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Abstract

We investigate the transient dynamics of Block Coordinate Descent algorithms in valleys
of the optimization landscape. Iterates converge linearly to a vicinity of the valley floor and
then progress in a zig-zag fashion along the direction of the valley floor. When the valley sides
are symmetric, the rate of convergence to a vicinity of the valley floor appears to be no worse
than 1/8, but without symmetry the rate can approach 1. Progress along the direction of the
valley floor is proportional to the gradient on the valley floor and inversely proportional to the
“narrowness” of the valley. We quantify narrowness using the eigenvalues of the Hessian on the
valley floor and give explicit formulas for certain cases. Progress also depends on the direction
of the valley with respect to the blocks of coordinates. When the valley sides are symmetric, we
give an explicit formula for this dependence and use it to show that in higher dimensions nearly
all directions give progress similar to the worst case direction. Finally, we observe that when
starting the algorithm, the ordering of blocks in the first few steps can be important, but show
that a greedy strategy with respect to objective function improvement can be a bad choice.
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ley, Swamp
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1 Introduction

Consider the generic problem of trying to find minimum points of a non-negative, differentiable
objective function f : Rn → R+. The argument of f can be considered as a column vector x, which
can then be broken into blocks as x = (x1; x2; . . . ; xd). Minimization with respect to a single block
xi while holding the other blocks fixed is often much easier than minimizing with respect to the
full x. This suggests a minimization algorithm: starting from an initial x,
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loop until some convergence criteria is met:

loop through i = 1, . . . , d:

update xi to minimize f with respect to xi.

We call the minimization with respect to one block of coordinates a micro-step and one loop
through i a pass. This algorithm is the simplest form of block coordinate descent (BCD) (see e.g.
[52, 23, 48, 2, 41, 53] and many textbooks). When the blocks consist of single coordinates, BCD is
called alternating coordinate [22] or coordinate descent (CD) (e.g. [23, 30]).

Despite (or perhaps due to) their simplicity, BCD methods are widely used and promising
for many applications such as high-dimensional data analysis [30], machine learning [36, 24], image
processing [53] and others [15, 49]. In the context of low rank tensor approximation problems, BCD
is known as alternating least-squares (ALS) (e.g. [38, 32, 3, 4, 50, 27, 29, 19, 20, 7, 16, 6, 18, 45,
51, 40, 17, 46]). A micro-step of ALS reduces to a linear least squares problem and so is extremely
efficient and precise. Overall, ALS is observed to converge rapidly in many cases. In other cases,
however, it exhibits long periods of very slow progress, in what is informally called a swamp.
Swamps can be classified as terminal or transient. In a terminal swamp, the slow progress
continues to a (local) minimum point. In a transient swamp, progress eventually accelerates and
the iterates exit the swamp. Analysis of the causes of swamps can be broken into two questions:

1. What features of a generic f can cause BCD algorithms to progress slowly?

2. What aspects of the tensor approximation problem cause such features to occur so frequently
and strongly?

Narrow valleys (thin ridges in maximization problems) have been recognized as a challenge
for optimization algorithms for many years (see [34, 35, 42, 11, 14]) and one of the classical test
functions for optimization, the Rosenbrock function [42], has a minimum in a narrow valley that
is diagonally oriented at the minimum. Thus, narrow valleys are a natural candidate as a cause
for swamps and answer for Question 1. In [13] we developed a rudimentary quantitative theory
for measuring the effect of narrow valleys on algorithms, based on the gradient descent with line
search (GDLS) algorithm. For BCD methods, the orientation of the valley is important. In Figure 1
we illustrate iterations of a CD method in transient and terminal valleys in R2. Roughly speaking,
the problem is that iterations of a BCD method zig-zag slowly in a narrow valley. It is also clear
that a valley will attract a non-trivial open set of points under a BCD method.

For the tensor approximation problem, in [13] we found that nonhyperbolic sinks and saddles
can occur for certain parameters values and these cause swamps. For nearby parameter values the
weakly hyperbolic sinks and saddles create narrow valleys that also cause swamps. See Figure 2
for an illustration of such narrow valleys. In [28] we found that the tensor approximation problem
often and robustly contains saddle-like essential (non-removable) discontinuities such as the one
plotted in Figure 3. Such discontinuities occur on the boundary of the low rank approximation
problem and persist under perturbations of the target tensor. Extremely narrow valleys emanate
from these discontinuities and it was observed that large sets of initial conditions can be attracted
to a neighborhood of these saddle-like essential discontinuities. Orbits leave the neighborhood
along the narrow valleys. This feature may explain the frequent and robust appearance of transient
swamps in tensor approximation problems.

In the current paper, we take the results in [13, 28] to be a sufficient answer for Question 2. Thus
we take the tensor approximation problem and ALS as motivation, but turn our attention back to
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Figure 1: Illustrations of the behavior of a coordinate descent (CD) method in valleys in R2. The
first panel shows iterations along a straight diagonal valley far from any local minimum and the
valley floor is at an angle π/6 from the x-axis. In the second panel iterations are shown near a local
minimum point that is in a diagonal valley that is π/4 from the coordinate directions. Contour
curves are shown in both panels. In both cases the trajectories zig-zag slowly downhill along the
valley floor.

Figure 2: Two views of the level surfaces in the optimization landscape for the problem of fitting
a specific 2× 2× 2 tensor of rank 2 by a tensor of rank 1. The coordinates are angular so opposite
faces are identified. Three narrow diagonal valleys (yellow tube-like) can be seen leading to the
global minimizer (inside the green).
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Figure 3: Illustration of a saddle-like essential discontinuity using contour plots with blue small
and red large. The left panel is the objective function that appears in the transient swamp in
[13, Section 4.2] with contours in [0, 1]. The right panel is the same objective function, but with
contours in [0.01, 0.03] and white indicating values above 0.03. Such discontinuities seem to exist
robustly on the boundary of tensor approximation problems. The objective function is a function
of 12 variables in 6 blocks, so only a slice is shown. Iterates drawn near the discontinuity will leave
the neighborhood extremely slowly along the narrow valley shown.
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Question 1 and BCD in general. Convergence of BCD methods has been studied for many years
and with many different assumptions on the objective function and variations on the algorithm
(e.g. [52, 23, 48, 30, 2, 39, 53, 41]). Local convergence for ALS was studied in [50]. Here we instead
seek to understand transient behavior, specifically:

• How does the progress of BCD depend on the gradient down the valley floor and the narrow-
ness of the valley?

• How does the progress of BCD depend on the direction of the valley with respect to the
partitioning of coordinates into blocks?

• How fast do the BCD iterates converge to a vicinity of the valley floor?

• How does asymmetry in the narrowness of the valley affect BCD?

In order to focus on these transient behaviors, we consider an infinitely long, straight valley. One
can then use the results as a local model for behavior in a valley that does include a minimum
point but where the iterates are currently not near the minimum.

In Section 2 we present our main analysis of BCD dynamics in a valley given by a locally
quadratic normal form. We use v to denote the uphill direction along the bottom of the valley
floor. The partition of coordinates x = (x1; x2; . . . ; xd) induces a corresponding partition of the
direction vector v = (v1; v2; . . . ; vd) that defines the valley floor. We will say that the valley is
maximally diagonal in the case when |v1| = |v2| = · · · = |vd| = 1/

√
d. We use ε to parameterize

the magnitude of the gradient on the valley floor. In Section 2.2 we derive the effect of the BCD
algorithm applied to a valley, show that iterates converge linearly to a vicinity of the valley floor,
and show that progress in the direction −v is proportional to ε.

In Section 2.3 we assume that the valley sides are symmetric about the valley floor and use σ to
parameterize the magnitude of the eigenvalue of the Hessian restricted to the hyperplane orthogonal
to v. Under the assumption of symmetric sides, we find the following.

• The rate of progress is proportional to ε/σ. Thus, as expected, narrower valleys cause slower
progress.

• For any d ≥ 2, the overall rate of progress down the valley depends on the direction as d∑
i=1

i−1∑
j=1

|vi|2|vj |2
−1

.

Consequently:

– The overall rate of progress down the valley is slowest when the valley direction is
maximally diagonal.

– Unless the valley direction v happens to be very close to the span of one of the d blocks,
the progress will be almost as slow as for a maximally diagonal direction. In other words,
BCD behaves badly for most directions v.

• The iterations converge linearly to a vicinity of the valley floor and then zig-zag at a distance
∼ ε/σ from the valley floor. For d = 2 and d = 3 we prove that the rate of convergence toward

5



the vicinity of the valley floor is at most 1/8 per pass. We show numerically that the rate of
convergence is less than 1/8 in the maximally diagonal case for 3 < d ≤ 100. We conjecture
that the rate is at most 1/8 for any symmetric valley.

• The order in which blocks of coordinates are updated can significantly affect the total number
of iterations needed. In d = 2, choosing the block that reduces f(x) the most will also give
the most progress down the valley, but for d > 2 that is no longer true.

In Section 2.4 we remove the assumption of symmetric valley sides but add the assumption that
each block is size one (so BCD reduces to CD). With these assumptions, we show the following.

• When v is maximally diagonal, progress is inversely proportional to the trace of the Hessian
restricted to the hyperplane orthogonal to v. When v is not maximally diagonal, progress is
inversely proportional to a weighted sum of the eigenvalues, but not the trace.

• Iterations converge linearly to a neighborhood of the valley floor, but there does not exist a
uniform bound on the rate of convergence, as there was in the symmetric case. This rate may
approach 1 from below in some limits.

