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1 Introduction

One of the most important things concerning the attractors of dynamical
system generated by an IFS is the evualuation of the Hausdorff- and Box-
dimension of the set. Moreover it is also an interesting question, what the
Hausdorff-dimension of the invariant measure of the attractor is. In my thesis
I would like to study the dimensions of different iterated function systems. I
decompose my thesis into three parts. In the first part I study the subadditive
pressure.

The subadditive pressure, which is definied by K. Falconer [2] and L.
Barreira, is a tool to estimate the Box- and Hausdorff-dimension. It is well-
known in conformal case with some condition that the zero of the subadditive
pressure is equal to the Hausdorff-dimenion. In non-conformal case with some
special condition the zero of the subadditive pressure is greater than or equal
to the Hausdorff-dimension. I examine some important properties of the
pressure for a special IF'S.

In the second part of the thesis I consider a family of self-affine dy-
namical system. In the dimension theory of such system there is an im-
portant tool, the Lyapunov charts. This is the most basic ingredient of
the Ledrappier-Young Theory. Their theorems establish connection between
Lyapunov-exponents, entropy, and pointwise dimension. The Ledrappier-
Young Theory concerning the dimension theory of the invariant measures of
C?-diffeomorphisms do not cover the cases, when singularities appear. How-
ever all of the machinery works in process of Lyapunov charts. In this section
my aim is to verify the existence of Lyapunov charts in order to prove the
Ledrappier-Young Theorem for some maps with singularities induced by a
self-affine IF'S.

In the last part I examine a family of non-linear iterated function scheme
with many parameters. We would like to estimate the Hausdorff-dimension of
the invariant measure. Karoly Simon and Mark Pollicott introduced a special
property, namely the transversality condition. There are a lot of articles in

linear and non-linear cases, too, which use this condition and prove absolute



continuity. In this section my aim is to prove that this condition holds and

to estimate the Lyapunov-exponent.



2 Subadditive pressure

In R™, where n > 1, we consider iterated function systems which are non-
conformal. (We say that a map is conformal if the derivative is a similarity
in every point) The dimension theory of non-conformal IFS is very difficult
and there are only very few results. The most important tool of this field
is the subadditive pressure, which is used to estimate the dimension of the
attractors (and to compute it into a few cases when we can compute the
dimension). Unfortunately, we know very little about subadditive pressure
itself. This pressure is the generalization of the usual topological pressure, see
for example [14, Chapter 9]. When we compute the topological pressure we
take the exponential growrate over the sum of the values of a certain function
evaluated on each cylinder. In the theory of standard top. pressure it turns
out that the sum mentioned above can be evaluated at arbitrary points of
the cylinders while the value of the pressure will be the same. Therefore we
say that the top. pressure is not sensitive to the places where the function is
evaluated. The same has not been verified for the sub. pressure yet. In this
section we prove that the sub. pressure is not sensitive at least in the case
when our IFS is given by maps, which derivative matrices at every point are
triangular matrices. I generalize the result of K. Simon and A. Manning [6].
They proved in two dimension. I proved the same theorem in R". My result
is also a generalization of K. Falconer’s and J. Miao’s article [1]. They have a
formula to estimate the Hausdorff-dimension of self-affine fractals generated
by upper-triangular matrices. I show a formula to estimate the subadditive
pressure in non-conformal case. In this section I use the methods in K.

Falconer’s and J. Miao’s article [1].

2.1 Definitions

In this section we define our iterated function system and the subadditive
pressure.

Throughout the section we will always assume the following, let M C R"



be non-empty, open and let F; : M — M contractive maps for every ¢ =
1,..,0. For an i = dyis...7y, i; € {1,...,1}, we define Fj(z) = F;, o Fj,0...0
F; (z). Assume about F;, i =1, ..., the following:

Fz’($17 ---7xn> = (fil(xl)uf?(xhx?)v -'-7fin(x17 737”)) ) (1)

and Fj(z1,...,x,) € C'¢ for every i = 1,...,1. Moreover D F; for every
z € M and every i € {1,...,1}" finite sequence is regular. Denote the elements
of Dy F; by x;; (i, z).

Proposition 2.1.1. There is a 0 < C' < oo real constant that

0_1 < M < C (2)
i (1,9)|
for every z,y € M and for every i € {1,...,1}".

Proof. Let Ggm) : R™ +— R™ for every integer m between 1 and n, is the

restriction of F; to the first m component, i.e.:

G (4, ey wm) o= (FH@0), fR @1 22), o F (1, s )

From (8] it follows that for every z,y € M, for every i € {1,...,1}" finite

sequence, and for 1 < m < n there exist a real 0 < (), < oo constant that

Since for every m the DlGi(m) matrix is in lower triangular matrix form, the

jacobian is the following
Jac G{™ (@) = |z11(i,2) -+ Ty i, 2)].

Therefore for every integer 1 < m < n and for every z,y € M

Jac Ggm) (z)
C;ll Jac Gi(m)(g) Cm
m+1 —1
Cot1 Jac 6™ V@~ COLL
Jac Gi(m'H)(g)
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and

Jac Gi(m)(g) .
Jac Gi(m) (y) - ‘xm+1m+1 (17 g) ‘
Jac GV (@) |l’m+1m+1 (i;£>| .

Jac Gi(m+1)(g)

Then C' := maxi<men—1 {CC_—”fl, C’l} choice completes the proof of the propo-
m+

sition. OJ

The singular values of a linear contraction T" are the positive square roots
of the eigenvalues of TT*, where T™ is the transpose of T. Let ay(D,F;) the
kth greatest singular value of the D, F; matrix and let

(i) = Igneaj\z[(ak(DgFi), (i) == QH%IAI} ap(D,F)

The singular value function ¢* is then defined for 0 < s < n as
¢° (D, F) == a1(DyF)...ap—1 (D Fy) oy (D F;)* !

where £ — 1 < s < k and k is positive integer. We define the maximum and

the minimum of the singular value function analogously as above

S

¢ (i) :== max ¢*(D,F;) , ¢°(i) := min ¢*(D, F})

xeM xeM

We define the subadditive pressure after K. Falconer 1994 and L. Barreira
1996: .
P(s) = kli_)rgozlog |§¢ (i)

and define the lower pressure:

o] 5 /s
P(s) = llgngIOgZQ (i)

li|=k

2.2 Subadditive pressure for triangular maps

Theorem 2.2.1. Let 0 < s < n. If Fy,..., F| contractive maps in form (1)
and F; € CY¢ for every 1 < i < then



In the following we state some linear algebra definitions and lemmas, the
proofs of which can be found in article [1].

The m-dimensional exterior algebra & consists of formal elements v; A
... Ny, with v; € R”™ such that vy A ... Av,, = 0 if v; = v; for some i # j,
and such that interchanging two different elements reverses the sign, i.e.
U1 A Ve AUy, = =01 A L0 A Uy, i 0 # 50 Then @™ is a vec-
tor space of dimension () with basis {e;, A ... Aej, 1 < ji < ... < j < n}
where eq,...e,, are a given set of orthonormal vectors in R".

Then &™ becomes a normed space under the norm

[l A ... A vyl = |m-dimensional volume of the parallelepiped spanned by vy, ...vy,

We may also define a norm ||.||  on ®™ by

Z /\ilmim(eil AN Gim)

1<i1 <. <im<m

= max |/\111m|

[e.e]

If T:R"— R"is a linear there is an induced linear mapping T:0m
®™ given by

T(vy Ao Av) i= (Tor) A oo A (Toy,)

The norms on & induce norms on the space of linear mappings £(®™, ®™)
in the usual way by
. |7
|7 =
weamwz0 [l

Then with respect to the norm ||.|

- o
and with respect to the [|.||
HfH :maX{‘T(m)| - T is an m X m minor of T}, (4)

Recall that the m x m minor 7™ = T(”""T’”) of the n X n matrix T

S15--55m

is the determinant of the m x m matrix formed by the elements of T" in the
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rows 1 < r; < ... <7y <nandcolumns 1 < 51 < ... < 8, < n. The
space of linear mappings £(®™, ®™) is of finite dimension (::L) . Since any
two norms on a finite dimensional normed space are equivalent, there are

constants 0 < ¢; < ¢y < oo depending only on n and m such that

&1

7, < |7 <e

al (5)
Now we notice several lemmas relating to minors of matrices. We will

need some well-known inequalities.

Lemma 2.2.1. Let x; > 0,i=1,....,m and p € RT.
1. Ifp>1, then (2 + ...+ aL) < (z1+ ... + )P <mP (2] + ...+ aP)
2. If0 < p <1, thenmP Y (a +..+2) < (z1+...4+x,)° < () +...+2P).

Lemma 2.2.2. Let a,, a sequence of real numbers such that a,m < ap~+ Q.

