THE ABSOLUTE CONTINUITY OF THE INVARIANT MEASURE OF RANDOM ITERATED FUNCTION SYSTEMS WITH OVERLAPS

BALÁZS BÁRÁNY AND TOMAS PERSSON

Abstract

We consider iterated function systems on the interval with random perturbation. Let Y_{ε} be uniformly distributed in $[1-\varepsilon, 1+\varepsilon]$ and let $f_{i} \in C^{1+\alpha}$ be contractions with fixpoints a_{i}. We consider the iterated function system $\left\{Y_{\varepsilon} f_{i}+a_{i}\left(1-Y_{\varepsilon}\right)\right\}_{i=1}^{n}$, were each of the maps are chosen with probability p_{i}. It is shown that the invariant density is in L^{2} and the L^{2}-norm does not grow faster than $1 / \sqrt{\varepsilon}$, as ε vanishes.

The proof relies on defining a piecewise hyperbolic dynamical system on the cube, with an SRB-measure with the property that its projection is the density of the iterated function system.

1. Introduction and Statements of Results

Let $\left\{f_{1}, \ldots, f_{l}\right\}$ be an iterated function system (IFS) on the real line, where the maps are applied according to the probabilities $\left(p_{1}, \ldots, p_{l}\right)$, with the choice of the map random and independent at each step. We assume that for each i, f_{i} maps $[-1,1)$ into itself and $f_{i} \in C^{1+\alpha}([-1,1))$. Let ν be the invariant measure of our IFS, namely,

$$
\begin{equation*}
\nu=\sum_{i=1}^{l} p_{i} \nu \circ f_{i}^{-1} . \tag{1.1}
\end{equation*}
$$

Let $\mu=\left(p_{1}, \ldots, p_{l}\right)^{\mathbb{N}}$ be a Bernoulli measure on the space $\sum=\{1, \ldots, l\}^{\mathbb{N}}$. Let $h(\underline{p})=-\sum_{i=1}^{l} p_{i} \log p_{i}$ be the entropy of the underlying Bernoulli process μ. It was proved in [7] for non-linear contracting on average IFSs (and later extended in [3]) that

$$
\operatorname{dim}_{\mathrm{H}}(\nu) \leq \frac{h}{|\chi|},
$$

Date: February 24, 2009.
Key words and phrases. Iterated function systems, Absolute continuity, random perturbation

Research of Bárány was supported by the EU FP6 Research Training Network CODY.
where $\operatorname{dim}_{H}(\nu)$ is the Hausdorff dimension of the measure ν and χ is the Lyapunov exponent of the IFS associated to the Bernoulli measure μ.

One can expect that, at least "typically", the measure ν is absolutely continuous when $h /|\chi|>1$. Essentially the only known approach to this is transversality. For example, in linear case with uniform contracting ratios see $[8],[10]$. In the linear case for non-uniform contracting ratios, see [5], [6]. In the non-linear case, see for example [12], [1]. We note that there is an other direction in the study of IFSs with overlaps, which is concerned with concrete, but not-typical systems, often of arithmetic nature, for which there is a dimension drop, see, for example [4].

Trough this paper we are interested in to study absolute continuity with density in L^{2}. We study a modification of the problem, namely we consider a random perturbation of the functions. The linear case was studied by Peres, Simon and Solomyak in [9]. They proved absolute continuity for random linear IFS, with non-uniform contracting ratios and also L^{2} and continuous density in the uniform case. We would like to extend this result by proving L^{2} density with non-uniform contracting ratios and in non-linear case.

We consider two cases. First let us suppose that for each $i \in\{1, \ldots, l\}$, f_{i} maps $[-1,1)$ into itself, $f_{i} \in C^{1+\alpha}([-1,1))$ and

$$
\begin{equation*}
0<\lambda_{i, \min } \leq\left|f_{i}^{\prime}(x)\right| \leq \lambda_{i, \max }<1 \tag{1.2}
\end{equation*}
$$

for every $x \in[-1,1)$. Moreover let us suppose that for every i the fix point of f_{i} is $a_{i} \in[-1,1]$, and

$$
\begin{equation*}
i \neq j \Rightarrow a_{i} \neq a_{j} \tag{1.3}
\end{equation*}
$$

Let Y_{ε} be uniformly distributed on $[1-\varepsilon, 1+\varepsilon]$. Let us denote the probability measure of Y_{ε} by η_{ε}. Let

$$
\begin{equation*}
f_{i, Y_{\varepsilon}}(x)=Y_{\varepsilon} f_{i}(x)+a_{i}\left(1-Y_{\varepsilon}\right) \tag{1.4}
\end{equation*}
$$

for every $i \in\{1, \ldots, l\}$. The iterated maps are applied randomly according to the stationary measure μ, with the sequence of independent and identically distributed errors y_{1}, y_{2}, \ldots, distributed as Y_{ε}, independent of the choice of the function. The Lyapunov exponent of the IFS is defined by

$$
\chi\left(\mu, \eta_{\varepsilon}\right)=\mathbb{E}\left(\log \left(Y_{\varepsilon} f^{\prime}\right)\right)
$$

and

$$
\chi\left(\mu, \eta_{\varepsilon}\right)<\sum_{i=1}^{l} p_{i} \log \left((1+\varepsilon) \lambda_{i, \max }\right)<0
$$

for sufficiently small $\varepsilon>0$. Let Z_{ε} be the following random variable

$$
\begin{equation*}
Z_{\varepsilon}:=\lim _{n \rightarrow \infty} f_{i_{1}, y_{1, \varepsilon}} \circ f_{i_{2}, y_{2, \varepsilon}} \circ \cdots \circ f_{i_{n}, y_{n, \varepsilon}}(0), \tag{1.5}
\end{equation*}
$$

where the numbers i_{k} are i.i.d., with the distribution μ on $\{1, \ldots, l\}$, and y_{k} are pairwise independent with distribution of Y_{ε} and also independent of the choice of i_{k}. Let ν_{ε} be the distribution of Z_{ε}.

One can easily prove the following theorem.
Theorem 1.1. The measure ν_{ε} converges weakly to the measure ν as $\varepsilon \rightarrow 0$, see (1.1).

