1 (see [17]). Even though we cannot prove such a power
law, the following result greatly improves the estimates for y obtainable from
[12]. The proof uses a refinement of Smythe and Wierman’s idea and Corollary
(3.10). (Another proof can be based on the (known) inequality (3.17))

(3.15) Corollary.

1
= —
PyB.]= N

Proof. Consider the subgraph S(n) of S which consists of the part of S
situated in the rectangle 0= x =2n,0=< y =2n — 1. It is well known from duality
arguments (see [15], or [16], p. 31) that the Pj-probability that there exists an
open path which lies in S(n) and which connects the left-hand edge of S (n) with
its right-hand edge equals 3. Further, it is clear that such a path passes through at
least one of the sites {n} X [0,2n —1). Hence at least one of the 2n sites in the
above set has two disjoint open connections with the left- and right-hand edge of
S(n), respectively. Also, the distance between a site in {n} X [0,2n — 1] and a site
in the left- or right-hand edge of S(n) is always = n. Consequently, by Corollary
(3.10)

2n—1
3= 2 Pi[(n, i) is connected by two disjoint open paths

to the left and right edge of S(n)] = 2n{Py[B.]}.

Lastly we give a new and simplified proof of a result of Hammersley [10]. First
consider bond-percolation on a graph ¥. By the distance between two sites of ¥
we mean the minimal number of edges in any path which connects these sites.
For any site s of 4 define

N. (s) = collection of sites at distance = n from s,
B, (s) = collection of sites at distance exactly n from s,
P,(s)= P[3 open path from s to a site in B,(s)]

if n=1, and Py(s)=1.

We say that a path belongs to N,(s) if all sites of the path, except for its
endpoint, lie in N, (s), and we define, for n =1,
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E. (s) = expected number of sites s’ € B, (s) for which
there exists an open path from s to s’
belonging to N,-i(s).

We take Eq(s)= 1. Finally, for n =0 we set
(3.16) P, =sup P.(s), E, =supE,(s).

Hammersley [10] has proved that
(3.17) P, =(E.)"™,

where |n/m] is the integer part of n/m. A direct consequence of this result is
that if the expected size of the open cluster is finite, then the radius of the open
cluster has a distribution with an exponentially bounded tail (see also [12],
Section 5.1 and [2], Section 5 for a stronger result). Here we give an easy proof of
the following inequality which is somewhat stronger than (3.17) (since by
induction (3.18) will imply Pum = (Ex)").

(3.18) Coroliary.

P.. =E,P,, n,m=0.

Proof. If n or m equals 0 the result is trivial. Assume n,m >0 and fix s.
Suppose there exists an open path from s to B"*™(s). Denote by s’ the first site
on the path (starting from s) which lies in B,, (s). Then, clearly, there exist two
disjoint open paths, the first from s to s’ and belonging to N,_i(s), and the
second from s’ to B,..(s). Furthermore it is clear that B,.,, (s) has distance at
least n from s’, so that the second path passes through B,(s'). Thus

Poim(s)= Z P[3 two disjoint open paths, one from s to s’ and
YEEm) " belonging to N,._i(s), and the other
from s’ to some site in B, (s')].

By Corollary 3.10 this expression is at most

P[3 open path from s to s’ which belongs to N,-(s)]P.(s")

S'EB,,(s)
= E..(s)P..
This holds for all s, so that (3.18) follows.
If one considers site percolation then (3.18) remains valid (and the proof goes

through practically unchanged) provided one redefines P, and E, as follows:
N, (s), B.(s) and (3.16) remain as before, but
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P,(s)= P[3 open path from a neighbor of s to a
~site of Bu(s)],  n=z=1, Pos)=1,

E, (s) = expected number of sites s’ € B, (s) for which ~
there exists an open path from a neighbor of s to
s’ and belonging to N,_i(s), n=z1, Ey(s)=1.

Another application of Corollary 3.10 is to be found in van den Berg [4],
where it is used to prove that for one-parameter bond-percolation on Z’ the site
(0,0) always has at least as high a probability of being connected by an open path
to (1,0) as to (2,0). o
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