Then there exists lim, . %* and it equals to inf,, an

We first look at the expansion of m X m minors of the product of k
matrices A = A1 Ay --- Ay, where fori =1,.... k

7 i A i
all 0/12 “ee ajln
Ay1 Qoo Ao,
Ai -
i Ap1 Apo Ay i

Lemma 2.2.3. For 1 < m < n, the m x m minors of A = Ay--- A have
formal expansions in terms of the entries of the A; of the form
T T'm 1 1 2 2 k k
A( Sm) = D i) ) 0o ey T ey T By

S1, ...
b ’ Cl,y.-5Ck

such that for each i = 1..k, the aj...a,, ., are distinct entries aj of A;.
In particular, for each i, 1(¢;),...,m(c;) denote pairs (r,s) corresponding to
entries in m different rows and columns of the ith matriz A;, and the sum is

over all such entry combinations (cy, ..., c) with appropriate sign =+.

8



The proof of this Lemma can be found on [1, Lemmma 2.2]. Now we

consider lower triangular matrices. For ¢« = 1,..., k, let

ul 0 ... O
U — Uy Uy
i .
Upy Uy u,
We consider the product
U1 0
U1 U2
U=U,---Uy=
Un1  Up2 Un,
We note that
1,2 k
Ups = Z Upp Uy Uy s LT <5< (6)

r>Tr1>. 2T 128

since all other products are 0.

Lemma 2.2.4. With notations as in above, let Uy, ..., Uy be lower triangular
matrices and U = Uy -+ - Uy. Then

1. If r <s, ups =0
2. Ifr =35, Ups = u, = ul---uf
3. If r > s, then the sum (6) for u.s has at most k"% < k"' non-zero

terms. Moreover, each non-zero summand ul uZ _---uF

Tr1 UT1T2 Tk—1S has at

most n — 1 non-diagonal terms in the product, i.e. terms with r # rq

or Ty # Tiy1 0T Th_1 F S.

The proof can also be found in [1, Lemma 2.3] for upper-triangular ma-

trices. Now we extend the estimate of Lemma 2.2.4 to minors.



Lemma 2.2.5. Let Uy, ..., U, and U be lower triangular matrices as in above.

Then each m x m minor of U has an expansion of the form

1y ...Tm 1 2 k 1 2 k
U( m) - Z U (o) Ul (ez) " Wi(er) " Un(er) Umfez) " " Um(er)

S1y..49 8 —
where 1(¢;), ...,m(¢;) are as in Lemma 2.2.3 and
1. there are at most m\k™™=V terms in the sum which are non-zero,

2. each summand contains at most (n — 1)™ non-diagonal elements in the

product.

The proof is equivalent to the proof of[1, Lemma 2.4]. Before we prove

the Theorem 2.2.1, we define two sums.

Hsor) = max (g 0) s (0)" (i () dig g, ()
i i
j17 7]m

where m — 1 < s <m and d;;(i) = inf, |z;; (i,z)|. Moreover

T(s,r) = max > (b5, (1) g )" (g (1) -ty g, (1)

jl ~~~~~ jm—l
A (e

(8)

where m — 1 < s < m and tj;(i) = sup, |7;; (i,z)|. It is easy to see from

Proposition 2.1.1 and the definition of the two sums that
H(s,r) <T(s,r) < C°H(s,r). (9)

Lemma 2.2.6. For every positive integers r,z, T(s,r + z) < T(s,r)T(s, z).

log T'(s,r) f log T'(s,r)
r r r .

Moreover lim,_, exists and equal with in

10



Proof. of Lemma 2.2.6 From the definition T'(s, ) it follows

T(s,r+2)= max Y (b (1)t ()™ (L () - g5, (1)

VARTEER) Im—1
Fiensdly, [IFTH2

X (tjih( >%1 (h)-- 'tj,qu;l(i)tj;nj;n(h))s’m“) =
B maX_l(Z(tjm (@) g (D) (g (1) 5, ()

X Z ]1]1 o ]'m 1Jm—1 (h)>m_s(t.7£]i (h> e t];n];n (h))s_m+1)) S

|h|=2

<T(s,r)T(s,z)
The existence of the limit is following from Lemma 2.2.2. ]

Proof. of Theorem 2.2.1 We begin the proof by defining a new IFS.
Let {Gh}h L= {F, Yt 0 In this case a h index is suit a i €

i1=1,...,

{1,...,1}" finite sequence, length r. We define the singular value function
ng(DQGh),gs(h),g’s(h), he {1,..,I"}, for {Gh}gzl, exatly the same way.

It is easy to see that
ety = ) ¢°(h). (10)

lij=kr |h|=k
The elements of DG}, denote by y;; (h, z), are equal with z;; (i, z) for a suit
finite sequence i, length r. It is very simple to see that
¢*(D,Gr) = (™ HDpGpn))™ *(¢™(DxGp))* ™™, where m — 1 < s < m.
By using relations (3), (4) and (5) it follows that

¢™(D,Gh) > ¢ max {‘DzGﬁm)‘ : DlGﬁm) is an m x m minor of DlGh}

The maximum m X m minor of D,G} is at least the largest product of
m distinct diagonal elements of D,Gh, since such products are themselves

minors of triangular matrices. Therefore

11
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for every Ji, ..o, Jm—1,J1s s Jin-

Since DyGn = Da,, . @)GnDa, o (2)Ghy--DaGhys
yi; (h,z) = yj; (ha, Ghy.ny (2)) Y55 (R, Ghy.ony () -5 (i, ). Tt follows with
the notation inf, [y;; (h,z)| = d;(h) that

. m—s. s—m—+1
inf Wi (0, 2) - gy ()] inf |y (h,z) -y o (h, )| >
(d;u1(h1) d]l]l(hk)d;232(h1) T d./]‘mfljmfl (hl) d;m 1Jm—1 (hk))m_sx

(i gy (M) - -y (i)l gy (M) - gy (ha) == dy g (i)™

‘7 ]m

The next inequality follows from the rearrangement of the product

)y = Y (d (b)) d o (h)" T (g () -y (h) T

lh|=k lh|=k

(), (i) -+ d;-m P (hk))mfs(d;éji(hk) .. d;!nﬂn (hk>>sfm+l _

Jii —1Jm—1
((dgljl( ) d;m 1Jm— 1(1>>m s(d.ljlj,( ) d;m] ( ))Sim{kl +
(d;m (l’") d;m T (lr))mik()‘(d;iji (lr) ce d;'énjén (lr))sferl)k
The inequality in above is true for every ji, ..., jm—1,71 -, Jiy, therefore we

can receive the maximum. From definition of {Gh}ﬁ;l and H(s,r) it follows

Z ¢"°(h) > ¢ H(s,r)" (11)

Ih|=k

By using relations (3), (4) and (5) it follows similarly that

¢™(D,Gh) < ¢ max { ’DgGﬁm)‘ : DlGﬁm) is an m x m minor of DgGh}

Therefore
m—s
I ) < c? su max DIG(m_l) su max
1 p h p
\h| " \h|7k z m—1xm—1 minor - gz mxm minor

The supremum and the maximum are commutable in this situation, we

can estimate the sum with

2 2 m—s
n m—
i) () ey e 32 (smfoct ) (
{sﬁ...’,sﬁ:l} {;/1 »»»»» Zn} |h|=k z Zz

12 °m

12

s—m—+1
p.6{"|)



where 11, ..., 7,1 are the rows and sy, ..., $,,—1 are the columns of the (m — 1) x

(m — 1) minor, and 7}, ...,7] are the rows and s/, ..., s, are the columns of

o m 9 Om

mxmminor. Since DyGn = Dg,, . )GhiDay, . (2)Ghy---DaGh,, we obtain

T1y ey Tm
Dth( ! ) = Z iyl(cl)(hhGhz...hk(&))-~-y1(ck)(hk,@)---ym(cl)(hlaGh2...hk(£))><

S1y .00y Smy

X Ym(ea) (P2, Ghy..h, (2)) - Ym(er) (ks T)
(12)

Therefore

Sup‘DgGElm)‘ < Y sup e (s )| 50D [yigen (B )| .. S0P |Yimger) (R, )| %

Clyeeny Ci
X sup |ym(cQ)(h2,£)| ... Sup ‘ym(ck)<hka£)|
(13)

Denote by t},(h) := sup, |yu(h, z)| the supremums. It follows from the in-
equality (13) and the Lemma 2.2.1

Z (m—1) m—s (m) s—m+1

sup | DGy, sup | DGy, <

=k = ‘

Z ((Er ey (D)t ey (D)™ (e (D ey (1)
Clheey CL

N

(14)

S (tll(ck) (lr)"'t;ﬂ—l(ck) (lr))m_s(tll(c;c) (lr)...tlm(%) (ZT))S_m‘H)

Lemma 2.2.5 implies that each non-zero term of the sum in above has at
most 2(n — 1)™ = b of the indices 1(¢y), ..., — 1(c1), ..., L(ck), ..., m — 1(cg),
1(c}), ..., m(c)), ..., 1(c), ..., m(c)) that are non-diagonal terms. Thus, for
each set of indices (cq,...,ck, ], ...,c}), we have at least k — b of these in-

dices such that 1(c,),...,m — 1(¢.), 1(c.),...,m(c,) are all diagonal entries.