Theorem 1.2. Let ν_{ε} be the distribution of the limit (1.5). We assume that (1.2), (1.3) hold, and

$$
\begin{equation*}
\sum_{i=1}^{l} p_{i}^{2} \frac{\lambda_{i, \max }}{\lambda_{i, \min }^{2}}<1 \tag{1.6}
\end{equation*}
$$

Then for every sufficiently small $\varepsilon>0$, we have that $\nu_{\varepsilon} \ll \mathcal{L}_{1}$ with density in L^{2}. For the L^{2}-norm of the density we have the following estimate

$$
\left\|\nu_{\varepsilon}\right\|_{2} \leq \frac{C_{\varepsilon}^{\prime}}{\sqrt{\varepsilon}}
$$

where

$$
C_{\varepsilon}^{\prime}=\sqrt{\frac{32}{\left(1-\sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}}\right) C_{\varepsilon}^{\prime \prime}}}
$$

and

$$
C_{\varepsilon}^{\prime \prime}=\min _{i \neq j}\left\{\frac{\left|a_{i}-a_{j}\right|+\varepsilon\left(-\left|a_{i}+a_{j}\right|-2\right)}{1-\varepsilon^{2}}\right\} .
$$

We can draft an easy corollary of the theorem.
Corollary 1.3. Let $\left\{\lambda_{i} Y_{\varepsilon} x+a_{i}\left(1-\lambda_{i} Y_{\varepsilon}\right)\right\}_{i=1}^{l}$ be a random iterated function system. We assume that (1.3) holds, and

$$
\begin{equation*}
\sum_{i=1}^{l} \frac{p_{i}^{2}}{\lambda_{i}}<1 \tag{1.7}
\end{equation*}
$$

Then for every sufficiently small $\varepsilon>0$, we have that $\nu_{\varepsilon} \ll \mathcal{L}_{1}$ with density in L^{2}, the L^{2}-norm of the density satisfies

$$
\left\|\nu_{\varepsilon}\right\|_{2} \leq \frac{C_{\varepsilon}^{\prime}}{\sqrt{\varepsilon}},
$$

where

$$
C_{\varepsilon}^{\prime}=\sqrt{\frac{32}{\left(1-\sum_{i=1}^{l} p_{i}^{2} \frac{1+\varepsilon}{(1-\varepsilon)^{2} \lambda_{i}}\right) C_{\varepsilon}^{\prime \prime}}}
$$

and

$$
C_{\varepsilon}^{\prime \prime}=\min _{i \neq j}\left\{\frac{\left|a_{i}-a_{j}\right|+\varepsilon\left(-\left|a_{i}+a_{j}\right|-2\right)}{1-\varepsilon^{2}}\right\} .
$$

We study an other case of random perturbation, namely let $\widetilde{\lambda}_{i, \varepsilon}$ be uniformly distributed on $\left[\lambda_{i}-\varepsilon, \lambda_{i}+\varepsilon\right]$. Let $\left\{\widetilde{\lambda}_{i, \varepsilon} x+a_{i}\left(1-\widetilde{\lambda}_{i, \varepsilon}\right)\right\}_{i=1}^{l}$ be our random iterated function system, where $a_{i} \neq a_{j}$ for every $i \neq j$. Let $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$, and $X_{\lambda, \varepsilon}$ be the following random variable

$$
\begin{equation*}
X_{\underline{\lambda}, \varepsilon}=\sum_{k=1}^{\infty}\left(a_{i_{k}}\left(1-\widetilde{\lambda}_{i_{k}, \varepsilon}\right)\right) \prod_{j=1}^{k-1} \widetilde{\lambda}_{i_{j}, \varepsilon} \tag{1.8}
\end{equation*}
$$

where the numbers i_{k} are i.i.d., with the distribution μ on $\{1, \ldots, l\}$, and $\widetilde{\lambda}_{i_{k}, \varepsilon}$ are pairwise independent. Let $\nu_{\underline{\lambda}, \varepsilon}$ denote the distribution of the random variable $X_{\lambda, \varepsilon}$. Moreover let ν_{λ} be the invariant measure of the the iterated function system $\left\{\lambda_{i} x+a_{i}\left(1-\lambda_{i}\right)\right\}_{i=1}^{l}$ according to μ.

Theorem 1.4. The measure $\nu_{\underline{\lambda}, \varepsilon}$ converges weakly to the measure $\nu_{\underline{\lambda}}$ as $\varepsilon \rightarrow 0$.

To have a similar statement as in Theorem 1.2 we need a technical assumption, namely

$$
\begin{equation*}
\min _{i \neq j}\left|\frac{a_{j} \lambda_{i}-a_{i} \lambda_{j}}{\lambda_{i}-\lambda_{j}}\right|>1 . \tag{1.9}
\end{equation*}
$$

Theorem 1.5. Let us suppose that (1.9) and (1.3) hold, and moreover that

$$
\begin{equation*}
\sum_{i=1}^{l} \frac{p_{i}^{2}}{\lambda_{i}}<1 . \tag{1.10}
\end{equation*}
$$

Then for every sufficiently small $\varepsilon>0$, the measure $\nu_{\lambda, \varepsilon}$ is absolutely continuous with density in L^{2}, and the L^{2}-norm of the density satisfies

$$
\left\|\nu_{\underline{\lambda}, \varepsilon}\right\|_{2} \leq \frac{C_{\varepsilon}^{\prime}}{\sqrt{\varepsilon}}
$$

where

$$
C_{\varepsilon}^{\prime}=\sqrt{\frac{32}{\left(1-\sum_{i=1}^{l} p_{i}^{2} \frac{\lambda_{i}+\varepsilon}{\left(\lambda_{i}-\varepsilon\right)^{2}}\right) C_{\varepsilon}^{\prime \prime}}}
$$

and

$$
C_{\varepsilon}^{\prime \prime}=\sigma \min _{i \neq j} \frac{\left|a_{i} \lambda_{j}-a_{j} \lambda_{i}\right|-\left|\lambda_{i}-\lambda_{j}\right|}{\lambda_{i} \lambda_{j}} .
$$

where $0<\sigma<1$.

The main difference between Theorem 1.5 and Corollary 1.3 is the random perturbation. Namely, in Theorem 1.5 we choose the contracting ratio uniformly in the ε neighborhood of λ_{i}, but in Corollary 1.3 we choose the contraction ratio uniformly in the $\lambda_{i} \varepsilon$ neighborhood of λ_{i}.

Throughout this paper we will use the method in [11].

