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1 Introduction

One of the most important things concerning the attractors of dynamical

system generated by an IFS is the evualuation of the Hausdorff- and Box-

dimension of the set. Moreover it is also an interesting question, what the

Hausdorff-dimension of the invariant measure of the attractor is. In my thesis

I would like to study the dimensions of different iterated function systems. I

decompose my thesis into three parts. In the first part I study the subadditive

pressure.

The subadditive pressure, which is definied by K. Falconer [2] and L.

Barreira, is a tool to estimate the Box- and Hausdorff-dimension. It is well-

known in conformal case with some condition that the zero of the subadditive

pressure is equal to the Hausdorff-dimenion. In non-conformal case with some

special condition the zero of the subadditive pressure is greater than or equal

to the Hausdorff-dimension. I examine some important properties of the

pressure for a special IFS.

In the second part of the thesis I consider a family of self-affine dy-

namical system. In the dimension theory of such system there is an im-

portant tool, the Lyapunov charts. This is the most basic ingredient of

the Ledrappier-Young Theory. Their theorems establish connection between

Lyapunov-exponents, entropy, and pointwise dimension. The Ledrappier-

Young Theory concerning the dimension theory of the invariant measures of

C2-diffeomorphisms do not cover the cases, when singularities appear. How-

ever all of the machinery works in process of Lyapunov charts. In this section

my aim is to verify the existence of Lyapunov charts in order to prove the

Ledrappier-Young Theorem for some maps with singularities induced by a

self-affine IFS.

In the last part I examine a family of non-linear iterated function scheme

with many parameters. We would like to estimate the Hausdorff-dimension of

the invariant measure. Károly Simon and Mark Pollicott introduced a special

property, namely the transversality condition. There are a lot of articles in

linear and non-linear cases, too, which use this condition and prove absolute
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continuity. In this section my aim is to prove that this condition holds and

to estimate the Lyapunov-exponent.
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2 Subadditive pressure

In Rn, where n > 1, we consider iterated function systems which are non-

conformal. (We say that a map is conformal if the derivative is a similarity

in every point) The dimension theory of non-conformal IFS is very difficult

and there are only very few results. The most important tool of this field

is the subadditive pressure, which is used to estimate the dimension of the

attractors (and to compute it into a few cases when we can compute the

dimension). Unfortunately, we know very little about subadditive pressure

itself. This pressure is the generalization of the usual topological pressure, see

for example [14, Chapter 9]. When we compute the topological pressure we

take the exponential growrate over the sum of the values of a certain function

evaluated on each cylinder. In the theory of standard top. pressure it turns

out that the sum mentioned above can be evaluated at arbitrary points of

the cylinders while the value of the pressure will be the same. Therefore we

say that the top. pressure is not sensitive to the places where the function is

evaluated. The same has not been verified for the sub. pressure yet. In this

section we prove that the sub. pressure is not sensitive at least in the case

when our IFS is given by maps, which derivative matrices at every point are

triangular matrices. I generalize the result of K. Simon and A. Manning [6].

They proved in two dimension. I proved the same theorem in Rn. My result

is also a generalization of K. Falconer’s and J. Miao’s article [1]. They have a

formula to estimate the Hausdorff-dimension of self-affine fractals generated

by upper-triangular matrices. I show a formula to estimate the subadditive

pressure in non-conformal case. In this section I use the methods in K.

Falconer’s and J. Miao’s article [1].

2.1 Definitions

In this section we define our iterated function system and the subadditive

pressure.

Throughout the section we will always assume the following, let M ⊂ Rn
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be non-empty, open and let Fi : M 7→ M contractive maps for every i =

1, ..., l. For an i = i1i2...ik, ij ∈ {1, ..., l}, we define Fi(x) = Fi1 ◦ Fi2 ◦ ... ◦
Fin(x). Assume about Fi, i = 1, ..., l the following:

Fi(x1, ..., xn) =
(
f 1
i (x1), f 2

i (x1, x2), ..., fni (x1, ..., xn)
)
, (1)

and Fi(x1, ..., xn) ∈ C1+ε for every i = 1, ..., l. Moreover DxFi for every

x ∈M and every i ∈ {1, ..., l}∗ finite sequence is regular. Denote the elements

of DxFi by xij (i, x).

Proposition 2.1.1. There is a 0 < C <∞ real constant that

C−1 <
|xii (i, x)|∣∣xii (i, y)∣∣ < C (2)

for every x, y ∈M and for every i ∈ {1, ..., l}∗.

Proof. Let G
(m)
i : Rm 7→ Rm for every integer m between 1 and n, is the

restriction of Fi to the first m component, i.e.:

G
(m)
i (x1, ..., xm) :=

(
f 1
i (x1), f 2

i (x1, x2), ..., fmi (x1, ..., xm)
)
.

From [8] it follows that for every x, y ∈ M , for every i ∈ {1, ..., l}∗ finite

sequence, and for 1 ≤ m ≤ n there exist a real 0 < Cm <∞ constant that

C−1
m <

Jac G
(m)
i (x)

Jac G
(m)
i (y)

< Cm

Since for every m the DxG
(m)
i matrix is in lower triangular matrix form, the

jacobian is the following

Jac G
(m)
i (x) = |x11(i, x) · · ·xmm(i, x)| .

Therefore for every integer 1 ≤ m ≤ n and for every x, y ∈M

C−1
m

Cm+1

<

Jac G
(m)
i (x)

Jac G
(m)
i (y)

Jac G
(m+1)
i (x)

Jac G
(m+1)
i (y)

<
Cm

C−1
m+1
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and
Jac G

(m)
i (x)

Jac G
(m)
i (y)

Jac G
(m+1)
i (x)

Jac G
(m+1)
i (y)

=

∣∣xm+1m+1

(
i, y
)∣∣

|xm+1m+1 (i, x)|
.

Then C := max1≤m<n−1

{
Cm
C−1
m+1

, C1

}
choice completes the proof of the propo-

sition.

The singular values of a linear contraction T are the positive square roots

of the eigenvalues of TT ∗, where T ∗ is the transpose of T . Let αk(DxFi) the

kth greatest singular value of the DxFi matrix and let

αk(i) := max
x∈M

αk(DxFi), αk(i) := min
x∈M

αk(DxFi)

The singular value function φs is then defined for 0 ≤ s ≤ n as

φs(DxFi) := α1(DxFi)...αk−1(DxFi)αk(DxFi)
s−k+1

where k − 1 < s ≤ k and k is positive integer. We define the maximum and

the minimum of the singular value function analogously as above

φ
s
(i) := max

x∈M
φs(DxFi) , φ

s(i) := min
x∈M

φs(DxFi)

We define the subadditive pressure after K. Falconer 1994 and L. Barreira

1996:

P (s) := lim
k→∞

1

k
log
∑
|i|=k

φ
s
(i)

and define the lower pressure:

P (s) := lim inf
k→∞

1

k
log
∑
|i|=k

φs(i)

2.2 Subadditive pressure for triangular maps

Theorem 2.2.1. Let 0 ≤ s ≤ n. If F1, ..., Fl contractive maps in form (1)

and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = P (s).
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In the following we state some linear algebra definitions and lemmas, the

proofs of which can be found in article [1].

The m-dimensional exterior algebra Φm consists of formal elements v1 ∧
... ∧ vm with vi ∈ Rn such that v1 ∧ ... ∧ vm = 0 if vi = vj for some i 6= j,

and such that interchanging two different elements reverses the sign, i.e.

v1 ∧ ...vi...vj... ∧ vm = −v1 ∧ ...vj...vi... ∧ vm, if i 6= j. Then Φm is a vec-

tor space of dimension
(
n
m

)
with basis {ej1 ∧ ... ∧ ejm : 1 ≤ j1 < ... < jm ≤ n}

where e1, ...en are a given set of orthonormal vectors in Rn.

Then Φm becomes a normed space under the norm

‖v1 ∧ ... ∧ vm‖ = |m-dimensional volume of the parallelepiped spanned by v1, ...vm|

We may also define a norm ‖.‖∞ on Φm by∥∥∥∥∥ ∑
1≤i1<...<im≤m

λi1...im(ei1 ∧ ... ∧ eim)

∥∥∥∥∥
∞

:= max |λi1...im|

If T : Rn 7→ Rn is a linear there is an induced linear mapping T̃ : Φm 7→
Φm given by

T̃ (v1 ∧ ... ∧ vm) := (Tv1) ∧ ... ∧ (Tvm)

The norms on Φm induce norms on the space of linear mappings L(Φm,Φm)

in the usual way by ∥∥∥T̃∥∥∥ = sup
w∈Φm,w 6=0

∥∥∥T̃w∥∥∥
‖w‖

Then with respect to the norm ‖.‖

∥∥∥T̃∥∥∥ = φm(T ) (3)

and with respect to the ‖.‖∞∥∥∥T̃∥∥∥
∞

= max
{∣∣T (m)

∣∣ : T (m) is an m×m minor of T
}
, (4)

Recall that the m × m minor T (m) ≡ T
(
r1,...rm
s1,...,sm

)
of the n × n matrix T

is the determinant of the m×m matrix formed by the elements of T in the
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rows 1 ≤ r1 < ... < rm ≤ n and columns 1 ≤ s1 < ... < sm ≤ n. The

space of linear mappings L(Φm,Φm) is of finite dimension
(
n
m

)2
. Since any

two norms on a finite dimensional normed space are equivalent, there are

constants 0 < c1 < c2 <∞ depending only on n and m such that

c1

∥∥∥T̃∥∥∥
∞
≤
∥∥∥T̃∥∥∥ ≤ c2

∥∥∥T̃∥∥∥
∞

(5)

Now we notice several lemmas relating to minors of matrices. We will

need some well-known inequalities.

Lemma 2.2.1. Let xi ≥ 0, i = 1, ...,m and p ∈ R+.

1. If p > 1, then (xp1 + ...+ xpm) ≤ (x1 + ...+ xm)p ≤ mp−1(xp1 + ...+ xpm)

2. If 0 < p ≤ 1, then mp−1(xp1 +...+xpm) ≤ (x1+...+xm)p ≤ (xp1 +...+xpm).

Lemma 2.2.2. Let an a sequence of real numbers such that an+m ≤ an+am.

Then there exists limn→∞
an
n

and it equals to infn
an
n

.

We first look at the expansion of m × m minors of the product of k

matrices A = A1A2 · · ·Ak, where for i = 1, ..., k

Ai =


ai11 ai12 ... ai1n

ai21 ai22 ... ai2n
...

...
. . .

...

ain1 ain2 ... ainn


Lemma 2.2.3. For 1 ≤ m ≤ n, the m ×m minors of A = A1 · · ·Ak have

formal expansions in terms of the entries of the Ai of the form

A

(
r1, ...rm
s1, ..., sm

)
=
∑
c1,...,ck

±a1
1(c1) · · · a1

m(c1)a
2
1(c2) · · · a2

m(c2) · · · ak1(ck) · · · akm(ck)

such that for each i = 1...k, the ai1(ci)
...aim(ci)

are distinct entries airs of Ai.

