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Abstract

In this paper, we consider a fractal model motivated by the abrasion
of convex polyhedra, where the abrasion is realised by chipping small
neighbourhoods of vertices. After providing a formal description of
the successive chippings, we show that the net of edges converge to
a compact limit set under mild assumptions. Furthermore, we study
the upper box-counting dimension and the Hausdorff dimension of the
limiting object of the net of edges after infinitely many chipping.
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1 Introduction

1.1 Motivation

Abrasion under collisions (also called collisional abrasion or chipping) is one
of the main geological processes governing the evolution of natural shapes,
ranging from pebbles to asteroids [7, 10, 24]. The process is driven by a
sequence of discrete collisions where abraded particle collides with abraders.
Based on their energy, collisions emerge in three well-separated phases [25]:
large energy collisions belong to the fragmentation phase, where cracks prop-
agate through the entire particle, which is ultimately split into several parts
of comparable volume. Medium energy collisions belong to the cleavage
phase, where the removed volume is smaller, but the crack propagates into
the interior of the particle. Finally, in the abrasion phase (also called the
chipping phase), we consider small energy collisions where cracks remain in
the vicinity of the surface and a small portion of the material is removed.

Geometric models of the high energy (fragmentation) phase and of the
low energy (abrasion) phase have been studied in considerable detail. In
the case of fragmentation, geometric models consider the bisection of con-
vex polyhedra by random planes and study the combinatorial and metric
properties of the descendant polyhedra [2, 8, 9]. In the case of abrasion, con-
sidering the limit where collision energy approaches zero led to the study
of mean field geometric partial differential equations (PDEs) [3, 5, 15, 17],
describing the evolution of shape as a function of continuous time. If one
considers the original collision process associated with finite impact energies,
then discrete time evolution models appear to be a natural choice [7, 25].
While no rigorous result is known that connects discrete-time models to
PDE models, their predictions show a very good qualitative match [7, 25],
suggesting that the geometric study of discrete-time collision models may
shed light on general features of shape evolution.

While the discreteness of shape evolution models referred so far only to
time, in such models, convex polyhedra are the natural choice as geomet-
ric approximations of the studied particle. This choice is natural not only
because (as we outline below) discrete time steps are best understood on dis-
crete geometric objects but also because the 3D scanned images of particles
on which computer codes can operate are also polyhedral objects [20].

The low energy, abrasion phase, geometric models of collisions are trun-
cations of the polyhedral model, which remove small portions of its volume.
If the latter is sufficiently small, then, from the combinatorial point of view,
we can distinguish between three kinds of local events where (a) one vertex
is removed and one face is created, (b) one edge is removed and one face
is created and (c) one face retreats parallel to itself and the combinatorial
structure of the polyhedron remains invariant. These three local events do
not differ from the point of view of collision energy. However, they differ
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from the point of view of the relative size and shape of the abraded particle
concerning the abrading particle [3, 6, 16]. In particular, event (a) corre-
sponds to the case when the abrader is much larger, and event (c) to the case
when the abrader is much smaller than the abraded particle. While none of
these three events can, on its own, fully capture collisional shape evolution
in the low energy (abrasion) phase. Still, the individual study of these events
can provide both geometric and physical insight. Moreover, in some cases,
one single event reproduces global shape features with remarkable accuracy.

Our goal is the detailed geometric description of the event (a) when one
vertex is removed in each step of the shape evolution process. Such discrete
steps are called chipping events [23, 28]. In our paper, we will remove
all vertices simultaneously, and we refer to this collective event as a single
chipping event. The planar version of the chipping event was studied earlier
in [28], revealing the emergence of fractal-like contours. Our goal is to offer
a full and rigorous geometric study of this phenomenon in three dimensions.
As noted above, event (a) corresponds to the case where the abrading object
is much larger than the abraded particle, and this is a realistic approximation
of pebbles carried in mountain rivers and evolving under collisions with the
riverbed. Figure 1 shows an andesite rock that has been abraded in the
Poprad River in the Tatra mountains. As a visual comparison, we show
a polyhedron with 2912 faces, which was produced from a cube via six
consecutive chipping events. Figure 2 shows the vicinity of one vertex of the
cube as well as the Apollonian gasket for visual comparison.

Figure 1: Left: Cube after six iterative chipping events with random orienta-
tion, having 2912 faces. Right: Moderately abraded andesite rock recovered
from the Poprad River at the foot of the High Tatra mountains.

Motivated by this visual analogy, we are interested in the geometric
description of the limit where the number of chipping events approaches
infinity. In this limit, the polyhedron (more precisely, its edge network)
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Figure 2: left: Figure of a simulation of chipping in the proximity of an
original vertex of the initial polyhedron. right: the Apollonian gasket

approaches a fractal-like object, and our first main result (Theorem 1) de-
termines the box-counting dimension of this object. Based on the recent
results of [1, 22], the Hausdorff dimension of that object in a less generic
case is also calculated (Theorem 2).

In fractal geometry, one of the cardinal questions is the dimension of
the object under consideration. There are several different kinds of dimen-
sions that are devoted to measuring how much the fractal set is spread. An
advantage of the box-counting dimension is that there are available meth-
ods that allow us to study the dimension of actual 3D scanned images of
particles, but unfortunately, these methods might give some relatively good
approaches only at certain scales.

It turns out that our model is strongly connected to the self-affine sets,
which have been extensively studied in the last decades; see [1, 13, 14, 18, 19,
27]. The dimension theory of such objects is highly non-trivial. For instance,
even in cases where a formula for the value of the dimension is known, it
cannot be calculated explicitly, only implicitly, and it can be approximated
well only in some cases; see [21, 26]. This is due to the extremely difficult
structure of the group of matrix products.

In our case, this difficulty arises as well. Namely, we can give only an
implicit formula for the box-counting dimension, which depends only on the
chippings. That is, the value of the dimension is independent of the initial
polyhedron.