2. Proof of Theorem 1.2

Let $Q=[-1,1)^{3}$ and $m \in \mathbb{N}$. We partition the cube Q into the rectangles $\left\{Q_{1, k}, \ldots, Q_{l, k}\right\}_{k=0}^{2^{m}-1}$, where

$$
\begin{aligned}
Q_{i, k}=\{(x, y, z) \in Q:-1 & +2 \sum_{j=1}^{i-1} p_{j} \leq y<-1+2 \sum_{j=1}^{i} p_{i} \\
& \left.-1+k 2^{-m+1} \leq z<-1+(k+1) 2^{-m+1}\right\}
\end{aligned}
$$

where we use the convention that an empty sum is 0 . Hence we slice Q in 2^{m} slices along the z-axis and l slices along the y-axis. We thereby get $2^{m} l$ pieces which we call $Q_{i, k}$, according to the definition above.

Let

$$
Q_{i}=\bigcup_{k=0}^{2^{m}-1} Q_{i, k}
$$

For $(x, y, z) \in Q_{i}$, define $g_{\varepsilon, m}: Q \rightarrow Q$ by

$$
g_{\varepsilon, m}:(x, y, z) \mapsto\left(d(z) f_{i}(x)+a_{i}(1-d(z)), \frac{1}{p_{i}} y+b(y), 2^{m} z+c(z)\right)
$$

where

$$
\begin{array}{ll}
d(z)=1+2^{m} \varepsilon\left(z-\left(-1+\left(k+\frac{1}{2}\right) 2^{-m+1}\right),\right. & \text { for }(x, y, z) \in Q_{i, k} \\
b(y)=1-\frac{1}{p_{i}}\left(-1+2 \sum_{j=1}^{i} p_{j}\right), & \text { for }(x, y, z) \in Q_{i, k} \\
c(z)=2^{m}-2 k-1, & \text { for }(x, y, z) \in Q_{i, k}
\end{array}
$$

Hence $g_{\varepsilon, m}$ maps each of the pieces $Q_{i, j}$ so that it s contracted in the x direction and fully expanded in the y - and z-directions.

Let \mathcal{L}_{3} be the normalised Lebesgue measure on Q. The measures

$$
\gamma_{\varepsilon, m, n}=\frac{1}{n} \sum_{k=0}^{n-1} \mathcal{L}_{3} \circ g_{\varepsilon, m}^{-k}
$$

converge weakly to an SRB-measure $\gamma_{\varepsilon, m}$ as $n \rightarrow \infty$. The measure $\gamma_{\varepsilon, m}$ is clearly ergodic. Moreover, let $\nu_{\varepsilon, m}$ be the projection of $\gamma_{\varepsilon, m}$ onto the
first coordinate. More precisely, if $E \subset[-1,1)$ is a measurable set, then $\nu_{\varepsilon, m}(E)=\gamma_{\varepsilon, m}(E \times[-1,1) \times[-1,1))$.

The measure $\nu_{\varepsilon, m}$ is the distribution of the limit

$$
\lim _{n \rightarrow \infty} f_{i_{1}, y_{1, \varepsilon}} \circ f_{i_{2}, y_{2, \varepsilon}} \circ \cdots \circ f_{i_{n}, y_{n, \varepsilon}}(0)
$$

where $y_{i, \varepsilon}$ are uniformly distributed on $[1-\varepsilon, 1+\varepsilon]$, but not independent. However, one can easily prove the following lemma.

Lemma 2.1. The measure $\nu_{\varepsilon, m}$ converges weakly to ν_{ε} as $m \rightarrow \infty$.
Let

$$
A_{i}=\left\{(i, 0),(i, 1), \ldots,\left(i, 2^{m}-1\right)\right\}
$$

and

$$
A=\bigcup_{i=1}^{l} A_{i}
$$

Let $\Theta_{0}=A^{\mathbb{N} \cup\{0\}}$. If $p \in Q$ then there is a unique sequence $\rho_{0}(p)=$ $\left\{\rho_{0}(p)_{k}\right\}_{k=0}^{\infty} \in \Theta_{0}$ such that

$$
g_{\varepsilon, m}^{k}(p) \in Q_{\rho_{0}(p)_{k}}, k=0,1, \ldots
$$

The map $\rho_{0}: Q \rightarrow \Theta_{0}$ is not injective.
We can transfer the measures $\gamma_{\varepsilon, m}$ to a measure $\gamma_{\Theta_{0}}$ by $\gamma_{\Theta_{0}}=\gamma_{\varepsilon, m} \circ \rho_{0}^{-1}$.
We let Θ denote the natural extension of Θ_{0}. That is, Θ is the set of all two sides infinite sequences such that any one sided infinite subsequence of sequence in Θ is a sequence in Θ_{0}. The measures $\gamma_{\Theta_{0}}$ defines an ergodic measure γ_{Θ} on Θ in a natural way. If $\xi: \Theta \rightarrow \Theta_{0}$ is defined by $\xi\left(\left\{i_{k}\right\}_{k \in \mathbb{Z}}\right)=$ $\left\{i_{k}\right\}_{k \in \mathbb{N} \cup\{0\}}$, then $\gamma_{\Theta_{0}}(E)=\gamma_{\Theta}\left(\xi^{-1} E\right)$. We can define a map $\rho^{-1}: \Theta \rightarrow Q$ such that $\rho^{-1}(\sigma(\boldsymbol{a}))=g_{\varepsilon, m}\left(\rho^{-1}(\boldsymbol{a})\right)$ holds for any sequence $\boldsymbol{a} \in \Theta$.

We note that the L^{2} norm of the density $\nu_{\varepsilon, m}$ is not larger than twice that of the density of $\gamma_{\varepsilon, m}$. If $h_{\nu_{\varepsilon, m}}(x)$ and $h_{\gamma_{\varepsilon, m}}(x, y, z)$ denote the density of $\nu_{\varepsilon, m}$ and $\gamma_{\varepsilon, m}$ respectively, then by Lyapunov's inequality

$$
\begin{aligned}
\left\|\nu_{\varepsilon, m}\right\|_{2}^{2} & \leq \int_{-1}^{1} h_{\nu_{\varepsilon, m}}(x)^{2} d x=32 \int_{-1}^{1}\left(\int_{-1}^{1} \int_{-1}^{1} h_{\gamma_{\varepsilon, m}}(x, y, z) \frac{d y}{2} \frac{d z}{2}\right)^{2} \frac{d x}{2} \\
& \leq 32 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} h_{\gamma_{\varepsilon, m}}(x, y, z)^{2} \frac{d y}{2} \frac{d z}{2} \frac{d x}{2}=4\left\|\gamma_{\varepsilon, m}\right\|_{2}^{2} .
\end{aligned}
$$

This proves that if $\gamma_{\varepsilon, m}$ has L^{2} density, then so has $\nu_{\varepsilon, m}$, and

$$
\begin{equation*}
\left\|\nu_{\varepsilon, m}\right\|_{2} \leq 2\left\|\gamma_{\varepsilon, m}\right\|_{2} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let

$$
C_{p}=\left\{(u, v, w) \in T_{p} Q:\left|\frac{u}{w}\right|,\left|\frac{v}{w}\right|<\frac{2^{m+1} \varepsilon}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right\}
$$

where $p \in Q$ and $\lambda_{\max , \max }=\max _{i} \lambda_{i, \max }=\max _{i} \sup _{x \in[-1,1)}\left|f_{i}^{\prime}(x)\right|$. The cones C_{p} defines a family of unstable cones, that is $d_{p} g_{\varepsilon, m}\left(C_{p}\right) \subset C_{g_{\varepsilon, m}(p)}$.

Moreover, for sufficiently large m and every $0<\varepsilon<\min _{i \neq j} \frac{\left|a_{i}-a_{j}\right|}{2+\left|a_{i}+a_{j}\right|}$, if $\zeta_{1} \subset Q_{\xi_{1}}$ and $\zeta_{2} \subset Q_{\xi_{2}}$ are two curves segments with tangents in C_{p} such that $\xi_{1} \in A_{i}$ and $\xi_{2} \in A_{j}, i \neq j$, then if $g_{\varepsilon, m}\left(\zeta_{1}\right)$ and $g_{\varepsilon, m}\left(\zeta_{2}\right)$ intersects, and if $\left(u_{1}, v_{1}, 1\right)$ and $\left(u_{2}, v_{2}, 1\right)$ are tangents to $g_{\varepsilon, m}\left(\zeta_{1}\right)$ and $g_{\varepsilon, m}\left(\zeta_{2}\right)$ respectively, it holds $\left|u_{1}-u_{2}\right|>C_{\varepsilon, m} \varepsilon$, where

$$
C_{\varepsilon, m}=\min _{i \neq j}\left\{\frac{\left|a_{i}-a_{j}\right|+\varepsilon\left(-\left|a_{i}+a_{j}\right|-2\right)}{1-\varepsilon^{2}}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right\} .
$$

Proof of Lemma 2.2. The Jacobian of $g_{\varepsilon, m}$ is

$$
d_{p} g_{\varepsilon, m}=\left(\begin{array}{ccc}
d(z) f_{i}^{\prime}(x) & 0 & 2^{m} \varepsilon\left(f_{i}(x)-a_{i}\right) \\
0 & \frac{1}{p_{i}} & 0 \\
0 & 0 & 2^{m}
\end{array}\right)
$$

where $p=(x, y, z) \in Q_{i, k}$. If $(u, v, w) \in C_{p}$, then

$$
d_{p} g_{\varepsilon, m}(u, v, w)=\left(\begin{array}{c}
d(z) f_{i}^{\prime}(x) u+2^{m} \varepsilon\left(f_{i}(x)-a_{i}\right) w \\
\frac{1}{p_{i}} v \\
2^{m} w
\end{array}\right)
$$

The estimates

$$
\begin{aligned}
& \frac{\left|d(z) f_{i}^{\prime}(x) u+2^{m} \varepsilon\left(f_{i}(x)-a_{i}\right) w\right|}{\left|2^{m} w\right|} \leq \frac{(1+\varepsilon) \lambda_{i, \text { max }}}{2^{m}} \frac{|u|}{|w|}+2 \varepsilon \\
& \quad \leq \frac{(1+\varepsilon) \lambda_{i, \text { max }}}{2^{m}} \frac{2^{m+1} \varepsilon}{2^{m}-(1+\varepsilon) \lambda_{\max , \max }}+2 \varepsilon \leq \frac{2^{m+1} \varepsilon}{2^{m}-(1+\varepsilon) \lambda_{\max , \max }}
\end{aligned}
$$

and

$$
\frac{\left|\frac{1}{p_{i}} v\right|}{\left|2^{m} w\right|} \leq \frac{1}{p_{i} 2^{m}} \frac{2^{m+1} \varepsilon}{2^{m}-(1+\varepsilon) \lambda_{\max , \max }} \leq \frac{2^{m+1} \varepsilon}{2^{m}-(1+\varepsilon) \lambda_{\max , \max }}
$$

proves that $d_{p} g_{\varepsilon, m}\left(C_{p}\right) \subset C_{g_{\varepsilon, m}(p)}$ if m is sufficiently large, so that $2^{m}-(1+$ $\varepsilon) \lambda_{\text {max,max }}>0$ and $p_{i} 2^{m}>1$.

To prove the other statement of the Lemma, assume that $p=\left(x_{p}, y_{p}, z_{p}\right) \in$ Q_{i} and $q=\left(x_{q}, y_{q}, z_{q}\right) \in Q_{j}, i \neq j$, are such that $g_{\varepsilon, m}(p)=g_{\varepsilon, m}(q)=$ (x, y, z). Then, if $p \in Q_{i}$

$$
d_{p} g_{\varepsilon, m}:(u, v, 1) \mapsto 2^{m}\left(\frac{d\left(z_{p}\right) f_{i}^{\prime}\left(x_{p}\right)}{2^{m}} u+\left(f_{i}\left(x_{p}\right)-a_{i}\right) \varepsilon, \frac{v}{p_{i}}, 1\right)
$$

Then

$$
f_{i}\left(x_{p}\right)=\frac{x-a_{i}\left(1-d\left(z_{p}\right)\right)}{d\left(z_{p}\right)} \quad \text { and } \quad f_{j}\left(x_{q}\right)=\frac{x-a_{j}\left(1-d\left(z_{q}\right)\right)}{d\left(z_{q}\right)} .
$$