In particular, for each i, 1(ci), ...,m(ci) denote pairs (r, s) corresponding to

entries in m different rows and columns of the ith matrix Ai, and the sum is

over all such entry combinations (c1, ..., ck) with appropriate sign ±.
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The proof of this Lemma can be found on [1, Lemmma 2.2]. Now we

consider lower triangular matrices. For i = 1, ..., k, let

Ui =


ui1 0 ... 0

ui21 ui2 ... 0
...

...
. . .

...

uin1 uin2 ... uin


We consider the product

U = U1 · · ·Uk =


u1 0 ... 0

u21 u2 ... 0
...

...
. . .

...

un1 un2 ... un


We note that

urs =
∑

r≥r1≥...≥rk−1≥s

u1
rr1
u2
r1r2
· · ·ukrk−1s

1 ≤ r ≤ s ≤ n (6)

since all other products are 0.

Lemma 2.2.4. With notations as in above, let U1, ..., Uk be lower triangular

matrices and U = U1 · · ·Uk. Then

1. If r < s, urs = 0

2. If r = s, urs ≡ ur = u1
r · · ·ukr

3. If r > s, then the sum (6) for urs has at most kr−s ≤ kn−1 non-zero

terms. Moreover, each non-zero summand u1
rr1
u2
r1r2
· · ·ukrk−1s

has at

most n − 1 non-diagonal terms in the product, i.e. terms with r 6= r1

or ri 6= ri+1 or rk−1 6= s.

The proof can also be found in [1, Lemma 2.3] for upper-triangular ma-

trices. Now we extend the estimate of Lemma 2.2.4 to minors.
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Lemma 2.2.5. Let U1, ..., Uk and U be lower triangular matrices as in above.

Then each m×m minor of U has an expansion of the form

U

(
r1, ...rm
s1, ..., sm

)
=
∑
c1,...,ck

±u1
1(c1)u

2
1(c2) · · ·uk1(ck) · · ·u1

m(c1)u
2
m(c2) · · ·ukm(ck)

where 1(ci), ...,m(ci) are as in Lemma 2.2.3 and

1. there are at most m!km(n−1) terms in the sum which are non-zero,

2. each summand contains at most (n− 1)m non-diagonal elements in the

product.

The proof is equivalent to the proof of[1, Lemma 2.4]. Before we prove

the Theorem 2.2.1, we define two sums.

H(s, r) = max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(dj1j1(i) · · · djm−1jm−1(i))
m−s(dj′1j′1(i) · · · dj′mj′m(i))s−m+1

(7)

where m− 1 < s ≤ m and djj(i) = infx |xjj (i, x)|. Moreover

T (s, r) = max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1

(8)

where m − 1 < s ≤ m and tjj(i) = supx |xjj (i, x)|. It is easy to see from

Proposition 2.1.1 and the definition of the two sums that

H(s, r) ≤ T (s, r) ≤ CsH(s, r). (9)

Lemma 2.2.6. For every positive integers r, z, T (s, r + z) ≤ T (s, r)T (s, z).

Moreover limr→∞
log T (s,r)

r
exists and equal with infr

log T (s,r)
r

.
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Proof. of Lemma 2.2.6 From the definition T (s, r) it follows

T (s, r + z) = max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r+z

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1 ≤

≤ max
j1,...,jm−1

j′1,...,j
′
m

(
∑
|i|=r

∑
|h|=z

((tj1j1(i)tj1j1(h) · · · tjm−1jm−1(i)tjm−1jm−1(h))m−s×

× (tj′1j′1(i)tj′1j′1(h) · · · tj′mj′m(i)tj′mj′m(h))s−m+1) =

= max
j1,...,jm−1

j′1,...,j
′
m

(
∑
|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1×

×
∑
|h|=z

(tj1j1(h) · · · tjm−1jm−1(h))m−s(tj′1j′1(h) · · · tj′mj′m(h))s−m+1)) ≤

≤ T (s, r)T (s, z)

The existence of the limit is following from Lemma 2.2.2.

Proof. of Theorem 2.2.1 We begin the proof by defining a new IFS.

Let {Gh}l
r

h=1 = {Fi1...ir}
l,...,l
i1=1,...,ir=1. In this case a h index is suit a i ∈

{1, ..., l}r finite sequence, length r. We define the singular value function

φs(DxGh), φ′
s
(h), φ′s(h), h ∈ {1, ..., lr}∗, for {Gh}l

r

h=1, exatly the same way.

It is easy to see that ∑
|i|=kr

φs(i) =
∑
|h|=k

φ′s(h). (10)

The elements of DxGh, denote by yij (h, x), are equal with xij (i, x) for a suit

finite sequence i, length r. It is very simple to see that

φs(DxGh) = (φm−1(DxGh))m−s(φm(DxGh))s−m+1, where m − 1 < s ≤ m.

By using relations (3), (4) and (5) it follows that

φm(DxGh) ≥ c2 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
The maximum m × m minor of DxGh is at least the largest product of

m distinct diagonal elements of DxGh, since such products are themselves

minors of triangular matrices. Therefore

φ′
s
(h) ≥ cs2

(
inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣)m−s(inf

x

∣∣yj′1j′1 (h, x) · · · yj′mj′m (h, x)
∣∣)s−m+1
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for every j1, ..., jm−1, j
′
1, ..., j

′
m.

Since DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 ...DxGhk ,

yjj (h, x) = yjj (h1, Gh2...hk(x)) yjj (h2, Gh3...hk(x)) ...yjj (hk, x). It follows with

the notation infx |yjj (h, x)| = d′jj(h) that

inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣m−s inf

x

∣∣yj′1j′1 (h, x) · · · yj′mj′m (h, x)
∣∣s−m+1 ≥

≥ (d′j1j1(h1) · · · d′j1j1(hk)d
′
j2j2

(h1) · · · d′jm−1jm−1
(h1) · · · d′jm−1jm−1

(hk))
m−s×

× (d′j′1j′1(h1) · · · d′j′1j′1(hk)d
′
j′2j
′
2
(h1) · · · d′j′mj′m(h1) · · · d′j′mj′m(hk))

s−m+1

The next inequality follows from the rearrangement of the product∑
|h|=k

φ′
s
(h) ≥ cs2

∑
|h|=k

(d′j1j1(h1) · · · d′jm−1jm−1
(h1))m−s(d′j′1j′1(h1) · · · d′j′mj′m(h1))s−m+1 · · ·

· · · (d′j1j1(hk) · · · d
′
jm−1jm−1

(hk))
m−s(d′j′1j′1(hk) · · · d

′
j′mj
′
m

(hk))
s−m+1 =

= cs2((d′j1j1(1) · · · d′jm−1jm−1
(1))m−s(d′j′1j′1(1) · · · d′j′mj′m(1))s−m+1 + · · ·

· · ·+ (d′j1j1(l
r) · · · d′jm−1jm−1

(lr))m−s(d′j′1j′1(l
r) · · · d′j′mj′m(lr))s−m+1)k

The inequality in above is true for every j1, ..., jm−1, j
′
1, ..., j

′
m, therefore we

can receive the maximum. From definition of {Gh}l
r

h=1 and H(s, r) it follows∑
|h|=k

φ′
s
(h) ≥ cs2H(s, r)k (11)

By using relations (3), (4) and (5) it follows similarly that

φm(DxGh) ≤ c1 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
Therefore∑
|h|=k

φ′
s
(i) ≤ c2

1

∑
|h|=k

(
sup
x

max
m−1×m−1 minor

∣∣∣DxG
(m−1)
h

∣∣∣)m−s(sup
x

max
m×m minor

∣∣∣DxG
(m)
h

∣∣∣)s−m+1

The supremum and the maximum are commutable in this situation, we

can estimate the sum with

c2
1

(
n

m

)2(
n

m− 1

)2

max{
r1,...,rm−1
s1,...,sm−1

} max
r′1,...,r

′
m

s′1,...,s
′
m


∑
|h|=k

(
sup
x

∣∣∣DxG
(m−1)
h

∣∣∣)m−s(sup
x

∣∣∣DxG
(m)
h

∣∣∣)s−m+1
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where r1, ..., rm−1 are the rows and s1, ..., sm−1 are the columns of the (m− 1)×
(m− 1) minor, and r′1, ..., r

′
m are the rows and s′1, ..., s

′
m are the columns of

m×m minor. Since DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 ...DxGhk , we obtain

DxGh

(
r1, ..., rm
s1, ..., sm

)
=
∑
c1,...,ck

±y1(c1)(h1, Gh2...hk(x))...y1(ck)(hk, x)...ym(c1)(h1, Gh2...hk(x))×

× ym(c2)(h2, Gh3...hk(x))...ym(ck)(hk, x)

(12)

Therefore

sup
x

∣∣∣DxG
(m)
h

∣∣∣ ≤ ∑
c1,...,ck

sup
x

∣∣y1(c1)(h1, x)
∣∣ ... sup

x

∣∣y1(ck)(hk, x)
∣∣ ... sup

x

∣∣ym(c1)(h1, x)
∣∣×

× sup
x

∣∣ym(c2)(h2, x)
∣∣ ... sup

x

∣∣ym(ck)(hk, x)
∣∣

(13)

Denote by t′kl(h) := supx |ykl(h, x)| the supremums. It follows from the in-

equality (13) and the Lemma 2.2.1∑
|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣m−s sup
x

∣∣∣DxG
(m)
h

∣∣∣s−m+1

≤

∑
c1,...,ck
c′1,...,c

′
k

((t′1(c1)(1)...t′m−1(c1)(1))m−s(t′1(c′1)(1)...t′m(c′1)(1))s−m+1+

...+ (t′1(c1)(l
r)...t′m−1(c1)(l

r))m−s(t′1(c′1)(l
r)...t′m(c′1)(l

r))s−m+1)×

...× ((t′1(ck)(1)...t′m−1(ck)(1))m−s(t′1(c′k)(1)...t′m(c′k)(1))s−m+1+

...+ (t′1(ck)(l
r)...t′m−1(ck)(l

r))m−s(t′1(c′k)(l
r)...t′m(c′k)(l

r))s−m+1)

(14)

Lemma 2.2.5 implies that each non-zero term of the sum in above has at

most 2(n− 1)m = b of the indices 1(c1), ...,m− 1(c1), ..., 1(ck), ...,m− 1(ck),

1(c′1), ...,m(c′1), ..., 1(c′k), ...,m(c′k) that are non-diagonal terms. Thus, for

each set of indices (c1, ..., ck, c
′
1, ..., c

′
k), we have at least k − b of these in-

dices such that 1(cr), ...,m − 1(cr), 1(c′r), ...,m(c′r) are all diagonal entries.

13



For such cr and c′r

((t′1(cr)(1)...t′m−1(cr)(1))m−s(t′1(c′r)
(1)...t′m(c′r)

(1))s−m+1 + ...