The structure of the paper is as follows: In Section 2, we give a definition
for chipping, and for further analysis, we introduce the local chart represen-
tation of simple convex polyhedra, and we define a sequence of iterated
function systems (IFS) corresponding to the chipping. Finally, section 3 is
devoted to the proof of Theorem 1, and section 4 is devoted to proof of
Theorem 2.
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2 The model, the iterated function scheme repre-
sentation, and the dimension

2.1 The chipping model and the limit set

Let P be a convex polyhedron, that is, let V be a finite subset of R3 and
let P = conv(V) be the convex hull of V such that every point of V is an
extremal point of P . We call V = V(P ) the set of vertices of P . Furthermore,
let E = E(P ) be the set of edges. That is, for any two distinct A,B ∈ V,

[A,B] = {tA+ (1− t)B : 0 ≤ t ≤ 1} ∈ E(P )

if and only if every x ∈ [A,B] has a unique representation by the convex
combination of vertices using only A and B. Let H be the net of edges, i.e.
H = H(P ) =

⋃
[A,B]∈E(P )[A,B].

Let us index the vertices of P by a finite set I = I(P ), i.e. V(P ) =
{Ai : i ∈ I(P )}. For simpler notations, in some cases, we refer directly to
members of V(P ) by their indices. Let E(P ) ⊆ I(P ) × I(P ) be such that
(i, j) ∈ E(P ) if and only if [Ai, Aj ] ∈ E(P ). We use the convention that
E(P ) is symmetric, i.e., (i, j) ∈ E(P ) if and only if (j, i) ∈ E(P ). For a
j ∈ I, let N(j) be the set vertices, which are the neighbours of j, that is,
i ∈ N(j) if and only if (j, i) ∈ E(I). We call the convex polyhedron P simple
if #N(j) = 3 for every j ∈ I(P ). Furthermore, let F(P ) be the set of faces
of the polyhedron P , and for an S ∈ F(P ), denote by n(S) a unit normal
vector perpendicular to S. Finally, for a j ∈ I, let M(j) be the set of faces
S such that Aj is a vertex of S.

Now, we will define the way how a convex polyhedron evolves under the
chipping algorithm. Let j ∈ I(P ) and let nj be a vector such that Aj + εnj

is an interior point of P for every sufficiently small ε > 0, and nj is not
parallel with any n(S) for every S ∈ M(j). Let Ψj be the hyperplane with
normal vector nj , going through the point Aj+εjnj , and let Φj be the closed
half-space determined by Ψj such that Aj is an interior point of Φj , where
εj are chosen such that (P ∩Φj)∩ (P ∩Φk) = ∅ for every j ̸= k ∈ I(P ). By
chipping, we mean the removal of such P ∩Φj pyramids from all vertices of

P and the new chipped polyhedron is
⋃

i∈I(P ) P \ Φi.
By simple geometric arguments, it is easy to see that the chipping of vertices
generates a simple polyhedron. Thus, from now on, we will always assume
without loss of generality that P is simple. Furthermore, for the chipping
of simple polyhedra, we can give the following simpler definition:

Definition 1 (chipping). Let P be a simple convex polyhedron with vertices
V(P ) indexed by I and edges E(P ) indexed by E(P ) ⊆ I(P ) × I(P ). Let
p = (pij)(i,j)∈E(P ) be a vector of positive reals such that for every i, j ∈ I(P )
with (i, j) ∈ E(I), pij ∈ (0, 1) and pij + pji < 1. Let us call the vector p the
chipping rate vector. We define the chipped polyhedron Cp(P ) as follows: let
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the set of vertices

V(Cp(P )) := {Aj + pji
−−−→
AjAi : i, j ∈ I(P ) such that (i, j) ∈ E(P )},

and Cp(P ) = conv(V(Cp(P ))).
Let us index the vertices of Cp(P ) by E(P ), that is, let I(Cp(P )) = E(P )

and Aji := Aj + pji
−−−→
AjAi.

During the shape evolution of a simple polyhedron P when one of its
vertices Aj , which was in connection with Ai, Ak and Al, is chipped, it is
replaced by a new face composed of three new vertices, which are named
after the vertices they are created between Aji, Ajl and Ajk. In these new
vertices, the index of the chipped vertex, which is replaced by a new face,
is noted first. Chipping planes can only intersect edges starting from the
chipped vertex. The new vertices are placed on the edges according to
proportion pji, pjl, and pjk. Similarly, chipping Aji creates the new ver-
tices Ajiij , Ajijk, Ajijl dividing the edges according to pjiij , pjijl, and pjijk,
etc. Moreover, it is easy to see that any Aji, Akl ∈ V(Cp(P )), [Aji, Akl] ∈
E(Cp(P )) if and only if j = k or j = l and i = k.

Let j ∈ I(Cp(P )). There exist a unique j′ ∈ I(P ) and a unique i′ ∈ N(j′)
such that j = j′i′. We call j′ the mother of j, and we call i′ the father of j.
Furthermore, If P is simple, then k ∈ N(j) if and only if k = i′j′ or there
exists i′ ̸= k′ ∈ N(j′) such that k = j′k′. We call the vertex i′j′ ∈ N(j′i′)
the sibling of j = j′i′. Further, we call the vertices j′k′, j′l′ ∈ N(j′i′), where
k′, l′ ∈ N(j′) for k′ ̸= i′ and l′ ̸= i′, the cousins of j′i′. Let us denote the
index of the sibling of j by s(j). For a visual representation of the chipping
in a neighbourhood of a vertex and for the family relations, see Figure 3.

Note that the advantage of the described indexation is that there is a
one-to-one correspondence between the indexes E(P ) of edges of P and
the vertices I(Cp(P )) of Cp(P ) since E(P ) is symmetric. In particular,
I(Cp(P )) = E(P ).

Using the chipping algorithm of Definition 1, we can define a sequence
of simple convex polyhedra Pn as follows: For any initial simple, convex
polyhedra P0 = P , let p

0
be a chipping rate as in Definition 1, and let

P1 = Cp
0
(P0). Suppose that the simple convex polyhedron Pn is defined,

then let p
n
be a chipping rate on E(Pn) and let Pn+1 = Cp

n
(Pn). We call

the sequence Pn of polyhedra a chipping sequence.

Remark 1. Note that as n increases by one, the words describing the ele-
ments of I(Pn) are going to be 2n long combinations of the indices of I(P0).
Words describing elements of E(Pn) are twice as long words.