In Section 3 we briefly consider the dynamics at valley-like sinks and saddles in order to relate
them to the dynamics in a valley. We consider a hyperbolic sink or saddle, a nonhyperbolic sink or
saddle, and an essential discontinuity that is sink-like or saddle-like. Now using ε as the strength of
the attraction or repulsion in the weak direction, we find progress is again proportional to ε/σ. In
the hyperbolic case we find that progress is proportional to the current distance to the sink or saddle.
In the nonhyperbolic and essential discontinuity cases we find that the progress is proportional to
the cube of this distance, and thus is much slower.

In Section 4, we discuss some implications of our analysis on the use of BCD and ALS methods
and potential improvements in their performance.

2 BCD Dynamics in a Valley

We will use the convention that x ∈ Rn is a column vector and xT is its transpose. The usual inner
(dot) product of x and y is then xTy and the usual 2-norm is |x| =

√
xTx. Elements gathered

into a row vector are written (x1, x2, . . . ) whereas elements gathered into a column are written
(x1;x2; . . . ); the latter notation allows us to gather column vectors into a column vector as in
x = (x1; x2; . . . ; xd).

2.1 The Model Problem

Near some point x0, the locally quadratic “normal form” of f is given by

f(x) = f(x0) +∇f(x0)T (x− x0) +
1

2
(x− x0)TH(x0)(x− x0) ,

where H(x0) is the Hessian of f at x0. The point x0 will be a point of interest, such as a sink or
saddle or point on the floor of a valley of the objective function f . In studying local dynamics,
without loss of generality one can take x0 = 0 and f(x0) = 0. The features we wish to study have
a primary orientation, which in the case of a narrow valley is the direction of ∇f(x0). We will
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assume |∇f(x0)| is small, so we will replace ∇f(x0) by εv, where v is a unit vector and ε ≥ 0. The
Hessian has effects both along v and orthogonal to v. We assume these split cleanly in that v is
an eigenvector of H(x0). The features also attract the gradient flow to V = span(v), so we assume
the portion of H(x0) orthogonal to v is positive definite.

For a valley, we therefore consider the form

f(x) = εvTx +
1

2
xTH⊥x , (1)

where H⊥ is a positive semi-definite matrix with nullspace V and ε > 0. When the nonzero
eigenvalues of H⊥ are large compared to ε, then the valley is narrow. The gradient of f is

∇f(x) = εv +H⊥x . (2)

2.2 Block Coordinate Descent

Suppose now we partition Rn into d > 1 sets of variables, i.e. x = (x1; x2; . . . ; xd). This induces
a partition v = (v1; v2; . . . ; vd) and a partition of H⊥ into blocks H⊥ij . We assume always that
|vi| > 0 for all i. By a BCD method, we will mean minimizing with respect to the coordinate
blocks xi sequentially and cyclically. To minimize in xi, one sets the partial gradient with respect
to xi equal to zero and solves for xi. From (2) we obtain

∇xif(x) = εvi +
d∑
j=1

H⊥ijxj = εvi +H⊥ii xi +
d∑

j=1,6=i
H⊥ijxj .

We can solve ∇xif(x) = 0 for xi to obtain

xnew
i = −

(
H⊥ii

)−1

 d∑
j=1,6=i

H⊥ijxj + εvi

 . (3)

If H⊥ii were not invertible, then there would be a non-zero w such that H⊥iiw = 0. Setting w′ =
(0; . . . ; 0; w; 0; . . . ; 0), i.e. the zero vector except w in the i-th block, we would obtain w′TH⊥w′ = 0.
We assumed H⊥ was positive semi-definite with nullspace V , so w′ must be a multiple of v. We
also assumed |vj | > 0 for all j, which does not allow w′ to have zero blocks. Thus H⊥ii is invertible.

We can also write (3) as an update of the whole vector x as

xnew = Mix− ai , (4)

where Mi is an n×n matrix and ai a length n vector corresponding to the update of the ith block
of x. Both Mi and ai are partitioned into blocks, which are given by

(Mi)kj =


0 if k 6= i and j 6= k

I if k 6= i and j = k

0 if k = i and j = k

−
(
H⊥ii
)−1

H⊥ij if k = i and j 6= i

and (5)

(ai)k =

{
0 if k 6= i

−
(
H⊥ii
)−1

εvi if k = i
. (6)
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A BCD pass through the directions can be written recursively as

xnew = Md (· · · (M2 (M1x + a1) + a2) + · · · ) + ad .

By collecting the terms involving x, we can write this as

xnew = Mx + b with

M = Md · · ·M2M1 and (7)

b = Md (· · · ((M2a1) + a2) + · · · ) + ad =
d∑
i=1

Md · · ·Mi+1ai . (8)

The effect of applying M is to move x toward v. We can formalize this in terms of its eigenvalues
and eigenvectors.

Theorem 2.1. The matrix M in (7) has an eigenvalue 1 with eigenvector v; all its other eigen-
values satisfy |λ| < 1.

Proof. If we apply Mi defined by (5) to v, then we have (Miv)k = Ivk for k 6= i. Since H⊥v = 0,
we have

∑d
j=1, 6=iH

⊥
ijvj = −H⊥ii vi, so the k = i block gives

(Miv)i = −
(
H⊥ii

)−1
d∑

j=1, 6=i
H⊥ijvj = −

(
H⊥ii

)−1 (
−H⊥ii vi

)
= vi .

Thus v is an eigenvector with eigenvalue 1 for each Mi and hence also for their product M .
To analyze the remaining eigenvalues, consider the BCD update process when ε = 0 and hence

ai = b = 0. Each step computes ∇xi
1
2xTH⊥x and, if this is nonzero, updates x to reduce

1
2xTH⊥x. Since H⊥ is positive semi-definite, we always have 0 ≤ 1

2xTH⊥x. Thus, for any x,
either 0 ≤ (Mx)TH⊥Mx < xTH⊥x or ∇1

2xTH⊥x = 0. Since ∇1
2xTH⊥x = H⊥x, the second case

implies x is in the nullspace of H⊥, which means it is a multiple of v.
Suppose w is an eigenvector of M with eigenvalue λ, and w is not a multiple of v. If λ is real,

then w can also be taken real and we have

0 ≤ (Mw)TH⊥Mw = λ2wTH⊥w < wTH⊥w

so |λ| < 1. If λ is complex, then its complex conjugate λ is an eigenvalue with eigenvector w. Since
w + w and i(w −w) are real, we have

0 ≤ (λw + λw)TH⊥(λw + λw) < (w + w)TH⊥(w + w) and

0 ≤ −(λw − λw)TH⊥(λw − λw) < −(w −w)TH⊥(w −w) .

Adding these inequalities yields

0 ≤ 2|λ|2
(
wTH⊥w + wTH⊥w

)
< 2

(
wTH⊥w + wTH⊥w

)
,

so |λ| < 1.
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Assume for the moment that the eigenvalues of M are distinct. Let Λ be the set of eigenvalues
of M and wλ an eigenvector for eigenvalue λ. Let b =

∑
λ∈Λ b̂λwλ and x0 =

∑
λ∈Λ x̂λwλ be the

expressions of b and the initial condition x0 in the basis of eigenvectors. Then, for k > 0, solutions
of the recurrence satisfy

xk = Mkx0 +

k−1∑
i=0

Mnb =
∑
λ∈Λ

(
λkx̂λ +

k−1∑
i=0

λib̂λ

)
wλ . (9)

The term with λ = 1 contributes (x̂1 + kb̂1)w1, which progresses along w1 with rate b̂1. For each
|λ| < 1, the term contributes (λkx̂λ + (1 − λk)(1 − λ)−1b̂λ)wλ, which converges to (1 − λ)−1b̂λwλ

with rate |λ|. Observe that λ ≈ 1 causes large separation from w1 as well as slow convergence
while |λ| ≈ 1 only causes slow convergence. We have shown in Theorem 2.1 that M has a simple
eigenvalue 1 with eigenvector w1 = v and that all other eigenvalues satisfy |λ| < 1. Thus iterations
will converge linearly to

xk ≈ (x̂1 + kb̂1)v +
∑
|λ|<1

(1− λ)−1b̂λwλ.

If the eigenvalues of M are not distinct but it is still diagonalizable, then a basis of eigenvectors
still exist. The above analysis still holds, but the notation becomes cumbersome.

If M is not diagonalizable, then some eigenvalues have geometric multiplicity less than their
algebraic multiplicity. Let λ be such an eigenvalue, which we now fix so that we can suppress it from
the notation. By Theorem 2.1, we know |λ| < 1. Corresponding to each m ×m block associated
to λ in the Jordan canonical form of M there is a chain of m linearly independent vectors {yj}mj=1

such that (A− λI)yj = yj−1 and (A− λI)y1 = 0. The generalized eigenvectors {yj}mj=2 make up
for the lack of enough eigenvectors to form a basis; note that y1 = wλ is an eigenvector and so is
included in the previous analysis. We can compute directly that

Mkyj =

j−1∑
q=0

(
k

q

)
λk−qyj−q for k ≥ m and (10)

lim
k→∞

k−1∑
i=0

M iyj =

j−1∑
q=0

1

(1− λ)q+1
yj−q . (11)

Since |λ| < 1, the terms (10) converge to zero linearly with rate of convergence µ for any µ with
|λ| < µ < 1. The expansions of x0 and b will include terms corresponding to {yj}mj=2. In (9) we

will then have have a coefficient of x0 times (10), which still converges to zero linearly. Similarly,
we will have a coefficient of b times

∑k−1
i=0 M

iyj , which converges linearly to (11).

Our first goal in subsequent sections will be to find b̂1 to determine the progress rate down the
valley for various cases. We can already observe that b̂1 is proportional to ε since b contains a
factor of ε coming from ai in (6). Our second goal will be to find the maximum of {|λ| : |λ| < 1}
to determine the convergence rate toward a vicinity of the valley floor.