...+ (t′1(cr)(l
r)...t′m−1(c1)(l))

m−s(t′1(c′r)
(lr)...t′m(c′r)

(lr))s−m+1) ≤

≤ max
{j1,...,jm−1},{j′1,...,j′m}

((t′j1j1(1)...t′jm−1jm−1
(1))m−s(t′j′1(1)...t′j′m(1))s−m+1 + ...

...+ (t′j1j1(l
r)...t′jm−1jm−1

(lr))m−s(t′j′1(l
r)...t′j′mj′m(lr))s−m+1) = T (s, r)

The last equality follows from definition {Gh}l
r

h=1 and T (s, r). Hence from

(14) ∑
|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣m−s sup
x

∣∣∣DxG
(m)
h

∣∣∣s−m+1

≤

≤
∑
c1,...,ck
c′1,...,c

′
k

(
T (s, r)k−b(lr)b

)
≤ c′′kqlrbT (s, r)k−b,

(15)

where, using Lemma 2.2.5, c′′ = m!(m− 1)! and q = (2m− 1)(n− 1).

By using (9), (10), (11) and (15)∑
|i|=kr

φ
s
(i) =

∑
|h|=k

φ′
s
(h) ≤ c′′kqlrbT (s, r)k−b ≤ c′′(Cs)kkqlrbT (s, r)−bH(s, r)k ≤

≤ c′′′(Cs)kkqlrbT (s, r)−b
∑
|h|=k

φ′
s
(h) = c′′′kqlrbT (s, r)−b

∑
|i|=kr

φs(i).

(16)

We apply both sides of the inequality logarithm and we divide by kr,

then

log
∑
|i|=kr φ

s
(i)

kr
≤

≤ log c′′′

kr
+
q log k

kr
+
rb log l

kr
+

(kb) log(Cs)

kr
+
−b log T (s, r)

kr
+

log
∑
|i|=kr φ

s(i)

kr
(17)

is true for every positive k, r integer. We apply limit inferior for both sides

of the inequality. The limit exists in the left-hand side of the inequality and

14



in the right-hand side the limit of every term exists and equals zero except

the last term. Therefore

P (s) ≤ P (s)

While the opposite relation is trivial this completes the proof.

The next theorem is a consequence of the last proof.

Theorem 2.2.2. For 0 ≤ s ≤ n. If F1, ..., Fl contractive maps in form (1)

and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = lim
r→∞

1

r
log( max

j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(
|xj1j1 (i, x)| ...

∣∣xjm−1jm−1 (i, x)
∣∣)m−s×

×
(∣∣xj′1j′1 (i, x)

∣∣ ... ∣∣xj′mj′m (i, x)
∣∣)s−m+1

)

for every x ∈M .

Proof. It follows from inequality (9) that the limr→∞
logH(s,r)

r
exists and

limr→∞
logH(s,r)

r
= limr→∞

log T (s,r)
r

. It is clear by (??) that limr→∞
log T (s,r)

r
=

P (s). Because of the definition H(s, r), T (s, r), this is exactly what we want

to prove.

2.3 Some examples

In this subsection we show some examples to calculate the box dimension,

and the upper bound of Hausdorff dimension. It follows from [2], the box

dimension is equal with s0 if P (s0) = 0, and the Hausdorff dimension is less

or equal then s0 in our cases.

The easiest example is the perturbated Sierpinski-triangular. Let

T =

[
1
3

0

0 1
3

]

and Tix = Tx + vi for i = 1, 2, 3, where v1 =
(

0
0

)
, v2 =

( 2
3
0

)
, v3 =

( 1
3
1
2

)
. This

is not the usual Sierpinski-triangular, because we must handle the open-set

condition care by the perturbation. The image of this self-similar fractal can

be showed in Figure 1.

15



Figure 1: The image of Sierpinski-triangular

The Hausdorff and box dimension is ln 3
ln 3

= 1. Now let f(x) = sin(πx)/6

and

Fi

(
x

y

)
= T

(
x

y

)
+

(
0

f(x)

)
+

(
vi
wi

)
for i = 1, 2, 3, where

(
v1
w1

)
=
(

0
0

)
,
(
v2
w2

)
=
( 2

3
0

)
,
(
v3
w3

)
=
( 1

3
1
2

)
. We can consider it

a perturbated Sierpinski-triangular. The Fi functions make the [0, 1]2 cube

into itself like in the Figure 2, and the picture of this fractal is Figure 3.

Our proposition is the two fractal’s box dimension is equal. We use

Theorem 2.2.2 to prove. From the definition in this case it is easy to see that

x11 (i, x) = 1
3

|i|
and x22 (i, x) = 1

3

|i|
. We can suppose that 1 ≤ s < 2. Then

P (s) = lim
r→∞

1

r
log

max
j1,

j′1,j
′
2

∑
|i|=r

(|xj1j1 (i, x)|)2−s ×
(∣∣xj′1j′1 (i, x)

∣∣ ∣∣xj′2j′2 (i, x)
∣∣)s−2+1

 =

lim
r→∞

1

r
log

∑
|i|=r

(
1

3

|i|)2−s(
1

3

|i|1

3

|i|)s−1
 = lim

r→∞

1

r
log

(
3r

1

3

sr
)

= log 3− s log 3

It is easy to see that P (s) = 0 if and only if s = 1, which is the box dimension

of the fractal in above. This follows from [2]. In general it is easy to see, that

for every fi : R→ R, if Fi : R2 → R2 are contractions for i = 1, 2, 3, where

Fi

(
x

y

)
= T

(
x

y

)
+

(
0

fi(x)

)
+

(
vi
wi

)
16



Figure 2: The image of Fi i = 1, 2, 3 functions

Figure 3: The image of fractal
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satisfies the open-set condition, and constitute [0, 1]2 into itself, the box

dimension is equal to 1.

Now we see an other example. Let Fi : R2 → R2 for every i = 1, 2, 3, 4:

F1

(
x

y

)
=

(
x
2

y
4

+ sin(πx)
4

+ 1
2

)
, F2

(
x

y

)
=

(
x
2

y
4
− sin(πx)

4
+ 1

4

)

F3

(
x

y

)
=

(
x
2

+ 1
2

y
4

+ sin(πx)
4

+ 1
2

)
, F4

(
x

y

)
=

(
x
2

+ 1
2

y
4
− sin(πx)

4
+ 1

4

)

These functions are contractions and constitute [0, 1]2 into itself as in Figure

4. The image of fractal is in Figure 5.

Then it is easy to see that x11 (i, x) = 1
2

|i|
and x22 (i, x) = 1

4

|i|
. We can

suppose that 1 ≤ s < 2. In this case

max
j1,

j′1,j
′
2

∑
|i|=r

(|xj1j1 (i, x)|)2−s ×
(∣∣xj′1j′1 (i, x)

∣∣ ∣∣xj′2j′2 (i, x)
∣∣)s−2+1

=

4r
1

2

r(2−s)(1

4

1

2

)r(s−1)

= 2(3−2s)r

Then P (s) = (3 − 2s) ln 2, and P (s) = 0 if s = 3
2
. It means that the box

dimension of the fractal in above is 3
2

and the Hausdorff dimension is less or

equal then 3
2
.

18



Figure 4: The image of Fi i = 1, 2, 3, 4 functions

Figure 5: The image of fractal
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3 Ledrappier-Young Theorem for self-affine

IFS

In their article in 1985 F. Ledrappier and L.-S. Young solved, [4], [5],

an important problem of dynamical systems, which finds a connection be-

tween entropy and Lyapunov-exponents. Jörg Neunhäuserer proved that the

Ledrappier-Young Theorem can be applied for self-affine IFS with diagonal

matrices in the special case when we work on the plane and an IFS con-

sists of two-maps. In this section we extend Neunhäuserer’s result for every

n-dimension without the restriction of the number of functions in the IFS.

3.1 Regular hyperbolic measures and Lyapunov-charts

Let Ai diagonal matrices L(Rn,Rn) for i = 0, ...,m−1, where the diagonal

elements are 0 < aij < 1. For these matrices we define our iterated function

system. Let gi : [0, 1]n 7→ [0, 1]n

gi(x) = Aix+ ti,

where ti ∈ Rn for i = 0, ...,m−1 such that gi([0, 1]n)∩gj([0, 1]n) = ∅ if i 6= j.

Let Ω the following compact set

Ω =
∞⋂
n=1

⋃
i1,...,in

gi1 ◦ · · · ◦ gin([0, 1]n)

then we say that Ω is the attractor of IFS {g0, ..., gm−1}.
Moreover let

∑
= {0, ...,m− 1}N and

∑∗ = {0, ...,m− 1}∗. For every

n ≥ 1 and i ∈ {0, ...,m− 1}n with the notation gi = gi1 ◦ · · · ◦ gin we can

define the natural projection π :
∑
7→ Ω:

π(i) = lim
n→∞

gin(0) (18)

where in is the first n elements of i.
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Figure 6: The map of f function

We define for these IFS a dynamical system in [0, 1]n+1.

Let M = [0, 1]n+1, K = (0, 1)n+1 and Ki = (0, 1)n × ( i
m
, i+1
m

) for i =

0, ...,m − 1. Define the N = M \ ∪m−1
i=0 Ki closed subset. We define our

dynamical system f : K \N 7→ K.

Let Ãi ∈ L(Rn+1,Rn+1) the following diagonal matrices

Ãi =

[
Ai 0

0T m

]
for every i = 0, ...,m− 1, where 0 is the zero vector of Rn, then our discrete

dynamical system is:

f(x) := Ãix+ vi if x ∈ Ki, (19)

where vi ∈ Rn+1 for i = 0, ...,m − 1 and vi =
(
ti
−i

)
. A special case of f can

be found in Figure 6.

It is easy to see that f(Ki)∩f(Kj) = ∅ and f can be extended to a C1+α-

diffeomorphism f : Ki 7→ f(Ki), i = 1, ...,m for some α > 0. We sometimes

write fi for f |Ki .
We can write f : [0, 1]n+1 7→ [0, 1]n+1 in an other form. Namely, let

ϕ : [0, 1] 7→ [0, 1] the following function:

ϕ(x) = mx mod 1
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1

1

0

Figure 7: The function ϕ in the (n+ 1) coordinate

Then f : [0, 1]n × [0, 1] 7→ [0, 1]n × [0, 1] and

f(y, x) =

(
gbmxc(y)

ϕ(x)

)
Let

N− = {x ∈M : ∃z ∈ N, zn ∈M\N if zn → z, f(zn)→ x}

Moreover

M+ = {x ∈M : fn(x) /∈ N, n = 0, 1, 2, ...}

D =
⋂
n≥0

fn(M+)

Λ = D.

Λ is called the attractor of f . Obviously D is f -invariant. In this case

M+ =
{
x ∈M : xn 6= i

mj
, i = 0, 1, ...,mj, and j = 0, 1, 2, ...

}
. Evidently, in

this situation Λ = Ω× [0, 1], moreover f |Λ is one-to-one map.
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Let Θ = {0, ...,m− 1}Z. The natural projection π′ : Θ 7→ Λ ⊂ Rn × R is

defined in such a way that the negative indices correspond the first n coor-

dinates and the non-negative coordinates determine the (n + 1) coordinate

in Rn+1. Namely,

π′(...i−n...i−2i−1; i0i1...in...) =

(
π(i−1i−2...i−n...)∑∞

k=0
ik

mk+1

)
(20)

one-to-one mapping. It is easy to see that f(π′(i)) = π′(σi), where σ is the

left-shift operator on Θ.

For every ε > 0 and l = 1, 2, ... let

D+
ε,l =

{
x ∈M+ ∩ Λ : d(fn(x), N) ≥ l−1e−εn, n = 0, 1, 2, ...

}
D−ε,l =

{
x ∈M+ ∩ Λ : d(f−n(x), N) ≥ l−1e−εn, n = 0, 1, 2, ...

}
D+
ε =

∞⋃
l=1

D+
ε,l, D

−
ε =

∞⋃
l=1

D−ε,l

Dε = D+
ε ∩D−ε

(21)

Moreover let

U(δ,N) := {x ∈ Λ : d(x,N) ≤ δ}

Definition 3.1.1. We call a point x ∈ Dε regular if there exist numbers

χ1(x) > · · · > χk(x)(x) (called Lyapunov exponents) and a decomposition

TxM = ⊕k(x)
i=1 E

i(x) composed of the vector spaces

Ei(x) =

{
v ∈ TxM \ {0} : lim

n→±∞

1

n
log ‖Dxf

nv‖ = χi(x)

}
∪ {0}

such that

lim
n→±∞

1

n
log | detDxf

n |=
k(x)∑
i=1

dimEi(x)

Note that χi(f(x)) = χi(x) and DfEi(x) = Ei(f(x)) for each i. Let

s(x) = min {i : χi(x) < 0} and u(x) = max {i : χi(x) > 0}. Let ν be a σ-

invariant probability measure on Θ. Then µ = ν ◦ π′−1 is an f -invariant

Borel probability measure. The Oseledec theorem tells us that µ-almost

every point is regular. Moreover if µ is ergodic then k(x) = n+ 1, χi(x) = χi
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and dimEi(x) = dimEi are µ-almost everywhere constant. The examination

of χi is easy if µ is a Bernoulli-probability measure, then χi =
∑m−1

k=0 pk ln aksi ,

where si is the coordinate which belongs to the ith Lyapunov-exponent. In

our situation the Ei(x) subspaces of TxM are orthogonal. For every x ∈M+

the expansion in the last coordinate is m therefore χu = lnm for µ-almost

every point.

Definition 3.1.2. We say that an invariant Borel probability measure is

regular hyperbolic if µ(Dε) = 1 for ε > 0 sufficiently small and u(x) =

s(x) + 1.

Proposition 3.1.1. Let µ be an f -invariant probability measure. If there

exist C > 0 and q > 0 such that for every δ > 0

µ(U(δ,N)) ≤ Cδq (22)

then µ is regular hyperbolic for every ε > 0.

Proof. It will be sufficient to show that µ(Λ \Dε) = 0.

It is easy to see that

Λ \D+
ε,l ⊂

{
x ∈ Λ : ∃m ∈ N such that fm(x) ∈ U(l−1e−εm, N)

}
.

Since µ is f -invariant

µ(Λ \D+
ε,l) ≤

∞∑
m=0

µ(f−m(U(l−1e−εm, N))) =
∞∑
m=0

µ(U(l−1e−εm, N)) ≤

∞∑
m=0

C(l−1e−εm)q = C
1

lq
1

1− e−εq

If l1 < l2 then D+
ε,l1
⊂ D+

ε,l2
., therefore

µ(Λ \D+
ε ) = µ(

∞⋂
l=1

Λ \D+
ε,l) = lim

l→∞
µ(Λ \D+

ε,l) ≤ lim
l→∞

C
1

lq
1

1− e−εq
= 0

By similar arguments we have µ(Λ \D−ε ) = 0, and therefore µ(Dε) = 1.
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It is clear that if ν is a Bernoulli-probability measure on Θ, then µ =

ν ◦ π′−1 satisfies (22). Let

Sn =
m−1⋃
i=0

⋃
j∈{0,m−1}

[; i

n−1︷ ︸︸ ︷
jj · · · j].

union of cylinder sets. It is easy to see that

π′(Sn) = U(
1

mn
, N).

Then for arbitrary δ > 0 let n(δ) = b− ln δ
lnm
c and therefore

µ(U(δ,N)) ≤ µ(U(
1

mn(δ)
, N)) = ν(Sn(δ)) = p

n(δ)−1
0 + p

n(δ)−1
m−1 ≤

p
− ln δ
lnm

−2

1 + p
− ln δ
lnm

−2

m−1 = p−2
1 δ

− ln p1
lnm + p−2

m−1δ
− ln pm−1

lnm ≤ max
{
p−2

1 , p−2
m−1

}
δ

min
{
− ln p1
lnm

,
− ln pm−1

lnm

}
.

By Proposition 3.1.1 a Bernoulli-measure is regular hyperbolic.

There is an other Proposition about regular hyperbolicity.

Proposition 3.1.2. Let ν be an ergodic, left-shift invariant probability mea-

sure on Θ. If m ≥ 3 and ν([; 1] ∪ · · · ∪ [;m − 2]) > 0 then µ = ν ◦ π′−1 is

regular hyperbolic.

Proof. We begin the proof by defining a metric ρ on Θ.

ρ(i, j) =
∞∑

k=−∞

| ik − jk |
mk

It is trivial to see by (20) that

d(x, y) ≤ ρ(i, j)

where π′(i) = π′(j). We need to prove that

µ(
{
x ∈ Λ : ∃nk →∞d(fnk(x), N) ≤ e−εnk

}
) = 0

It is enough to prove that

ν(
{
i ∈ Θ : ∃nk →∞; ρ(σnk(i), S) ≤ e−εnk

}
) = 0,
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where S =
⋃m−1
i=0

⋃
j∈{0,m−1}[; ijjj...j...] and π′(S) = N .

If ρ(σnk(i), S) ≤ e−εnk then

σnk(i) ∈ [; i

b ε
lnm

nkc︷ ︸︸ ︷
jjj...j ]

for some i = 0...m − 1, j = 0,m − 1. Therefore σi(i) /∈ [; 1] ∪ · · · ∪ [;m − 2]

for nk + 1 ≤ i ≤ b ε
lnm

nkc+ nk + 1. We can apply Lemma 7.1 of [10] for the

following set{
i : ∃(nk)k∈N ∀k > 0 σi(i) /∈ [; 1] ∪ · · · ∪ [;m− 2];nk + 1 ≤ i ≤ b ε

lnm
nkc+ nk + 1

}
.

Therefore

µ(
{
x ∈ Λ : ∃nk →∞d(fnk(x), N) ≤ e−εnk

}
) = 0

The m = 2 case was proved in [7, Lemma 5.1.3].

In the following we assume that µ = ν ◦ π′−1 is ergodic and regular

hyperbolic.

Now we define the Lyapunov charts

Definition 3.1.3. For a regular point x let ei(x) = dimEi(x). Let y =

(y1, ..., yn+1) ∈ Rn+1, | y |= max | yi | and R(ρ) =
{
y ∈ Rn :| y |< ρ

}
. We

fix ε > 0 small. Then for δ > 0 sufficiently small there exists a measurable

function r : Dε 7→ (1,∞) with r(f±1x) ≤ eδr(x) and an embedding Φx :

R(r(x)−1) 7→M such that the following conditions hold:

1. Φx(0) = x and D0Φx maps {0} × · · · × {0} × Rei × {0} × · · · × {0} to

Ei(x)

2. exp−1
x ◦Φx coincides with D0Φx on R(r(x)−1)

3. For f̃x = Φ−1
x ◦ f ◦Φx and v ∈ {0} × · · · × {0} ×Rei × {0} × · · · × {0}

eχi−δ | v |≤| D0f̃xv |≤ eχi+δ | v |
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4. The Lipsitz constants L satisfies

L(f̃x −D0f̃x) ≤ δ

L(f̃−1
x −D0f̃

−1
x ) ≤ δ

L(Df̃x) ≤ r(x), L(Df̃−1
x ) ≤ r(x)

5. For all y, y′ ∈ R(r(x)−1)

C−1d(Φxy,Φxy
′) ≤| y − y′ |≤ r(x)d(Φxy,Φxy

′)

The system of local charts {Φx}, x a regular point, is called Lyapunov chart

system

Lyapunov charts give control over stretching and contracting in the first

step of iterating f while Lyapunov exponents are effective only asymptoti-

cally. A illustration of the action of Lyapunov charts can be found in Figure

8.

From [10, p. 4], [3, Part 1., Lemma 3.1] follows the next proposition.

Proposition 3.1.3. It µ is regular hyperbolic invariant measure (that is µ

is invariant and µ(Dε) = 1) then Lyapunov charts exist for a.e. x ∈ Dε.

In our case there is one Lyapunov exponent which is positive.

Now we define the stable and unstable manifolds

W u(x) =

{
y ∈M : lim sup

n→∞

1

n
log d(f−n(x), f−n(y)) ≤ −χ1

}
(23)

W i(x) =

{
y ∈M : lim sup

n→∞

1

n
log d(fn(x), fn(y)) ≤ χi

}
(24)

where d(., .) is the Euclidian metric in M = [0, 1]n+1 manifold. Evidently

W i+1(x) ⊂ W i(x) for i = 2, ..., n.
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0

0

Figure 8: The operation of Lyapunov-charts
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3.2 The construction of Lyapunov charts

In general it is very difficult to write down explicitly what the Lyapunov

charts are. However, for the simplicity of our system, using [4, p. 536,

Appendix], in this subsection we describe it precisely.

First, for every sufficiently small ε > 0 we construct a measurable function

C(x) such that

1. For every x regular points and n ≥ 0∥∥Dxf
−nv
∥∥ ≤ C(x)e−(χ1−ε/2)n ‖v‖ for all v ∈ E1(x)

‖Dxf
nv‖ ≤ C(x)e−(χj−ε/2)n ‖v‖ for all v ∈ Ej(x) and 2 ≤ j ≤ n+ 1

(25)

2. C(x) ≥ 1

3. C(f±1(x)) ≤ eεC(x)

We can write this C function explicitly. Namely, let

C1j(x) = max

{
1,max

n≥1

{
e−nχj+

∑n−1
k=0 ln a

ik
sj
−nε/2

}
,max
n≤−1

{
e−nχj−

∑−1
k=n ln a

ik
sj

+nε/2
}}

(26)

if x = π′(i). We assume that the empty sum is equal to zero. It is easy to

see that

C1j(f(x)) ≤ eχj−ln a
i0
sj

+ε/2C1j(x)

C1j(f
−1(x)) ≤ e−χj+ln a

i−1
sj

+ε/2C1j(x)
(27)

Namely,

C1j(f(x)) = max

{
1,max

n≥1

{
e−nχj+

∑n−1
k=0 ln a

ik+1
sj

−nε/2
}
,max
n≤−1

{
e−nχj−

∑−1
k=n ln a

ik+1
sj

+nε/2
}}

=

max

{
1, eχj−ln a

i0
sj

+ε/2 max
n≥1

{
e−(n+1)χj+

∑n
k=0 ln a

ik
sj
−(n+1)ε/2

}
,

eχj−ln a
i0
sj
−ε/2 max

n≤−1

{
e−(n+1)χj−

∑−1
k=n+1 ln a

ik
sj

+(n+1)ε/2
}}
≤

eχj−ln a
i0
sj

+ε/2 max

{
e−χj+ln a

i0
sj
−ε/2,max

n≥2

{
e−nχj+

∑n−1
k=0 ln a

ik
sj
−nε/2

}
,max
n≤0

{
e−nχj−

∑−1
k=n ln a

ik
sj

+nε/2
}}

= eχj−ln a
i0
sj

+ε/2C1j(x)
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And similarly:

C1j(f
−1(x)) = max

{
1,max

n≥1

{
e−nχj+

∑n−1
k=0 ln a

ik−1
sj

−nε/2
}
,max
n≤−1

{
e−nχj−

∑−1
k=n ln a

ik−1
sj

+nε/2
}}

=

max

{
1, e−χj+ln a

i−1
sj
−ε/2 max

n≥1

{
e−(n−1)χj+

∑n−2
k=0 ln a

ik
sj
−(n−1)ε/2

}
,

e−χj+ln a
i−1
sj

+ε/2 max
n≤−1

{
e−(n−1)χj−

∑−1
k=n−1 ln a

ik
sj

+(n−1)ε/2
}}
≤

e−χj+ln a
i−1
sj

+ε/2 max

{
eχj−ln a

i−1
sj
−ε/2,max

n≥0

{
e−nχj+

∑n−1
k=0 ln a

ik
sj
−nε/2

}
,max
n≤−2

{
e−nχj−

∑−1
k=n ln a

ik
sj

+nε/2
}}

≤ e−χj+ln a
i−1
sj

+ε/2C1j(x)

Moreover let

C2j(x) = 1 +
∞∑
n=1

enχj−
∑n−1
k=0 ln a

ik
sj
−nε/2 +

−1∑
k=−∞

enχj+
∑−1
k=n ln a

ik
sj

+nε/2. (28)

By similar argument like C1j(x) we can prove that

C2j(f(x)) ≤ e−χj+ln a
i0
sj

+ε/2C2j(x)

C2j(f
−1(x)) ≤ eχj−ln a

i−1
sj

+ε/2C2j(x)
(29)

Therefore let C(x) be the following function

C(x) := max
j
{C1j(x) · C2j(x)} (30)

The inequalities (27) and (29) imply that C(f±1(x)) ≤ eεC(x) and by the

definition C1j(x), in (26), the property (25) is also true. This completes the

construction of the function C(x).

Continuing the construction of the Lyapunov chart we define Φx and r(x).

First we introduce a new inner product 〈〈., .〉〉′x on TxM for every x regular

points.

〈〈u, v〉〉′x =


∑∞

n=0〈Dxf
−nu,Dxf

−nv〉
e−2n(χ1−ε)

for u, v ∈ E1(x)∑∞
n=0〈Dxf

nu,Dxf
nv〉

e2n(χj+ε)
for u, v ∈ Ej(x) and 2 ≤ j ≤ n− 1

(31)
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It is clear that if π′(i) = x, where i ∈ Θ then Dxf
nu = e

∑n−1
k=0 ln a

ik
sju, where

u ∈ Ej(x), 2 ≤ j ≤ n+ 1. Therefore

〈〈u, v〉〉′x = 〈u, v〉
∞∑
n=0

e2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)

if u, v ∈ Ej(x). This sum is convergent for µ-a.e. x, since µ is ergodic. It is

easy to see that if u, v ∈ E1(x) then

〈〈u, v〉〉′x = 〈u, v〉
∞∑
n=0

e−2nε = 〈u, v〉 1

1− e−2ε

Let Lx : TxM 7→ Rn be a linear map satisfying

〈Lxu, Lxv〉 = 〈〈u, v〉〉′x

for every u, v ∈ TxM . Then Lx is a diagonal matrix with elements:

Lx =



√∑∞
k=0 e

2k(−χS1
−ε+ 1

k

∑k−1
j=0 ln a

ij
1 ) 0 · · · 0

0
. . .

...

...

√∑∞
k=0 e

2k(−χSn−ε+
1
k

∑k−1
j=0 ln a

ij
n ) 0

0 · · · 0 1√
1−e−2ε


(32)

where Si is the index of the Lyapunov-exponent in the ith coordinate. Setting

Φx = expx ◦L−1
x (33)

Therefore

Φx(z) = L−1
x z + x

which completes the construction of the Lyapunov chart. Now we check that

each the conditions of Definition 3.1.3 hold. By the definition of Φx in (33)

the first and the second point of Definition 3.1.3 is obviously holds.

Since Ei(x) subspaces of the tangent space TxM = ⊕n+1
i=1 E

i(x) are orthog-

onal and Lx is a diagonal matrix, ‖v‖′x ≥ ‖v‖ for every v ∈ TxM , where ‖.‖′x
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is the norm derived from 〈〈., .〉〉′x. From the first property of C(x) function,

follows immediately that if v ∈ Ej(x) then

‖v‖′x ≤ C0C(x)‖v‖ (34)

where C0 =
√

2
∑∞

i=0 e
−εi. By similar arguments as in above it is easy to see

that (34) satisfies for arbitrary v ∈ TxM .

Therefore if we choose

r1(x) = C0C(x) (35)

the 5th property of Definition 3.1.3 satisfies immediately with r1(x). We aim

that

(r(x))−1 ≤ d(x,N)

2
√

1− e−2ε

In this case if x ∈ Ki then Φx(z) ∈ Ki also for arbitrary z ∈ R(r(x)−1). If

x ∈ Dε,l then l−1 ≤ d(x,N). Let l(x) be the minimal l which satisfies that

x ∈ Dε,l. Then

r(x) := max

{
r1(x),

l(x)

2
√

1− e−2ε

}
and therefore the 5th property of Definition 3.1.3 holds also and by the

construction of Dε,l, which was defined in (21), r(f±1(x)) ≤ eεr(x).

Since the derivatives of Φx and f are diagonal matrices then the fourth

item of Definition 3.1.3 is trivial.

We need only to check the third condition of Definition 3.1.3. To do so

we note that for z ∈ R(r(x)−1):

f̃x(z) = Φ−1
f(x) ◦ f ◦ Φx(z) = Lf(x)ÃiL

−1
x z

if x ∈ Ki. If v ∈ E1(x) then D0f̃xv = mv clearly. In other cases, for v ∈
Ej(x), we need only to prove that the diagonal elements, which correspond

to the sj coordinate, can be estimated by the following

(Lf(x)ÃiL
−1
x )sjsj =

√∑∞
n=0 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik+1
sj

)ai0sj√∑∞
n=0 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)
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because f(π′(i)) = π′(σi). With simple transformations:√
e2χj+2ε

∑∞
n=1 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)√∑∞
n=0 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)

≤ eχj+ε

Let

B =
∞∑
n=0

e2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)

It is also true that√
e2χj+2ε

∑∞
n=1 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)√∑∞
n=0 e

2n(−χj−ε+ 1
n

∑n−1
k=0 ln a

ik
sj

)

=

√
e2χj+2ε(B − 1)√

B

We aim that √
e2χj+2ε(B − 1)√

B
≥ eχj−ε (36)

With simple calculations it is equivalent to

B(1− e−4ε) ≥ 1

Since B > 1 + e2(−χj+ln a
i0
sj
−ε) if ε > 0 sufficiently small then (36) satisfies.

We expressed explicitly, what the Lyapunov charts are for our modell.

3.3 Partitions subordinated to the foliation

Definition 3.3.1. A partition ξ is µ-measurable if and only if for µ-a.e.

x there is a normalized measure µξx supported by the partition element ξ(x)

containing x such that for the sub-σ-algebra Bξ consisting entirely of unions

of atoms of the partition ξ and a measurable set A the function x 7→ µξx(A)

is Bξ-measurable and µ(A) =
∫
µξx(A)dµ(x). The measures µξx are called the

conditional measures of µ w. r. t. ξ. They are uniquely defined up to a

set of measure 0. [4],[5],[10]

Definition 3.3.2. A µ-measurable partition ξ is subordinate to the W i-

foliation if for µ-a.e. x
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Figure 9: Subordinate partitions

1. ξ(x) ⊂ W i(x)

2. ξ(x) contains a neighborhood of x in W i(x)

For two partitions ξ, η we say that ξ > η if for a.e. x ∈ M ξ(x) ⊂ η(x),

and we say that a partition ξ is increasing (decreasing) if ξ > f(ξ) (ξ < f(ξ)).

Proposition 3.3.1. For 1 ≤ i ≤ n + 1 there exist measurable partitions ξi

with the following properties:

1. ξi is subordinate to W i(x)

2. ξ1 is increasing and ξi are decreasing i = 2, ..., n+ 1

3. ξi > ξi+1 for i = 2, ..., n

4. ξi is generating - i. e.
∨∞
n=0 f

−n(ξ1) or
∨∞
n=0 f

n(ξi) if i = 2, ..., n + 1

is the partition into points.
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The proof of the existence of such partitions depends only on the existence

of Lyapunov charts and can be found in [10, p. 6], [5, p. 554].

In our case it is easy to show such partitions. Namely,

ξ1(x) = {x1} × · · · × {xn} × [0, 1] (37)

and if 2 ≤ i ≤ n+ 1 then

ξi(x) =
n∏
j=1

H i
j(x)× {xn+1} (38)

where

H i
j(x) =

{
[0, 1] if j ∈ {si, ..., sn+1}
{xj} else

We remark that si is the coordinate of the ith Lyapunov-exponent and χ1 >

0 > χ2 > · · · > χn+1. Obviously, it is enough to define our partition for

µ-a.e. point.

If we assume for the simplicity and for the better realization that si = i−1

then

ξi(x) = {x1} × · · · × {xi−2} × [0, 1]n+2−i × {xn+1}

if 3 ≤ i ≤ n+ 1 and

ξ2(x) = [0, 1]n × {xn+1}

A simple illustration of such partitions is Figure 9.

We define the pointwise entropy of the measure. Let
{
µix
}

, 1 ≤ i ≤ n+ 1

be fixed versions of conditional measures associated to µ and ξi. For x ∈M
regular point γ > 0, 2 ≤ i ≤ n+ 1 we define

hi(x, γ, ξ
i) = lim inf

n→∞
− 1

n
log µixV

i(x, n, γ) (39)

hi(x, γ, ξ
i) = lim sup

n→∞
− 1

n
log µixV

i(x, n, γ) (40)

with V i(x, n, γ) =
{
y ∈ W i(x) : di(f−k(x), f−k(y)) < γ, 0 ≤ k ≤ n

}
, where

di is the Euclidean distance on W i. We define also

h1(x, γ, ξi) = lim inf
n→∞

− 1

n
log µ1

xV
1(x, n, γ) (41)
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h1(x, γ, ξi) = lim sup
n→∞

− 1

n
log µ1

xV
1(x, n, γ) (42)

with V 1(x, n, γ) =
{
y ∈ W 1(x) : d1(fk(x), fk(y)) < γ, 0 ≤ k ≤ n

}
.

In the following we interpret some propositions which were proved in [4]

and [5] for C2-diffeomorphism, but we constructed the Lyapunov charts of

our model, therefore those proofs can be applied.

Proposition 3.3.2. Then for µ-a.e. x ∈M

lim
γ→0

hi(x, γ, ξ
i) = lim

γ→0
hi(x, γ, ξ

i) ≡ hi(x, ξ
i)

Moreover hi(x, ξ
i) is µ-a.e. constant and independent of the choice of ξi.

The proof of this Proposition follows from Theorem 3.3.1.

We give a definition for the dimension of the measure along the stable

and unstable directions. We consider for the ball Bi(x, γ) in W i(x) centered

at x of radius γ the quantities 1 ≤ i ≤ n+ 1.

diµ(x, ξi) = lim inf
γ→0

log µixB
i(x, γ)

log γ
(43)

d
i

µ(x, ξi) = lim sup
γ→0

log µixB
i(x, γ)

log γ
(44)

Proposition 3.3.3. Then for µ-a.e. x ∈M

diµ(x, ξi) = d
i

µ(x, ξi) = diµ(x, ξi)

Moreover di(x, ξ
i) is µ-a.e. constant and independent of the choice of ξi.

The proof of this Proposition follows also from Theorem 3.3.1

Theorem 3.3.1. Ledrappier-Young With the assumptions and notations

in above the following hold:

1. h1 = χ1d
1
µ

2. hk = −χkdkµ
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3. hi − hi+1 = −χi(diµ − di+1
µ )

4. h1 = h2 = hµ(f)

Here hµ(f) is the entropy. Moreover for every ξi partitions subordinate to

W i-foliations h1 = h1(f−1, ξ1) = H(ξ1 | fξ1) and hi = hi(f, ξ
i) = H(fξi |

ξi), i = 2, ..., n+ 1.

The proof of this Theorem coincide with the proof of Theorem C’ in [5,

p. 544]. It depends on the existence of Lyapunov charts and subordinate

partitions to W i-foliation, moreover on the existence of a partition P for

every sufficiently small ε′ > 0. We detail the proof with refer to [5].

Our first aim is hi = H(fξi | ξi) for i = 1, ..., n + 1. It can be found in

[5, p. 555] (9.2) and (9.3) with the choose of partition P iε, i = 1, ..., n + 1,

ε′ > 0:

P1
ε′(x) = (0, 1)n × (

jn+1

2m+1
,
jn+1 + 1

2m+1
) (45)

P iε′(x) =
n∏
k=1

(
jk

2m+1
,
jk + 1

2m+1
)× (0, 1) (46)

where 1
2m+1 < ε′ ≤ 1

2m
, jk = 0, ..., 2m+1 − 1 and xn+1 ∈ ( jn+1

2m+1 ,
jn+1+1
2m+1 ),

(x1, ..., xn) ∈
∏n

k=1( jk
2m+1 ,

jk+1
2m+1 ).

After that with the same partition P iε′ and ξi we use the (10.1) and (10.2)

points and Section 11. of [5, p. 559-566].
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4 A non-linear IFS with parameters

In this section we will study a special, non-conformal and non-linear iter-

ated function scheme. Our purpose is to give a good parameter family, where

the push-down measure is absolute continuous Lebesgue-almost everywhere.

To prove it we will use the transversality condition, which was introduced

by Karoly Simon [11] and [12]. Sze-Man Ngai and Yang Wang studied the

absolute continuity in linear case [13]. Our result corresponds with it but in

more general case.

4.1 Definitions

Let A0 and A1 two matrices from L(R2), which is the set of the linear

maps on R2. We assume in the following, that det(Ai) > 0 for every i = 0, 1.

Denote the four quadrants of the real plane Q1, Q2, Q3, Q4, namely

Q1 =
{

(x, y)T : x ≥ 0, y ≥ 0
}
\
{

(0, 0)T
}

Q2 =
{

(x, y)T : x ≤ 0, y ≥ 0
}
\
{

(0, 0)T
}

Q3 =
{

(x, y)T : x ≤ 0, y ≤ 0
}
\
{

(0, 0)T
}

Q4 =
{

(x, y)T : x ≥ 0, y ≤ 0
}
\
{

(0, 0)T
}
.

Proposition 4.1.1. The following five expressions are equivalent

1. A−1
i Q2 ⊂ intQ2

2. A−1
i Q4 ⊂ intQ4

3. AiQ1 ⊂ intQ1

4. AiQ3 ⊂ intQ3

5. Ai has strictly positive elements

Proof. We proof the equivalence of 1. and 5., and the equivalence of 2. and

5., the others are similar.
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We suppose 1., then indirectly we assume that 5. is not true. If 5 is not

true then there exists an element of the matrix which is non-positive. If

Ai =

[
ai bi

ci di

]

then

A−1
i =

1

detAi

[
di −bi
−ci ai

]
.

Then for every w ∈ Q2

A−1
i w =

1

detAi

(
diw1 − biw2

−ciw1 + aiw2

)
Our assumption is that diw1−biw2 < 0 and −ciw1 +aiw2 > 0. If some of the

elements of Ai, for example di < 0, is negative then the adequate coefficient

of this element, which can be w1 or w2, tends to infinity or minus infinity, in

our case w1 → −∞, then there is a contradiction. If some of the elements

of Ai is zero then we can choose w that A−1
i w /∈ intQ2. Therefore Ai must

have strictly positive elements.

Conversely, we suppose that 5. is true. In this case for every w =
(
w1

w2

)
∈

Q2, where w1 ≤ 0, w2 ≥ 0, but at least one of the inequalities holds strictly,

we have diw1 − biw2 < 0 and −ciw1 + aiw2 > 0, which was to be proved.

Now we suppose that 2. is true, then for every w ∈ Q1, where w1 ≥
0, w2 ≥ 0

Aiw =

(
aiw1 + biw2

ciw1 + diw2

)
and our assumption is aiw1 + biw2 > 0 and ciw1 + diw2 > 0. Similarly, if

some of the elements of Ai, for example di < 0, is negative then the adequate

coefficient of this element, which can be w1 or w2, tends to infinity, in our

case w2 → ∞, then there is a contradiction. If some of the elements is zero

then we can choose w that Aiw /∈ intQ1. Therefore Ai has positive elements.

Conversely, if 5. is true then the elements of Aiw are strictly positive,

while at least one of the elements of w is strictly positive.
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In the following we assume that Ai has strictly positive elements. Now

we define our iterated function scheme.

Let ‖x‖1 = |x|+|y| the norm in R2, x = (x, y)T . LetB1 = {x ∈ R2 : ‖x‖1 = 1},
and B+

1 =
{
x ∈ B1 : x = (x, y)T , x ≥ 0, y ≥ 0

}
. We define a function.

Definition 4.1.1. For a matrix S ∈ L(R2) let ψS be the following map

ψS(x) =
1

‖Sx‖1

Sx

Then ψS : B1 7→ B1

Lemma 4.1.1. For every S1, S2, ..., Sn ∈ L(R2) matrices ψS1S2···Sn = ψS1 ◦
ψS2 ◦ · · · ◦ ψSn and if a matrix S ∈ L(R2) is invertible, ψS is also invertible

on B1 and ψ−1
S ≡ ψS−1.

We do not notify the proof of this lemma, because it is very simple.

In the following we use the notation Ai = Ai1 · · ·Ain for every i ∈ {0, 1}n

and n ≥ 1 whole number. With the above assumptions ψA0 , ψA1 : B+
1 7→

B+
1 . We can restrict these two functions into the axis x, let these functions

g0, g1 : [0, 1] 7→ [0, 1]. Then

g0(x) =
a0x+ b0(1− x)

a0x+ b0(1− x) + c0x+ d0(1− x)

g1(x) =
a1x+ b1(1− x)

a1x+ b1(1− x) + c1x+ d1(1− x)

Besides the hypotheses above, we assume that g0 and g1 are contractions,

which means that the derivatives of these functions are less than 1, and there

are overlap, namely g0((0, 1)) ∩ g1((0, 1)) 6= ∅. It is easy to see that

g′0(x) =
detA0

(a0x+ b0(1− x) + c0x+ d0(1− x))2

g′1(x) =
detA1

(a1x+ b1(1− x) + c1x+ d1(1− x))2

These functions are monotone increasing or monotone decreasing on (0, 1),

therefore if supx∈(0,1) g
′
0(x) < 1 and supx∈(0,1) g

′
1(x) < 1 then

detAi
(ai + ci)2

< 1 and
detAi

(bi + di)2
< 1
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for every i = 0, 1. This implies that ψA0 , ψA1 are contractions, too. There

exist two fix-points x0, x1 of ψA0 and ψA1 , and they are the eigenvectors

of the matrices A0, A1 with strictly positive coordinates. Without loss of

generality we can assume that x0 is the northern vector, which means that

the first coordinate of x0 is less than the first coordinate of x1 (x0, x1 ∈ B+
1 ).

Moreover let us observe that for every c > 0 ψcAi = ψAi for every i.

Let S = [x1x0] then S−1A0S = Ã0 and S−1A1S = Ã1, where Ã0 is a

lower triangular matrix and Ã1 is an upper triangular matrix. It is easy to

see that ψÃ0

(
0
1

)
=
(

0
1

)
and ψÃ1

(
1
0

)
=
(

1
0

)
. For the sake of simplicity and in

view of lemma 4.1.1 in the following we will study the matrices Ã0, Ã1. These

matrices do not satisfy the condition 5., but they have non-negative elements

and map B+
1 into itself.

4.2 Transversality condition and absolute continuity

From the previous section if follows, that we can suppose that our two

matrices are in the following form:

A0 =

[
a 0

1− a d0

]
and A1 =

[
d1 b

0 1− b

]

where 0 < a < 1, 0 < b < 1 and d0, d1 ∈ R+. In this case our restricted

functions to x-axis can be written as

g0(x) =
ax

x+ d0(1− x)
and g1(x) =

d1x+ b(1− x)

d1x+ (1− x)
.

Denote φ : R2 7→ R the following function:

φ(x, y) =
x

(1− y)x+ y

Then the functions g0, g1 can be expressed by φ.

g0(x) = aφ(x, d0) and g1(x) = 1 + (b− 1)φ(1− x, d1) (47)

Lemma 4.2.1. For every x ∈ (0, 1) and every y ∈ R+, φ′x(x, y) ≥ 0,

infx∈(0,1) φ
′
x(x, y) = min {y, 1/y}, ‖φ′x(., y)‖ = supx∈(0,1) |φ′x(x, y)| = max {y, 1/y}.
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Moreover φ(0, y) = 0, φ(1, y) = 1 and φ(x, 1) = x for every x ∈ [0, 1] and

y ∈ R+. If φ−1(x, y) denote the inverse in the first variable for fixed y, then

φ−1(x, y) = φ(x, 1/y).

The proof of this lemma is trivial.

Now we define the natural projection and transversality condition. Let∑
= {0, 1}N and

∑∗ = {0, 1}∗. For every i = (i1...in) ∈
∑∗ let

gi := gi1 ◦ gi2 ◦ · · · ◦ gin .

Definition 4.2.1. Let πt :
∑
7→ [0, 1] with parameters t = (a, b, d0, d1) the

following function

πt(i) = lim
n→∞

gi(n)(0), (48)

where i(n) denote the first n elements of i. We call πt(i) the natural pro-

jection.

It is easy to see that for every i ∈
∑∗ gi is C1+ε in parameters t =

(a, b, d0, d1) ∈ R4, therefore for every i ∈
∑

the function πt(i) is C1+ε in t

also.

We would like to give an open set U of parameters t = (a, b, d0, d1), where

the g0, g1 IFS has absolute continuous self-similar measure for Lebesgue-

almost every t ∈ U .

Let U1 be the following open set of parameters

U1 =

{
(a, b, d0, d1) : b < a, amax

{
d0,

1

d0

}
< 1, (1− b) max

{
d1,

1

d1

}
< 1

}
(49)

Here, in view of lemma 4.2.1, U1 is the set of parameters, where g0 and g1

overlap, namely g0([0, 1])∩g1([0, 1]) 6= ∅ and they are contractions. Therefore

πt is not one-to-one mapping.

Definition 4.2.2. We say that the transversality condition holds on an

open set U ⊂ R4 of the parameters, if there exists a constant C1 such that

for every i and j ∈
∑

with i1 6= j1,

L4(t ∈ U : |πt(i)− πt(j)| ≤ r) ≤ C1r for all r > 0, (50)
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where L4 is the 4-dimensional Lebesgue-measure.

This definition is equivalent with [11, p. 448].

Before we prove the absolute continuity, we want to find an open set U

where the IFS {g0, g1} satisfies the transversality condition. Let [i1i2...in] =

{i ∈
∑

: i(n) = (i1i2...in)} the cylinder sets. We can prove a lemma, which

helps the proof of transversality condition.

Lemma 4.2.2. Suppose that t ∈ U1, moreover aφ(a, d0) < b and 1 + (b −
1)φ(1 − b, d1) > a. For every i, j ∈

∑
with i1 6= j1 if πt(i) = πt(j) then

i2 6= j2, too. In other words πt(i) = πt(j) implies that i ∈ [01] and j ∈ [10].

Proof. To prove this lemma first we observe that in our case g0([0, 1]) ∩
g1([0, 1]) = [b, a], therefore if i1 6= j1 and πt(i) = πt(j) then πt(i) = πt(j) ∈
[b, a].

It is easy to see, that g0(g0(1)) = aφ(a, d0) and if g0(g0(1)) < b then

πt([00]) ∩ [b, a] = ∅. It is also true that g1(g1(0)) = 1 + (b − 1)φ(1 − b, d1)

and if g1(g1(0)) > a then πt([11])∩ [b, a] = ∅. These two previous statements

complete the the proof of lemma.

Let U2 be the following set of parameters:

U2 = {(a, b, d0, d1) : aφ(a, d0) < b, 1 + (b− 1)φ(1− b, d1) > a} . (51)

On account of [11, p. 471] lemma 7.3, and [12, p. 5157] formula (5.1) the

following lemma is true.

Lemma 4.2.3. Assume that there exits an open set U ⊂ R4 such that for

every i, j ∈
∑

with i1 6= j1 we have

‖∇(πt(i)− πt(j))‖ > 0 whenever πt(i) = πt(j), (52)

where ∇ denotes the gradient with respect to the parameters t, then {g0, g1}
satisfies the transversality condition on U .

Finally, we can give the open set U , where {g0, g1} satisfies the transver-

sality condition.
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Theorem 4.2.1. Let U3, U4 ⊂ R4 the following sets:

U3 =
{

(a, b, d0, d1) ∈ R4 :

(1− b)φ(1−a
1−b ,

1
d1

) min
{
d1,

1
d1

}
− a

a
>
a(1− b) max

{
d0,

1
d0

}
max

{
d1,

1
d1

}
1− amax

{
d0,

1
d0

}


U4 =
{

(a, b, d0, d1) ∈ R4 :

1− b+ amax
{
d0,

1
d0

}(
φ( b

a
, 1
d0

)− 1
)

1− b
>
a(1− b) max

{
d0,

1
d0

}
max

{
d1,

1
d1

}
1− (1− b) max

{
d1,

1
d1

}


Then on

U = U1 ∩ U2 ∩ (U3 ∪ U4) (53)

the IFS {g0, g1} satisfies the transversality condition.

We recall that U1, defined in (49), guarantees the overlap and contraction,

moreover U2, defined in (51), guarantees that t satisfies the assumptions of

lemma 4.2.2.

Proof. We begin the proof by giving an upper and lower bound for ∂
∂a
πt(i)

and ∂
∂b
πt(i) for every i ∈

∑
.

Let i ∈
∑

arbitrary and fixed. Moreover let λ = max {‖g′0‖, ‖g′1‖}. Here

0 < λ < 1, because t ∈ U1. It immediate follows from chain rule that ∂
∂a
πt(i)

and ∂
∂b
πt(i) is less than or equal to the sum of different powers of λ. So∥∥∥∥ ∂∂aπt(i)

∥∥∥∥ ;

∥∥∥∥ ∂∂bπt(i)
∥∥∥∥ ≤ 1

1− λ

It is easy to see that ∂
∂a
πt(i) ≥ 0 and ∂

∂b
πt(i) ≥ 0 hold. Namely, by Lemma

4.2.1, we have g′1(x) ≥ 0, g′0(x) ≥ 0, ∂
∂a
g0(x) ≥ 0 and ∂

∂b
g1(x) ≥ 0 for every

x ∈ [0, 1].

Let n be the place of the first 0 element of i, then

∂

∂a
πt(i) =

∂

∂a
gi(n−1)(aφ(πt(σ

ni), d0)) =

g′i(n−1)(aφ(πt(σ
ni), d0)) ·

(
φ(πt(σ

ni), d0) + aφ′x(πt(σ
ni), d0) · ∂

∂a
πt(σ

ni)

)
.
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Therefore, using that 0 ≤ φ(x, y) ≤ 1, 0 ≤ g′i(x) ≤ 1 and φ′x(x, y) ≤
max {y, 1/y} hold for every x ∈ [0, 1], y ∈ R+ by lemma 4.2.1, we have∥∥∥∥ ∂∂aπt(i)

∥∥∥∥ ≤ 1 + amax

{
d0,

1

d0

}∥∥∥∥ ∂∂aπt(σni)
∥∥∥∥ .

Proceeding inductively we see that∥∥∥∥ ∂∂aπt(i)
∥∥∥∥ ≤ 1+amax

{
d0,

1

d0

}
+

(
amax

{
d0,

1

d0

})2

+· · · = 1

1− amax
{
d0,

1
d0

}
(54)

since amax
{
d0,

1
d0

}
< 1 for every t ∈ U and πt(i) is bounded. By similar

arguments the upper bound for ∂
∂b
πt(i) is∥∥∥∥ ∂∂bπt(i)

∥∥∥∥ ≤ 1

1− (1− b) max
{
d1,

1
d1

} . (55)

Let t ∈ U and i, j ∈
∑

with the following properties, i1 6= j1 and πt(i) =

πt(j). By Lemma 4.2.2, without loss of generality we can assume that i ∈ [01]

and j ∈ [10].

∂

∂a
πt(j)−

∂

∂a
πt(i) =

∂

∂a

(
1 + (b− 1)φ(1− aφ(πt(σ

2j), d0), d1)
)
−

− ∂

∂a

(
aφ(1 + (b− 1)φ(1− πt(σ2i), d1), d0)

)
=

(1− b)φ′x(1− πt(σj), d1)

(
φ(πt(σ

2j), d0) + aφ′x(πt(σ
2j), d0)

∂

∂a
πt(σ

2j)

)
−

−
(
φ(πt(σi), d0) + aφ′x(πt(σi), d0)(1− b)φ′x(1− πt(σ2i), d1)

∂

∂a
πt(σ

2i)

)
=

= (1− b)φ′x(1− πt(σj), d1)
πt(σj)

a
−
πt(i)

a
+

+ a(1− b)φ′x(1− πt(σj), d1)φ′x(πt(σ
2j), d0)

∂

∂a
πt(σ

2j)−

− a(1− b)φ′x(πt(σi), d0)φ′x(1− πt(σ2i), d1)
∂

∂a
πt(σ

2i)
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So, we have obtained that

∂

∂a
πt(j)−

∂

∂a
πt(i) = (1− b)φ′x(1− πt(σj), d1)

πt(σj)

a
−
πt(i)

a
+

+ a(1− b)φ′x(1− πt(σj), d1)φ′x(πt(σ
2j), d0)

∂

∂a
πt(σ

2j)−

− a(1− b)φ′x(πt(σi), d0)φ′x(1− πt(σ2i), d1)
∂

∂a
πt(σ

2i)

(56)

We assumed that j ∈ [10]. This follows that πt(σi) = g−1
1 (πt(i)). By the

definition of g1 we have g−1
1 (x) = φ−1(1−x

1−b , d1). From the last formula of

lemma 4.2.1 we have πt(σi) = g−1
1 (πt(i)) = φ(

1−πt(i)
1−b , 1

d1
). We substitute this

into the first line of (56). We can throw away the second line of (56) and we

apply (54) in the third line of (56) to get:

∂

∂a
πt(j)−

∂

∂a
πt(i) ≥

(1− b)φ′x(1− πt(σj), d1)φ((1− πt(j))/(1− b), d−1
1 )− πt(i)

a

−
a(1− b)φ′x(πt(σi), d0)φ′x(1− πt(σ2i), d1)

1− amax
{
d0,

1
d0

}
(57)

Now we use that φ′x(x, d1) ≥ min
{
d1,

1
d1

}
and that φ is monotone increasing

so φ(
1−πt(i)

1−b , d−1
1 ) ≥ φ(1−a

1−b , d
−1
1 ) Further we use for y = d0, d1 that φ′x(x, y) ≤

max {y, y−1} for every x ∈ [0, 1]. In this way we get

∂

∂a
πt(j)−

∂

∂a
πt(i) ≥

(1− b) min
{
d1, d

−1
1

}
φ(1−a

1−b , d
−1
1 )− a

a
−
a(1− b) max

{
d0, d

−1
0

}
max

{
d1, d

−1
1

}
1− amax

{
d0, d

−1
0

}
(58)

Since t ∈ U3 the right hand side of (58) is positive, the transversality

condition holds. In the same way we can prove that:

∂

∂b
πt(j)−

∂

∂b
πt(i) ≥

1− πt(j) + amax
{
d0, d

−1
0

} (
φ(πt(i)/a, d

−1
0 )− 1

)
1− b

−
a(1− b) max

{
d0, d

−1
0

}
max

{
d0, d

−1
0

}
1− (1− b) max

{
d1, d

−1
1

} (59)
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We remind the reader that by our assumption

πt(j) = πt(i) (60)

Let

h(z) =
1− z + amax

{
d0,

1
d0

}
·
(
φ( z

a
, 1
d0

)− 1
)

1− b
.