Without loss of generality, let us assume that $a_{i}>a_{j}$. For simplicity we study the case $x \geq a_{i}>a_{j}$. The proof of the other cases $a_{i} \geq x \geq a_{j}$ and $a_{i}>a_{j} \geq x$ is similar. Then

$$
\begin{aligned}
d_{p} g_{\varepsilon, m}\left(C_{p}\right) \subset\left\{w(u, v, 1): \frac{x-a_{i}}{1+\varepsilon}\right. & \varepsilon-\frac{2(1+\varepsilon) \lambda_{i, \max } \varepsilon}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)} \\
\qquad & \left.\leq u \leq \frac{x-a_{i}}{1-\varepsilon} \varepsilon+\frac{2(1+\varepsilon) \lambda_{i, \max } \varepsilon}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|u_{2}-u_{1}\right| & \geq \frac{x-a_{j}}{1+\varepsilon} \varepsilon-\frac{x-a_{i}}{1-\varepsilon} \varepsilon-\frac{2(1+\varepsilon)\left(\lambda_{i, \max }+\lambda_{j, \max }\right) \varepsilon}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)} \\
& \geq\left(\frac{a_{i}-a_{j}+\varepsilon\left(a_{i}+a_{j}-2\right)}{1-\varepsilon^{2}}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right) \varepsilon
\end{aligned}
$$

for every $x \geq a_{i}>a_{j}$. Since $0<\varepsilon<\min _{i \neq j} \frac{\left|a_{i}-a_{j}\right|}{2+\left|a_{i}+a_{j}\right|}$,

$$
\frac{a_{i}-a_{j}+\varepsilon\left(a_{i}+a_{j}-2\right)}{1-\varepsilon^{2}}>0
$$

Therefore

$$
\frac{a_{i}-a_{j}+\varepsilon\left(a_{i}+a_{j}-2\right)}{1-\varepsilon^{2}}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}>0
$$

for sufficiently large m. By similar methods, we have for $a_{i} \geq x \geq a_{j}$

$$
\left|u_{2}-u_{1}\right| \geq\left(\frac{a_{i}-a_{j}}{1+\varepsilon}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right) \varepsilon
$$

and for $a_{i}>a_{j} \geq x$

$$
\left|u_{2}-u_{1}\right| \geq\left(\frac{a_{i}-a_{j}-\varepsilon\left(a_{i}+a_{j}+2\right)}{1-\varepsilon^{2}}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right) \varepsilon
$$

Therefore we can choose $C_{\varepsilon, m}$ as

$$
C_{\varepsilon, m}=\min _{i \neq j}\left\{\frac{\left|a_{i}-a_{j}\right|+\varepsilon\left(-\left|a_{i}+a_{j}\right|-2\right)}{1-\varepsilon^{2}}-\frac{4(1+\varepsilon) \lambda_{\max , \max }}{2^{m}-\lambda_{\max , \max }(1+\varepsilon)}\right\} .
$$

The rest of the proof follows Tsujii's article [13].
Proof of Theorem 1.2. For any $r>0$ we define the bilinear form $(\cdot, \cdot)_{r}$ of signed measures on \mathbb{R} by

$$
\left(\rho_{1}, \rho_{2}\right)_{r}=\int_{\mathbb{R}} \rho_{1}\left(B_{r}(x)\right) \rho_{2}\left(B_{r}(x)\right) d x
$$

where $B_{r}(x)=[x-r, x+r]$. It is easy to see that if

$$
\liminf _{r \rightarrow 0} \frac{1}{r^{2}}(\rho, \rho)_{r}<\infty
$$

then the measure ρ has density in L^{2}, moreover

$$
\|\rho\|_{2}^{2} \leq \liminf _{r \rightarrow 0} \frac{1}{r^{2}}(\rho, \rho)_{r}
$$

Let γ_{z} denote the conditional measure of $\gamma_{\varepsilon, m}$ on the set $R_{z}=\{(u, v, w) \in$ $Q: v=y, w=z\}$. Note that γ_{z} is independent of y almost everywhere. Let

$$
J(r):=\frac{1}{r^{2}} \int_{-1}^{1}\left(\gamma_{z}, \gamma_{z}\right)_{r} d z
$$

It is easy to see that

$$
\begin{equation*}
\left\|\gamma_{\varepsilon, m}\right\|_{2}^{2}=\int_{-1}^{1}\left\|\gamma_{z}\right\|_{2}^{2} d z \tag{2.2}
\end{equation*}
$$

By the invariance of $\gamma_{\varepsilon, m}$ it follows that

$$
\begin{equation*}
\gamma_{z}=2^{-m} \sum_{i=1}^{l} p_{i} \sum_{a \in A_{i}} \gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a} \tag{2.3}
\end{equation*}
$$

where $g_{\varepsilon, m}^{-a}$ denotes the inverse branch of $g_{\varepsilon, m}$ such that the image of $g_{\varepsilon, m}^{-a}$ is in the cylinder $[a]$. Then by (2.3) and the definition of $J(r)$

$$
\begin{equation*}
J(r)=\frac{1}{2^{2 m} r^{2}} \sum_{i=1}^{l} \sum_{j=1}^{l} p_{i} p_{j} \sum_{a \in A_{i}} \sum_{b \in A_{j}} \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z \tag{2.4}
\end{equation*}
$$

For fixed $a, b \in A_{i}$ it holds,

$$
\begin{align*}
& \left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} \\
& \leq\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}\right)_{r}^{\frac{1}{2}}\left(\gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r}^{\frac{1}{2}} \\
& \leq(1+\varepsilon) \lambda_{i, \max }\left(\gamma_{g_{\varepsilon, m}^{-a}(z)}, \gamma_{g_{\varepsilon, m}^{-a}(z)}\right)_{(1-\varepsilon) \lambda_{i, \min }}^{\frac{1}{2}} \times\left(\gamma_{g_{\varepsilon, m}^{-b}(z)}, \gamma_{g_{\varepsilon, m}^{-b}(z)}\right)^{\frac{1}{2}} \frac{r}{(1-\varepsilon) \lambda_{i, \min }} \\
& \leq(1+\varepsilon) \lambda_{i, \max } \frac{\left(\gamma_{g_{\varepsilon, m}^{-a}(z)}, \gamma_{g_{\varepsilon, m}^{-a}(z)}\right)_{(1-\varepsilon) \lambda_{i, \min }}+\left(\gamma_{g_{\varepsilon, m}^{-b}(z)}, \gamma_{g_{\varepsilon, m}^{-b}(z)}\right) \frac{r}{(1-\varepsilon) \lambda_{i, \min }}}{2} . \tag{2.5}
\end{align*}
$$