9



2.3 Dynamics in a Symmetric Valley

2.3.1 Formulation and Reduction to Coefficients

When the attraction to V is radially symmetric about V , then for some σ > 0 we can write

H⊥ = σ(I − vvT ), and thus have (12)

f(x) = εvTx +
σ

2
(xTx− (vTx)2) and

∇f(x) = εv + σ(x− (vTx)v) .

Note that xTx− (vTx)2 is the distance from x to V . The update (3) becomes

xi =
(
σ(I − viv

T
i )
)−1

σ d∑
j=1,6=i

viv
T
j xj − εvi


=

σ d∑
j=1, 6=i

vTj xj − ε

(σI − σviv
T
i

)−1
vi

=

σ d∑
j=1, 6=i

vTj xj − ε

 1

σ(1− vTi vi)
vi . (13)

Note that the updated xi is a multiple of vi, so we can write xi = civi. After one pass through
the directions, we will have xj = cjvj for all j. Thus a pass of BCD maps the entire space onto
the subspace W = (c1v1; c2v2; . . . ; cdvd) and W is invariant under micro-steps of BCD. We remark
that V is a subspace of W , but V is not invariant under micro-steps or the full BCD algorithm.
Note that if vj = 0 then the update would produce xj = 0 and cj then has no meaning or role. We
have assumed |vj | > 0 for all j to avoid such null directions. Let pi = vTi vi and p be the vector of
pi values. We can then exchange the vector update (13) for the scalar update

ci =

σ d∑
j=1, 6=i

cjpj − ε

 1

σ(1− pi)
=

1

1− pi

 d∑
j=1,6=i

cjpj −
ε

σ

 . (14)

In what follows we assume there has already been one update pass through the directions, so
x ∈ W and we can work entirely with the coefficient vector c = (c1; . . . ; cd), which we assume for
convenience has initial value c0 = (c0

1; . . . ; c0
d).

Since |v|2 =
∑d

j=1 pj = 1, for interpretation we can rewrite (14) as

ci =

∑d
j=1,6=i cjpj∑d
j=1,6=i pj

− ε

σ(1− pi)
. (15)

The first term is a weighted average of {cj}j 6=i and so tries to make all {cj}dj=1 the same. The
second term controls the drift down the valley. It is proportional to ε, which is the size of the
gradient on the valley floor. It is inversely proportional to σ, so the narrower the valley is, the
slower the progress down the valley. It is also inversely proportional to (1 − pi) ∈ (0, 1), so the
update of the i-block achieves more progress if v has a larger component in vi.
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We can also write (14) as an update of the whole vector c as

cnew = Mic−
ε

σ(1− pi)
ei with (16)

Mi =

(
I +

1

1− pi
ei (p− ei)

T

)
. (17)

We note that M and Mi here are matrices representing the same linear operators as in section 2.2,
but restricted to the subspace W . A BCD pass through the directions can then be written

cnew = Mc + b with

M = Md · · ·M2M1 and (18)

b =
−ε
σ

d∑
i=1

Md · · ·Mi+1
1

1− pi
ei . (19)

Corresponding to Theorem 2.1. we have

Corollary 2.2. The matrix M in (18) has an eigenvalue 1 with eigenvector 1; all its other eigen-
values satisfy |λ| < 1.

Proof. By direct computation, Mi1 = 1 for all i, so M has an eigenvalue 1 with eigenvector 1. The
rest of the theorem follows from Theorem 2.1 since the current M and Mi are simply restrictions
of the linear operators in Section 2.2 to V .

The convergence theory in Section 2.2 still applies, now replacing x by c and v by 1. We are
thus still interested in finding b̂1 and the maximum of {|λ| : |λ| < 1}. Note from (19) that b has
a factor ε/σ and therefore so does each b̂λ. Thus the progress along the valley and the asymptotic
distance from the floor of the valley are both proportional to ε/σ.

2.3.2 The case d = 2

When d = 2 we have p1 + p2 = 1 and the update (14) yields

c1
1 =

1

1− p1

(
c0

2p2 −
ε

σ

)
= c0

2 −
1

p2

ε

σ
and

c1
2 =

1

1− p2

(
c1

1p1 −
ε

σ

)
= c1

1 −
1

p1

ε

σ
= c0

2 −
1

p1p2

ε

σ
.

Continuing, we have

ck1 = c0
2 −

(
k − 1

p1p2
+

1

p2

)
ε

σ
= c0

2 −
(

k

p1p2
− 1

p1

)
ε

σ
and

ck2 = c0
2 −

k

p1p2

ε

σ
.

The coefficients produced by the steps of the algorithm alternate between two parallel lines.
Namely, (ck1, c

k−1
2 ) is always on the line c2 = c1 + ε

p2σ
and (ck1, c

k
2) is on the line c2 = c1 − ε

p1σ
.

Therefore, iterates in the original coordinates alternate between the two parallel lines as(
xk1

xk−1
2

)
∈ V +

ε

p2σ

(
0
v2

)
and

(
xk1
xk2

)
∈ V − ε

p1σ

(
0
v2

)
.
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Figure 4: Trajectory of the coefficients (c1, c2) generated by BCD in a symmetric valley with
d = 2. In the left panel c1 is optimized first and in the right panel c2 is optimized first. In
both the trajectory is immediately projected onto a pair of parallel lines close to {c1 = c2}. This
illustrates very clearly that the initial order of optimization micro-steps may matter greatly. For
two coordinate blocks (d = 2) progress is optimized if one chooses to first minimize with respect to
the block (x2 in this example) that gives the greatest improvement in the objective function (i.e. a
greedy strategy). We will see in Section 2.3.3 that this does not work for more than two blocks.

These lines are each a distance ∼ ε/σ from V . In Figure 4 we illustrate the trajectories of coefficients
(c1, c2).

We can express the direction of v with respect to its partition into v1 and v2 using the angle θ
such that (cos(θ), sin(θ)) = (

√
p1,
√
p2). (Note that θ is the angle between v and the x1 coordinate

hyperplane.) Each pass of BCD moves x a distance of

|∆x| =
∣∣∣∣(ck+1

1 v1

ck+1
2 v2

)
−
(
ck1v1

ck2v2

)∣∣∣∣ =
1

p1p2

ε

σ
|v| = 1

cos2 θ sin2 θ

ε

σ
= 4 csc2(2θ)

ε

σ
. (20)

The minimal progress of 4ε/σ occurs when θ = π/4, which is the maximally diagonal case |v1| =
|v2|. We plot the dependence on θ in Figure 5. For a large domain of angles, the movement is close
to the minimum value. In particular, for angles π/8 < θ < 3π/8, which is half the available domain,
the rate is less than twice the minimum value. If we consider for which θ the rate of progress is
within an order of magnitude of the minimum value, that occurs for 0.16 < θ < 1.41 or about 80%
of the domain of angles.

We also observe from the recurrence and Figure 4 that it can matter a lot whether one optimizes
first in x1 or x2. We see that the difference in the number of iterations can be on the order of σ/ε
times the distance of x0 from the valley floor. With two blocks (d = 2) it is easy to check that
the first micro-step of BCD should be greedy. That is, one should calculate the micro-steps with
respect to each block of coordinates and update the block that gives the largest decrease in the
objective function.

From our investigation of d = 2, we draw the following conclusions or lessons:

• Iterations zig-zag along lines ∼ ε/σ from the valley floor.

• A greedy first micro-step can have a large benefit.

12
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Figure 5: Graph of csc2(2θ), which is proportional to the progress of BCD as a function of the
angle of the gradient with respect to two blocks of variables. We see that this in fact is quite small
for a large neighborhood of angles around the minimum at π/4.

• Progress is proportional to ε/σ. It depends on the angle θ proportionally to csc2(2θ). The
slowest progress rate 4ε/σ occurs when |v1| = |v2|.

2.3.3 The case d = 3

When d = 3 we have p1 + p2 + p3 = 1 and the update (14) yields

ck+1
1 =

1

p2 + p3

(
p2c

k
2 + p3c

k
3 −

ε

σ

)
,

ck+1
2 =

1

p1 + p3

(
p1c

k+1
1 + p3c

k
3 −

ε

σ

)
, and

ck+1
3 =

1

p1 + p2

(
p1c

k+1
1 + p2c

k+1
2 − ε

σ

)
.

A trajectory of this recurrence is plotted in Figure 6. Iterations of the coefficients are attracted to
a neighborhood of the diagonal {c1 = c2 = c3}, then zig-zag downward along the valley floor. In
particular, in the limit the iterations alternate between three lines that are parallel to the diagonal.

Using (17), we can compute the matrix (18)

M = M3M2M1 =

0 p2
1−p1

p3
(1−p1)

0 p1p2
(1−p1)(1−p2)

p3
(1−p1)(1−p2)

0 p1p2
(1−p1)(1−p2)(1−p3)

(p1+p2−p1p2)p3
(1−p1)(1−p2)(1−p3)


and the vector (19)

b = − ε
σ


1

1−p1
1

(1−p1)(1−p2)
1

(1−p1)(1−p2)(1−p3)

 .
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Figure 6: Trajectory of the coefficients (c1, c2, c3) generated by BCD in a symmetric valley with
d = 3. The first panel shows iterations of the coefficients first approaching a neighborhood of the
diagonal {c1 = c2 = c3}, then moving along three lines that are parallel to the diagonal. In the
second panel these iterations are projected onto a plane normal to the diagonal.