Further, let

A =
a(1− b) max

{
d0, d

−1
0

}
max

{
d0, d

−1
0

}
1− (1− b) max

{
d1, d

−1
1

} .

Note that (59) is equivalent to

∂

∂b
πt(j)−

∂

∂b
πt(i) ≥ h(πt(i))− A (61)

Our claim is to prove that

∂

∂b
πt(j)−

∂

∂b
πt(i) ≥ h(b)− A

By (61) to see this we have to verify only that

h(z) ≥ h(b) for every z ∈ [b, a]. (62)

Since πt(j) = πt(i) ∈ [b, a]. Using that φ′x(
z
a
, d−1

0 ) ≥ min
{
d0, d

−1
0

}
by differ-

entiation of h(z) we get immediately that (62) holds. Therefore the transver-

sality condition holds by lemma 4.2.3 and by t ∈ U4, which is equivalent to

h(b)− A > 0.

In the case d0 = d1 = 1, which is the linear case by lemma 4.2.1, the

transversality domain U seems like in Figure 10.

We can represent the following hyper-planes: d0 = d1 = d Figure 11,

d0 = 1, d1 = d Figure 12, and d0 = d, d1 = 1 Figure 13. The last two cases

are if one of the function is linear.

Let µ be a shift-invariant ergodic Borel probability measure on
∑

with

positive entropy. The definition of entropy, denote hµ can be found in [9]. If
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Figure 10: Transversality domain in linear case
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Figure 11: Transversality domain of d0 = d1 hyperplane
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Figure 12: Transversality domain of d0 = 1 hyperplane
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Figure 13: Transversality domain of d1 = 1 hyperplane
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µ is a Bernoulli-measure then hµ = −p0 log p0 − p1 log p1, where p0 + p1 = 1.

Let νt = µ ◦ π−1
t .

The Lyapunov exponent of the IFS {g0, g1} with parameter t, correspond-

ing to the measure µ is

χµ(t) = −
∫
∑ log |g′i1(πt(σi))|dµ(i)

In the important special case when µ is a Bernoulli-measure, the Lyapunov

exponent can be rewritten as follows:

χµ(t) = −p0

∫ 1

0

log |g′0(x)|dνt(x)− p1

∫ 1

0

log |g′1(x)|dνt(x)

In the next theorem we determine an open set U ′ s. t. for L4 a. e. t ∈ U ′

we have νt is absolute continuous. The proof of the theorem can be found in

[12, p. 5163].

Theorem 4.2.2. We device the open set U ⊂ R4 as in Theorem 4.2.1,

(53). Let µ be a shift-invariant ergodic Borel probability measure with positive

entropy on
∑

and let νt = µ ◦ π−1
t . Then for Lebesgue-a. e. t ∈ U ,

dimH(νt) = min
{

hµ
χµ(t)

, 1
}

. Moreover the measure νt is absolute continuous

for a. e. t in
{
t ∈ U : hµ

χµ(t)
> 1
}

.

Proposition 4.2.1. Let µ be a Bernoulli probability measure on
∑

, and U5

the following set:

U5 = {(a, b, d0, d1) : −p0 log p0 − p1 log p1 >

> −p0 log

(
amin

{
d0,

1

d0

})
− p1 log

(
(1− b) min

{
d1,

1

d1

})} (63)

Then νt = µ ◦ π−1
t is absolute continuous for a. e. t ∈ U ∩ U5.

Proof. By Lemma 4.2.1, it is easy to see that

min
x∈(0,1)

g′0(x) = amin

{
d0,

1

d0

}
and

min
x∈(0,1)

g′2(x) = (1− b) min

{
d1,

1

d1

}
.
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Figure 14: Absolute continuity region in linear case, p0 = p1 = 1
2

Therefore

−p0 log

(
amin

{
d0,

1

d0

})
− p1 log

(
(1− b) min

{
d1,

1

d1

})
> χµ(t)

Hence for every t ∈ U5, hµ
χµ(t)

> 1, and by Theorem 4.2.2 we proved the

proposition.

If µ =
{

1
2
, 1

2

}N
then by proposition 4.2.1 the open set, where νt is absolute

continuous, in linear case the image of the region is in Figure 14.

This set is smaller than what was proved in [13, p. 4.], but it is a little

bit more general, and the proof of our set does not use (∗)-functions. For

µ =
{

1
3
, 2

3

}N
the U ∩ U5 set is in Figure 15.

We can show the absolute continuity domain for hyper-planes: d0 = d1 =

d Figure 16, d0 = 1, d1 = d Figure 18 and d0 = d, d1 = 1 Figure 17, when

µ =
{

1
2
, 1

2

}N
.

Let us transform the absolute continuity domain a→ a, b→ 1−b, because

a, 1−b are the contracting ratios. Sze-Man Ngai and Yang Wang proved that

51



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Absolute continuity region in linear case, p0 = 1
3
, p1 = 2
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Figure 16: Absolute continuity domain of d0 = d1 hyperplane, p0 = p1 = 1
2
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Figure 17: Absolute continuity domain of d1 = 1 hyperplane, p0 = p1 = 1
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Figure 18: Absolute continuity domain of d0 = 1 hyperplane, p0 = p1 = 1
2
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Figure 19: Compare the two regions

the µ self-similar measure corresponding to S1(x) = ρ1x, S2(x) = ρ2x + 1,

p1 = p2 = 1
2

is absolute continuous for Lebesgue almost all (ρ1, ρ2) in the

region ρ1ρ2 >
1
4

and 0 < ρ1, ρ2 < 0.6491 [13, p. 3]. We proved an other

region and we can compare this two regions in Figure 19.

Our a. c. region is contained in Sze-Man Ngai’s and Yang Wang’s result.

What do the results of the previous subsection mean for the original

matrices and the original {g0, g1} IFS?

Let x0, x1 ∈ B+
1 , whereB+

1 =
{
x : x = (x, y)T , x ≥ 0, y ≥ 0, ‖x‖1 = |x|+ |y|

}
,

and S = [x1x0]. Let c0, c1 > 0. Let

Ã0 =

[
a 0

1− a d0

]
and Ã1 =

[
d1 b

0 1− b

]

Moreover there exists a matrix S, depends on the elements of Ã0, Ã1 such

that

A0 :=

[
α0 β0

γ0 δ0

]
= c0SÃ0S

−1 and A1 :=

[
α1 β1

γ1 δ1

]
= c1SÃ1S

−1 (64)
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matrices are in the original form, namely these matrices have positive ele-

ments. Let

X =
{

(x0, x1) ∈ B+
1 ×B+

1 : A0, A1 have positive elements
}

Then the transversality region of {ψA0 , ψA1} is the following 8-dimensional

open set T .

T =
{

(α0, β0, γ0, δ0, α1, β1, γ1, δ1)T ∈
(
R+
)8

:

c0 > 0, c1 > 0, (x0, x1) ∈ X, (a, b, d0, d1) ∈ U}
(65)

where U is defined in (53). Similarly the absolute continuity region T ′ is the

following:

T ′ =
{

(α0, β0, γ0, δ0, α1, β1, γ1, δ1)T ∈
(
R+
)8

:

c0 > 0, c1 > 0, (x0, x1) ∈ X, (a, b, d0, d1) ∈ U ∩ U5}
(66)

where U5 is defined in (63).

The view of open sets T, T ′ is very difficult, because they are 8-dimensional.
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5 Summary

In my thesis we studied three different iterated function systems in dif-

ferent methods.

In the second section we were interested in the estimate of Hausdorff-

dimension for non-linear and non-conformal case. Our result is a generaliza-

tion of K. Simon’s and A. Manning’s theorem. They proved in two dimension

for such IFS, which functions have lower triangular derivative matrices, that

the subadditive pressure is not sensitive to the choice of the points in every

cylinders at which the singular value function is evaluated. We verified the

same result in any dimension. Moreover K. Falconer and J. Miao gave a for-

mula for the subadditive pressure and therefore for the Hausdorff-dimension

of self-affine fractals generated by upper-triangular matrices. We gave a for-

mula, too, in non-linear case. We showed some examples, where this formula

can be used. This formula exactly gives the Box-dimension of the fractal,

but for the Hausdorff-dimension it gives just an upper bound. We conjecture

that the pressure is not sensitive for every IFS, which functions are at least

C1+ε. Maybe our result will help us to see this.

In the third section we examined a self-affine, diagonal, non-conformal

IFS. We derived a dynamical system from these IFS. We aimed that we

can apply the Ledrappier-Young Theorem in this case. The problem was

that this theorem is true for C2-diffeomorphisms. Fortunately, this theorem

depends on the existence of Lyapunov charts. For special measures, namely

the regular hyperbolic measures, Lyapunov charts exist. We constructed

them explicitly, but in general it is not trivial what the Lyapunov charts

are. In this section we wanted to demonstrate how one can use Lyapunov

charts. This gives a better understanding of the dynamical systems whit

singularities.

In the fourth section we studied a special group of IFS, which functions

were derived from matrices with positive elements. We supposed that there is

overlap between the two functions of the iterated function scheme. We were

interested in giving an open set of parameters, where the invariant measure
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of the IFS is absolute continuous. K. Simon, B. Solomyak and M. Urbanski

proved a theorem, which gave such a set of parameters, but they supposed,

that the IFS satisfies the transversality condition, which was introduced by

K. Simon and M. Pollicott. We checked this condition for our IFS and by

using the Theorem of K. Simon, B. Solomyak and M. Urbanski we gave the

absolute continuity region of parameters, too. Our result coincides with Sze-

man Ngai’s and Yang Wang’s result in linear case, because our functions

are linear with some very special choice of parameters. In the future we

would like to extend in more general when the IFS is not given by triangular

matrices.
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