The main object of our study is the limit set of the net of edges H(Pn)
of the chipping sequence Pn. As we will see, there exists a unique compact
set X to which the sequence H(Pn) is converging in some proper sense
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Figure 3: Chipping of a tetrahedron. Black colour refers to the initial tetra-
hedron P0, and red refers to the effect of chipping and chipping rates. Arrows
indicate the family relationships of the Aji.

(Hausdorff metric), and this set shows fractal-like properties strongly related
to self-affine sets. For a discussion of this phenomenon, see Section 2.6.

Let us now define the Hausdorff metric of compact subsets of R3. For a
set X and δ > 0, let

[X]δ = {y ∈ R3 : there exists x ∈ X such that ∥x− y∥ < δ},

where ∥.∥ denotes the usual Euclidean norm. We define the Hausdorff metric
between two compact sets X,Y ⊂ R3

dH(X,Y ) = inf{δ > 0 : Y ⊂ [X]δ and X ⊂ [Y ]δ}.

It is well known that the set of compact subsets of R3 endowed with dH
forms a complete metric space, see [12, Theorem 3.16]. It is easy to see that
dH(

⋃n
i=1Xi,

⋃n
i=1 Yi) ≤ maxi=1,...,n dH(Xi, Yi) and for any Lipschitz map f

with Lipschitz constant C > 0, dH(f(X), f(Y )) ≤ CdH(X,Y ).

Proposition 1. Let Pn be a chipping sequence such that there exists a δ > 0
such that for every n ≥ 1 and i ∈ I(Pn), δ < pi and for every j ∈ N(i),
pi + pj < 1 − δ. Then, there exists a unique compact set X such that
dH(H(Pn), X) → 0 as n → ∞, where H(P ) is the net of edges of P .
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We will give the proof of Proposition 1 later at the end of Section 2.5. In
Figure 1, one can see the comparison of some realisations of the limit set of
the chipping sequence and an abraded andesite rock found in Poprad River.

For short, we say that the chipping rates p = (p)∞n=1 are regular if there
exists a δ > 0 such that for every n ≥ 1 and i ∈ I(Pn), δ < pi and for
every j ∈ N(i), pi + pj < 1 − δ. The regularity of the chipping sequence
roughly means that there is some fixed percentage, such that at least that
percentage of every edge is chipped in a neighbourhood of a vertex, but a
fixed percentage of every edge is kept.

2.2 Local representation of simple convex polyhedra

Let P be a simple convex polyhedron. Now, we define a local representation
of the edge net H(P ) of P by affine mappings. Let us denote the usual
orthogonal basis of R3 by {e1, e2, e3}. Let L =

⋃3
i=1[0, ei].

Definition 2 (Local chart). Let P be an arbitrary, simple, convex polyhe-
dron. Let λ = (λij)(i,j)∈E(P ) be a vector of positive reals such that for every
i, j ∈ I(P ) with (i, j) ∈ E(I), λij ∈ (0, 1) and λij + λji = 1.

Furthermore, for every j ∈ I(P ), let σj : {1, 2, 3} → N(j) be a permuta-
tion of the neighbouring vertices of j and let σ = (σj)j∈I(P ). Let us define
the matrix

Λj,σ,λ. =

λjσj(1) 0 0

0 λjσj(2) 0

0 0 λjσj(3)

 . (1)

Let Fj,σ,λ : R3 7→ R3 be such that

Fj,σ,λ(x) =
[−−−−−→
AjAσj(1)

−−−−−→
AjAσj(2)

−−−−−→
AjAσj(3)

]
Λj,σ,λx+Aj ,

where
−−→
AB denotes the vector with initial A and endpoint B. We call Fj,σ,λ

the local chart map of j with permutation σ and rate λ, and we call Fj,σ,λ(L)
the local neighbourhood of j ∈ I(P ).

For short, let Aj,σ :=
[−−−−−→
AjAσj(1)

−−−−−→
AjAσj(2)

−−−−−→
AjAσj(3)

]
. By definition,

Fj,σ,λ(0) = Aj and Fj,σ,λ(eℓ) = λjσ(ℓ) ·
−−−−−→
AjAσ(ℓ) + Aj for any ℓ = 1, 2, 3.

Hence, H(P ) =
⋃

j∈I(P ) Fj,σ,λ(L). Furthermore, we call the set of functions
Fσ,λ = {Fj,σ,λ}j∈I(P ) as the chart of H(P ) with respect to the permutations
σ and rate λ. For a visual representation of the local charts, see Figure 4.

2.3 Adapted charts

Let P be a simple convex polyhedron and let {Fj,σ,λ}j∈I(P ) be a chart of
H(P ) with permutations σ = (σj)j∈I(P ) and rates λ = (λij)(i,j)∈E(P ). We
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>

Figure 4: Cover of H(P ) by neighbourhoods.

can use a chart effectively during the procedure of chipping if the closest
cutting points on the edges of a vertex belong to the neighbourhood of the
vertex. In the following, we will define how the chart of P adapted to the
chipping Cp(P ) in such a way.

Definition 3 (Adapted charts). Let P be a simple convex polyhedron, and
let p = (pij)(i,j)∈E(P ) be a chipping rate. Let F ′

σ′,λ′ = {Fj′,σ′,λ′}j′∈I(P ) be a

chart of H(P ), and let Fσ,λ = {Fj,σ,λ}j∈I(Cp(P )) be a chart of H(Cp(P )).

We say that the chart Fσ,λ is adapted to F ′
σ′,λ′ if for every j ∈ I(Cp(P ))

with mother j′ ∈ I(P ) with and father i′ ∈ I(P ) such that N(j′) = {i′, k′, l′},
we have that N(j) = {i′j′, j′k′, j′l′} and σj((σ

′
j′)

−1)(i′) = i′j′, σj((σ
′
j′)

−1)(k′) =

j′k′ and σj((σ
′
j′)

−1)(l′) = j′l′, moreover,

Λj′,σ′,λ′ =


pj′σ′

j′ (1)
0 0

0 pj′σ′
j′ (2)

0

0 0 pj′σ′
j′ (3)

+


1− pσ′

j′ (1)j
′ − pj′σ′

j′ (1)
0 0

0 1− pσ′
j′ (2)j

′ − pj′σ′
j′ (2)

0

0 0 1− pσ′
j′ (3)j

′ − pj′σ′
j′ (3)

Λj,σ,λ.

In particular, σ being adapted to σ′ means that σ gives the same position
to the neighbours of j as the permutation σ′ of the mother vertex of j to
the father vertices. Clearly, if the chart is adapted to the chipping, then for
every i, j ∈ I(P ) with (i, j) ∈ E(P ), pij < λij .

For a simple convex polyhedron P and for j, i ∈ I(P ) with (i, j) ∈ E(P ),
let us define a sibling sequence with respect to a chipping sequence Pn =
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Cp
n
(Pn−1) with P0 = P and chipping rates p = (pij)(i,j)∈E(Pn) as follows: let

j0 = j and i0 = i. By induction, if jn, in ∈ I(Pn) such that (in, jn) ∈ E(Pn)
is defined then let jn+1 = jnin ∈ I(Pn+1) and in+1 = injn ∈ I(Pn+1), and by
the definition of the chipping, (in+1, jn+1) ∈ E(Pn+1). Clearly, the sibling
of jn is s(jn) = in for every n ≥ 1. For the first two steps of the sibling
sequence and the length of the edge between them, see Figure 5.

=>

Figure 5: Effect of chipping on one edge

Lemma 1. Let P be a simple convex polyhedron, and let Pn = Cp
n
(Pn−1) be

a chipping sequence with P0 = P and chipping rates p
n
= (pij)(i,j)∈E(Pn−1).

Let F (n)

σ(n),λ(n) be charts of H(Pn) such that F (n)

σ(n),λ(n) is adapted to F (n−1)

σ(n−1),λ(n−1)

for every n ≥ 1. Then for every j, i ∈ I(P ) with (i, j) ∈ E(P ) we have

λji =
∞∑
k=1

pjk

k−1∏
ℓ=1

(1− pjℓ − ps(jℓ)),

where jn is the sibling sequence with initial vertices j and i.

Proof. By definition of adaptedness of charts,

λji = pji + (1− pji − pij)λjiij = pj1 + (1− pj1 − ps(j1))λj1i1 .

The proof can be finished now by induction.

For a chipping sequence Pn = Cp
n
(Pn−1), if F (n)

σ(n),λ(n) are charts of H(Pn)

such that F (n)

σ(n),λ(n) is adapted to F (n−1)

σ(n−1),λ(n−1) for every n ≥ 1 then we say
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that the sequence of charts is adapted. By the definition of adaptedness,
σ(0) uniquely defines every permutation sequence σ(n) for every n ≥ 1.

A simple corollary of Lemma 1 is that the chart Fσ,λ ofH(P0) is uniquely
determined by the chipping sequence Pn = Cp

n
(Pn−1) and the vector of

permutations σ = (σj)j∈I(P0), and hence, it defines uniquely the sequence of
adapted charts.

2.4 Construction of the iterated function scheme represen-
tation of chipping

For a simple convex polyhedron P , chipping rates p = (pi′j′)(i′,j′)∈E(P ) and
permutations σ = (σj)j∈I(Cp(P )), where σj is a permutation of N(j), let us

define for every j ∈ I(Cp(P )) a 3× 3 matrix Cj,σ,p such that

Cj,σ,p =



1− pj − pσ(1) −pj −pj

0 pσ(2) 0

0 0 pσ(3)

 if σ(1) is the sibling of j,

pσ(1) 0 0

−pj 1− pσ(2) − pj −pj

0 0 pσ(3)

 if σ(2) is the sibling of j, and

pσ(1) 0 0

0 pσ(2) 0

−pj −pj 1− pσ(3) − pj

 if σ(3) is the sibling of j.

(2)

Lemma 2. Let P be a simple convex polyhedron, and let p = (pij)(i,j)∈E(P )

be a vector of chipping rates. Furthermore, let Fσ,λ and F ′
σ′,λ′ be charts of

H(Cp(P )) and H(P ) respectively such that Fσ,λ is adapted to F ′
σ′,λ′.

Then for every j ∈ I(Cp(P )) with mother j′ ∈ I(P ) we have

Fj,σ,λ = Fj′,σ′,λ′ ◦Gj′,j,σ′,σ,p,

where Gj′,j,σ′,σ,p(x) = Λ−1
j′,σ′,λ′

(
Cj,σ,pΛj,σ,λx+ pjeσ−1(s(j))

)
.

Proof. Let j ∈ I(Cp(P )) be arbitrary. Let j′ ∈ I(P ) the mother, and i′ ∈
N(j′) be the father of j, i.e. j = j′i′. Let us denote the other neighbours
of j′ by N(j′) \ {i′} = {k′, l′}. Then the neighbours of j = j′i′ are i := i′j′,
k := j′k′ and l := j′l′. In particular, i′j′ = s(j′i′) = s(j). Hence,

Aj = Aj′i′ = Aj′ + pj′i′
−−−−→
Aj′Ai′ ,

Ai = Ai′j′ = Ai′ + pi′j′
−−−−→
Ai′Aj′ ,

Ak = Aj′k′ = Aj′ + pj′k′
−−−−→
Aj′Ak′ and

Al = Aj′l′ = Aj′ + pj′l′
−−−−→
Aj′Al′ .

11



This implies that

−−−→
AjAi = (1− pi′j′ − pj′i′)

−−−−→
Aj′Ai′ ,

−−−→
AjAk = pj′k′

−−−−→
Aj′Ak′ − pj′i′

−−−−→
Aj′Ai′ ,

−−−→
AjAl = pj′l′

−−−−→
Aj′Al′ − pj′i′

−−−−→
Aj′Ai′ .

(3)

Thus, since the charts are adapted, we have σ−1
j (i) = σ−1

j′ (i′), σ−1
j (k) =

σ−1
j′ (k′) and σ−1

j (l) = σ−1
j′ (l′). So by (3) and the definition of matrix Cj,σ,p

(2), we get
Aj,σ = Aj′,σ′Cj,σ,p. (4)

Since i = i′j′ is the sibling of j = j′i′ we get by (4) that

Fj,σ,λ(x) = Aj,σΛj,σ,λx+Aj

= Aj′,σCj,σ,pΛj,σ,λx+Aj′ + pj′i′
−−−−→
Aj′Ai′

= Aj′,σ

(
Cj,σ,pΛj,σ,λx+ pj′i′eσ−1

j′ (i′)

)
+Aj′

= Fj′,σ′,λ′

(
Λ−1
j′,σ′,λ′Cj,σ,pΛj,σ,λx+ pj′i′Λ

−1
j′,σ′,λ′eσ−1

j (i)

)
,

which had to be proven.

Under the conditions of Lemma 2, the adaptedness of the charts (i.e.
σ−1
j (i) = σ−1

j′ (i′), σ−1
j (k) = σ−1

j′ (k′) and σ−1
j (l) = σ−1

j′ (l′)) implies that

Gj′,j,σ′,σ,p(eσ−1
j (s(j))) = eσ−1

j (s(j)),

Gj′,l,σ′,σ,p(eσ−1
j (k)) = Gj′,k,σ′,σ,p(eσ−1

j (l)) for k ̸= l ∈ N(j) \ {s(j)}.
(5)

Hence,
Gj′,j,σ′,σ,p(W ) ⊂ W, (6)

where W is the tetrahedron defined by the vectors {0, e1, e2, e3}.

2.5 Proof of the existence of the limiting object

Let now Pn = Cp
n
(Pn−1) be a chipping sequence with P0 = P and with chip-

ping rates p
n
= (pij)(i,j)∈E(Pn). Let F (n)

σ(n),λ(n) be the uniquely determined

sequence of adapted charts of H(Pn). For every n ≥ 1 and jn ∈ I(Pn),
there exists a unique sequence jk ∈ I(Pk) such that jk is the mother of jk+1

for every k = 0, . . . , n − 1. We call the sequence j = (jk)
n−1
k=0 the mother

sequence of jn. Let us denote the set of infinite mother sequences by Σ, that
is,

Σ = {(j0, j1, . . .) : jk ∈ I(Pk) and jk−1 is the mother of jk}.
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Furthermore, denote Σn, the set of mother sequences of length n and denote
Σ∗, the set of finite mother sequences. For a j ∈ Σ∗, denote |j| the length
of j, that is, |j| = n for j = (j0, . . . , jn).

By applying Lemma 2 inductively, we get

Fjn,σ(n),λ(n) = Fjn−1,σ(n−1),λ(n−1) ◦Gjn−1,jn,σ(n−1),σ(n),p
n

= Fjn,σ(0),λ(0) ◦Gj0,j1,σ(0),σ(1),p
1
◦ · · · ◦Gjn−1,jn,σ(n−1),σ(n),p

n
.
(7)

For a mother sequence j = (j0, . . . , jn) and a sequence chipping rates p =
(p

1
, . . . , p

n
) let

Gj,σ(0),p := Gj0,j1,σ(0),σ(1),p
1
◦ · · · ◦Gjn−1,jn,σ(n−1),σ(n),p

n
. (8)

Furthermore, let

Cj,σ(0),p := Cj1,σ(1),p
1
· · ·Cjn,σ(n),p

n
. (9)

Note that σ(0) determines uniquely the further permutations, so the product
and composition above depend only on it. Moreover, for an integer 1 ≤ k ≤
n − 1 let j|k = (j1, . . . , jk) and p|k = (p

1
, . . . , p

k
). For k = 0, we use the

conventions j|0 = ∅, p|0 = ∅, C∅,∅ = Id.
It is easy to see by the definition of the map Gj,σ(0),p that

Gj,σ(0),p(x) =

Λ−1

j0,σ(0),λ(0)

(
Cj,σ(0),p Λjn,σ(n),λ(n)x+

n∑
k=1

pjkCj|k−1,σ(0),p|k−1
eσ−1

jk
(s(jk))

)
.

Let us denote the set of indexes of vertices through the chipping by
I∗ :=

⋃∞
n=0 I(Pn).

Let us denote the singular values of a real 3×3 matrix A by α1 ≥ α2 ≥ α3.
Clearly, for a 3×3 matrix A, ∥A∥ = α1(A), where ∥.∥ is the induced norm by
the usual Euclidean norm, and α3(A) = ∥A−1∥−1. Furthermore, let ∥.∥1 be
the 1-norm of R3, that is, for vT = (v1, v2, v3) ∈ R3 ∥v∥1 = |v1|+ |v2|+ |v3|.
With a slight abuse of notation, let us denote the 1-norm of 3× 3 matrices
by ∥.∥1 too, that is, for a 3 × 3 matrix A = (aij)

3
i,j=1, we have ∥A∥1 =

max1≤j≤3{|a1j |+ |a2j |+ |a3j |}.

Lemma 3. If the chipping rates p are regular, then there exists C > 0 such
that for every n ≥ 1 and every mother sequence j = (j0, . . . , jn−1) of length
n

α1(Cj,σ(0),p) ≤ C(1− δ)n.
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Proof. Since every two norms over finite dimensional vector spaces are equiv-
alent, there exists C > 0 such that

α1(Cj,σ(0),p) ≤ C∥Cj,σ(0),p∥1 ≤ C
n∏

k=1

∥Cjk,σ(0),p
k
∥1.

On the other hand, for every matrix Cj,σ,p defined in (2)

∥Cj,σ,p∥1 = max

{
1− pj − ps(j), max

k∈N(j)\{s(j)}
{pj + pk}

}
≤ 1− δ,

which follows from the regularity of the rates.

Now, we are ready to show the existence of the limit set of the sequence
of net edges.

Proof of Proposition 1. Let P be a simple convex polyhedron. Let p =
(p

n
)∞n=1 be a sequence of regular chipping rates and let Pn = Cp

n
(Pn−1)

with P0 = P be a chipping sequence.
Let us fix a permutation vector σ(0) = (σj)j∈I(P ) and let F (n) be a

sequence of adapted charts of H(Pn). Note that p and σ uniquely determine
the sequence of adapted charts, so by a slight abuse of notation, we omit
the fixed permutation from the notations.

Let W be the tetrahedron defined by the vectors {0, e1, e2, e3}, and let
L =

⋃3
i=1[0, ei], where [0, ei] = {tei : t ∈ [0, 1]}. By definition, H(Pn) =⋃

F∈F(n) F (L) ⊂
⋃

F∈F(n) F (W ) =: Xn.
First, we show that Xn converges to a limit set X as n → ∞. By

Lemma 2 and (7), for every F ∈ F (n), there exists a mother sequence j such

that F = F ′ ◦Gj|n,p|n , where F ′ ∈ F (0). Thus, Xn ⊆ Xn−1 by (6). Clearly,
Xn are compact sets, and so there exists a non-empty compact set

X :=

∞⋂
n=1

Xn =
∞⋂
n=1

⋃
F∈F(n)

F (W ). (10)

Furthermore, by Lemma 3,

dH(F ′ ◦Gj|n−1,p|n−1
(W ), F ′ ◦Gj|n,p|n(W ))

≤ α1(Aj0Cj|n−1,p|n−1
Λjn−1,λ

(n−1))dH(W,Gjn−1,jn,pn
(W ))

≤ α1(Aj0)C(1− δ)n−1diam(W ),

where recall that Aj0 =
[−−−−−−−→
Aj0Aσj0

(1)
−−−−−−−→
Aj0Aσj0

(2)
−−−−−−−→
Aj0Aσj0

(3)

]
, and so

dH(Xn−1, Xn) ≤ (1− δ)n−1Cdiam(W ) max
j∈I(P )

α1(Aj).

14



This implies that Xn forms a Cauchy sequence, and so Xn → X in the
Hausdorff metric. Finally,

dH(H(Pn), Xn) ≤ max
F∈F(n)

dH(F (L), F (W )) ≤ max
F∈F(n)

diam(F (W ))

≤ max
j∈I(P )

α1(Aj)C(1− δ)n−1diam(T ),

which completes the proof.

2.6 The box-counting dimension

The main purpose of this paper is to study the fractal properties of the
limit set X defined in Proposition 1. There is no widely accepted definition
of fractals. However, most authors would call a set fractal if at infinitely
many scales its smaller parts resemble the whole. As we have seen by the
construction (10) in Section 2.5, X is a finite union of such sets since we
repeat the same kind of chipping again and again. In particular, if the
chipping rates pji ≡ p were taken as a constant value independent of n and
i, j ∈ I(Pn), then the limiting object X would be a finite union of self-affine
sets. More precisely, X =

⋃
F ′∈F(0) F ′(Y ), where Y is the unique non-empty

compact set such that

Y = (C1Y + 2pe1) ∪ (C2Y + 2pe2) ∪ (C3Y + 2pe3) , (11)

where Ci is the matrix defined in (2) such that j has sibling σ(i).
Let us now define the box-counting dimension. Let A be a bounded

subset of R3. Let Nδ(A) be the minimal number of balls that cover A. We
define the upper box-counting dimension as

dimB(A) = lim sup
δ→0

logNδ(A)

− log δ
.

Two useful properties of the upper box-counting dimension are finite
stability and monotonicity under Lipschitz mappings. That is, for every
finite index set J

dimB

⋃
j∈J

Aj

 = max{dimB(Aj) : j ∈ J},

and for every map f : R3 7→ R3 such that ∥f(x)−f(y)∥ ≤ L∥x−y∥ for every
x, y ∈ R3 with some uniform constant 0 < L

dimB (f(A)) ≤ dimB(A).

For further properties of the box-counting dimension, see [11, Section 3.1].
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The difficulty which arises in the calculation of the dimension of self-
affine-like objects is that they are defined by strict affine mappings. In
other words, the most natural cover of X is the collection {F (W )}F∈F(n) by
the construction (10), but the sets F (W ) are relatively long and thin shapes
which do not fit the required cover by balls. To handle this difficulty, let us
define the singular value function introduced by Falconer [13]. For a 3 × 3
matrix A, let

φs(A) =


α1(A)s if 0 ≤ s ≤ 1

α1(A)α2(A)
s−1 if 1 < s ≤ 2

α1(A)α2(A)α3(A)s−2 if 2 < s ≤ 3(
α1(A)α2(A)α3(A)

)s/3
if s > 3,

where αi(A) denotes the ith singular value of A. The function s 7→ φs(A)
is monotone decreasing, and the function A 7→ φs(A) is sub-multiplicative,
i.e. for every 3 × 3 matrices A,B, φs(AB) ≤ φs(A)φs(B) for every s ≥ 0,
see [13].

Theorem 1. Let P be a convex polyhedron, and let Pn = Cp
n
(Pn−1) be a

chipping sequence with P0 = P and chipping rates p
n
= (pi)i∈I(Pn). Let X

be the limiting object of the sequence H(Pn) defined in Proposition 1. Let
σ(0) be an arbitrary but fixed neighbourhood permutation of P . Furthermore,
let {Cj,p} be the matrices defined in (2) and (9).

If there exists δ > 0 such that for every j ∈ I∗ =
⋃∞

n=0 I(Pn) and
i ∈ N(j), pj > δ and pj + pi < 1− δ then

dimB(X) = s0 := inf{s > 0 :
∞∑
n=1

∑
j∈Σn

φs(Cj,p|n) < ∞}.

Furthermore, dimB(X) ∈ [1, 2].

The method of the proof uses the ideas of Falconer [14]. However, there
are several technical difficulties; for instance, X is not a planar, connected
set.

The dimension estimate 1 ≤ dimB(X) ≤ 2 seems virtually obvious,
since the set X is connected and its projection to the plane with normal
vector (1, 1, 1) satisfies a certain separation condition (see Lemma 8 later).
However, it is natural to expect that 1 < dimB(X) < 2, which would be
an even stronger fractal-like property and which might be possible to show
with some more sophisticated analysis relying submultiplicativity and the
mentioned separation.
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2.7 The Hausdorff dimension

Let us also mention another important dimension concept, the Hausdorff
dimension. For a subset A of Rd, we define the Hausdorff dimension of A by

dimH(A) = inf
{
s > 0 : there exists {Ui}i∈I such that

A ⊆
⋃
i∈I

Ui and
∑
i∈I

diam(Ui)
s < ∞

}
.

It is clear from the definition that dimH(A) ≤ dimB(A). Moreover, the
Hausdorff dimension is also monotone under Lipschitz maps, but it is count-
ably stable. For further properties, see Falconer [11].

In the case of the highly general chipping model with regular rates, the
calculation of the Hausdorff dimension of the limiting object seems unattain-
able even with the most current techniques. However, the constant chipping
rate case (11) can be handled thanks to the recent work of Rapaport [27] and
Morris and Sert [22]. Our second main theorem gives the Hausdorff dimen-
sion of the net of edges of the abraded polyhedron with constant chipping
rate.

Theorem 2. Let P be a convex polyhedron and 0 < p < 1/2. Let Pn =
Cp

n
(Pn−1) be a chipping sequence with P0 = P and chipping rates p

n
=

(pi)i∈I(Pn) such that pi = p for every i ∈
⋃∞

n=0 I(Pn), and let X be the
limiting object of the sequence H(Pn) defined in Proposition 1. Then

dimH(X) = s0 = inf{s > 0 :

∞∑
n=1

3∑
j1,...,jn=1

φs(Cj1 · · ·Cjn) < ∞},

where C1, C2 and C3 are the matrices from the equation (11).

Although the matrices are fixed throughout the construction, approxi-
mating the dimension value is extremely difficult, see Morris [21], and out
of the scope of this paper.

3 The upper box dimension of the edge net of the
abraded polyhedron

We assume, without loss of generality, that P0 is a simple convex polyhe-
dron. Throughout the section, we fix a Pn = Cp

n
(Pn−1) chipping sequence

with P0 = P and chipping rates p = (p
n
)∞n=1, where p

n
= (pi)i∈I(Pn) =

(pij)(i,j)∈E(Pn−1), furthermore, we fix a neighbourhood permutation σ =
(σj)j∈I(P ) of P0. We will also assume throughout the section that chip-
ping rates are regular. That is, there exists a δ > 0 such that for every
i ∈ I∗ =

⋃∞
n=0 I(Pn), δ < pi and pi + pj < 1− δ for every j ∈ N(i).
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To simplify the notations, we denote the adapted sequence of charts by
F (n) = {Fj}j∈I(Pn) and the matrix defined in (1) by Λj for j ∈ I∗. Let
us denote the matrices defined in (2) by Cj for j ∈ I∗, and the matrices
defined in (9) by Cj for mother sequences j ∈ Σ∗. Similarly, for a j ∈ I∗

with mother j′, let Gj′,j be the map defined in Lemma 2, and for a mother
sequence j ∈ Σ∗, let Gj be defined in (8).

For a mother sequence j = (j0, j1, . . . , jn) ∈ Σn, let

Bj := Λ−1
j0

CjΛjn .

Simple algebraic calculations show that for every j ∈ I∗, the matrix C−1
j

contains non-negative elements, hence, (Bj)
−1 has non-negative elements

for every mother sequence j ∈ Σ∗.
Let s0 be as in Theorem 1. By Lemma 1 and the regularity of the

chipping rates p, we have that for every j ∈ I∗, δ < λj < 1, and so

s0 = inf{s > 0 :
∑
j∈Σ∗

φs(Bj) < ∞}. (12)

3.1 Singular values and separation

Before we prove the lower bound in Theorem 1, we need further analysis
of the matrices Bj . For an ε ≥ 0, let us denote the triangle formed by the
vertices (1− 2ε, ε, ε), (ε, 1− 2ε, ε) and (ε, ε, 1− 2ε) by Tε. Let us denote the
triangle formed by the vertices e1, e2, e3 by T0. Let us denote the orthogonal
projection to a proper subspace Y of R3 by projY . Furthermore, let us de-
note the subspace perpendicular to (1, 1, 1) by V and, for simplicity, by proj
the orthogonal projection proj : R3 7→ V . Also, let us denote the standard
scalar product on R3 by ⟨·, ·⟩, and the angle between two vectors by ∢(·, ·).

Lemma 4. For every ε > 0, there exists a uniform constant C > 0 such
that for every v ∈ Tε, and every mother sequence j ∈ Σ∗

∥(Bj)
−1v∥ ≥ C∥(Bj)

−1∥.

Proof. Let A be an arbitrary but fixed matrix with strictly positive elements
such that for every w ∈ T0, Aw/∥Aw∥1 ∈ Tε. Since (Bj)

−1v has non-

negative elements, we have
A(Bj)

−1v

∥A(Bj)−1v∥1 ∈ Tε. By [4, Lemma 2.2], there

exists a constant C ′ > 0 depending only on ε > 0 such that

∥A(Bj)
−1v∥ ≥ C ′∥A(Bj)

−1∥.

But clearly, ∥A(Bj)
−1v∥ ≤ ∥A∥∥(Bj)

−1v∥ and ∥A(Bj)
−1∥ ≥ ∥A−1∥−1∥(Bj)

−1∥,
thus by choosing C = C ′∥A−1∥−1∥A∥−1, the claim follows.
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An immediate corollary of Lemma 4 is that for every v ∈ Tε, every n ≥ 1,
every mother sequence j ∈ Σ∗

α3(Bj) ≥ C∥Bj |(Bj)
−1V ⊥∥, (13)

where ∥A|Y ∥ denotes the restricted norm of the 3×3 matrix to the subspace
Y ⊂ R3, that is, ∥A|Y ∥ = supv∈Y ∥Av∥. More generally, denote by αi(A|V )
the ith singular value of the linear mapping A|V from V to Im(A|V ).

Lemma 5. There exists c > 0 such that for every mother sequence j ∈ Σ∗
and for every w ∈ V

∥proj(Bjw)∥ ≥ cα2(Bj)∥w∥.

Proof. Let w ∈ V be arbitrary. Then, for any vector v ∈ V ⊥

0 = ⟨w, v⟩ =
〈
Bjw,

(
(Bj)

−1
)T

v

〉
.

Since
(
(Bj)

−1
)T

has non-negative elements, we have that
(
(Bj)

−1
)T

v is

contained in the first octant {(x, y, z) : x, y, z ≥ 0}, and so there exists a
positive δ > 0 such that ∢(v,Bjw) > δ for every mother sequence j and
every w ∈ V . And so, there exists c > 0 such that

∥proj(Bjw)∥ ≥ c∥Bjw∥.

