LECTURES:
WED: 12:15-14:00, H
46
THU: 10:15-11:00, H 67
PROBLEM CLASS / TUTORIAL:
THU: 11:15-12:00, H 67
Thu: 14:00-15:00, H 510
1. Brownian motion 1: motivation, phenomenological description, construction
3. Brownian motion 2: construction
2. Brownian motion 3: distributional and path-wise properties
4. Brownian motion 4: quadratic variation
5. Brownian motion 5: reflection principle
6. Filtrations, stopping times, martingales, Markov processes (recap)...
7. Ito calculus 1: the Ito integral
8. Ito calculus 2: Ito’s formula
9. Stochastic differential equations: strong solution, existence and uniqueness
10. Diffusions 1: infinitesimal generator, Dynkin’s formula
11. Diffusions 2: Kolmogorov’s bw and fw equations
12. The Bessel-Squared and the Bessel process
15. Diffusions 3: Feller property, contraction semigroups, Hille-Yosida thm, Feynamn-Kac formula
16. Change of measure and Girsanov’s theorem
Problem sheets (downloadable) |
Homework assignements |
Due date |
Solutions (downloadable after hw due dates) |
1. Brownian motion |
1.1, 1.2, 1.5, 1.13
1.6, 1.8, 1.10, 1.12 |
16 Feb
02 Mar |
|
2. Martingales |
2.4, 2.5, 2.6, 2.7 |
09 Mar |
|
3. Ito calculus |
3.1, 3.2, 3.3, 3.4
3.5, 3.7, 3.10, 3.12 |
16 Mar
30 Mar |
|
4. Stochastic differential equations |
4.2, 4.3, 4.4, 4.5 |
06 Apr |
|
5. Diffusions |
5.1, 5.3, 5.4, 5.6 |
20 Apr |
|
6. Semigroups, Hille-Yosida, Feynman-Kac |
to be announced |
04 May |
|
7. Girsanov’s formula |
7.2, 7.3, 7.4, 7.8 |
11 May |
EXAM QUESTIONS FROM EARLIER YEARS: