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Abstract

We show that when cell-cell feedback is added to a model of the cell cycle for a

large culture of cells, then instability of the steady state solution occurs in many cases.

We show this in the context of a generic agent-based ODE model. If the feedback is

positive, then instability of the steady state solution is proved for all parameter values

except for a small set on the boundary of parameter space. For negative feedback we

prove instability for nearly half the parameter space. We also show by example that

instability in the other half may be proved on a case by case basis.

Keywords: yeast metabolic oscillations

1 Introduction

1.1 Background

Consider growing and dividing cells in a laboratory setting, such as a bioreactor. Let x

denote some measure of progress of a cell through its cell cycle (such as cell volume), If

the number of cells is large, then we may reasonably represent the state of the system

by a density function φ(x, t) rather than by the collection of the states of all the cells,

{xi}
n
i=1. Bell and Andersen [(1967), (1968)] introduced and studied a Partial Differential

Equation model of the time evolution of such density functions φ(x, t). One feature of many

of these models is the existence of a “steady state” solution φ̄(x, t) = φ0(x) (perhaps after
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normalization). In this context, while the state state density function is a constant in time

the individual cells represented by the solution are progressing in the cycle.

Several authors studied variants of the PDE models ([Zeit (1977)], [Diekmann et al. (1984)],

[Hannsgen and Tyson (1985)], [Hannsgen et al. (1985)], [Heijmans (1984)], [Heijmans (1985)],

[Lasota and Mackey (1984)], [Tyson and Hannsgen (1985)], [Tyson and Hannsgen (1985)])

with assumptions that correspond to some randomness in the division times of cells, e.g. the

volume at which a cell divides is governed by some probability density function, d(x). All

of these studies concluded that the stationary solution is asymptotically stable. Diekmann

et al. [(1993a), (1993b)] proved similar results for models based on renewal equations.

In these studies, the models did not include any feedback between cells in the culture. Moti-

vated by a phenomenon in yeast called Autonomous Oscillations (see e.g. [Murray et al. (2003),

Robertson et al. (2008)]), we introduced Ordinary Differential Equations (ODE) models of

cell cultures in which cells in some phase of the cell cycle may produce chemical agents that

effect the cell cycle progress of cells in some other part [Boczko et al. (2010), Young et al. (2012)].

We observed that such models frequently exhibit stable synchronous or periodic clustered

solutions and stability of synchronous or certain clustered solutions was proved in many

cases [Young et al. (2012), Breitsch et al. 2015]. However, the discrete equivalent of the

steady-state solution, which we call the uniform solution (see definition below), appears

unstable in all simulations.

In this paper we prove that the uniform solution is unstable for a large set of parameter

values in the ODE model with feedback. The proof relies on showing that the derivative of

the Poincaré return map has an eigenvalue outside of the unit circle by studying a certain

“partial return map.” It proceeds in several cases that we explain after introducing the

model.

1.2 Notation and the model

We study a dynamical model of the mitotic cell division cycle (CDC) for cultures of a

large number of cells in which cells in one fixed region of the cycle S (Signaling) produce

chemical agents that affect the growth and development rate of cells in another fixed region

R (Responsive). Let the state of the i-th cell be denoted ci ∈ [0, 1) ≡ S1 and let its

progression be governed by the equation:

dci
dt

=







1, if ci /∈ R

1 + f(I), if ci ∈ R,
i = 1, ..., n, (1.1)
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where

I(c) ≡
#{i : ci ∈ S}

n
(fraction of cells in the signaling region). (1.2)

The “response function” f(I) in (1.1) should satisfy f(0) = 0 and be monotone, but may

be non-linear, and either positive or negative. We suppose that 1 + f(I) > 0 for all I

When a cell reaches 1 (division) two cells appear at 0. However, in this model the trajec-

tories of the two cells will be identical, so we will only keep track of one of them. In other

words, the number of cells is assumed to be fixed.

For definiteness, let R and S be regions on the circle ([0, 1] where 1 ∼ 0), with R = [r, 1)

and S = [0, s). R and S are adjacent at 1 ∼ 0. (One may also suppose that there is a

gap between R and S [Gong et al. (2014a)].) We consider r and s as parameters and we

assume 0 ≤ s ≤ r ≤ 1, i.e. the possible parameter values form a triangle.

In model (1.1), if two cells are initially synchronized in the cell cycle, they will remain so

for all time. We will refer to subpopulations of synchronized cells as cohorts.

We reformulate (1.1) so that cohorts take the place of cells. Let k denote the number of

cohorts and we suppose that each cohort contains n/k cells, so that they are identical in

the model. Denote the position of the j-th cohort at time t by xj(t) for j = 1, ..., k. We will

then study the dynamics of the cohorts; the equations governing the cohorts are similar to

those governing individual cells,

dxj
dt

=







1, if xj /∈ R

1 + f(I), if xj ∈ R,
for j = 1, ..., k, (1.3)

where I is the fraction of cohorts in S; I = #{j : xj ∈ S}/k. The variable I in this equation

coincides with the fraction of cells, so f is the same as in (1.1).

We will focus on solutions of the form described in the following definition.

Definition 1.1 Suppose that there exists a positive number d such that xj(d) = xj+1(0)

for j = 1, ..., k − 1 and xk(d) = x1(0) mod 1. We call {xj} a k-cyclic solution. We call

a solution uniform if it is n-cyclic, i.e. each cohort consists of a single cell.

The uniform solution (n-cyclic) is the finite cell equivalent of the steady state distribution

in the PDE models. A topological argument shows that a k-cyclic solution exists for any k

that is a divisor of n [Young et al. (2012)].

Theorem 1.2 ([Young et al. (2012)]) For any monotone f and any 0 ≤ s ≤ r ≤ 1 and

any k that divides n, the system (1.1) possesses a k-cyclic solution. In particular, a uniform

solution (k = n) always exists.
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1.3 The map F and “events”

Since we assume that 1 + f(I) > 0, the cells are moving with positive speed and so the set

{x1 = 0} is a Poincaré section for the flow, with a well-defined Poincaré map P . It is useful

to define a map F : {x1 = 0} → {xk = 1} as follows:

F (x2, x3, ..., xk) = (x1(t
∗), x2(t

∗), ..., xk−1(t
∗)),

where t∗ is the time required for xk(t) to reach 1. Note that, with an cyclic reordering of

indices, F is a continuous map from the simplex {0 < x2 < . . . < xk < 1} into itself, that

is, F (x2, . . . , xk) = (x̄2, . . . , x̄k) ≡ (x1(t
∗), . . . , xk−1(t

∗)). It can be extended continuously

to the boundary of the simplex [Young et al. (2012)]. Further,

• F k is the Poincaré map, and,

• a fixed point of F is an initial condition on {x1 = 0} of a cyclic solution and vice

versa.

Calculation of F hinges on the order of events – a cohort’s progress through the cell cycle

can be described in terms the solution reaching certain milestones, such as a cohort entering

R. Cohorts progress through the cell cycle at rates specified by the equation (1.1). These

rates remain constant until a cohort reaches s, r, or 1 which we label as events s, r, and 1

respectively.

Let σ denote the number of cohorts in S, ρ the number of cohorts in the complement of R.

Thus at the beginning of a time interval on which the map F is applied the initial positions

of the k cohorts will be:

0 = x1 < . . . < xσ < s ≤ xσ+1 < . . . < xρ < r ≤ xρ+1 < . . . < xk < 1. (1.4)

1.4 The cyclic solution, partitions of parameter space and stability

Given parameters (r, s) and an initial condition x, the partial return map F runs time until

event 1 occurs. Being a cyclic solution imposes restrictions upon the order of events.

Proposition 1.3 [Breitsch et al. 2015] The sequence of events followed by the cyclic solu-

tion is either s, r, 1, . . . or r, s, 1, . . .

This proposition and other results in [Breitsch et al. 2015] imply that for a given k, param-

eter space 0 ≤ s ≤ r ≤ 1 is subdivided in subtriangles that are characterized by the order

of event of the k-cyclic solution. See Figure 1.
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Figure 1: The order of events of a k-cyclic solution partitions s − r parameter space into

triangles. “Upper left” triangle correspond to event s occurring first while “lower right”

triangle correspond to event r first.

Further, in [Breitsch et al. 2015] it was shown that for all parameters within a single order

of events subtriangle, the derivative of the map F , DF , at a k cyclic solution is exactly

the same. This allows for easy and accurate study of the stability of k cyclic solutions for

k not too large. For instance, the stability for several values of k with positive feedback is

calculated and illustrated in Figure 2. We completed these calculations for k = 2 up to k =

100 and observed that for positive feedback the k-cyclic solutions are never asymptotically

stable for any k ≥ 2 [Breitsch et al. 2015]. The sub-triangles that do not share an edge

with the boundary are all unstable. We will prove this result in two parts, one proof for

the “upper left” triangles (sr1) and another proof for the “lower right” triangles (rs1).

The stability of k cyclic solutions under negative feedback for k = 2, . . . , 13 are shown in

Figure 3. Note that the “upper left triangles” that don’t intersect the boundary are all red,

meaning that the k-cyclic solution is unstable. These sub triangles correspond to the order

of events sr1 and we will prove the instability for this case. For k prime all of the interior

subtriangles are colored red, indicating unstable k-cyclic solutions.
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Figure 2: Red - Unstable; White - Neutral. Positive Feedback. Parameter regions of

instability for k-cyclic clustered solutions under with k = 5, 6, 9, 13. The picture is similar

for any k ≥ 2. There are no regions of stability for the clustered solutions with positive

feedback. We will prove instability of k cyclic solutions for parameter values in all of the

red triangles. (Color figure online.)

1.5 Results

We will need to assume the conditions:

1 < σ < ρ < k. (1.5)

This ensures that parameter values are not in a sub triangle that intersects the boundary

of the parameter space {0 ≤ s ≤ r ≤ 1}.

Theorem 1.4 Suppose that the response function f(I) is positive and increasing and that

φt is a k-cyclic solution such that (1.5) holds, or, suppose that (1.5) does not hold but that

the order of events of φt is rs1. Then φt is linearly unstable.

By linearly unstable we mean that the derivative of the Poincaré map has an eigenvalue

outside the unit disk. This implies that the cyclic solution is either a source or a saddle

orbit.

Theorem 1.5 Suppose that the response function f(I) is negative and decreasing and that

φt is a k-cyclic solution with order of events sr1 and such that (1.5) holds. Then φt is

linearly unstable.

Proposition 1.6 Suppose that the response function f(I) is negative and decreasing and

that φt is a k-cyclic solution with order of events rs1 and such that (1.5) holds. Assume

further that k is odd, while σ and ρ are even. Then φt is linearly unstable.
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Figure 3: Stability of parameter regions for k-cyclic clustered solutions with negative feed-

back. Blue - Asymptotically Stable; Red - Unstable; White - Neutral. Reproduced from

[Breitsch et al. 2015]. Note that the interior “upper left” (sr1) triangles are all red. We

prove instability for these cases and for one special case with order of events rs1 and small

feedback. (Color figure online.)
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2 Calculating F

2.1 Common features

We start with an initial condition on the Poincare section {x1 = 0}. Assume that for the

k-cyclic solution no two clusters have the same initial condition and do not coincide with

either s or r. Thus, the initial condition satisfies (1.4) with strict inequalities. We also

assume that, s − xσ 6= r − xρ, so that events s and r do not occur simultaneously. Then

in a small neighborhood of the k-cyclic solution, the solutions will follow the same order of

event as the cyclic solution for the finite time period corresponding to one application of

the F map.

For an initial condition in this small neighborhood let t∗ denote the time required for one

application of the map F , i.e. t∗ is the minimum t > 0 such that:

xk(t
∗) = 1.

Note that clusters with indices i, 1 ≤ i ≤ ρ − 1 will progress with rate 1 during the time

period 0 < t < t∗. Thus the exact solution for these indices is:

xi(t) = xi + t, 0 ≤ t ≤ t∗, 1 ≤ i ≤ ρ− 1

and so

xi(t
∗) = xi + t∗, 1 ≤ i ≤ ρ− 1.

Since x1(0) = 0, x1(t
∗) = t∗.

2.2 Order of events sr1

Let βi = f(i/k).

In this case s − xσ < r − xρ. For ρ + 1 ≤ i ≤ k the clusters progresses with rate 1 + βσ

while xσ < s and with rate 1 + βσ−1 while xσ > s. Thus

xi(t) = xi + (1 + βσ)t, 0 ≤ t ≤ s− xσ, ρ+ 1 ≤ i ≤ k,

and

xi(t)|t=s−xσ = xi + (1 + βσ)(s − xσ).

These clusters then progress with rate 1 + βσ−1 until t∗:

xi(t) = xi + (1 + βσ)(s− xσ) + (1 + βσ−1)(t− s+ xσ)

= xi + (βσ − βσ−1)(s− xσ) + (1 + βσ−1)t,
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for s− xσ ≤ t ≤ t∗. For xk we have:

xk + (βσ − βσ−1)(s − xσ) + (1 + βσ−1)t
∗ = 1

or

t∗ =
1

1 + βσ−1
(1− xk − (βσ − βσ−1)(s− xσ)) . (2.1)

Thus, for ρ+ 1 ≤ i ≤ k − 1 we have:

xi(t
∗) = xi + (βσ − βσ−1)(s − xσ) + 1− xk − (βσ − βσ−1)(s − xσ)

= xi + 1− xk.

By assumption xk(t
∗) = 1.

Now consider i = ρ. The solution is xρ(t) = xρ+ t for 0 ≤ t ≤ r−xρ and (as expected from

the definitions) xρ(t)|t=r−xρ = xρ + r − xρ = r.

After xρ enters R at time r − xρ it progresses with rate 1 + βσ−1:

xρ(t) = r + (1 + βσ−1)(t− r + xρ), r − σρ ≤ t ≤ t∗.

Then we have:

xρ(t
∗) = r + (1 + βσ−1)(t

∗ − r + xρ)

= r + 1− xk + (βσ − βσ−1)(−s+ xσ) + (1 + βσ−1)(−r + xρ).

Summarizing, for order of events sr1:

x1(t
∗) = t∗ =

1

1 + βσ−1
(1− xk − (βσ − βσ−1)(s − xσ))

xi(t
∗) = xi +

1

1 + βσ−1
(1− xk − (βσ − βσ−1)(s − xσ)) , 2 ≤ i ≤ ρ− 1,

xρ(t
∗) = r + 1− xk + (βσ − βσ−1)(−s+ xσ) + (1 + βσ−1)(−r + xρ),

xi(t
∗) = xi + 1− xk, ρ+ 1 ≤ i ≤ k − 1,

xk(t
∗) = 1.

(2.2)

2.3 Order of events rs1

In this case s − xσ > r − xρ. First we note that the solutions for 1 ≤ i ≤ ρ − 1 and

ρ + 1 ≤ i ≤ k are exactly the same are for the order sr1. Thus we only have to calculate

xρ(t). Trivially, we have that xρ(t) = r at t = r − xρ.

During the time span r − xρ ≤ t ≤ s− xσ, xρ(t) follows the solution:

xρ(t) = r + (1 + βσ)(t− r + xρ),
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and so,

xρ(t)|t=s−xσ = r + (1 + βσ)(s − xσ − r + xρ).

For s− xσ ≤ t ≤ t∗, xρ progresses with rate 1 + βσ−1:

xρ(t) = r + (1 + βσ)(s− xσ − r + xρ) + (1 + βσ−1)(t− s+ xσ)

= r + (1 + βσ)(−r + xρ) + (βσ − βσ−1)(s− xσ) + (1 + βσ−1)t.

At time t = t∗, (using t∗ from equation (2.1)), we have

xρ(t
∗) = r + (1 + βσ)(−r + xρ) + (βσ − βσ−1)(s − xσ) + 1− xk − (βσ − βσ−1)(s− xσ)

= r + (1 + βσ)(−r + xρ) + 1− xk.

Therefore, for order of events rs1

x1(t
∗) = t∗ =

1

1 + βσ−1
(1− xk − (βσ − βσ−1)(s − xσ))

xi(t
∗) = xi +

1

1 + βσ−1
(1− xk − (βσ − βσ−1)(s − xσ)) , 2 ≤ i ≤ ρ− 1,

xρ(t
∗) = r + (1 + βσ)(−r + xρ) + 1− xk,

xi(t
∗) = xi + 1− xk, ρ+ 1 ≤ i ≤ k − 1,

xk(t
∗) = 1.

(2.3)

Boundary case: σ = 1:

In this case xσ = x1 = 0 and βσ−1 = β0 = 0, which simplifies the above F map considerably:

x1(t
∗) = t∗ = 1− xk − β1s

xi(t
∗) = xi + 1− xk − β1s, 2 ≤ i ≤ ρ− 1,

xρ(t
∗) = r + (1 + β1)(xρ − r) + 1− xk,

xi(t
∗) = xi + 1− xk, ρ+ 1 ≤ i ≤ k − 1,

xk(t
∗) = 1.

(2.4)

Boundary case: ρ = k:

If ρ = k we have to recalculate the trajectory of xρ = xk and t∗. Trivially, we have that

xk(t) = r for t = r − xk.

During the time span r − xk ≤ t ≤ s− xσ, xk(t) follows the solution:

xk(t) = r + (1 + βσ)(t− r + xk),

and so,

xk(t)|t=s−xσ = r + (1 + βσ)(s − xσ − r + xk).
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Next during the period s− xσ ≤ t ≤ t∗, xk(t) moves with rate 1 + βσ−1:

xk(t) = r + (1 + βσ)(s− xσ − r + xk) + (1 + βσ−1)(t− s+ xσ).

Thus,

xk(t
∗) = 1 = r + (1 + βσ)(s − xσ − r + xk) + (1 + βσ−1)(t

∗ − s+ xσ),

and solving for t∗ gives:

t∗ = −s− xσ +
1− r

1 + βσ−1
+

1 + βσ
1 + βσ−1

(s− r + xk − xσ)

= −(2 + w)xσ + (1 + w)xk + constant terms

(2.5)

Then for all i < k we have:

xi(t
∗) = xi + t∗.

2.4 DF for the cases sr1 and rs1

Let

w =
βσ − βσ−1

1 + βσ−1
and v =

1

1 + βσ−1
.

First, for the order of events sr1, from (2.2):

DFsr1 =



























































1 σ − 1 ρ− 1 k − 1

1 0 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v

1 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v

0 1 · · · 0 w 0 · · · 0 0 0 · · · 0 −v
... · · ·

. . . · · ·

... · · · · · · · · · · · · · · · · · · · · ·

...

0 0 · · · 1 w 0 · · · 0 0 0 · · · 0 −v

σ 0 0 · · · 0 1 + w 0 · · · 0 0 0 · · · 0 −v

0 0 · · · 0 w 1 · · · 0 0 0 · · · 0 −v
... · · · · · · · · ·

... · · ·

. . . · · · · · · · · · · · · · · ·

...

0 0 · · · 0 w 0 · · · 1 0 0 · · · 0 −v

ρ 0 0 · · · 0 βσ − βσ−1 0 · · · 0 v−1 0 · · · 0 −1

0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 −1
... · · · · · · · · · · · · · · · · · · · · · · · · · · ·

. . . · · ·

...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 −1



























































. (2.6)

There are 1’s on the sub-diagonal except for the σ-th row (1+w) and the ρ-th row (v−1 =

1 + βσ−1). Only two columns, the (σ − 1)-th and the (k − 1)-th, have entries off the sub

diagonal. The terms in the last column change to −1’s at the ρ-th row. The βσ−βσ−1 term

is in the (σ − 1)-th column and the ρ-st row. Above this, the entries are w’s and below it

zeros.
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This formula is valid for all k-cyclic solutions in the same event triangle i.e. for a fixed

triplet of integers (ρ, σ, k) and the order of events s before r. Also note that there are some

simpler cases, such as when σ = 1 or ρ = k, that have been investigated elsewhere.

Next for the order of events rs1. It follows from (2.3) that

DFrs1 =



























































1 σ − 1 ρ− 1 k − 1

1 0 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v

1 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v

0 1 · · · 0 w 0 · · · 0 0 0 · · · 0 −v
... · · ·

. . . · · ·

... · · · · · · · · · · · · · · · · · · ·

...

0 0 · · · 1 w 0 · · · 0 0 0 · · · 0 −v

σ 0 0 · · · 0 1 + w 0 · · · 0 0 0 · · · 0 −v

0 0 · · · 0 w 1 · · · 0 0 0 · · · 0 −v
... · · · · · · · · ·

... · · ·

. . . · · · · · · · · · · · · · · ·

...

0 0 · · · 0 w 0 · · · 1 0 0 · · · 0 −v

ρ 0 0 · · · 0 0 0 · · · 0 1 + βσ 0 · · · 0 −1

0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 −1
... · · · · · · · · · · · · · · · · · · · · · · · · ·

. . . · · ·

...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 −1



























































. (2.7)

There are 1’s down the sub-diagonal except for the σ-th row (1 + w) and the ρ-th row

(1 + βσ). The terms in the last columns changes to −1’s at the ρ-th row. The three

columns with terms other than 0 and 1 are the (σ−1)-th, the (ρ−1)-th, and the (k−1)-th.

The w terms in the σ − 1-th column change to zeros at the ρ-st row. All other columns

have exactly one 1 entry and k − 2 zeros.

Note that in both cases tr(DF ) = −1 +w.

Boundary case: σ = 1
In this case we have:

DFrs1 =







































1 ρ− 1 k − 1

1 0 0 · · · 0 0 0 · · · 0 −1

1 0 · · · 0 0 0 · · · 0 −1

0 1 · · · 0 0 0 · · · 0 −1
... · · ·

. . . · · ·

... · · · · · · · · ·

...

0 0 · · · 1 0 0 · · · 0 −1

ρ 0 0 · · · 0 1 + βσ 0 · · · 0 −1

0 0 · · · 0 0 1 · · · 0 −1
... · · · · · · · · · · · · · · ·

. . . · · ·

...

0 0 · · · 0 0 0 · · · 1 −1







































. (2.8)

Boundary case: ρ = k
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DFrs1 =







































1 σ − 1 k − 1

1 0 0 · · · 0 −2− w 0 · · · 0 1 + w

1 0 · · · 0 −2− w 0 · · · 0 1 + w

0 1 · · · 0 −2− w 0 · · · 0 1 + w
... · · ·

. . . · · ·

... · · · · · · · · ·

...

0 0 · · · 1 −2− w 0 · · · 0 1 + w

σ 0 0 · · · 0 −1− w 0 · · · 0 1 + w

0 0 · · · 0 −2− w 1 · · · 0 1 + w
...

... · · ·

...
...

...
. . . · · ·

...

0 0 · · · 0 −2− w 0 · · · 1 1 + w







































. (2.9)

Determinant of DF

Case sr1: After k − 2 row swamps, the matrix DFsr1 is transformed to:

A =



























































1 σ − 1 ρ− 1 k − 1

1 1 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v

0 1 · · · 0 w 0 · · · 0 0 0 · · · 0 −v
... · · ·

. . . · · ·

... · · · · · · · · · · · · · · · · · · · · ·

...

0 0 · · · 1 w 0 · · · 0 0 0 · · · 0 −v

σ − 1 0 0 · · · 0 1 + w 0 · · · 0 0 0 · · · 0 −v

0 0 · · · 0 w 1 · · · 0 0 0 · · · 0 −v
... · · · · · · · · ·

... · · ·

. . . · · · · · · · · · · · · · · ·

...

0 0 · · · 0 w 0 · · · 1 0 0 · · · 0 −v

ρ− 1 0 0 · · · 0 βσ − βσ−1 0 · · · 0 v−1 0 · · · 0 −1

0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 −1
... · · · · · · · · · · · · · · · · · · · · · · · · · · ·

. . . · · ·

...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 −1

0 0 · · · 0 w 0 · · · 0 0 0 · · · 0 −v



























































. (2.10)

Note that det(DFsr1) = (−1)k−2det(A). Below the diagonal, A has non-zero entries only in

the (σ − 1)-th column. We can then do Gaussian Elimination, using only multiples of the

(σ − 1)-th row, to put A into an upper triangular form U in which the diagonal elements

are unchanged, except the new lower right corner entry is given by:

Uk−1,k−1 = −v +
w

1 + w
v =

−1

1 + βσ
.

We then have that

det(DFsr1) = (−1)k−1(1 + w)
1 + βσ−1

1 + βσ
= (−1)k−1.

Case rs1:
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By a similar calculation we obtain

det(DFrs1) = (−1)k−1(1 + w) = (−1)k−1 1 + βσ
1 + βσ−1

.

For the boundary case σ = 1 it is easy to see that the determinant of DFrs1 is simply

(−1)k−1(1 + β1).

If we have ρ = k, the computation is a bit more complicated, but we obtain that the

determinant of DFrs1 is (−1)k−1(1 + w).

2.5 Characteristic Polynomials

Lemma 2.1 The characteristic equation for DFsr1 at a k-cyclic solution under the condi-

tions 1 < σ < ρ < k is

λk−1 + . . .+ λ+ 1 = wλρ−σ+1(λσ−2 + . . .+ λ+ 1)(λk−ρ−1 + . . .+ λ+ 1). (2.11)

Proof: Note from det(DF ) = ±1 that 0 cannot be an eigenvalue. Suppose that ȳ =

(y1, y2, . . . , yk−1) is an eigenvector of DFsr1 and λ is the corresponding eigenvalue. Then

wyσ−1 − vyk−1 = λy1

y1 + wyσ−1 − vyk−1 = λy2

y2 + wyσ−1 − vyk−1 = λy3

... =
...

yσ−1 + wyσ−1 − vyk−1 = λyσ

... =
...

yρ−2 + wyσ−1 − vyk−1 = λyρ−1

yρ−1 + wyσ−1 − vyk−1 = λvyρ

yρ − yk−1 = λyρ+1

yρ+1 − yk−1 = λyρ+2

... =
...

yk−2 − yk−1 = λyk−1

(2.12)

Note that the index of y on the r.h.s of each equation corresponds to the index of the row

in the matrix equation. We have multiplied row ρ by v to obtain the form above. The term

wyσ−1 − vyk−1 appears in all the equations indexed from 1 to ρ. Noting row 1 is:

wyσ−1 − vyk−1 = λy1, (2.13)
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if we substitute λy1 for wyσ−1−vyk−1 in rows 2 to ρ then this subset of equations becomes:

y1 + λy1 = λy2

y2 + λy1 = λy3

... =
...

yσ−1 + λy1 = λyσ

... =
...

yρ−2 + λy1 = λyρ−1

yρ−1 + λy1 = λvyρ

(2.14)

Rows 2 through ρ− 1 may be solved recursively in terms of y1:

yi =
λi−1 + λi−2 + · · ·+ λ+ 1

λi−1
y1, 2 ≤ i ≤ ρ− 1. (2.15)

Of particular interest is the σ − 1 row:

yσ−1 =
λσ−2 + · · ·+ λ+ 1

λσ−2
y1. (2.16)

Given the expression for yρ−1 from (2.15), the row ρ can be solved for yρ to give

yρ = (1 + βσ−1)
λρ−1 + λρ−2 + · · ·+ λ+ 1

λρ−1
y1. (2.17)

Next we see that, similarly, rows ρ+ 1 through k − 1 can be solved recursively in terms of

yk−1, namely:

yk−1−i = (λi + λi−1 + . . .+ λ+ 1)yk−1. (2.18)

Noting that ρ = k − 1− (k − ρ− 1) we obtain:

yρ = (λk−ρ−1 + . . .+ λ+ 1)yk−1. (2.19)

Now combining equations (2.13) and (2.16) we obtain:

vyk−1 =

(

w
λσ−2 + · · · + λ+ 1

λσ−2
− λ

)

y1. (2.20)

Combining (2.17) and (2.19) yields:

λρ−1(λk−ρ−1 + . . .+ λ+ 1)yk−1 = (1 + βσ−1)(λ
ρ−1 + λρ−2 + · · ·+ λ+ 1)y1. (2.21)

Next, substituting (2.20) into (2.21) and multiplying by v leads to:

λρ−1(λk−ρ−1 + . . .+ λ+ 1)

(

w
λσ−2 + · · · + λ+ 1

λσ−2
− λ

)

y1 = (λρ−1 + λρ−2 + · · ·+ λ+ 1)y1.
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We can solve this to obtain the equation in the theorem.

It is clear from the above equations that if y1 = 0, then ȳ = 0. Also, if λ satisfies (2.11),

then y1 6= 0 can be chosen arbitrarily and this choice will determine an eigenvector ȳ.

Therefore λ is an eigenvalue if and only if it satisfies equation (2.11). It follows that if the

roots of (2.11) are distinct, then it must be exactly the characteristic polynomial of DFsr1.

More generally, the algebraic manipulations used to derive the polynomial were equivalent

to Gaussian Elimination. Repeating those steps in matrix format show that this is indeed

the characteristic polynomial. �

Lemma 2.2 For 1 < σ < ρ < k, the characteristic equation of DFrs1 at a k-cyclic solution

is:

λk−1 + . . .+ λ+ 1 = w
[

λρ−σ(λk−ρ + . . . + 1)(λσ−2 + . . .+ 1)− (λρ−2 + . . .+ 1)
]

. (2.22)

Proof: Note that the equations for this case are the same as for case sr1, except for the ρ-th

row. In particular, equations (2.13), (2.15) and (2.16) still hold, as do (2.17), and (2.19).

In this case, row ρ is:

(1 + βσ)yρ−1 − yk−1 = λyρ,

and so, substituting (2.17), we obtain:

(1 + βσ)
λρ−2 + . . .+ 1

λρ−2
y1 − yk−1 = λ(λk−ρ−1 + . . .+ λ+ 1)yk−1.

or

(1 + βσ)
λρ−2 + . . .+ 1

λρ−2
y1 = (λk−ρ + . . .+ λ+ 1)yk−1 (2.23)

Combining (2.23 with (2.20)

v(1 + βσ)
λρ−2 + . . . + 1

λρ−2
y1 = (λk−ρ + . . . + λ+ 1)

(

w
λσ−2 + · · · + λ+ 1

λσ−1
− λ

)

y1.

Clearly if y1 = 0 then ȳ = 0. Rearranging this equation then produces the result. �

3 Implications for the stability of k-cyclic solutions

3.1 Case rs1 and positive feedback

Since det(DFrs1) = (−1)k−1(1 + w) = (−1)k−1 1+βσ

1+βσ−1
, if the response function is positive

and monotone increasing, so that 0 < βσ−1 < βσ ,, i.e. w > 0 then we have that

|det(DFrs1)| > 1,
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including both boundary cases σ = 1 and ρ = k. This implies that at least one of the

eigenvalues of DFrs1 is outside of the unit circle.

Proposition 3.1 Suppose that the response function is positive and increasing and that φt

is a k-cyclic solution with order of events rs1. Then φt is linearly unstable.

This result appeared in [Moses (2015)].

3.2 Case sr1

Proposition 3.2 Suppose that the response function is monotone increasing or decreasing

and 1 < σ < ρ < k. If φt is a k-cyclic solution with order of events sr1 then φt is linearly

unstable.

This theorem is an improved version of a result in [Moses (2015)].

We will employ the following lemma, which is part of a classical theorem of Cohn [(1922)].

Lemma 3.3 Let p(z) =
∑d

n=0 anz
n be a complex polynomial such that all its roots are on

the unit circle. Then there exists c ∈ C such that |c| = 1 and

p(z) = czdp(1/z),

where p(z) =
∑d

n=0 anz
n.

We provide a proof for the convenience of the reader. Proof: Let zi, |zi| = 1, for i = 1, . . . , d,

be the roots of polynomial p. Thus,

p(z) = ad

d
∏

i=1

(z − zi) =

(

d
∏

i=1

zi

)

ad

d
∏

i=1

(

z

zi
− 1

)

=

(

d
∏

i=1

zi

)

zdad

d
∏

i=1

(

1

zi
−

1

z

)

=

(

d
∏

i=1

zi

)

zd
ad
ad

ad

d
∏

i=1

(

zi −
1

z

)

=
ad
ad

(

d
∏

i=1

zi

)

zdp(1/z).

By choosing c = ad
ad

(

∏d
i=1 zi

)

the statement follows. �

Proof of Proposition 3.2: For either positive or negative feedback we have |detDFsr1| = 1.

This implies that either all of the eigenvalues of DFsr1 have modulus 1 or the fixed point

of F is a saddle.

Let us argue by contradiction, that is, suppose that all of the roots of the equation (2.11)

are on the unit circle. Let

p(λ) = λk−1 + . . .+ λ+ 1−wλρ−σ+1(λσ−2 + . . .+ λ+ 1)(λk−ρ−1 + . . .+ λ+ 1).
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Then by Lemma 3.3, there exists c ∈ C with |c| = 1 such that p(λ) = cλk−1p(1/λ). But p

has real coefficients, thus, p = p. Therefore, c ∈ R, i.e. c = ±1. Simple calculations show

that

λk−1p(1/λ) = λk−1 + · · · + 1− wλ(λσ−2 + · · ·+ 1)(λk−ρ−1 + · · · + 1).

By Lemma 3.3, the k−1th and k−2th coefficients of the polynomials p(λ) and cλk−1p(1/λ)

must be equal, i.e. c = 1 and 1− w = c, which is a contradiction for w 6= 0. �

Taken together Propositions 3.1 and 3.2 imply Theorem 1.4 and Theorem 1.5.

3.3 Order of events rs1 and negative feedback

Calculations with negative feedback show that there are exceptional cases, i.e. triangles in

the interior with neutral stability and even asymptotic stability with the order of events

rs1 (see Figure 3). All even k have exceptional triangles, even though these become smaller

and more regular as k gets large. A few odd k, namely 9 and 15, also have exceptional

sub triangles. Because of these cases, we cannot expect a general proof of instability for

negative feedback and order of events rs1.

In this section we show in a special case that a small negative feedback still implies linear

instability

Proposition 3.4 Let us assume that k > 1 is odd and σ < ρ are both even. Then there

exists δ = δ(k, ρ, σ) > 0 such that

−δ < w =
βσ − βσ−1

1 + βσ−1
< 0

then the k-cyclic solution with order of events rs1 is linearly unstable.

First, consider the following which is consequence of trigonometric identities.

Lemma 3.5 If |α− β| ≤ π then

eiα + eiβ = 2cos

(

α− β

2

)

ei
α+β
2 .

In particular, the argument of eiα + eiβ is α+β
2 .

Proof of Proposition 3.4: It is easy to see that if k > 1 is odd then λ0 = eiπ
k−1
k is root of the

equation with w = 0, i.e. λk−1 + . . . + λ+ 1 = 0. Since the roots are distinct, there exists
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(by the Implicit Function Theorem) a δ′ = δ′(k, ρ, σ) > 0 and a smooth complex valued

function w 7→ λ0(w) such that

(λ0(w))
k−1 + . . .+ λ0(w) + 1 =

w
[

(λ0(w))
ρ−σ((λ0(w))

k−ρ + . . . + 1)((λ0(w))
σ−2 + . . . + 1)− ((λ0(w))

ρ−2 + . . .+ 1)
]

,

for every w ∈ (−δ′, δ′) and λ0(0) = eiπ
k−1
k .

Thus, to prove the statement of the proposition, it is sufficient to show that the argument

of dλ0
dw

∣

∣

∣

w=0
is contained in the interval [0, k−2

2k π). Indeed, if the derivative satisfies this

condition, then for small negative w, λ0(w) = eiπ
k−1
k +w · dλ0

dw

∣

∣

∣

w=0
+ o(w) is outside of the

unit disc.

Consider

dλ0

dw

∣

∣

∣

∣

w=0

=
λρ−σ(λk−ρ + . . . + 1)(λσ−2 + . . .+ 1)− (λρ−2 + . . .+ 1)

∂
∂λ(λ

k−1 + . . . + λ+ 1)
,

and
∂

∂λ
(λk−1 + . . . + λ+ 1) =

(k − 1)λk − kλk−1 + 1

(1− λ)2
.

For k > 1 odd,

∂

∂λ
(λk−1 + . . .+ λ+ 1)

∣

∣

∣

∣

λ=eiπ
k−1
k

=
(k − 1)− keiπ

(k−1)2

k + 1

(1− eiπ
k−1
k )2

=
k(1 + eiπ/k)

(1 + e−iπ/k)2
.

The numerator above can also be simplified:

N(λ) = λρ−σ(λk−ρ+. . .+1)(λσ−2+. . .+1)−(λρ−2+. . .+1) =
λk − λk−σ+1 + λρ−σ − λρ + λ− 1

(1− λ)2
.

Then

N(eiπ
k−1
k ) =

eiπ
k−1
k

k − eiπ
k−1
k

(k−σ+1) + eiπ
k−1
k

(ρ−σ) − eiπ
k−1
k

ρ + eiπ
k−1
k − 1

(1 + e−iπ/k)2

=
1 + eiπ

σ−1
k + eiπ

σ−ρ
k − e−iπ ρ

k − e−iπ/k − 1

(1 + e−iπ/k)2

=
(e−

iπ
k + e−

iπρ
k )(e

iπσ
k − 1)

(1 + e−iπ/k)2
.

(3.1)

Using Lemma 3.5, we get

dλ0

dw

∣

∣

∣

∣

w=0

=
(e−

iπ
k + e−

iπρ
k )(e

iπσ
k − 1)

k(1 + e
iπ
k )

=
2 cos

(

ρ−1
2k π

)

cos
(

k−σ
2k π

)

k
(

cos
(

1
2kπ
)) ·

eiπ
4k−ρ−1

2k eiπ
σ+k
2k

eiπ
1
2k

=
2cos

(

ρ−1
2k π

)

cos
(

k−σ
2k π

)

k
(

cos
(

1
2kπ
)) eiπ

σ−ρ+k−2
2k .
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Since 1 < k, 2 ≤ σ < ρ ≤ k − 1 and ρ− σ ≥ 2, we have

0 <
1

2k
π ≤

k − ρ

2k
π ≤

k − ρ+ σ − 2

2k
π ≤

k − 4

2k
π <

k − 2

2k
π,

which proves the result. �

4 Rate of instability

For k large we can show that σ/k is comparable to s (an adjustment due the feedback is

necessary):
σ

k
≈ s

1 + f(σk )

1 + rf(σk )

In the case sr1 and positive feedback we have that at least one eigenvalue has modulus at

least 1 + w. Now

βσ − βσ−1 = f(
σ

k
)− f(

σ − 1

k
) ≈

1

k
f ′(

σ

k
).

Thus, the spectral radius of DF is at least:

1 +
1

k

f ′(σk )

1 + βσ−1
.

Thus we can say that the spectral radius of DF is of the order of O(1 + C
k ) for k large,

where C = f ′(σk )/(1 + f(σk )) > 0. This give the impression of a weak instability. However,

consider that DP = DF k, so the spectral radius of DP is at least:

(

1 +
C

k

)k

≈ eC .

Thus the rate of instability of the uniform solution in the flow is proportional to f ′(σk ).

In the case of Proposition 3.4 we see that at least one eigenvalue has modulus approximately

1 +
C ′w

k
,

and so a similar rate of instability estimate for the Poincaré map holds with rate propor-

tional to w when k is large.

For the case rs1 where instability was proved using Cohn’s theorem (either positive or

negative feedback), we do not readily have such an estimate.
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5 Discussion

We have proven instability of k-cyclic solutions, including the uniform solution (k = n), for

large sets of parameter values (s, r) in the interior of the parameter triangle. Specifically,

we have proven instability when the feedback is positive in all possible cases. For negative

feedback we have proven instability for all interior triangles with order of events sr1.

In the remaining case of negative feedback and order of events rs1 we have proven instability

in the sub-case of k odd while σ and ρ are even. We believe that this method of proof could

be used for other sub-cases by considering other roots of the characteristic equation with

w = 0 and finding combinations of k, σ, ρ that force the argument of dλ/dw to be within the

(large) set of angles that would make λ(w) be outside the unit circle for small negative w.

Since calculations show exceptional triangles for both k even and k odd, we cannot predict

whether pursuing this line of proof would be exhaustive.

The results here taken together with the classical results discussed in the introduction

suggest that in real systems with a feedback mechanism, there is competition between the

phenomena of coherence and dispersion. Dispersion due to internal and external noise

sources tends to stabilize the steady state, while feedback tends to destabilize the steady

state while stabilizing either synchronous or clustered solutions (with k small). Gong et al.

[(2014b)] using yeast autonomous oscillation data and simulations with biologically relevant

noise, concluded that a relatively large feedback, on the order of 30% slow down for negative

feedback, was necessary to destabilize the uniform solution and produce coherent clustering

as seen in the experiments.

Proving instability of the steady state solution in PDE or renewal equation models with

feedback would be an interesting and challenging problem. Because the steady state is really

a periodic solution (cells are moving around the circle and perturbations from the steady

state distribution will do the same), to determine stability one must study the Poincaré

map or the equivalent Floquet theory along this solution. Thus, the problem is non-local

in both space (x) and time.
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