The matrix M has an eigenvalue 0 with eigenvector e1 and (as noted in Corollary 2.2) an eigenvalue
1 with eigenvector 1. The third eigenvalue-eigenvector pair is

λ =
−p1p2p3

(1− p1)(1− p2)(1− p3)
=

−p1p2p3

(p1 + p2)(p2 + p3)(p1 + p3)
, and (21)

wλ =

(
(1− p2)(1− p3)

p2
1

,
−(1− p3)p3

p1p2
, 1

)T
.

Since pi + pj ≥ 2
√
pipj , we have that |λ| ≤ 1/8; the case p1 = p2 = p3 = 1/3 yields λ = −1/8 so

this bound is sharp.
By solving a linear system, we can express b in the basis {e1,1,wλ} as b = b̂0e1 + b̂11 + b̂λw

with

b̂0 =
ε

σ

1

p1
, b̂1 = − ε

σ

1

p1p2 + p2p3 + p1p3
, and

b̂λ = − ε
σ

p1p2p3

(1− p1)(1− p2)(1− p3)(p1p2 + p2p3 + p1p3)
.

Similarly, for any starting point c0 ∈ R3 we have c0 = ĉ0e1 + ĉ11 + ĉλwλ. The expression (9) for
the solutions of the recurrence becomes

ck =
(
ĉ1 − b̂1k

)
1 +

(
ĉλλ

k − b̂λ
1− λk

1− λ

)
wλ .
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We see that the coefficients of the recurrence converge to a neighborhood of the diagonal {c1 =
c2 = c3} (rather than being sent there immediately as in the case d = 2) and so iterates of the
algorithm converge to a neighborhood of the line spanned by v. The rate of convergence to the
valley floor is controlled by the eigenvalue λ in (21). We saw that |λ| ≤ 1/8, with equality attained
for the symmetric case p1 = p2 = p3 = 1/3. Therefore the slowest convergence to the valley is a rate
of 1/8 per pass of the algorithm. The minimum of |λ| = 0 occurs along the boundary, where the
problem reduced to the case d = 2. It is of particular note that the rate |λ| ≤ 1/8 is independent
of ε, which is the size of the gradient, and σ, which determines how narrow the valley is.

Asymptotically, as k grows large we have

ck ≈
(
ĉ1 − b̂1k

)
1− b̂λ

1

1− λ
wλ .

For k large, each pass (3 micro-steps) will move approximately by:

|∆x| = |xk+1 − xk| ≈ |b̂1| =
ε

σ

1

p1p2 + p2p3 + p1p3
. (22)

As with the d = 2 case in Section 2.3.2, the dependence on ε and σ is as ε/σ, which is small when
σ � ε. Since p1 + p2 + p3 = 1, either zero, one, or two of the pi can be small.

• If none of the pi are small, then the scalar depending on the pi cannot speed the progress. It
is elementary to show that (22) is convex and is minimized by the symmetric case p1 = p2 =
p3 = 1/3, corresponding to |v1| = |v2| = |v3|. Thus, the slowest rate of progress along the
valley is

min |∆x| = 3ε/σ .

• If one of the pi is small, then the BCD algorithm will nearly project onto the hyperplane
spanned by the two non-zero coordinate blocks. The trajectory will then zig-zag near that
plane with essentially the same rate as the d = 2 case in Section 2.3.2. In particular, if we set
p3 = 0 in (22), then it reduces to (20). If we then set p1 = p2 = 1/2, then the slowest rate of
progress is 4ε/σ.

• If two of the pi are small, then (22) can be large.

Numerically, in R3 we find that (22) is no more than twice the minimum value for 85.3% of unit
vectors v and it is within the same order as the minimum for 96.2% of all unit vectors (using a
spherically symmetric uniform distribution on the sphere |v1|2 + |v2|2 + |v3|2 = 1). Both of these
percentages are significantly larger than the corresponding percentages for the case n = d = 2.
Thus we observe that the portion of all directions that make BCD slow grows markedly as the
number of blocks increases from 2 to 3.

The BCD method and the sequential recurrence (31) are not symmetric in the blocks of co-
ordinates and so the choice of the order of optimization may matter. Progress along the valley
direction is achieved by decreasing the coefficients {ci} and so optimizing first with respect to the
largest ci will result in the largest progress down the valley among all d possible first micro-steps.
However, in the context of a real problem the coefficients {ci} will not be known and one might
hope for a proxy, such as the value of the objective function f . In Section 2.3.2 we observed that
for two coordinate blocks (d = 2), it is advantageous to use a greedy strategy (with respect to f)

15



to choose the order of micro-steps. For d ≥ 3 this is no longer true as we will show in the following
example.

Fix d ≥ 3 and consider the initial state x0 = (0,v2,v3, . . . ,vd) ∈ W , which can be described
by the coefficients (c1, c2, . . . , cd) = (0, 1, 1, . . . , 1). If we optimize with respect to x1 first, then by
direct calculation c1 becomes

c1 = 1− d

d− 1

ε

σ
.

and the updated vector is y1 = (c1v1; v2; . . . ; vd). If instead we optimize with respect to x2 first,
then c2 becomes updated to

c2 = 1− 1

d− 1
− d

d− 1

ε

σ
,

which produces a new vector y2 = (0; c2v2; v3; . . . ; vd). Comparing the objective function f(x)
evaluated at the new points y1 and y2, we find that

f(y1) = ε− 1

d− 1

ε2

2σ
and

f(y2) = ε
d− 2

d− 1
− 1

d− 1

ε2

2σ
+

(d− 2)σ

2d(d− 1)
= f(y1) +

1

d− 1

(
σ(d− 2)

2d
− ε
)
.

For d ≥ 3 and σ(d − 2)/2d > ε (in particular if ε � σ as in a narrow valley) then we will have
f(y1) < f(y2). Thus the greedy choice is to optimize with respect to x1 first. However,

vTy1 = 1− 1

d− 1

ε

2σ
while vTy2 =

d− 2

d− 1
− 1

d− 1

ε

2σ
= vTy1 −

2

d− 1
,

so optimizing with respect to x2 first gives more movement in the direction −v, which is better
for progress down the valley and allows for fewer steps to leave the valley. In fact, we may observe
that vTy1 > vTx0 = 1 − 1/d provided ε/σ < 2(d − 1)/d, i.e., y1 is further up the valley than the
initial point.

This happens because of the composition of the objective function. The first part of f , with
coefficient ε, measures linear distance in the direction v. The second part, multiplied by σ, penalizes
the square of the distance from V . If x is not close to V , then the objective f will be dominated by
the quadratic part. A greedy strategy will tend to pull the iteration toward V , but not necessarily
further down the valley in the direction −v.

Summarizing, in the case d = 3 we find:

• Iterations are attracted linearly to a neighborhood of the valley floor with a rate of convergence
per pass no worse than 1/8, independent of ε and σ.

• Iterations zig-zag at a distance ∼ ε/σ from the valley floor.

• In one pass, iterations move a distance ∼ ε/σ with a minimum of 3ε/σ.

• The slowest convergence to the valley and the slowest progress along the valley occur when
v is maximally diagonal, i.e. |v1| = |v2| = |v3|.

• For d = 3 a large set of directions v make progress of alternating algorithms slow. The
percentage of slow directions is higher than for the case d = 2.

• For d > 2, a greedy strategy based on decreasing the objective function may be counterpro-
ductive in a narrow valley.
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2.3.4 Progress rate for d ≥ 2

In previous sections we derived the progress rate b̂1 in a symmetric valley in the cases d = 2 (20)
and d = 3 (22). Now we produce the progress rate for d arbitrary. We will use the results to show
that the progress rate is slow except for a set of directions v ∈ Rn that is exponentially small in n.

Theorem 2.3. The progress rate is

b̂1 = − ε
σ

1∑d
i=1

∑i−1
j=1 pipj

= − ε
σ

2∑d
i 6=j pipj

. (23)

Proof. We give the high-level arguments of the proof now, while deferring calculations.
Corollary 2.2 showed that the eigenvalue 1 is simple and has eigenvector 1, and all other

eigenvalues satisfy |λ| < 1. Thus, by the power method, ẑ11 = limk→∞M
kz for any z, so in

particular b̂11 = limk→∞M
kb. The matrix M∞ = limk→∞M

k is thus the projector onto the
component of a vector in the eigenvector 1 when expanded into the eigenvectors of M . We can
thus write M∞ = 1uT for some u.

Since M∞M = M∞, we know 1uTM = 1uT and hence uTM = uT . Thus u is a left eigenvector
of M with eigenvalue 1. Since this eigenvalue is simple, u is unique up to a scalar factor. In
Lemma 2.4 we will show that the vector y with entries yi = pi

∑i−1
j=1 pj is a left eigenvector of M

with eigenvalue 1. Since M∞M∞ = M∞, we know uT1 = 1 and thus u = y/(yT1).
In Lemma 2.5 we will show that yTb = −ε/σ. Thus b̂1 = uTb = −ε/(σyT1). We can compute

directly that yT1 =
∑d

i=1 pi
∑i−1

j=1 pj , thus yielding (23).

Lemma 2.4. The vector

y =
d∑
i=1

pi

 i−1∑
j=1

pj

 ei (24)

is a left eigenvector of M in (18) with eigenvalue 1.

Proof. We will show that

yTMd · · ·Mk = yT +

d∑
i=k

pi(p− ei)
T (25)

for k = 1, 2, . . . , d. Setting k = 1 then yields

yTM = yT +

d∑
i=1

pi(p− ei)
T = yT +

(
d∑
i=1

pi

)
pT −

d∑
i=1

pie
T
i = yT ,

which means y is a left eigenvector with eigenvalue 1.
The argument is recursive, and so acts like a finite induction down in k. The base case is

obtained by setting k = d+ 1 in (25), which yields yT = yT . The recursive step is then to take the
k + 1 version of (25), apply Mk on the right, and show we get (25). We thus compute(

yT +
d∑

i=k+1

pi(p− ei)
T

)(
I +

1

1− pk
ek (p− ek)

T

)
.
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The product of the first term with the identity I in the second term yields all of (25) except for its
i = k term. The remainder of the product is(

yT +

d∑
i=k+1

pi(p− ei)
T

)
1

1− pk
ek (p− ek)

T

=

pk
k−1∑
j=1

pj

+

d∑
i=k+1

pipk

 1

1− pk
(p− ek)

T

=

 d∑
j=1, 6=k

pj

 pk
1− pk

(p− ek)
T = pk (p− ek)

T .

Since this is the desired i = k term, the induction and the result are proven.

Lemma 2.5. For the vectors y in (24) and b in (19), yTb = −ε/σ.

Proof. Substituting (25) into (19) yields

yTb =
−ε
σ

d∑
i=1

yT +
d∑

j=i+1

pj(p− ej)
T

 1

1− pi
ei

=
−ε
σ

d∑
i=1

pi
 i−1∑
j=1

pj

+

d∑
j=i+1

pjpi

 1

1− pi

=
−ε
σ

d∑
i=1

pi

 i−1∑
j=1, 6=i

pj

 1

1− pi
=
−ε
σ

d∑
i=1

pi =
−ε
σ
.

From (23) we obtain the following.

Corollary 2.6. The progress rate (23) is slowest when v is maximally diagonal, where (23) has
value −(ε/σ)2d/(d− 1).

Proof. A direct computation shows that the function φ(p) =
∑d

i 6=j pipj is concave down on the unit

simplex σd = {p : pi ≥ 0,
∑d

i=1 pi = 1}. In particular, if we eliminate pd from φ using the constraint
and calculate second partial derivatives of φ̄(p1, . . . , pd−1) = φ(p), we find that all mixed partial
derivatives are −1, while the pure second derivatives all equal to −2. It is then easy to show that
the Hessian matrix is strictly negative definite. Separately, the method of Lagrange multipliers
shows that φ restricted to the unit simplex has a single critical point, which is the symmetric point
pi = 1/d for all 1 ≤ i ≤ d. The symmetric point, which corresponds to v being maximally diagonal,
is the maximum point for φ and the minimum point for b̂1.

In the previous section we saw that as n increases from 2 to 3, the fraction of directions that
behave badly increases. Using Theorem 2.3 for n = 3, 4, 5 we calculated the values of P2 and P10,
the portion of unit vectors for which the rate of progress b̂1 is greater than twice or 10 times the
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Figure 7: Log plot of the portion of vectors v on the unit sphere Sn−1 for which the rate of progress,
b̂1, is more than twice (P2 ∗) and 10 times (P10 ◦) the minimum value, 2n/(n− 1) εσ , as a function
of n for CD. For practical purposes, almost all directions v behave nearly as badly as a maximally
diagonal direction.

slowest rate, respectively, and plotted the results in Figure 7. We see that even for n = 4 these
portions are quite small. Thus, practically all directions are bad for a CD algorithm. The following
results show that this pattern continues asymptotically for BCD. Proposition 2.7 shows that fast
progress requires v to have a large projection onto a single block. Proposition 2.9 then shows that
the set of such vectors is exponentially small in n.

Proposition 2.7. For any α > 2, the directions v ∈ Sn−1 for which |b̂1| > α2d/(d− 1) εσ satisfy

pi >
1

2
+

1

2

√
1− 2(d− 1)

αd
for some i with 1 ≤ i ≤ d. (26)

Proof. Without loss of generality, we can order {pi} so that pi ≤ pd for all 1 ≤ i < d. Note that
for p satisfying p1 + · · ·+ pd = 1, we have

φd(p) =
d∑
i 6=j

pipj =
d−1∑
i 6=j

pipj + pd

d−1∑
i=1

pi = φd−1(p′) + pd(1− pd) , (27)

where we use p′ to denote the vector formed from p by removing the last entry. We have that
b̂1 > α2d/(d − 1) εσ if and only if φ(p) < (d − 1)/2αd. From (27), this implies pd(1 − pd) < d−1

2αd .
This inequality has solutions

pd >
1

2
+

1

2

√
1− 2(d− 1)

αd
or pd <

1

2
− 1

2

√
1− 2(d− 1)

αd
(28)
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provided α > 2(d− 1)/d. If we take α > 2, then there are solutions for any d. The first solution is
the desired inequality (26).

The second solution to (28) implies pd < 1/2; since we assumed pd was the largest pi, this implies
all pi are less than 1/2. Consider φ restricted to the unit simplex with the additional constraints
0 ≤ pi ≤ 1/2 for all i. Since φ is concave down on the simplex and since the constraints are linear,
local minimum points must occur at the corners of the restricted region. The corners correspond
to k > 1 coordinates equal to 1/k and the other d− k coordinates equal to 0, i.e. permutations of
the vector qk that is 1/k in the first k coordinates and 0 elsewhere. We can compute directly

φ(qk) =
1

k2

(
i

2

)
=
k − 1

2k
=

1

2
− 1

2k
≥ 1

4
.

Since this is inconsistent with φ(p) < (d − 1)/2αd < 1/4, we can rule out the second solution to
(28).

Next we will apply Paul Lévy’s spherical isoparametric inequality also known as concentration
of measure on the sphere [25]. Let µ be the normalized surface area measure on Sn−1 and let ‖ · ‖
denote Euclidean distance in Rn.

Theorem 2.8 (Measure Concentration for the Sphere Sn−1). Let A ⊂ Sn−1 be a measurable subset
of the unit sphere Sn−1 such that µ(A) = 1/2. Let Aδ denote the δ-neighborhood of A in Sn−1.
i.e., Aδ = {x ∈ Sn−1 | ∃z ∈ A, ‖x− z‖ ≤ δ}. Then,

µ(Aδ) ≥ 1− 2e−nδ
2/2 . (29)

Proposition 2.9. If v ∈ Sn−1 is partitioned into d blocks, the number of coordinates in each block
is at most n/2, and 0 < γ < 1/2, then the measure of the set of v for which |vi|2 ≥ 1/2 + γ for
some i is less than

2d exp(−nγ2/2) . (30)

Proof. We will show that the set A = {v ∈ Sn−1 | |vd|2 ≥ 1/2 + γ} has measure less than
2 exp(−nγ2/2). Permuting the distinguished index then yields (30). The setB = {v ∈ Sn−1 | |vd|2 ≤
1/2} has measure at least 1/2 by the assumption that vd contain not more than half the variables.
By the isoparametric inequality (29) applied to B, µ(A) < 2 exp(−nδ2/2), where δ is the minimum
distance between A and B. We thus need only show that δ ≥ γ.

The minimum distance between A and B occurs on their boundaries ∂A and ∂B. Defining

f(x) = |x1|2 + · · ·+ |xd−1|2 and g(x) = |xd|2 ,

we can characterize ∂A and ∂B as intersections of level sets of these functions as

∂A = {x | f(x) = 1/2− γ, g(x) = 1/2 + γ} and ∂B = {x | f(x) = 1/2, g(x) = 1/2} .

The minimal distance between ∂A and ∂B will occur at points x ∈ ∂A and y ∈ ∂B where the
normal plane to ∂A at x intersects ∂B at y. Note that the normal plane to ∂A at x is spanned by
the vectors

∇f(x) = (x1; . . . ; xd−1,0) and ∇g(x) = (0; . . . ; 0; xd).
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From this condition we deduce that y must satisfy yi = axi for 1 ≤ i ≤ d − 1 and yd = bxd for
some real a and b. Applying the constraints x ∈ ∂A and y ∈ ∂B, we obtain

a = ± 1√
1− 2γ

and b = ± 1√
1 + 2γ

.

We can substitute these expressions directly into the distance formula to find that the distance is
independent of the point x ∈ ∂A and is minimized at y corresponding to the positive values of a
and b. For these points we find that

δ2 = d(x,y)2 = 2−
√

1− 2γ −
√

1 + γ.

Since γ < 1/2, we can expand the square root expressions as convergent Taylor series. The odd
terms in the expansion cancel leaving

d(x,y)2 = γ2 +
5

4
γ4 + . . . ,

where all the successive even powers have positive coefficients and we can conclude that δ > γ.

2.3.5 The case d > 3 with pi = 1/d

For d > 3 we will further analyze the maximally diagonal case pi = |vi|2 = 1/d for all 1 ≤ i ≤ d,
which has the slowest progress along the valley. The update (14) in this case becomes

ci =
1

d− 1

d∑
j=1,6=i

cj −
d

d− 1

ε

σ
. (31)

If we let sj be the sequence sdk+i = cki , then sj satisfies the recurrence

sj =
1

d− 1

d−1∑
i=1

sj−i − d

d− 1

ε

σ
. (32)

This recurrence has a particular solution sjpart = − 2
d−1

ε
σ j, so that on a pass of BCD it moves in

the valley direction by

|∆x| = 2d

d− 1

ε

σ
, (33)

which agrees with (23) for pi = 1/d. The homogeneous part of the recurrence (32) has the auxiliary
equation

(d− 1)zd−1 − zd−2 − zd−3 − . . .− z − 1 = 0 .

Dividing it by z − 1 yields

(d− 1)zd−2 + (d− 2)zd−3 + . . .+ 2z + 1 =

d−2∑
i=0

(i+ 1)zi = 0 . (34)

The recurrence (32) is equivalent to applyingM1, followed by a cyclic permutation of coordinates
ci 7→ c(i+1 mod d), which can be represented by a permutation matrix C. Now consider that
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Figure 8: (a) Maximal modulus of non-unity roots of the auxiliary polynomial (34) as a function
of d, d ≥ 3. For d = 3, −1/2 is the second root. As d becomes large the modulus of the root
appears to approach 1, but relatively slowly. These roots represent the rate of contraction toward
the diagonal (in coefficient space) of one micro-step of an alternating algorithm. (b) The modulus
of the maximal root raised to the power d, 3 ≤ d ≤ 100. This is an upper bound on the contraction
rate to the valley of a pass of the algorithm. It appears this rate is bounded above by 1/8.

Mi = C−i+1M1C
i−1. It is then easy to show, using C−d+1 = C, that the full matrix M = Md · · ·M1

is equal to (CM1)d. The polynomial in (34) is the characteristic polynomial of CM1 divided by
z(z−1). The eigenvalues of M are thus the roots of (34) raised to the power d, along with 0 and 1.
In Figure 8(a) we plot the maximum modulus of the roots as a function of d. In Figure 8(b) we plot
the same maximal root raised to the power d for each d and observe that this is bounded above by
1/8 for d = 3, . . . , 100. As discussed in Section 2.2, the maximum modulus of the eigenvalues of M
other than 1 controls the rate of convergence to a neighborhood of the diagonal.

For the case d > 3 with pi = 1/d, we find:

• Iterations are attracted to a neighborhood of the valley floor at a rate no worse than 1/8 per
pass, independent of d, ε and σ.

We also confirmed that a pass moves the point a distance ∼ ε/σ with a minimum of
2d

d− 1

ε

σ
.

2.3.6 Comparison with Gradient Descent with Line Search

The GDLS algorithm computes the gradient and then moves along the ray in the negative gradient
direction until it encounters the first local minimum. Since this algorithm is independent of the
coordinate system, the progress rate of GDLS is independent of v. In [13, Section 2.3.2], the
behavior of GDLS in a valley in d = 2 was studied. By rotating the coordinate system to map v to
e1 and x0 into the span of e1 and e2, the analysis also holds for a symmetric valley in d > 2. The
iterates alternate between the two lines x2 = x0

2 and x2 = −(ε/σ)2/x0
2. The mean progress (along
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−e1) is

ε

σ

(
1 +

1

2

((
ε

σx0
2

)2

+

(
ε

σx0
2

)−2
))

.

The progress rate depends on the initial value x0
2 and attains its minimum value of 2ε/σ when

|x0
2| = ε/σ.

In comparison:

• Both methods move proportionally to ε/σ.

• The BCD progress rate is insensitive to the starting point but is sensitive to v. Since the
proportion of v yielding slow progress increases with d, one is likely to notice the effect of
valleys when using BCD.

• The GDLS progress rate is insensitive to v but is sensitive to the starting point. GDLS does
not have a mechanism for converging to the vicinity of the valley floor. Whether or not one
notices the effect of a valley thus depends on either an (un)lucky choice of starting point or
the behavior of f(x) outside the local validity of the valley model.

2.4 Diagonal Valley with asymmetric walls

2.4.1 The general setup and the special case of coordinate descent

If the attraction to V is not radially symmetric about V , then

H⊥ =

n−1∑
m=1

σmumuTm

with {um} orthonormal, uTmv = 0 for all m, and σm > 0. In order to compute the update (3), we
need to compute (

H⊥ii

)−1
=

(
n−1∑
m=1

σmumiu
T
mi

)−1

,

where umi is the i-th block out of um.
Since this is too general to allow a useful formula, we will only consider block size one, i.e. the

CD case. In this context umi is just a scalar umi and the inverse is just the reciprocal. Let

σ̂ij =

∑d−1
m=1 σmumiumj∑d−1
m=1 umiumj

, (35)

which is a weighted average of the σm, with some negative weights when i 6= j. Let U be the
matrix whose first d− 1 rows are u1 through ud−1 and whose last is v. This matrix is orthogonal
(as is its transpose), so

∑d−1
m=1 umiumj + vivj = δij . We can then interpret

H⊥ii =
d−1∑
m=1

σmu
2
mi =

∑d−1
m=1 σmu

2
mi∑d−1

m=1 u
2
mi

(1− vivi) = σ̂ii(1− pi)

as the familiar factor 1 − pi times a weighted average of the σm. Similarly, for i 6= j we have
H⊥ij = σ̂ij(−vivj).
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We can then write (3) as

xi =
1

σ̂ii(1− pi)

 d∑
j=1,6=i

σ̂ijvivjxj − εvi

 .

Letting xi = civi, we can reduce to the coefficient equation

ci =
1

σ̂ii(1− pi)

 d∑
j=1, 6=i

σ̂ijpjcj − ε

 =

∑d
j=1,6=i

σ̂ij
σ̂ii
pjcj

1− pi
− ε

σ̂ii(1− pi)
.

This update is analogous to (15) in that it contains an averaging term and a drift term; it reduces
to (15) when σm = σ for all m.

We can put this into vector form, as we did in Section 2.3.1 for the symmetric valley. Corre-
sponding to Equations (16) and (17), we have

cnew = Mic−
ε

σ̂ii(1− pi)
ei with

Mi =
d∑

j=1,6=i

(
ej +

σ̂ijpj
(1− pi)σ̂ii

ei

)
eTj . (36)

Corresponding to (19) we have

b = −ε
d∑
i=1

Md · · ·Mi+1
1

σ̂ii(1− pi)
ei . (37)

As in the general case in Section 2.2 and the symmetric case in Section 2.3, we are interested
in finding b̂1 and the maximum of {|λ| : |λ| < 1}. As in Corollary 2.2, M has an eigenvalue 1 with
eigenvector 1 and all its other eigenvalues satisfy |λ| < 1.

2.4.2 A particular example in R3

In R3 consider the diagonal direction v = (1, 1, 1)T /
√

3, two orthogonal vectors u1 = (1,−1, 0)T /
√

2
and u2 = (−1,−1, 2)T /

√
6, and two eigenvalues σ1, σ2 > 0. Let

f(x) = c+ εv · x +
σ1

2
(u1 · x)2 +

σ2

2
(u2 · x)2 so

∇f(x) = εv + σ1(u1 · x)u1 + σ2(u2 · x)u2 .

Using the notation (x, y, z) ∈ R3, CD starting with the x direction produces the recurrence

xk+1 =
3σ1 − σ2

3σ1 + σ2
yk +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ε ,

yk+1 =
3σ1 − σ2

3σ1 + σ2
xk+1 +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ε , and

zk+1 =
xk+1 + yk+1

2
−
√

3

2σ2
ε.
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When σ1 = σ2, this reduces to the form in Section 2.3.3 with v = (1, 1, 1)T /
√

3.
This sequential recurrence can be rewritten as a simultaneous recurrence

xk+1 =
3σ1 − σ2

3σ1 + σ2
yk +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ε ,

yk+1 =

(
3σ1 − σ2

3σ1 + σ2

)2

yk +
12σ1σ2

(3σ1 + σ2)2
zk − 12σ1

√
3

(3σ1 + σ2)2
ε , and

zk+1 =
3σ1(3σ1 − σ2)

(3σ1 + σ2)2
yk +

9σ1σ2 + σ2
2

(3σ1 + σ2)2
zk − 9σ2

1 + 24σ1σ2 + 3σ2
2

2σ2(3σ1 + σ2)2

√
3ε.

We can write this in matrix-vector form as xk+1 = Mxk + a. (We could write this in terms of the
coefficients using c = x

√
3 and b = a

√
3, but here we stay with x.) The matrix M has eigenvalues 0

and 1 with eigenvectors e1 = (1, 0, 0)T and v, respectively. For σ2 = 3σ1, 0 is a repeated eigenvalue
with eigenvectors e1 and e2. Assuming σ2 6= 3σ1, the third eigenvalue/eigenvector pair is

λ =
−σ2(3σ1 − σ2)

(3σ1 + σ2)2
and wλ =

(
3σ1 + σ2

3σ1 − σ2
,− 2σ2

3σ1 − σ2
,
1

2

)T
.

For the two cases 0 < σ2 < 3σ1 and σ2 > 3σ1 it is elementary to check that |λ| < 1. Since λ → 1
as σ1/σ2 → 0, no better bound is possible; the case σ1/σ2 ≈ 0 corresponds to f acting like an
ill-conditioned sink in the direction orthogonal to v.

Assume from hereon that σ2 6= 3σ1. In the basis of eigenvectors we have a = â0e1 + â1v+ âλwλ,
where

â0 = −
√

3

σ2
ε , â1 = − 6

σ1 + σ2
ε , and âλ =

(3σ2
1 + σ2

2)(3σ1 − σ2)
√

3

2σ2(σ1 + σ2)(3σ1 + σ2)2
ε .

Suppose x0 ∈ R3 is the initial guess and x0 = x̂0e1 + x̂1v + x̂λwλ. Then, for k > 0,

xk = x̂11 + x̂λλ
kwλ −

k−1∑
n=0

(â1v + âλλ
nwλ) = (x̂1 − â1k) v +

(
x̂λλ

k − âλ
1− λk

1− λ

)
wλ.

We see that xk approaches a neighborhood of the line spanned by v. Asymptotically, xk moves on
each pass of CD by ∆x = â1v. Thus, on each pass it moves a distance |∆x| = |â1||v| = |â1| =
6ε/(σ1 + σ2). For σ1 = σ2, this result reduces to the symmetric case. If σ1 or σ2 is much larger
than the other, then the speed of the algorithm becomes approximately inversely proportional to
the largest eigenvalue.

Note that σ1 + σ2 is the trace of the Hessian matrix. We will show in the next section that if
v is maximally diagonal, then the progress is inversely proportional to the trace. We found that
when v 6= (1, 1, 1)T /

√
3 the progress is inversely proportional to a weighted sum of the eigenvalues

(not the trace), but the formulas are too cumbersome to be useful.

2.4.3 Progress in the maximally diagonal case

In the maximally diagonal case vi = 1/
√
d for all i, (35) becomes

σ̂ij =

∑d−1
m=1 σmumiumj
δij − 1/d

. (38)
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Since the denominator is now constant, we can use properties of um to obtain properties that can
be used to simplify later formulas. Since um is orthogonal to v, which is constant, we have

d∑
j=1

d−1∑
m=1

σmumiumj =
d−1∑
m=1

σmumi

 d∑
j=1

umj

 =
d−1∑
m=1

σmumi0 = 0 . (39)

We then have

d∑
j=1

σ̂ij =
1

−1/d

d∑
j=1

d−1∑
m=1

σmumiumj +

(
−1− 1/d

−1/d
+ 1

)
σ̂ii = dσ̂ii

so 1 =
1

(d− 1)σ̂ii

d∑
j=1,6=i

σ̂ij . (40)

The matrix Mi in (36) and vector b in (37) become

Mi =
d∑

j=1, 6=i

(
ej +

σ̂ij
(d− 1)σ̂ii

ei

)
eTj and (41)

b =
−εd
d− 1

d∑
i=1

Md · · ·Mi+1
1

σ̂ii
ei . (42)

Similar to the symmetric valley in Section 2.3.4, we can now determine the progress rate.

Theorem 2.10. For an asymmetric, maximally diagonal valley, the progress rate is

b̂1 = − ε2d∑d−1
m=1 σm

= − ε2d

trace(H⊥)
.

Proof. The proof structure is the same as for Theorem 2.3. Lemma 2.11 shows that a specific y
is a left eigenvector of M with eigenvalue one. Lemma 2.12 shows yTb = −εd2 and Lemma 2.13
shows yT1 = (d/2)

∑d−1
m=1 σm = (d/2)trace(H⊥). Computing b̂1 = yTb/yT1 yields the desired

formula.

Lemma 2.11. The vector

y =

d∑
i=1

 i−1∑
j=1

σ̂ij

 ei (43)

is a left eigenvector of M = Md · · ·M1 (with Mi in (41)) with eigenvalue 1.

Proof. We will show that

yTMd · · ·Mk =
k−1∑
j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=k

σ̂mj

)
eTj +

d∑
j=k+1

(
j−1∑
m=k

σ̂mj

)
eTj (44)
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for k = 1, 2, . . . , d. Setting k = 1 then yields

yTM = yTMd · · ·M1 = 0 +
d∑
j=2

(
j−1∑
m=1

σ̂mj

)
eTj = yT ,

which means y is a left eigenvector with eigenvalue 1.
The argument is recursive, and so acts like a finite induction down in k. The base case is

obtained by setting k = d+ 1 in (44), which yields yT = yT . The recursive step is then to take the
k + 1 case of (44), apply Mk on the right, and show we get (44). We thus compute k∑

j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=k+1

σ̂mj

)
eTj +

d∑
j=k+2

(
j−1∑

m=k+1

σ̂mj

)
eTj

 d∑
i=1,6=k

(
ei +

σ̂ki
(d− 1)σ̂kk

ek

)
eTi

 .

For the terms with 1 ≤ j ≤ k − 1 and k + 2 ≤ j ≤ d, Mk acts as the identity. For the j = k term
we have (

k−1∑
m=1

σ̂km +

d∑
m=k+1

σ̂mk

)
eTk

d∑
i=1,6=k

(
ei +

σ̂ki
(d− 1)σ̂kk

ek

)
eTi

=

(
k−1∑
m=1

σ̂km +

d∑
m=k+1

σ̂mk

)
1

(d− 1)σ̂kk

d∑
i=1,6=k

σ̂kie
T
i .

Noting the symmetry σ̂mk = σ̂km and using (40), the factor before the sum becomes one and we
reduce this j = k term to

d∑
i=1, 6=k

σ̂kie
T
i =

k−1∑
j=1

σ̂kje
T
j +

d∑
j=k+1

σ̂kje
T
j .

Combining with the original 1 ≤ j ≤ k − 1 and k + 2 ≤ j ≤ d terms, we then have

k−1∑
j=1

σ̂kje
T
j +

d∑
j=k+1

σ̂kje
T
j +

k−1∑
j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=k+1

σ̂mj

)
eTj +

d∑
j=k+2

(
j−1∑

m=k+1

σ̂mj

)
eTj

=
k−1∑
j=1

(
σ̂kj +

j−1∑
m=1

σ̂jm +
d∑

m=k+1

σ̂mj

)
eTj + σ̂k,k+1e

T
k+1 +

d∑
j=k+2

(
σ̂kj +

j−1∑
m=k+1

σ̂mj

)
eTj .

Combining terms yields (44), as desired.

Lemma 2.12. For y in (43) and b in (42), yTb = −εd2.

Proof. Substituting (44) into (42) yields

yTb =
−εd
d− 1

d∑
i=1

 i∑
j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=i+1

σ̂mj

)
eTj +

d∑
j=i+2

(
j−1∑

m=i+1

σ̂mj

)
eTj

 1

σ̂ii
ei

=
−εd
d− 1

d∑
i=1

(
i−1∑
m=1

σ̂im +

d∑
m=i+1

σ̂mi

)
1

σ̂ii
= −εd

d∑
i=1

1

σ̂ii(d− 1)

d∑
m=1,6=i

σ̂im .

Applying (40) then yields −εd2 as desired.
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Lemma 2.13. For y in (43), yT1 = (d/2)
∑d−1

m=1 σm = (d/2)trace(H⊥).

Proof. From the definitions of y in (43) and σ̂ij in (38),

yT1 =
d∑
i=1

 i−1∑
j=1

σ̂ij

 =
d∑
i=1

 i−1∑
j=1

∑d−1
m=1 σmumiumj
δij − 1/d


= −d

d∑
i=1

i−1∑
j=1

d−1∑
m=1

σmumiumj = −d
2

d∑
i=1

d∑
j=1

d−1∑
m=1

σmumiumj +
d

2

d∑
i=1

d−1∑
m=1

σmu
2
mi .

The first term is zero by (39). By the normalization convention
∑d

i=1 u
2
mi = 1, the second term is

(d/2)
∑d−1

m=1 σm, as desired.

3 BCD Dynamics Near a Symmetric-sided Valley-like Sink or Sad-
dle

In this section we consider how the analysis in symmetric-sided valleys in Section 2.3 relates to the
sink and saddle cases. Recall from (15) that the valley update can be written

ci =
1

1− pi

d∑
j=1, 6=i

cjpj −
ε

σ(1− pi)
, (45)

where the first term acts to move the iteration toward the diagonal and the second term determines
the progress down the valley. For concreteness we will compare with the special case d = 2 and
p1 = p2 = 1/2, for which (45) yields

c1 = c2 − 2
ε

σ
and c2 = c1 − 2

ε

σ
.

In Section 3.1 we consider a hyperbolic sink or saddle, in Section 3.2 we consider a nonhyperpolic
sink or saddle, and in Section 3.3 we consider an essential discontinuity that is sink-like or saddle-
like. In the hyperbolic case an explicit update rule corresponding to (45) is easy to find, in the
nonhyperbolic case it is possible to find but too ugly to be useful, and in the essential discontinuity
case it is (seemingly) impossible to find. Instead we will derive implicit, approximate update rules
in which ci appears on both side. These allow better interpretation and qualitative matching to
(45). The parameter ε, which measured the gradient along v in a valley, is now used to measure the
strength of the attraction to or repulsion from 0 along v. In all cases we find that the progress is
proportional to (ε/σ)/(1− pi), as it was for the valley. In the hyperbolic case we find that progress
is proportional to the current distance to 0 and in the nonhyperbolic and essential discontinuity
cases we find that it is proportional to the cube of this distance, and thus much slower.

3.1 Hyperbolic Sink or Saddle

Instead of the valley objective function (1), we consider

f(x) = ε
(vTx)2

2
+

1

2
xTH⊥x = ε

(vTx)2

2
+
σ

2
(xTx− (vTx)2) ,
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which has a sink at x = 0 if ε > 0 and a saddle if ε < 0. We can then compute ∇xif(x) =
εvTxvi + σ(xi − vTxvi), set ∇xif(x) = 0, and obtain a scalar coefficient equation

0 = ε
d∑
j=1

cjpj + σ

ci − d∑
j=1

cjpj

 .

Although one can solve for ci to obtain an update rule, it is more enlightening to rearrange as

ci =
1

1− pi

d∑
j=1,6=i

cjpj −
ε

σ(1− pi)

d∑
j=1

cjpj (46)

and interpret it as an implicit, approximate update rule, where the right side uses the current value
of ci and the left side is the new value. As in (45), the first term acts to move the iteration toward
the diagonal and the second term determines the progress toward the sink or away from the saddle,
which are at 0. Progress is proportional to (ε/σ)/(1− pi) and, when all cj ≈ c, to the distance of
c to 0.

For d = 2 and p1 = p2 = 1/2, (46) yields

c1 = c2 −
ε

σ
(c1 + c2) and c2 = c1 −

ε

σ
(c1 + c2) .

The BCD algorithm will alternate between these two lines, going inward when ε > 0 and outward
when ε < 0.