13



For such ¢, and ¢/

(o) (Dt D)™ (E ey (1)t (1)
..+( (l’”) . 1(61)(5))7% 8(t1 (l’”) m(c (lr))57m+1)§

S . . maX. (( ]1.71(1)"'t;m—ljm—1(]‘>>mis(t/‘/ (1)15/7/”(1))87777,4»1 +
{]1 ,,,,, ]mfl};{_]i ..... ]m}

o (g, )t )2 (G (1)t e (1)) = (s, )

The last equality follows from definition {G}},_, and T'(s,r). Hence from
(14)

s—m+1

> sup [ DG s [DLGEY|TT <
k—b b b k—b (15)
< > (T(s,n)*0(0)) < RUPT(s,7)5,
Clyeens CL
AN

where, using Lemma 2.2.5, ¢’ = m!(m — 1)l and ¢ = (2m — 1)(n — 1).
By using (9), (10), (11) and (15)
YO =) ¢ (h) <RI (s,7) 0 < (ORI (s, 7) P H (s, )k <
li|=kr |h|=k

< C///(Cs) kqlrbT S 7, Z ¢/s _ ///kqlrbT S 7“ Z ¢

[hj=k il=kr
(16)

We apply both sides of the inequality logarithm and we divide by kr,
then

log Z\i\:kr 5s(i) <

kr -
< log ¢ N qlogk N rblogl N (kb) log(C*) N —blogT(s,r) N log > 51—y @° (1)
—  kr kr kr kr kr kr

(17)

is true for every positive k,r integer. We apply limit inferior for both sides

of the inequality. The limit exists in the left-hand side of the inequality and

14



in the right-hand side the limit of every term exists and equals zero except
the last term. Therefore
P(s) < P(s)

While the opposite relation is trivial this completes the proof. O]
The next theorem is a consequence of the last proof.

Theorem 2.2.2. For 0 < s <n. If F, ..., F} contractive maps in form (1)
and Fy; € CY¢ for every 1 <i < then
. 1 . . m—s
P(s) = lim —log( max 3 (|, (b 2)] |24, 1o (2)])" %
Foveesdly =T
. . s—m+1
x (| (2)| -z, G 2)]))

for every x € M.

Proof. 1t follows from inequality (9) that the lim, —1°g}1{(5””) exists and
lim, o, BN — fiy, 18T Tt g clear by (?7) that lim, o, 2T —

P(s). Because of the definition H(s,r),T(s,r), this is exactly what we want
to prove. ]

2.3 Some examples

In this subsection we show some examples to calculate the box dimension,
and the upper bound of Hausdorff dimension. It follows from [2], the box
dimension is equal with sq if P(sg) = 0, and the Hausdorff dimension is less
or equal then sg in our cases.

The easiest example is the perturbated Sierpinski-triangular. Let

0
1
3

and Tjx = Tx + v, for i = 1,2, 3, where v; = (8),1}2 = (%),'Ug = (%) This

T =

O Wi

0
is not the usual Sierpinski-triangular, because we must handle the open-set

condition care by the perturbation. The image of this self-similar fractal can

be showed in Figure 1.

15



Figure 1: The image of Sierpinski-triangular

The Hausdorff and box dimension is 22 = 1. Now let f(z) = sin(wz)/6

7(0)=70) () + ()

2

for i = 1,2,3, where (;’)11) = (8), (;’)22) = (g), (Zz) = (i) We can consider it
a perturbated Sierpinski-triangular. The F; functions make the [0,1]? cube
into itself like in the Figure 2, and the picture of this fractal is Figure 3.
Our proposition is the two fractal’s box dimension is equal. We use
Theorem 2.2.2 to prove. From the definition in this case it is easy to see that

x1 (Lz) = %li‘ and x99 (i,2) = %'il. We can suppose that 1 < s < 2. Then

P(s) = lim _log maXZ (J2jug () % (|2ggsg Gy 2)] |y Goa)|) | =

r—oo I
1.5 lil=r

| 11l 11l | J1er
rll)rgo;log MZ_T(g > (3 3 > —rli)rgo;log<3§ )—log?)—slog?)
It is easy to see that P(s) = 0 if and only if s = 1, which is the box dimension

of the fractal in above. This follows from [2]. In general it is easy to see, that

for every f; : R — R, if F; : R? — R? are contractions for i = 1,2, 3, where

()r) )+ ()

16



Figure 2: The image of F; i = 1,2, 3 functions
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] root L] £t
I'"'. - ,rr‘ !
t ]
!

Figure 3: The image of fractal
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satisfies the open-set condition, and constitute [0,1]? into itself, the box
dimension is equal to 1.

Now we see an other example. Let F; : R? — R? for every i = 1,2, 3, 4:

x z T z
- (roobe )0, o)
Yy 1T t3 Yy — =g T
£_|_l
F3 (x> = SQin(7m2) 1 7F4 (x> = in(rx 1
Yy + = t3 Yy — = t1

These functions are contractions and constitute [0, 1]? into itself as in Figure

N

S

N8
+
N |=

2]

2

NS
S

4. The image of fractal is in Figure 5.
li li

Then it is easy to see that z1; (i,z) = % and 9 (i, 2) = }1 . We can

suppose that 1 < s < 2. In this case

. 2— . . —241
H}aXZ (Jjojn (o)) % (Jagyg ()| |2y (1 2)])7 =

gy lil=r
r(2—s) r(s—1)
gk 11 _ o-20)r
2 42

Then P(s) = (3 —2s)In2, and P(s) = 0 if s = 2. It means that the box

dimension of the fractal in above is % and the Hausdorfl dimension is less or

equal then %

18
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Figure 4: The image of F; i = 1,2, 3,4 functions

Figure 5: The image of fractal
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3 Ledrappier-Young Theorem for self-affine
IF'S

In their article in 1985 F. Ledrappier and L.-S. Young solved, [4], [5],
an important problem of dynamical systems, which finds a connection be-
tween entropy and Lyapunov-exponents. Jorg Neunhauserer proved that the
Ledrappier-Young Theorem can be applied for self-affine IFS with diagonal
matrices in the special case when we work on the plane and an IFS con-
sists of two-maps. In this section we extend Neunhauserer’s result for every

n-dimension without the restriction of the number of functions in the IFS.

3.1 Regular hyperbolic measures and Lyapunov-charts

Let A; diagonal matrices L(R™,R") for i = 0, ..., m—1, where the diagonal
elements are 0 < a§- < 1. For these matrices we define our iterated function
system. Let g; : [0,1]" — [0, 1]"

where t; € R™ for i = 0,...,m — 1 such that ¢;([0, 1]") N g;([0,1]") = O if i # j.
Let €2 the following compact set

Q=) U guo- o1

n=11%1,...,in

then we say that € is the attractor of IFS {go, ..., gm_1}-
Moreover let 3> = {0,...,m — 1} and 32* = {0,...,m — 1}*. For every
n > 1and i€ {0,..,m— 1}" with the notation g; = g;, o --- 0 g;, we can
define the natural projection 7 : > +—
(i) = lim g;, (0) (18)

n—~o0

where 1,, is the first n elements of i.
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Figure 6: The map of f function

We define for these IFS a dynamical system in [0, 1]"*.

Let M = [0,1]"*!, K = (0,1)"" and K; = (0,1)" x (£, %) for i =
0,..,m — 1. Define the N = M \ U";'K; closed subset. We define our
dynamical system f: K\ N — K.

Let A; € L(R™ R™1) the following diagonal matrices

A 0
0f m

for every ¢ = 0,...,m — 1, where 0 is the zero vector of R", then our discrete

Ai:

dynamical system is:

flz) = A+, if z€K, (19)

t;

where v; € R for i = 0,...,m — 1 and v; = (%,

). A special case of f can
be found in Figure 6.
It is easy to see that f(K;)N f(K;) =0 and f can be extended to a C*+*-

diffeomorphism f : K; — f(K;), i = 1,...,m for some a > 0. We sometimes

write f; for f |z
We can write f : [0,1]""! +— [0,1]"*! in an other form. Namely, let

¢ :[0,1] — [0, 1] the following function:

o(r) =max mod 1
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Figure 7: The function ¢ in the (n + 1) coordinate

Then f:[0,1]" x [0,1] — [0,1]™ x [0,1] and

ﬂ%”:G§§%

Let
N ={zeM:3z2€ N,z, € M\N if z, — z, f(z,) — z}

Moreover

Mt={zeM: f"(z) ¢ N,n=0,1,2,...}

D=()f"(M")
n>0
A=D.

A is called the attractor of f. Obviously D is f-invariant. In this case
Mt ={zeM:z,#5,i=0,1,..,m, and j=0,1,2,..}. Evidently, in

this situation A = Q x [0, 1], moreover f |, is one-to-one map.
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Let © ={0,...,m — I}Z. The natural projection 7’ : © — A C R™ x R is
defined in such a way that the negative indices correspond the first n coor-

dinates and the non-negative coordinates determine the (n + 1) coordinate

in R""!. Namely,

W(i_li_g...i_n...

T (cii_pyeigi 1 G i :( e )> 20
( 20—-1, 0001 ) Zk:() mi’il ( )

one-to-one mapping. It is easy to see that f(7'(i)) = n'(oi), where o is the
left-shift operator on ©.
For every e >0 and [ = 1,2, ... let

Df={ze M'NA:d(f*(z),N) > 1" n=0,1,2,..}
Doy={ze M 'nA:d(f"(z),N)>1"e " n=0,12.}

pr=Ups. 0-=Un;,
=1 =1
D.=DInD_

Moreover let
U@O,N):={z e A:dz,N)<d}

Definition 3.1.1. We call a point x € D. regular if there exist numbers
xi(z) > -+ > Xww)(2) (called Lyapunov exponents) and a decomposition
T.M = @fgl)Ei (z) composed of the vector spaces

B(@) = {o e LA {0): lim 1 log |0, = xie) | U (0}

such that
1 k(z) '
li —1 det D, " |= dim F*
o | 0,7 - Y

Note that x;(f(z)) = xi(z) and DfE'(z) = E'(f(z)) for each i. Let
s(z) = min{i: y;(z) < 0} and u(z) = max{i: x;(z) > 0}. Let v be a o-

'~1is an f-invariant

invariant probability measure on ©. Then gy = vorw
Borel probability measure. The Oseledec theorem tells us that p-almost

every point is regular. Moreover if p is ergodic then k(z) = n+1, xi(z) = x;
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and dim E(z) = dim E’ are u-almost everywhere constant. The examination
of x; is easy if p is a Bernoulli-probability measure, then y; = Z;”:_Ol pr In a’;z_,
where s; is the coordinate which belongs to the ith Lyapunov-exponent. In
our situation the E*(z) subspaces of T, M are orthogonal. For every x € M*
the expansion in the last coordinate is m therefore y, = Inm for p-almost

every point.

Definition 3.1.2. We say that an invariant Borel probability measure is
reqular hyperbolic if u(D.) = 1 for ¢ > 0 sufficiently small and u(zx) =
s(z) + 1.

Proposition 3.1.1. Let p be an f-invariant probability measure. If there
exist C' > 0 and q > 0 such that for every 6 > 0

WU (6, V) < O (22)
then p is reqular hyperbolic for every e > 0.

Proof. 1t will be sufficient to show that u(A\ D) = 0.

It is easy to see that
A\ D;fl C {g € A : 3m € Nsuch that f"(z) € U(l—le—sm’N)} ‘

Since p is f-invariant

(e e])

WA\ DE) € 32 U7 N) )= 3 W, W) <

> 1 1
l—l —em\q _ -

If ; <y then D;f C D;“l ., therefore
1
+ : + _

By similar arguments we have u(A '\ D-) = 0, and therefore u(D.) =1. O
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It is clear that if v is a Bernoulli-probability measure on ©, then u =

vor' ™! satisfies (22). Let

n—1

Sn = U U Eids--a.

i=0 je{0,m—1}

union of cylinder sets. It is easy to see that

w(S) = U N).

Then for arbitrary § > 0 let n(d) = | =2%] and therefore

Inm

1 n(§)— n(8)—
w(U (0, N)) < M(U(W,N)) = U(Sne) = a0 4 O <

—Ind —Ind —1Inp

_9 —Inppm_q

, .
pE 4 pE = pr2 A 4 pr? 5 R < max (% g2, ) 6

By Proposition 3.1.1 a Bernoulli-measure is regular hyperbolic.

There is an other Proposition about regular hyperbolicity.

—Inpy

Inm

Proposition 3.1.2. Let v be an ergodic, left-shift invariant probability mea-
sure on ©. Ifm >3 and v([;1]U---U[;m—2]) > 0 then p = von'~ is

reqular hyperbolic.
Proof. We begin the proof by defining a metric p on ©.

. ik — g |
PR Spu=

k=—o00

It is trivial to see by (20) that

d(z,y) < p(i,j)

where 7'(i) = 7(j). We need to prove that

p({z € A Ing — ood(f™(z), N) < e ™}) =0

It is enough to prove that
v({i €0 :3ny — oo; p(c™(i),S) < e ™}) =

25
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where S = (J,' Ujetom1y[i27d..j...] and 7'(S) = N.
If p(o™ (i), S) < e =" then

LlnsmnkJ

o™ (i) € [;ijjj...q]
for some ¢ = 0..m — 1, j = 0,m — 1. Therefore o'(i) ¢ [;1]U---U[;m — 2]
for n +1 <14 < | ==ni| +ni + 1. We can apply Lemma 7.1 of [10] for the

following set
{i A een VE>00'(1) ¢ [1JU---U[[m—2)imp +1 <0 < Lﬁnﬂ +nk+1}.
Therefore

p({z € A 3Inp — ood(f™(z), N) < e *™}) =0

The m = 2 case was proved in [7, Lemma 5.1.3].

=1 is ergodic and regular

In the following we assume that 4 = vorx
hyperbolic.

Now we define the Lyapunov charts

Definition 3.1.3. For a regular point z let e;(z) = dim E*(z). Let y =
(Y1, s Yns1) € R [y |[=max | y; | and R(p) = {y e R™:| y [<p}. We
fir e > 0 small. Then for § > 0 sufficiently small there exists a measurable
function v : D, w (1,00) with v(f*'z) < €’r(z) and an embedding ®, :

R(r(z)™') = M such that the following conditions hold:

1. ©,(0) =z and Dy®, maps {0} x --- x {0} x R% x {0} x --- x {0} to
E'(z)

2. expy ' o®, coincides with Do®, on R(r(z)™")
3. For fy=®," 0 fo®, andv € {0} x --- x {0} x R% x {0} x --- x {0}

0 v IS Dofyv |< e v
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4. The Lipsitz constants L satisfies
L(fy— Dofy) <6

L(f;' = Dof; 1) <4

L(Dfs) < r(x). LIDf") <)
5. Forally,y' € R(r(z)™")

Cd(Puy, ©.y) <|y — ¢ |< r(z)d(Puy, Puy’)

The system of local charts {®,}, x a reqular point, is called Lyapunov chart

system

Lyapunov charts give control over stretching and contracting in the first
step of iterating f while Lyapunov exponents are effective only asymptoti-
cally. A illustration of the action of Lyapunov charts can be found in Figure

8.
From [10, p. 4], [3, Part 1., Lemma 3.1] follows the next proposition.

Proposition 3.1.3. It p is reqular hyperbolic invariant measure (that is p

is invariant and p(D.) = 1) then Lyapunov charts exist for a.e. x € D..

In our case there is one Lyapunov exponent which is positive.

Now we define the stable and unstable manifolds

wte) = {y e M stimsup Llogd(7 @) ) < | (9

n—00 -

wia) = {y e M smsp Logd @) ) < f e

n—oo

where d(.,.) is the Euclidian metric in M = [0, 1]"*! manifold. Evidently
Witl(z) c Wi(z) for i =2, ...,n.
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I3 ()

0 ‘F_(Z)z = e
/ E*(f(x))
fi(z)l & eXly Jo(2)s = ¥z |
E'(f(2))

Figure 8: The operation of Lyapunov-charts
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3.2 The construction of Lyapunov charts

In general it is very difficult to write down explicitly what the Lyapunov
charts are. However, for the simplicity of our system, using [4, p. 536,
Appendix], in this subsection we describe it precisely.

First, for every sufficiently small € > 0 we construct a measurable function
C(z) such that

1. For every x regular points and n > 0
| Dy f 0| < C(z)e~ ==/ |y|| for all v € E'(z)
| Dofv| < C(z)e” X~/ jy|| for all v € E(z) and 2<j<n+1
(25)
2. C(z)>1
3. C(f(z) < eClz)
We can write this C' function explicitly. Namely, let

Cy,(z) = max {1’ max {e*anJrZZ;é lnai’;*n€/2} ,max {efnxrzﬁin lnaé’;+n€/2}
n>1 n<-—1
(26)
if z = 7/(i). We assume that the empty sum is equal to zero. It is easy to
see that

C1,(f(2) < X540 (a)

-1 —X'+1nai‘_.1+5/2 (27)
Cy(f7 (z)) < e % 70 ()
Namely,
—nx;+ 00 lnaikJrl*”ff/2 —nx;—pt lnaik+1+n€/2
C1;(f(z)) = max 1,m§f< {e i 2 =0 N Osj } , max {e i L In A } _

Y

b3 7
. {17 outmald e {e—<n+1>><j+zz:o lnalk —(n+1>e/2}
n>1

€Xj_ln ai(;. —e/2 max {6_(n+1)Xj_z’::1"+l In ai’;+(n+1)s/2 } } <
n<—1

i i 1 i 1 i
exj—ln as(;. +e/2 max {e—xj—s—lnas(; —8/2, max {e_nXJ'"'ZZ:O lnasl; —ne/Q} . max {e—nxj—zk:n In asl; +na/2}}
n>2 n<0

—Inal +</2
— T2 0 (1)
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And similarly:

n>1 n<-—1

n—1 ip—1 1 ip—1
- —nx; Inatk ™ —ne/2 —nxj— Inagk 2
Ci;(f~(z)) = max {1,max {e X+ k=g Inas; - —ne/ },max {e nXG "L p=n N s} AmE/ }} =

)

i B .
max { 1, e—xj—Hn as; t_g/2 max {e—(”—l)Xj“’ZZ:g In a;’; —(n—1)5/2}
n>1

"y i1 1)y, —S 1 ey
e XjtHnas; +e/2 max {6 (n=1)x; ==,y Inas +(n 1)5/2}} <
n<—1

i1 i1 —1 i —1 [
6—Xj+lna5j +e/2 max {exj—ln as; —6/2’ max {e—nxj—i—zzzo lnaslj —ne/2} . max {e_nXJ'_Zkzn lnasl; +n6/2}}
n>0 n<—2

—xj+nas ! /2
<e Xjtnas; +e/ Clj(@)

Moreover let

00 ) -1 )
Cojlz) =1+ Zenxrzz;é Inaf—ne/2 | Z Xt s, Inadi+ne/2. (28)

n=1 k=—o00

By similar argument like C;(z) we can prove that

Coy(f(@)) < e XM +2/20n ()

i (29)
Coy(f (@) < M7 TR0, (x)
Therefore let C'(z) be the following function
Clz) = max{Cy;(z) - Co(2)} (30)

The inequalities (27) and (29) imply that C'(f*'(z)) < ¢*C(z) and by the
definition C;(x), in (26), the property (25) is also true. This completes the
construction of the function C'(z).

Continuing the construction of the Lyapunov chart we define ®, and r(z).
First we introduce a new inner product ((.,.)), on T, M for every z regular

points.

2 n=o(Daf ", Dy f"0)

, e—2n(x1—¢)
<<U,U>>£ - Z;L.O:0<D£fnu’ Dgfm}>

e2n(x;+e)

for u,v € E'(z)

for u,v € E/(z) and 2<j<n—1
(31)
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n—1 i
It is clear that if 7/(i) = z, where i € © then D, f"u = e>k=0 nafy, where

u € Ei(z), 2 <j <n+1. Therefore
(G, 00 = ) Jo oe B e
n=0

if u,v € F’(z). This sum is convergent for p-a.e. x, since yu is ergodic. It is

easy to see that if u,v € F'(z) then

- 1
! —2ne _
<<u7 U>>g - <u7 U> ; e <u7 U> 1— 6_25
Let L, : T, M — R" be a linear map satistying
(Lgu, Lyv) = <<u7/U>>IQ

for every u,v € T, M. Then L, is a diagonal matrix with elements:

1 k-1 ij
VI, e Signel)
k=0
0

1 k=1 %
\/220:0 2 (—xsn e+ X550 maid )
. 0

(32)

where S; is the index of the Lyapunov-exponent in the ith coordinate. Setting
®, =exp, oL, " (33)
Therefore
P, (2) =Ly 24z

which completes the construction of the Lyapunov chart. Now we check that
each the conditions of Definition 3.1.3 hold. By the definition of ®, in (33)
the first and the second point of Definition 3.1.3 is obviously holds.

Since E'(x) subspaces of the tangent space T, M = @'t F*(z) are orthog-

onal and L, is a diagonal matrix, |v[|}, > |[v]| for every v € T, M, where |||’
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is the norm derived from ((.,.)),. From the first property of C'(z) function,
follows immediately that if v € E’(x) then

0]l < CoCl(z)]|v]] (34)

where Cy = /2~ e~*'. By similar arguments as in above it is easy to see
that (34) satisfies for arbitrary v € T, M.

Therefore if we choose
ri(z) = CoClz) (35)

the 5th property of Definition 3.1.3 satisfies immediately with r;(z). We aim
that i )

r(2)! < —l

N

In this case if z € K; then ®,(z) € K, also for arbitrary z € R(r(z)™'). If
x € D.; then 7! < d(x, N). Let I(z) be the minimal [ which satisfies that

z € D.;. Then
o) = mox fre). 2

and therefore the 5Hth property of Definition 3.1.3 holds also and by the
construction of D, ;, which was defined in (21), r(f*!(x)) < e°r(x).

Since the derivatives of ®, and f are diagonal matrices then the fourth
item of Definition 3.1.3 is trivial.

We need only to check the third condition of Definition 3.1.3. To do so
we note that for z € R(r(z)™!):

fe(2) = By 0 [ o Ba(2) = Ly AL, 'z

if z € K;. Ifv € E'Y(z) then Dofxv = mu clearly. In other cases, for v €
FI(z), we need only to prove that the diagonal elements, which correspond

to the s; coordinate, can be estimated by the following

\/Z eZn( xi—e+L YR 1l as )az‘o
n=0 Sj
1 i
VT, e i)
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because f(7'(i)) = n’(oi). With simple transformations:

\/ 2XJ+252 —Xj—ety Lilo nadk)
VS e T )
n=0€

Let
) e
B:§ :6271 —Xj—e+z LSz o Inas;)
n=0

It is also true that

\/ 2x;+2¢ ZOO 2”(—Xj_5+%zz;é lnai];) \/€2Xj+2€(B — 1)
\/Z 06 —Xj—ety, ZZ llna ) \/E

We aim that
2xi+2(B — 1
\/e ( ) Z exj'—{;‘ (36)
VB
With simple calculations it is equivalent to
B(l—e™)>1

Since B > 1 4+ e2uHnas—2) o 5 g sufficiently small then (36) satisfies.

We expressed explicitly, what the Lyapunov charts are for our modell.

3.3 Partitions subordinated to the foliation

Definition 3.3.1. A partition £ is p-measurable if and only if for u-a.e.
x there is a normalized measure Mi supported by the partition element &(z)
containing x such that for the sub-o-algebra Be consisting entirely of unions
of atoms of the partition & and a measurable set A the function x +— /Lg(A)
is Be-measurable and pu(A) = [ pS(A)dpu(z). The measures 1§ are called the
conditional measures of p w. r. t. £&. They are uniquely defined up to a
set of measure 0. [4],[5],[10]

Definition 3.3.2. A u-measurable partition £ is subordinate to the W'-

foliation if for p-a.e. x
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Figure 9: Subordinate partitions

1. &(z) C Wi(z)

2. &(x) contains a neighborhood of x in W'(x)

For two partitions &, we say that £ > n if for a.e. x € M &(x) C n(x),
and we say that a partition ¢ is increasing (decreasing) if £ > f(£) (£ < f(£)).

Proposition 3.3.1. For 1 < i < n + 1 there exist measurable partitions &
with the following properties:

1. & is subordinate to W'(x)
2. &' s increasing and & are decreasing i = 2, ...,n + 1
3. &> fori=2....n

4. & is generating - i. e. \[oe o f7(EY) or oty fM(E) if i =2,..,n+1
15 the partition into points.
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The proof of the existence of such partitions depends only on the existence
of Lyapunov charts and can be found in [10, p. 6], [5, p. 554].

In our case it is easy to show such partitions. Namely,

¢H(z) = {m} x - x {aa} x [0,1] (37)

and if 2 <7 <n+1 then
¢(z) =[] Hj(x) x {zas1} (38)
j=1

where
Hi(e) - { [0,1] if 5 € {85, rr Sns1}
{z;} else

We remark that s; is the coordinate of the ith Lyapunov-exponent and y; >
0> x2 > -+ > Xns1. Obviously, it is enough to define our partition for
p-a.e. point.

If we assume for the simplicity and for the better realization that s; = 1—1
then

€'(z) = {ar} x -+ x {zia} x [0,1]"77 X {241}
if3<i<n+1 and
&(z) = [0,1]" x {zp41}

A simple illustration of such partitions is Figure 9.

We define the pointwise entropy of the measure. Let { ,u;}, 1<i<n+1
be fixed versions of conditional measures associated to p and &. For x € M

regular point v > 0, 2 <7 < n+ 1 we define

. 1 .
_ o 1 o
hi(z,v,&") = limsup - log p1z, V' (2, m,7) (40)

with Vi(z,n,y) = {y € Wi(z) : d'(f "(z), f"(y)) <7,0 <k <n}, where
d’ is the Euclidean distance on W?*. We define also

. 1
hy(z,7,£) = liminf —log i V' (z,n,7) (41)
n—oo n -
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_ . 1
hi(z,7, &) = limsup —— log V' (z,n,7) (42)
—logpy

with V(z,n,v) = {y € W'(z) - d'(f*(z), f*(y)) <7,0 <k <n}.
In the following we interpret some propositions which were proved in [4]
and [5] for C*-diffeomorphism, but we constructed the Lyapunov charts of

our model, therefore those proofs can be applied.

Proposition 3.3.2. Then for p-a.e. x € M
lim A, (2,7, &) = lim hi(z,7,£') = hi(z, £)
v—0 ¥—0
Moreover hi(z, &%) is p-a.e. constant and independent of the choice of &°.

The proof of this Proposition follows from Theorem 3.3.1.

We give a definition for the dimension of the measure along the stable
and unstable directions. We consider for the ball B'(x,v) in W*(x) centered
at z of radius v the quantities 1 <7 < n + 1.

log pi, B*(z, )

d,(z,¢") = lim inf log (43)
S log 113, B*(z, )
d,(z,£") = limsup ————— (44)

=0 log v
Proposition 3.3.3. Then for p-a.e. x € M

d,(z,&) =d,(z,§) =d,(z,¢)
Moreover d;(x, %) is p-a.e. constant and independent of the choice of &'
The proof of this Proposition follows also from Theorem 3.3.1

Theorem 3.3.1. Ledrappier-Young With the assumptions and notations
in above the following hold:

1. hl = dellt
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3. hi — hip1 = —Xz(d dz“)

4. hi = hy = hy(f)

Here h,(f) is the entropy. Moreover for every &' partitions subordinate to
W'-foliations hy = hn(f~, &) = H(E | f€') and h; = hy(f, &) = H(fE' |
£),i=2,..,n+1.

The proof of this Theorem coincide with the proof of Theorem C’ in [5,
p. 544]. It depends on the existence of Lyapunov charts and subordinate
partitions to Wi-foliation, moreover on the existence of a partition P for
every sufficiently small ¢’ > 0. We detail the proof with refer to [5].

Our first aim is h; = H(f¢ | &) for i = 1,...,n+ 1. It can be found in
[5, p. 555] (9.2) and (9.3) with the choose of partition P!, i = 1,...,n + 1,
e >0:

n Jnt1 Jng1 +1
Ph() = (0,1)" x (2t Jrrt EL) (45)
T gk ]k+1
H 2m+17 2m+1 x (0,1) (46)
k=1
where 27,1% < e < 2%,1, g = 0,...,2"" — 1 and 2,4, € (gﬁiﬁ,jglﬁl),

(:Ch HS) xn) € HZ:l(Q?g‘z%a %)
After that with the same partition P, and &' we use the (10.1) and (10.2)
points and Section 11. of [5, p. 559-566].
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4 A non-linear IFS with parameters

In this section we will study a special, non-conformal and non-linear iter-
ated function scheme. Our purpose is to give a good parameter family, where
the push-down measure is absolute continuous Lebesgue-almost everywhere.
To prove it we will use the transversality condition, which was introduced
by Karoly Simon [11] and [12]. Sze-Man Ngai and Yang Wang studied the
absolute continuity in linear case [13]. Our result corresponds with it but in

more general case.

4.1 Definitions

Let Ay and A; two matrices from £(R?), which is the set of the linear
maps on R?. We assume in the following, that det(A4;) > 0 for every i = 0, 1.
Denote the four quadrants of the real plane @1, QQ2, @3, 4, namely

Proposition 4.1.1. The following five expressions are equivalent

~

. A;IQQ C iIthg

I\S)

. A;1Q4 C intQy

Co

. AlQl C thQl
4. Ang C iIthg
5. A; has strictly positive elements

Proof. We proof the equivalence of 1. and 5., and the equivalence of 2. and

5., the others are similar.
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We suppose 1., then indirectly we assume that 5. is not true. If 5 is not

true then there exists an element of the matrix which is non-positive. If

7 bz
Ai - “
C; dz
then
1 [ d b
v det A,L —C; a;
Then for every w € @,
A;lw _ 1 diwl — bin
det Al —C; W1 + a;Wa

Our assumption is that d;w; — b;ws < 0 and —c;wq + a;wy > 0. If some of the
elements of A;, for example d; < 0, is negative then the adequate coefficient
of this element, which can be w; or ws, tends to infinity or minus infinity, in
our case w; — —oo, then there is a contradiction. If some of the elements
of A; is zero then we can choose w that A; 'w ¢ int@Q,. Therefore A; must
have strictly positive elements.

Conversely, we suppose that 5. is true. In this case for every w = (g;) €
@2, where w; < 0,w, > 0, but at least one of the inequalities holds strictly,
we have d;w; — b;ws < 0 and —c;wq + a;wy > 0, which was to be proved.

Now we suppose that 2. is true, then for every w € @)1, where w; >

0, Wy > 0
Azw _ (aiwl + bzwg)

ciwy + d;we
and our assumption is a;w; + byws > 0 and c;wy + d;ws > 0. Similarly, if
some of the elements of A;, for example d; < 0, is negative then the adequate
coefficient of this element, which can be w; or ws, tends to infinity, in our
case wo — 00, then there is a contradiction. If some of the elements is zero
then we can choose w that A;w ¢ int@);. Therefore A; has positive elements.
Conversely, if 5. is true then the elements of A;w are strictly positive,

while at least one of the elements of w is strictly positive. O
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In the following we assume that A; has strictly positive elements. Now
we define our iterated function scheme.

Let ||z||; = |z|+|y| the norm in R?, 2z = (z,y)T. Let B; = {z € R? : ||z|, = 1},
and B = {g €B:x=(z,y)T, x>0,y > 0}. We define a function.

Definition 4.1.1. For a matriz S € £(R?) let 15 be the following map

1
Sz

Ys(x) = Szl L

Then g : By — By

Lemma 4.1.1. For every Sy, So, ..., S, € £(R?) matrices 1s,s,..5, = s, ©
s, 0+ 0, and if a matriv S € L£(R?) is invertible, 1g is also invertible
on By and @/151 = 1)g-1.

We do not notify the proof of this lemma, because it is very simple.
In the following we use the notation A; = A;, --- A, for every i € {0,1}"
and n > 1 whole number. With the above assumptions t4,,%4, : Bf +—
Bi". We can restrict these two functions into the axis z, let these functions
90,91 : [0,1] — [0,1]. Then
apx + bo(1 — x)

aox + bo(1 — ) 4+ cox + do(1 — x)
a1z + by (1 — )

a1z + b (1 —x) 4+ 1z + di (1 — x)

go(x) =

gi(x) =

Besides the hypotheses above, we assume that gy and g; are contractions,
which means that the derivatives of these functions are less than 1, and there

are overlap, namely go((0,1)) N g1((0,1)) # 0. Tt is easy to see that

/($> . det AO

%) = (apz + bo(1 — ) + cox + do(1 — x))?
det A

gi(x) = :

(az+bi(1 —2)+cx+di(l—2))?
These functions are monotone increasing or monotone decreasing on (0, 1),

therefore if sup,¢ o1y 9o(*) < 1 and sup,¢ o1y 91 () < 1 then

det Az <1 and det Az <1
(CLi + Ci)2 (bz + dz)2
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for every ¢ = 0,1. This implies that 14,,14, are contractions, too. There
exist two fix-points z,,x; of 14, and 14,, and they are the eigenvectors
of the matrices Ay, A; with strictly positive coordinates. Without loss of
generality we can assume that x, is the northern vector, which means that
the first coordinate of z; is less than the first coordinate of z; (x,,z, € B;).
Moreover let us observe that for every ¢ > 0 1.4, = 14, for every 1.

Let S = [z,z,] then S714,S = go and S7'A4,5 = ﬁl, where AVO is a
lower triangular matrix and ﬁl is an upper triangular matrix. It is easy to
see that 3 ((1)) = ((1)) and ¢z (é) = ((1)) For the sake of simplicity and in
view of lemma 4.1.1 in the following we will study the matrices Ay, A;. These

matrices do not satisfy the condition 5., but they have non-negative elements

and map B; into itself.