Moreover, if $a \in A_{i}$ and $b \in A_{j}, i \neq j$, then

$$
\begin{aligned}
\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ\right. & \left.\circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} \\
& =\int \gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}\left(B_{r}(x)\right) \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\left(B_{r}(x)\right) d x \\
& =\iiint \mathbb{I}_{\{s:|s-x|<r\}}(s) \mathbb{I}_{\{t:|t-x|<r\}}(t) \\
& d \gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}(s) d \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}(t) d x
\end{aligned}
$$

$$
\begin{array}{r}
\leq \iint 2 r \mathbb{I}_{\{(s, t):|s-t|<2 r\}}(s, t) d \gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}(s) d \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}(t) \\
=\iint \mathbb{I}_{\left\{(c, \boldsymbol{d}):\left|\rho^{-1}\left(\cdots c_{-2} c_{-1} a \rho_{0}(z)\right)-\rho^{-1}\left(d_{-2} d-1 b \rho_{0}(z)\right)\right|<2 r\right\}}(\boldsymbol{c}, \boldsymbol{d}) \\
d \gamma_{\Theta}(\boldsymbol{c}) d \gamma_{\Theta}(\boldsymbol{d}) . \tag{2.6}
\end{array}
$$

Therefore by Lemma 2.2 and (2.6) we get that

$$
\begin{align*}
& \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z \\
& \quad \leq 2 r \iint \mathcal{L}_{1}\left(\left\{z:\left|\rho^{-1}\left(\cdots c_{-2} c_{-1} a \rho_{0}(z)\right)-\rho^{-1}\left(d_{-2} d_{-1} b \rho_{0}(z)\right)\right|<2 r\right\}\right) \\
& \quad d \gamma_{\Theta}(\boldsymbol{c}) d \gamma_{\Theta}(\boldsymbol{d}) \\
& \quad \leq \frac{8 r^{2}}{C_{\varepsilon, m} \varepsilon} . \tag{2.7}
\end{align*}
$$

Then by using (2.4) we have

$$
\begin{aligned}
J(r)= & \frac{1}{2^{2 m} r^{2}} \sum_{i=1}^{l} p_{i}^{2} \sum_{a, b \in A_{i}} \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z \\
& +\frac{1}{2^{2 m} r^{2}} \sum_{i \neq j} p_{i} p_{j} \sum_{a \in A_{i}} \sum_{b \in A_{j}} \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z .
\end{aligned}
$$

Then we can give an upper bound for the first part of the sum using (2.5) and an integral transformation

$$
\begin{align*}
& \frac{1}{2^{2 m} r^{2}} \sum_{i=1}^{l} p_{i}^{2} \sum_{a, b \in A_{i}} \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z \\
& \leq \frac{1}{2^{2 m} r^{2}} \sum_{i=1}^{l} p_{i}^{2}(1+\varepsilon) \lambda_{i, \max } 2^{m} \sum_{a \in A_{i}} \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)}, \gamma_{g_{\varepsilon, m}^{-a}(z)}\right)_{\frac{r}{(1-\varepsilon) \lambda_{i, \min }}} d z \\
& \leq \frac{1}{2^{2 m} r^{2}} \sum_{i=1}^{l} p_{i}^{2}(1+\varepsilon) \lambda_{i, \max } 2^{m} \sum_{k=0}^{2^{m}-1} 2^{m} \int_{-1+k 2^{-m+1}}^{-1+(k+1) 2^{-m+1}}\left(\gamma_{z}, \gamma_{z}\right)_{\frac{r}{(1-\varepsilon) \lambda_{i, \text { min }}}} d z \\
& \leq \sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}} \frac{1}{\left(\frac{r}{(1-\varepsilon) \lambda_{i, \min }}\right)^{2}} \int_{-1}^{1}\left(\gamma_{z}, \gamma_{z}\right)_{\frac{r}{(1-\varepsilon) \lambda_{i, \text { min }}}} d z \\
& \leq \max _{i} J\left(\frac{r}{\lambda_{i, \min }(1-\varepsilon)}\right) \sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}} . \tag{2.8}
\end{align*}
$$

For the second part of the sum, we use (2.7), to prove that it is bounded by

$$
\begin{align*}
\frac{1}{2^{2 m} r^{2}} \sum_{i \neq j} p_{i} p_{j} \sum_{a \in A_{i}} \sum_{b \in A_{j}} & \int_{-1}^{1}\left(\gamma_{g_{\varepsilon, m}^{-a}(z)} \circ g_{\varepsilon, m}^{-a}, \gamma_{g_{\varepsilon, m}^{-b}(z)} \circ g_{\varepsilon, m}^{-b}\right)_{r} d z \\
& \leq \frac{1}{2^{2 m} r^{2}} \sum_{i \neq j} p_{i} p_{j} \sum_{a \in A_{i}} \sum_{b \in A_{j}} \frac{8 r^{2}}{C_{\varepsilon, m} \varepsilon} \leq \frac{8}{C_{\varepsilon, m} \varepsilon} \tag{2.9}
\end{align*}
$$

By using (2.8) and (2.9) we have

$$
\begin{equation*}
J(r) \leq \frac{8}{C_{\varepsilon, m} \varepsilon}+b \max _{i} J\left(\frac{r}{\lambda_{i, \min }(1-\varepsilon)}\right) \tag{2.10}
\end{equation*}
$$

where $b=\sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}}$ is less than 1 by (1.6). for sufficiently small $\varepsilon>0$. We define a strictly monotone decreasing series r_{k}. Let $r_{0}<1 / 2$ be fixed and $r_{k}=r_{0}(1-\varepsilon)^{k} \prod_{n=1}^{k}\left(\lambda_{i_{n}, \min }\right)$ such that

$$
\max _{i} J\left(\frac{r_{k}}{(1-\varepsilon) \lambda_{i, \min }}\right)=J\left(r_{k-1}\right)
$$

We note that r_{k} is a well defined series. Then by induction and by using (2.10), we have

$$
\begin{equation*}
J\left(r_{k}\right) \leq \frac{8}{C_{\varepsilon, m} \varepsilon} \frac{1-b^{k}}{1-b}+b^{k} J\left(r_{0}\right) \tag{2.11}
\end{equation*}
$$

for every $k \geq 1$. Hence by $(2.1),(2.2)$ and (2.11) we get

$$
\begin{align*}
\left\|\nu_{\varepsilon, m}\right\|_{2}^{2} \leq 4 \liminf _{r \rightarrow 0} J(r) \leq 4 \liminf _{k \rightarrow \infty} & J\left(r_{k}\right) \\
& \leq \frac{32}{C_{\varepsilon, m} \varepsilon} \frac{1}{1-\sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}}} \tag{2.12}
\end{align*}
$$

Since $\nu_{\varepsilon, m}$ converges weakly to ν_{ε} we get that

$$
\begin{equation*}
\left\|\nu_{\varepsilon}\right\|_{2} \leq \frac{1}{\sqrt{\varepsilon}} C_{\varepsilon}^{\prime} \tag{2.13}
\end{equation*}
$$

where

$$
C_{\varepsilon}^{\prime}=\sqrt{\frac{32}{\left(1-\sum_{i=1}^{l} p_{i}^{2} \frac{(1+\varepsilon) \lambda_{i, \max }}{\left((1-\varepsilon) \lambda_{i, \min }\right)^{2}}\right) C_{\varepsilon}^{\prime \prime}}}
$$

and

$$
C_{\varepsilon}^{\prime \prime}=\lim _{m \rightarrow \infty} C_{\varepsilon, m}=\min _{i \neq j}\left\{\frac{\left|a_{i}-a_{j}\right|+\varepsilon\left(-\left|a_{i}+a_{j}\right|-2\right)}{1-\varepsilon^{2}}\right\}
$$

3. Proof of Theorem 1.5

We do not notify the proof of Theorem 1.5 , because it is similar to the proof of Theorem 1.2. We notify only the modification of Lemma 2.2, which is important as it proves transversality.

First we define a new dynamical system. Let $Q_{i, k}$ and $A_{i, k}$ be as in Section 2. Let $\widetilde{g}_{\varepsilon, m}: Q \rightarrow Q$ be defined by

$$
\widetilde{g}_{\varepsilon, m}:(x, y, z) \mapsto\left(\widetilde{d}(z) x+a_{i}(1-\widetilde{d}(z)), \frac{1}{p_{i}} y+b(y), 2^{m} z+c(z)\right)
$$

for $(x, y, z) \in Q_{i}$, where

$$
\begin{array}{ll}
\widetilde{d}(z)=\lambda_{i}+2^{m} \varepsilon\left(z-\left(-1+\left(k+\frac{1}{2}\right) 2^{-m+1}\right)\right), & \text { for }(x, y, z) \in Q_{i, k} \\
b(y)=1-\frac{1}{p_{i}}\left(-1+2 \sum_{j=1}^{i} p_{j}\right), & \text { for }(x, y, z) \in Q_{i, k} \\
c(z)=2^{m}-2 k-1, & \text { for }(x, y, z) \in Q_{i, k}
\end{array}
$$

Lemma 3.1. Let us suppose that (1.9) holds. Let

$$
C_{p}=\left\{(u, v, w) \in T_{p} Q:\left|\frac{u}{w}\right|,\left|\frac{v}{w}\right|<\frac{2^{m+1} \varepsilon}{2^{m}-\lambda_{\max }-\varepsilon}\right\}
$$

where $p \in Q$ and $\lambda_{\max }=\max _{i} \lambda_{i}$. The cones C_{p} defines a family of unstable cones, that is $d_{p} \widetilde{g}_{\varepsilon, m}\left(C_{p}\right) \subset C_{\widetilde{g}_{\varepsilon, m}(p)}$.

Moreover, for sufficiently large m and every sufficiently small $0<\varepsilon$, if $\zeta_{1} \subset Q_{\xi_{1}}$ and $\zeta_{2} \subset Q_{\xi_{2}}$ are two line segments with tangents in C_{p} such that $\xi_{1} \in A_{i}$ and $\xi_{2} \in A_{j}, i \neq j$, then if $\widetilde{g}_{\varepsilon, m}\left(\zeta_{1}\right)$ and $\widetilde{g}_{\varepsilon, m}\left(\zeta_{2}\right)$ intersects, and if $\left(u_{1}, v_{1}, 1\right)$ and $\left(u_{2}, v_{2}, 1\right)$ are tangents to $\tilde{g}_{\varepsilon, m}\left(\zeta_{1}\right)$ and $\tilde{g}_{\varepsilon, m}\left(\zeta_{2}\right)$ respectively, there exists a constant $C_{\varepsilon, m}$, depending on ε and m, but bounded away from 0 and infinity, such that $\left|u_{1}-u_{2}\right|>C_{\varepsilon, m} \varepsilon$.

Proof of Lemma 3.1. The Jacobian of $\widetilde{g}_{\varepsilon, m}$

$$
d_{p} \widetilde{g}_{\varepsilon, m}=\left(\begin{array}{ccc}
\tilde{d}(z) & 0 & 2^{m} \varepsilon\left(x-a_{i}\right) \\
0 & \frac{1}{p_{i}} & 0 \\
0 & 0 & 2^{m}
\end{array}\right)
$$

where $p=(x, y, z) \in Q_{i, k}$. If $(u, v, w) \in C_{p}$, then

$$
d_{p} \widetilde{g}_{\varepsilon, m}(u, v, w)=\left(\begin{array}{c}
\tilde{d}(z) u+2^{m} \varepsilon\left(x-a_{i}\right) w \\
\frac{1}{p_{i}} v \\
2^{m} w
\end{array}\right)
$$

The estimate

$$
\begin{aligned}
\frac{\left|\widetilde{d}(z) u+2^{m} \varepsilon\left(x-a_{i}\right) w\right|}{\left|2^{m} w\right|} & \leq \frac{\tilde{d}(z)|u|}{2^{m}|w|}+2 \varepsilon \\
& \leq \frac{\lambda_{i}+\varepsilon}{2^{m}} \frac{2^{m+1} \varepsilon}{2^{m}-\lambda_{\max }-\varepsilon}+2 \varepsilon \leq \frac{2^{m+1} \varepsilon}{2^{m}-\lambda_{\max }-\varepsilon}
\end{aligned}
$$

shows that $d_{p} \widetilde{g}_{\varepsilon, m}\left(C_{p}\right) \subset C_{\widetilde{g}_{\varepsilon, m}(p)}$. Now we prove the other statement of the Lemma. Assume that $p=\left(x_{p}, y_{p}, z_{p}\right) \in Q_{i}$ and $q=\left(x_{q}, y_{q}, z_{q}\right) \in Q_{j}, i \neq j$, are such that $\widetilde{g}_{\varepsilon, m}(p)=\widetilde{g}_{\varepsilon, m}(q)=(x, y, z)$. Then

$$
p \in Q_{i} \quad \Rightarrow \quad d_{p} \widetilde{g}_{\varepsilon, m}:(u, v, 1) \mapsto 2^{m}\left(\frac{\widetilde{d}\left(z_{p}\right)}{2^{m}} u+\left(x_{p}-a_{i}\right) \varepsilon, \frac{v}{p_{i}}, 1\right)
$$