3.2 Nonhyperbolic Sink or Saddle

We now consider

f(x) = ε
(vTx)4

4
+

1

2
xTH⊥x = ε

(vTx)4

4
+
σ

2
(xTx− (vTx)2) ,

which has a nonhyperbolic sink at x = 0 if ε > 0 and a nonhyperbolic saddle if ε < 0. Following
the same process of setting ∇xif(x) = 0 leads to the scalar coefficient equation

0 = ε

 d∑
j=1

cjpj

3

− σ
d∑
j=1

cjpj + σci . (47)

As a cubic, this equation is solvable for ci, but the expression is ugly and not useful. Rearranging
(47), we can obtain the implicit update rule

ci =
1

1− pi

d∑
j=1,6=i

cjpj −
ε

σ(1− pi)

 d∑
j=1

cjpj

3

. (48)

As in (46), the first term acts to move the iteration toward the diagonal and the second term
determines the progress toward the sink or away from the saddle, which are at 0. Progress is
proportional to (ε/σ)/(1 − pi) and, when all cj ≈ c, to the cube of the distance of c to 0. Hence
progress is much slower than in the hyperbolic case.
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Nonhyperbolic Essential discontinuity
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Figure 9: The curves defining the CD iteration for a sink or saddle in the nonhyperbolic and
essential discontinuity cases. The left side shows the curves (49) with |ε/σ| = 1 and the right side
shows the curves (51) with |ε/σ| = 1/4; although quite similar, the curves are not identical. For
ε > 0, (0, 0) is a sink and iterations will slowly zig-zag into the cusp, with steps proportional to
the cube of the distance to (0, 0). For ε < 0, (0, 0) is a saddle and iterations will slowly zig-zag out
with steps of the same size.

For d = 2 and p1 = p2 = 1/2, (48) yields

c1 = c2 −
ε

σ

(
c1 + c2

2

)3

and c2 = c1 −
ε

σ

(
c1 + c2

2

)3

. (49)

The BCD algorithm will alternate between these two curves, which are plotted in Figure 9. The
iterations will slowly zig-zag into (ε > 0) or out of (ε < 0) the cusp.

3.3 Sink or Saddle at an Essential Discontinuity

In [28], the extremely slow transient dynamics sometimes observed when BCD algorithms are used
for tensor approximations is attributed to a particular peculiar feature in the objective function
f . This feature is saddle-like in that it is attracting from most directions and repelling in one
direction. The attraction phase is fast but the repulsion phase is very slow due to being in an
extremely narrow valley. The center of this feature, which for convenience we will set as 0, is
a point of discontinuity of f . The limit limx→0 f(x) does not exist, but the limit along any ray
(i.e. limt→0+ f(tx)) exists and is uniformly bounded. Thus f has a discontinuity at 0 that is not
removable, so we call it essential.
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For the particular model problem studied, it is shown [28, Lemma A.2] that

lim
t→0+

f(tx) = a1 − a2

(
vT

x

|x|

)2

with a1 > 0 and a2 > 0 .

Rearranging yields

(a1 − a2) +
a2

|x|2
(
xTx− (vTx)2

)
,

which shows how the distance from V appears. In principle the behavior along v could be of several
forms, including non-differentiable behavior such as ε|vTx|. The example in [28] has hyperbolic
behavior like ε(vTx)2/2, so we will use the normal form

f(x) = ε
(vTx)2

2
+

σ

2|x|2
(
xTx− (vTx)2

)
.

The constant σ in (12) is replaced by σ/|x|2, which goes to infinity as x → 0, so the valley is
extremely narrow for small x. We can then compute

∇f(x) = εvTxv − σvTx

(xTx)2
(xTxv − vTxx) .

From the (partial) gradient, we again see that setting ∇xif(x) = 0 leads to a scalar coefficient
equation, which is

0 = ε− σ(∑d
j=1 pjc

2
j

)2

 d∑
j=1, 6=i

pjc
2
j − ci

d∑
j=1,6=i

pjcj

 .

Rearranging to solve for the free ci in the second term, we obtain the implicit update rule

ci =

∑d
j=1,6=i pjc

2
j∑d

j=1,6=i pjcj
− ε

σ

(∑d
j=1 pjc

2
j

)2

∑d
j=1,6=i pjcj

. (50)

If all cj ≈ c, then
∑d

j=1, 6=i pjcj ≈ (1− pi)c,
∑d

j=1,6=i pjc
2
j ≈ (1− pi)c2, and

∑d
j=1 pjc

2
j ≈ c2, so (50)

acts as ci ≈ c−(ε/σ)/(1−pi)c3. The first term is still a weighted average of the cj (using pjcj as the
weight on cj) and so acts to move the iteration toward the diagonal. The second term determines
the progress toward the sink or away from the saddle, with progress proportional to (ε/σ)/(1− pi)
and to the cube of the distance of c to 0. Hence progress is similar to the nonhyperbolic case.

For d = 2 and p1 = p2 = 1/2, (50) yields

c1 = c2 −
ε

σ

(c2
1 + c2

2)2

c2
and c2 = c1 −

ε

σ

(c2
1 + c2

2)2

c1
. (51)

We plot these curves in Figure 9 and note their similarity to the nonhyperbolic case.
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4 Discussion and Implications

4.1 Primary Conclusions

One can think of iterations of BCD in a valley as the cross product of slow descent in one direction
−v and contraction to a sink in the directions orthogonal to v. While iterations are not too close
to the bottom of the valley, they decompose into these two motions. However, near the bottom
of the valley these two motions interact and iterations zig-zag near the valley floor. Our analysis
reveals the following insights into optimization in a valley:

• When the sink is well-conditioned, convergence to a vicinity of the valley floor is linear, with
small rate of convergence.

• When the sink is poorly-conditioned, convergence to a vicinity of the valley floor is still
linear, but the rate can be close to 1. This situation is to be expected, since convergence to
a minimum is slower for a poorly-conditioned sink, even without the effects of a valley.

• Once the iteration is close to the valley floor, it zig-zags at distance from the valley floor that
is proportional to strength of descent and inversely proportional to the strength of the sink.

• The progress of BCD (as well as GDLS) is proportional to the strength of the descent and
inversely proportional to the strength of the sink.

• The progress of BCD for most valley directions v is nearly as bad as the worst-case (maximally
diagonal) direction. Thus we find that valleys are a phenomenon that might frequently be
encountered in high dimensional problems such as tensor approximation.

• When starting the algorithm, the ordering of blocks in the first few steps can be important. A
greedy approach that chooses the micro-step that gives the best improvement in the objective
function may in fact give the worst progress along the downhill direction of the valley and
thus lead to slower transient through the valley.

• The behavior near sinks and saddles is consistent with the behavior in a valley. Progress in
the nonhyperbolic and essential discontinuity cases are similar to each other and much slower
than in the hyperbolic case.

4.2 Algorithmic Implications

One immediate implication is that greedy methods (e.g. [6]) may not always work well. For d > 2,
a greedy first step can push the iteration further up the valley, instead of down.

A second implication is that simply continuing with BCD when a valley is encountered will lead
to poor performance. Instead the algorithm should be designed to detect when it has entered a
narrow valley and then take some kind of evasive action.

Certain existing ideas, independent of the BCD approach, are useful to improve progress in
valleys.

• When in a valley, local optimization tends to produce updates that move in the correct (down-
valley) direction but not very far. By extrapolating (over-relaxing) to take bigger steps, the
overall progress rate is increased.

32



• After some number of iterations have been performed, the general direction of the valley can
be established by fitting to the trend in the iterations. Then one can extrapolate in that
direction or perform a line search (or higher-order search) in that direction. We think that
the benefit of naive extrapolation is limited because the problem is “doubly ill-conditioned”:

– determining the downhill direction in a narrow valley is ill-conditioned in that small
changes in the position produce large changes in the gradient direction and

– given a presumptive down-valley direction, a line search in that direction is also ill-
conditioned.

One may not succeed in moving far down the valley because the line direction, unless it is
extremely accurate, will quickly lead up the side of the valley and far steps are rejected since
they increase the objective function.

• A method intended to overcome the specific difficulties of extrapolation in narrow valleys was
proposed in [21]. Their method is to search by attempting a long parabolic extrapolation,
but rather than rejecting/accepting the step from the objective function at the end of the
extrapolation, follow the extrapolation by a normal, un-extrapolated step, and then test the
objective function. This added relaxation step, according to their reasoning, will move a point
that has veered slightly up the side back down into the valley again.

• By extending the standard proof that conjugate gradient (CG) (see e.g. [35, 11, 12]) solves a
n×n linear system exactly in n steps, one can show that nonlinear conjugate gradient (NCG)
will find the bottom of a straight valley in a finite number of steps and then move infinitely
far down such an idealized valley1. NCG methods for the tensor approximation problem have
already been developed (e.g. [33, 1, 10, 44]).

• As noted in [28, Section 5.2] (and anticipated by [38, 32, 31]) adding regularization to the
error function in the tensor approximation problem removes the essential discontinuity and
the narrowest portion of the valley.

When BCD is being considered for some application, there is usually some specific reason for
it, such as the ease of updating one block in ALS, that discourages one from simply abandoning
BCD. This motivates the development of hybrid methods. For the tensor approximation problem,
algorithms to have already been developed based on ALS with NCG [9], ALS with line search along
the trend (e.g. [37, 7, 43]), ALS with extrapolation along the trend (e.g. [8, 14, 16, 18, 5, 47, 37]),
and ALS with over-relaxation [26].

It seems promising to combine BCD with the method in [21] when it is detected that the
iteration has fallen into a narrow valley. For example one might use the trend from a few passes
of BCD to take a long linear or parabolic extrapolation step, then relax back to the floor before
considering whether to accept the result. Our analysis confirms that the idea of their method should
work for BCD methods, with the following caveat: it may take more than one step to relax, since
one BCD step will not usually fall completely back into the valley floor. But, given that iterates
convergence back to the floor linearly, the number of steps needed to descend back to the valley
floor should not be large and could be estimated and controlled.

1Thanks to Nathaniel McClatchey for pointing this out to us.
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