4.2 Transversality condition and absolute continuity

From the previous section if follows, that we can suppose that our two

dy b
0 1-0

where 0 < a < 1,0 < b < 1 and dy,d; € RT. In this case our restricted

matrices are in the following form:

a 0

A:
‘ 1—a do

] and A; =

functions to z-axis can be written as

B ax and gu(z) = dix +b(1 — )
2 4do(1 — 1) 9 Codip+(1—a)

go()

Denote ¢ : R? — R the following function:

x
(I—yz+y
Then the functions gy, g1 can be expressed by ¢.

o(w,y) =

go(x) = ad(x,dy) and gi(x) =1+ (b—1)o(1 — x,dy) (47)

Lemma 4.2.1. For every x € (0,1) and every y € RY, ¢/ (x,y) > 0,
infreon) @ (x,y) = min{y, 1/y}, 0,0, y)|| = supeoqy 102 (2, y)| = max{y,1/y}.
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Moreover ¢(0,y) = 0, ¢(1,y) = 1 and ¢(x,1) = x for every x € [0,1] and
y € RT. If 97! (z,y) denote the inverse in the first variable for fived y, then
¢z, y) = ¢(z,1/y).

The proof of this lemma is trivial.

Now we define the natural projection and transversality condition. Let

ST ={0,1}" and 32 = {0,1}". For every i = (i1...i,) € 3" let
9i -= iy ©Giz © 0 Giy,-

Definition 4.2.1. Let m; : Y — [0, 1] with parameters t = (a, b, dy,dy) the
following function

(i) = Hm g (0), (48)
where i(n) denote the first n elements of i. We call my(i) the natural pro-

jection.

It is easy to see that for every i € >.* ¢ is C'¢ in parameters ¢ =
(a,b,do,d;) € R*, therefore for every i € Y the function (i) is C'*¢ in ¢
also.

We would like to give an open set U of parameters t = (a, b, dy, d; ), where
the go, g1 IFS has absolute continuous self-similar measure for Lebesgue-
almost every t € U.

Let U; be the following open set of parameters

U, = {(a, b,do,dy) : b < a,amax {do, dio} <1,(1- b)max{dl, dil} < 1}
(49)

Here, in view of lemma 4.2.1, U; is the set of parameters, where gy and ¢;

overlap, namely go([0, 1])Ng1([0, 1]) # 0 and they are contractions. Therefore

m¢ 1s not one-to-one mapping.

Definition 4.2.2. We say that the transversality condition holds on an
open set U C R* of the parameters, if there exists a constant Cy such that

for every i and j € > with iy # j1,
Lyt eU:|m(i)—m()| <r) < Cyr forallr >0, (50)
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where L4 is the 4-dimensional Lebesque-measure.

This definition is equivalent with [11, p. 448].

Before we prove the absolute continuity, we want to find an open set U
where the IFS {go, g1} satisfies the transversality condition. Let [iyis...7,] =
{ie > :i(n) = (i132...1,)} the cylinder sets. We can prove a lemma, which

helps the proof of transversality condition.

Lemma 4.2.2. Suppose that t € Uy, moreover ap(a,dy) < b and 1+ (b —
1)¢(1 —b,dy) > a. For every i,j € >, with iy # 51 if m(i) = m(j) then
iy # Ja, too. In other words mi(i) = m(j) implies that i € [01] and j € [10].

Proof. To prove this lemma first we observe that in our case go([0,1]) N
91([0,1]) = [b, a], therefore if i; # j; and (i) = m(j) then m (1) = m(j) €
b, al.

It is easy to see, that go(go(1)) = a¢(a,dy) and if go(go(1)) < b then
m([00]) N [b,a] = 0. Tt is also true that ¢1(g1(0)) = 14+ (b — 1)é(1 — b,d4)
and if ¢1(¢g1(0)) > a then m([11]) N [b,a] = 0. These two previous statements

complete the the proof of lemma. m

Let U; be the following set of parameters:
U2 = {(CL, b7 dO; dl) : a’(b(a’u dO) < b, I+ (b - 1)¢(1 - b7 dl) > (l} : (51)

On account of [11, p. 471] lemma 7.3, and [12, p. 5157] formula (5.1) the

following lemma is true.

Lemma 4.2.3. Assume that there exits an open set U C R* such that for
every i,j € > with iy # j1 we have

|V (m(3) — m(§))]| > 0 whenever (i) = m(j), (52)

where V denotes the gradient with respect to the parameters t, then {go, g1}

satisfies the transversality condition on U.

Finally, we can give the open set U, where {go, g1} satisfies the transver-

sality condition.
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Theorem 4.2.1. Let Uz, Uy C R* the following sets:
Us = {(a,b, do,dl) ceR*:
(1- b)‘b(%v d%) min {db %} —a a(l —b)max {do, %} max {dl, %}
>
a 1—amax{do,%}
U, = {((l,b, do,dl) eR*:
1 — b+ amax {do, %} <¢(§, %) — 1) a(l — b) max {do, %} max {dl, i}

1—b g 1= (1 - by max {dy, - }

Then on

U=U,NU;N (Us UUY) (53)
the IFS {go, 1} satisfies the transversality condition.

We recall that Uy, defined in (49), guarantees the overlap and contraction,
moreover Us, defined in (51), guarantees that ¢ satisfies the assumptions of

lemma 4.2.2.

Proof. We begin the proof by giving an upper and lower bound for %@(i)
and 2m,(i) for every i € 3.

Let i € ) arbitrary and fixed. Moreover let A = max {||g}|], ||g1]|}. Here
0 < A <1, because t € U;. It immediate follows from chain rule that %Wz(i)

and 2m(i) is less than or equal to the sum of different powers of A. So

It is easy to see that %@(i) > 0 and %@(i) > 0 hold. Namely, by Lemma
4.2.1, we have g{(z) > 0, gj(z) > 0, Zgo(x) > 0 and 5.¢1(z) > 0 for every
x € [0,1].

Let n be the place of the first 0 element of i, then

o . 0 )
%7&(1) = %gi(n_n(m(w(a"l), do)) =

Gin—1)(ad(mi(01), do)) (¢(7Tt(0"i)a do) + ad),(m(0"1), do) - %Wt(ani)> '

0

. 1
%7@(1)

S_

o
m(1) -\

%,

Y
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Therefore, using that 0 < ¢(z,y) < 1, 0 < gi(z) < 1 and ¢ (z,y) <
max {y, 1/y} hold for every = € [0,1],y € RT by lemma 4.2.1, we have

1
< 1+amax{d0, }’

Proceeding inductively we see that

0

|52 2 o

‘ 27Tt() < 1+amax{d0,l}+(amax {do,i})2+~~: !
Oa = do do 1—amax{d0,%}
(54)
since a max {do, di} < 1 for every t € U and m(i) is bounded. By similar
arguments the upper bound for 2, (i) is
|50 < ! . (59

1—(1-0) max{dl, %}

Let t € U and i,j € Y with the following properties, i; # j; and m (i) =
m(j). By Lemma 4.2.2, without loss of generality we can assume that i € [01]
and j € [10].

i) — i) = - (1 (b= 1601 — ao(m(o%), o). ) ~

a1+ (b= DO~ (o), du). o) =

(1= 061 = o). ) (o(7u(o5). o) + a6 (%), ) o)) ~
(ol o)+ aoL (o, do1 )61~ (o). ) (o) ) =
= (1= 5)6, (1 — my(o), @) A D

a a

Fa(l = b)6(1 — my(03), de)oh (ma(0%) do) S mf0%5)

— a1~ )6, (ru(o), do)6, (1~ m(0%), )~ (0%)
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So, we have obtained that

%wt(j) — %wt(i) = (1-b)¢.(1— WL(Uj),dl)ﬂi(O:w B Wt(ii)+
a1 - (1 — m(05), d) (my(0%5), do) -2y (0%5)— (56)

da
— a1~ B)4 (o) do) (1 — mfo%), )~y (o%)

We assumed that j € [10]. This follows that m,(ci) = g;'(m(i)). By the
definition of g; we have g;'(z) = ¢~ '(3=%,d;). From the last formula of
lemma 4.2.1 we have m,(0i) = g7 ' (m(i)) = ¢(* 173)@)’ 7). We substitute this
into the first line of (56). We can throw away the second line of (56) and we
apply (54) in the third line of (56) to get:
1—b)¢(1— i),d)o((1 —m(3))/(1 —b),d;") — m(i
_Qdﬁ_gmmz< )6, = (o), d)6((L = m§)/(1L— 1), d") — (i)
a a
a(l1 —b)¢l (m(oi), do)P. (1 — m(a?i), dy)

1-— amax{do, @ }

(57)

Now we use that ¢/ (z,d;) > min {dl, i} and that ¢ is monotone increasing
SO ¢(1717?b(i),d1’1) > (b(ﬁ, d;") Further we use for y = dy, d; that ¢/ (z,y) <
max {y,y '} for every x € [0, 1]. In this way we get

8

0
m(j) — %T"t(i) >
( —b) mm{dl,dll} ) 1—b H—a B a(l —b) max{do,dal}max {dl,dfl}
a 1—amax{do,dal}

(58)

Since t € Us the right hand side of (58) is positive, the transversality

condition holds. In the same way we can prove that:

o . o .. 1—=m(j)+amax{dy,dy'} (¢(m(i)/a,dy") — 1)
%%(J) - %7@(1) > -1
a(1 — b) max {do, dy ' } max {do, dy"}
1—(1—b)max{d;,di"}
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We remind the reader that by our assumption

m(j) = m(i) (60)
Let
1—2z+ amax{do, %} : <¢(§, d—lo) — 1)
h(z) = T :
Further, let
Ao a(1 — b) max {do, dy' } max {do, d; "}

1—(1—b)max{ds,d'}
Note that (59) is equivalent to

%m(j) - %Wt(i) > h(m(i)) — A (61)

Our claim is to prove that

i) - 2omli) > ) — A

By (61) to see this we have to verify only that
h(z) > h(b) for every =z € [b,al. (62)

Since m(j) = (i) € [b,a]. Using that ¢/,(2,dy") > min {do,d;"} by differ-
entiation of h(z) we get immediately that (62) holds. Therefore the transver-
sality condition holds by lemma 4.2.3 and by ¢ € Uy, which is equivalent to
h(b) — A > 0.