Then

$$
x_{p}=\frac{x-a_{i}\left(1-\widetilde{d}\left(z_{p}\right)\right)}{\widetilde{d}\left(z_{p}\right)}, \quad x_{q}=\frac{x-a_{j}\left(1-\widetilde{d}\left(z_{q}\right)\right)}{\widetilde{d}\left(z_{q}\right)}
$$

and

$$
\begin{aligned}
d_{p} \widetilde{g}_{\varepsilon, m}\left(C_{p}\right) \subset\left\{w(u, v, 1): \frac{x-a_{i}}{\widetilde{d}\left(z_{p}\right)} \varepsilon\right. & -\frac{2\left(\lambda_{i}+\varepsilon\right) \varepsilon}{2^{m}-\lambda_{\max }-\varepsilon} \\
& \left.\leq u \leq \frac{x-a_{i}}{\widetilde{d}\left(z_{p}\right)} \varepsilon+\frac{2\left(\lambda_{i}+\varepsilon\right) \varepsilon}{2^{m}-\lambda_{\max }-\varepsilon}\right\}
\end{aligned}
$$

Therefore

$$
\left|u_{2}-u_{1}\right| \geq\left(\left|\frac{x-a_{i}}{\widetilde{d}\left(z_{p}\right)}-\frac{x-a_{j}}{\widetilde{d}\left(z_{q}\right)}\right|-\frac{2\left(\lambda_{i}+\lambda_{j}+2 \varepsilon\right)}{2^{m}-\lambda_{\max }-\varepsilon}\right) \varepsilon
$$

The term

$$
\left|\frac{x-a_{i}}{\widetilde{d}\left(z_{p}\right)}-\frac{x-a_{j}}{\widetilde{d}\left(z_{q}\right)}\right|
$$

can be estimated by

$$
\left|\frac{x-a_{i}}{\widetilde{d}\left(z_{p}\right)}-\frac{x-a_{j}}{\widetilde{d}\left(z_{q}\right)}\right| \geq\left|\frac{\left|\widetilde{d}\left(z_{p}\right)-\widetilde{d}\left(z_{q}\right)\right||x|-\left|a_{j} \widetilde{d}\left(z_{p}\right)-a_{i} \widetilde{d}\left(z_{q}\right)\right|}{\widetilde{d}\left(z_{p}\right) \widetilde{d}\left(z_{q}\right)}\right|
$$

Hence, this term is positive provided that

$$
\left|a_{j} \widetilde{d}\left(z_{p}\right)-a_{i} \widetilde{d}\left(z_{q}\right)\right|>\left|\widetilde{d}\left(z_{p}\right)-\widetilde{d}\left(z_{q}\right)\right|
$$

Since $\lambda_{i}-\varepsilon \leq \widetilde{d}\left(z_{p}\right) \leq \lambda_{i}+\varepsilon$ and $\lambda_{j}-\varepsilon \leq \widetilde{d}\left(z_{q}\right) \leq \lambda_{j}+\varepsilon$, this is implied by (1.9) if ε is sufficiently small.

If we let

$$
C_{\varepsilon, m}=\frac{1}{2} \min _{i \neq j} \frac{\left|a_{i} \lambda_{j}-a_{j} \lambda_{i}\right|-\left|\lambda_{i}-\lambda_{j}\right|}{\lambda_{i} \lambda_{j}}
$$

then

$$
\left|u_{2}-u_{1}\right| \geq C_{\varepsilon, m} \varepsilon
$$

provided that ε is small and m large.

In fact we can let

$$
C_{\varepsilon, m}=\sigma \min _{i \neq j} \frac{\left|a_{i} \lambda_{j}-a_{j} \lambda_{i}\right|-\left|\lambda_{i}-\lambda_{j}\right|}{\lambda_{i} \lambda_{j}}
$$

for $0<\sigma<1$.

References

[1] B. Bárány, M. Pollicott, K. Simon, Stationary measures for projective transformations: the Blackwell and Furstenberg measures, preprint, (2009).
[2] P. Diaconis and D. A. Freedman, Iterated random functions, SIAM Review 41, No. 1, 45-76.
[3] A. H. Fan, K. Simon, H. Tóth, Contracting on average random IFS with repeling fixed point, J. Statist. Phys., 122, (2006), 169-193.
[4] K.-S. Lau, S.-M. Ngai and H. Rao, Iterated function systems with overlaps and selfsimilar measures, J. London Math. Soc. (2) 63 (2001), no. 1, 99-116.
[5] J. Neunhäuserer, Properties of some overlapping self-similar and some self-affine measures, Acta Math. Hungar., 92 (2001), 143-161.
[6] S.-M. Ngai and Y. Wang, Self-similar measures associated with IFS with non-uniform contraction ratios, Asian J. Math. 9 (2005), no. 2, 227-244.
[7] M. Nicol, N. Sidorov, D. Broomhead, On the fine structure of stationary measures in systems which contract on average,. J. Theoret. Probab., 15 (2002), no. 3, 715-730.
[8] Y. Peres and W. Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J., 102 (2000), no. 2, 193-251.
[9] Y. Peres, K. Simon, B. Solomyak, Absolute continuity for random iterated function systems with overlaps, J. London Math. Soc., (2), 74, (2006), 739-756.
[10] Y. Peres and B. Solomyak, Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc., 350, no. 10 (1998), 4065-4087.
[11] T. Persson, On random Bernoulli convolutions, preprint, (2008).
[12] K. Simon, B. Solomyak, and M. Urbański, Invariant measures for parabolic IFS with overlaps and random continued fractions, Trans. Amer. Math. Soc. 353 (2001), 51455164.
[13] M. Tsujii, Fat solenoidal attractor, Nonlinearity, 14:5, (2001), 1011-1027.
Balázs Bárány, IM PAN, Śniadeckich 8, P.O. Box 21, 00-956 Warszawa 10, Poland

E-mail address: balubsheep@gmail.com
Tomas Persson, IM PAN, Śniadeckich 8, P.O. Box 21, 00-956 Warszawa 10, Poland

E-mail address: tomasp@impan.pl