O

In the case dy = dy = 1, which is the linear case by lemma 4.2.1, the
transversality domain U seems like in Figure 10.

We can represent the following hyper-planes: dy = d; = d Figure 11,
dy = 1,dy = d Figure 12, and dy = d,d; = 1 Figure 13. The last two cases
are if one of the function is linear.

Let u be a shift-invariant ergodic Borel probability measure on ) with
positive entropy. The definition of entropy, denote h, can be found in [9]. If
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Figure 10: Transversality domain in linear case

Figure 11: Transversality domain of dy = d; hyperplane
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Figure 13: Transversality domain of d; = 1 hyperplane
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p is a Bernoulli-measure then h, = —pylogpy — p1 log pi, where pg +p; = 1.
Let V§:/LO7T£1.
The Lyapunov exponent of the IFS {go, g1} with parameter ¢, correspond-

ing to the measure p is
) = = [ 1081, (mlo)

In the important special case when p is a Bernoulli-measure, the Lyapunov

exponent can be rewritten as follows:

Yult) = —po / log |g)()|dvy(z) — pr / log |, (x)|du(z)

In the next theorem we determine an open set U’ s. t. for £, a. e. t € U’

we have 14 is absolute continuous. The proof of the theorem can be found in
[12, p. 5163].

Theorem 4.2.2. We device the open set U C R* as in Theorem 4.2.1,

(53). Let u be a shift-invariant ergodic Borel probability measure with positive

entropy on Y. and let v, = pom .

. . h . .
dimg () = min {x_k(tt)’ 1}. Moreover the measure v; is absolute continuous
t o t

; T
fora. e tin {ﬁ elU: D

Then for Lebesque-a. e. t € U,

> 1}.
Proposition 4.2.1. Let p be a Bernoulli probability measure on >, and Us
the following set:

Us = {(a,b,do, d1) : —pologpo — p1logp1 >

> —po log <amin {do,dlo}) —p,log ((1 ) min{dhdil})} (63)

1

Then vy = pom,  is absolute continuous for a. e. t € UNUs.

Proof. By Lemma 4.2.1, it is easy to see that
min gj(z) = amin< d !
2€(0,1) Jolt) = 0 do

and

z€(0,1) 1

min g)(z) = (1 — b) min {dl, di} |
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Figure 14: Absolute continuity region in linear case, pg = p; = %

Therefore

e i {2 1) o (1 i L 1Y) =

Hence for every t € Us, % > 1, and by Theorem 4.2.2 we proved the

proposition. 0

If p = {%, %}N then by proposition 4.2.1 the open set, where 14 is absolute
continuous, in linear case the image of the region is in Figure 14.

This set is smaller than what was proved in [13, p. 4.], but it is a little
bit more general, and the proof of our set does not use (x)-functions. For
W= {%, %}N the U N U; set is in Figure 15.

We can show the absolute continuity domain for hyper-planes: dy = d; =
d Figure 16, dy = 1,dy; = d Figure 18 and dy = d,d; = 1 Figure 17, when
p={33}"

Let us transform the absolute continuity domain a — a,b — 1—b, because

a,1—0b are the contracting ratios. Sze-Man Ngai and Yang Wang proved that
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Figure 16: Absolute continuity domain of dy = d; hyperplane, py = p1 = %
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1 hyperplane, pg = p;

Figure 17: Absolute continuity domain of d;
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Figure 18: Absolute continuity domain of dy
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Figure 19: Compare the two regions

the u self-similar measure corresponding to Si(x) = p1x, Se(z) = pex + 1,
pL = py = % is absolute continuous for Lebesgue almost all (py, p2) in the
region pipy > 411 and 0 < pp,p2 < 0.6491 [13, p. 3]. We proved an other
region and we can compare this two regions in Figure 19.
Our a. c. region is contained in Sze-Man Ngai’s and Yang Wang’s result.
What do the results of the previous subsection mean for the original
matrices and the original {go, g1} IFS?

Let zy, 2, € Bf, where Bf = {z:z = (z,y)",2 >0,y > 0, |||}y = |z] + |y|},

dy b

0 1-b

Moreover there exists a matrix S, depends on the elements of Zo,gl such
that

and S = [z,2,]. Let co,c; > 0. Let

~ a
A =
‘ 1—a do

0 ~
] and A; =

(651 51
4! 01

ag fBo

AO =
Yo 9o

] :Cosgosil and Al =

] = 015;{15*1 (64)
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matrices are in the original form, namely these matrices have positive ele-

ments. Let
X = {(zg,2,) € Bf x Bf : Ag, A; have positive elements }

Then the transversality region of {14,,%4,} is the following 8-dimensional

open set T

T = {(Oéo,ﬂo,’}/o,50,0{1,/61,’}/1,51)T c (R+)8 .

Co > O,Cl > O) (&mil) € X7 (aaby dU)dl) € U}

(65)

where U is defined in (53). Similarly the absolute continuity region 7" is the

following;:

T, = {(010,60,’70,50,0[1,ﬂ1,’}/1,51)T S (R+)8 :

co>0,c1 >0, (go,gl) € X, (CL,b, do,dl) elUnN U5}

(66)

where Us is defined in (63).

The view of open sets T', T" is very difficult, because they are 8-dimensional.
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5 Summary

In my thesis we studied three different iterated function systems in dif-
ferent methods.

In the second section we were interested in the estimate of Hausdorff-
dimension for non-linear and non-conformal case. Our result is a generaliza-
tion of K. Simon’s and A. Manning’s theorem. They proved in two dimension
for such IF'S, which functions have lower triangular derivative matrices, that
the subadditive pressure is not sensitive to the choice of the points in every
cylinders at which the singular value function is evaluated. We verified the
same result in any dimension. Moreover K. Falconer and J. Miao gave a for-
mula for the subadditive pressure and therefore for the Hausdorff-dimension
of self-affine fractals generated by upper-triangular matrices. We gave a for-
mula, too, in non-linear case. We showed some examples, where this formula
can be used. This formula exactly gives the Box-dimension of the fractal,
but for the Hausdorff-dimension it gives just an upper bound. We conjecture
that the pressure is not sensitive for every IFS, which functions are at least
C'*¢. Maybe our result will help us to see this.

In the third section we examined a self-affine, diagonal, non-conformal
IFS. We derived a dynamical system from these IFS. We aimed that we
can apply the Ledrappier-Young Theorem in this case. The problem was
that this theorem is true for C%-diffeomorphisms. Fortunately, this theorem
depends on the existence of Lyapunov charts. For special measures, namely
the regular hyperbolic measures, Lyapunov charts exist. We constructed
them explicitly, but in general it is not trivial what the Lyapunov charts
are. In this section we wanted to demonstrate how one can use Lyapunov
charts. This gives a better understanding of the dynamical systems whit
singularities.

In the fourth section we studied a special group of IFS, which functions
were derived from matrices with positive elements. We supposed that there is
overlap between the two functions of the iterated function scheme. We were

interested in giving an open set of parameters, where the invariant measure
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of the IF'S is absolute continuous. K. Simon, B. Solomyak and M. Urbanski
proved a theorem, which gave such a set of parameters, but they supposed,
that the IFS satisfies the transversality condition, which was introduced by
K. Simon and M. Pollicott. We checked this condition for our IFS and by
using the Theorem of K. Simon, B. Solomyak and M. Urbanski we gave the
absolute continuity region of parameters, too. Our result coincides with Sze-
man Ngai’s and Yang Wang’s result in linear case, because our functions
are linear with some very special choice of parameters. In the future we
would like to extend in more general when the IFS is not given by triangular

madtrices.
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