Let w1, w2 ∈ V be such that ⟨w1, w2⟩ = 0, and let Z be the parallelepiped
formed by w1, w2, (Bj)

−1v. Hence,

α1(Bj)∥w1∥∥Bjw2∥∥v∥ ≥ ∥Bjw1∥∥Bjw2∥∥v∥ ≥ Vol(Bj(Z))

= α1(Bj)α2(Bj)α3(Bj)Vol(Z)

≥ α1(Bj)α2(Bj)α3(Bj)∥w1∥∥w2∥∥(Bj)
−1v∥

√
2/2

≥ Cα1(Bj)α2(Bj)∥w1∥∥w2∥,

where in the last inequality, we used Lemma 4. Hence, the claim follows.

Lemma 6. For every mother sequence j ∈ Σ∗ and every vector w with
strictly positive coordinates, there exists c > 0 such that

Gj(0) + cw ∈ Gj(T0).

In particular, for every 2-dimensional subspace Y with a normal vector of
strictly positive coordinates, projY (Gj(W )) = projY (Gj(T0)).
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Proof. There exists c ∈ R such thatGj(0)+cw is contained in the hyperplane
Gj(V + v), where v = (1/3, 1/3, 1/3). Indeed, if not, then w ∈ Bj(V ) and

in particular, (Bj)
−1w ∈ V . Since (Bj)

−1w has strictly positive coordinates
this is impossible.

Now, let us argue by contradiction and suppose that
Gj(0) + cw ∈ Gj(V + v) \Gj(T0). Clearly, G

−1
j (Gj(0) + cw) = c(Bj)

−1w ∈
(V + v) \ T0, but this is impossible since (Bj)

−1w has strictly positive ele-
ments.

Finally, let Y ⊂ R3 be a 2-dimensional subspace with normal vector w.
Since projY (Gj(0) + cw) = projY (Gj(0)), the last claim follows.

Lemma 7. There exists a uniform constant C > 0 such that for every
mother sequence j ∈ Σ∗

Area
(
proj(Gj(T0))

)
≥ Cα1(Bj)α2(Bj).

Proof. Let v = (1/3, 1/3, 1/3) as usual. By Lemma 6, there exists c > 0
such that Gj(0) + cv ∈ Gj(T0). Since G−1

j (Gj(0) + cv) = c(Bj)
−1v ∈ T0, we

have ∥c(Bj)
−1v∥ ≤ 1. Thus, by (13) we get

c∥v∥ =

∥∥∥∥∥Bj

(Bj)
−1v

∥(Bj)−1v∥

∥∥∥∥∥ ∥c(Bj)
−1v∥ ≤ Cα3(Bj). (14)

Let us denote the height of Gj(W ) with respect to the side Gj(T0) by m.
Then

α1(Bj)α2(Bj)α3(Bj)Area(T0)

√
3

18
= α1(Bj)α2(Bj)α3(Bj)Vol(W )

= Vol(Gj(W )) = Area(Gj(T0))m/6

≤ Area(Gj(T0))c∥v∥/6
≤ Area(Gj(T0))α3(Bj)C/6,

where in the last inequality, we used (14).

Lemma 8. For every n ≥ 1 and every mother sequences j, j′ ∈ Σn such
that j0 = j′0 but j ̸= j′, i.e. there exists 1 ≤ k ≤ n such that jk ̸= j′k then

proj(Gj(W
o)) ∩ proj(Gj′(W

o)) = ∅,

where we recall that proj denotes the orthogonal projection to the subspace
V of normal vector v = (1/3, 1/3, 1/3).

Proof. Let 1 ≤ k ≤ n be the smallest integer such that jk ̸= j′k. Since
Gi′,i(W ) ⊆ W for every i ∈ I∗ with mother i′, it is enough to show that for
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every 2-dimensional subspace Y ⊂ R2 with normal vector of strictly positive
entries

projY (Gjk−1,jk(W
o)) ∩ projY (Gj′k−1,j

′
k
(W o)) = ∅,

where projY is the orthogonal projection to the subspace Y . Hence, by
Lemma 6 it is enough to show that

projY (Gjk−1,jk(T0))
o ∩ projY (Gj′k−1,j

′
k
(T0))

o = ∅.

However, this simply follows by the geometric position of the triangles
Gjk−1,jk(T0) and Gj′k−1,j

′
k
(T0). That is, each of the triangles have a ver-

tex on different coordinate axis, the common vertex is positioned on the
plane formed by these coordinate axis, and the third vertices of both of the
triangles lie on the other two coordinate-planes.

Lemma 9. There exists a constant C > 0 such that for every mother se-
quence j ∈ Σ∗ there exists an i ∈ {2, 3} such that

∥ proj(Gj(ei))− proj(Gj(e1))∥ ≥ Cα1(Bj).

Proof. Let us consider the singular value decomposition of the linear map
projBj |V : V 7→ V . Namely, let x1, x2 and y

1
, y

2
be orthonormal bases of V

such that projBjxi = αi(projBj |V )y
i
for i = 1, 2.

Now, let us consider the exterior product
∧
V . Clearly, dim

∧
V = 1

and projBj |V induces a linear map (projBj |V )∧ on
∧
V naturally by

(projBj |V )∧(x ∧ y) = (projBjx) ∧ (projBjy) =: dj x ∧ y,

where dj = α1(projBj |V )α2(projBj |V ) ∈ R. Since ∥x ∧ y∥ is the area of
the parallelogram formed by the vectors x, y ∈ V , we get by Lemma 7 that
there exists a constant C > 0 such that for every mother sequence j ∈ Σ∗

α1(projBj |V )α2(projBj |V ) ≥ Cα1(Bj)α2(Bj). (15)

Furthermore, since α2(Bj) ≥ infw∈V ∥projBjw∥ we have that

α1(projBj |V ) ≥ Cα1(Bj). (16)

For every vector z ∈ V such that ∢(x1, z) < π/2 − ε, ∥ projBjz∥ ≥
α1(projBj |V )∥z∥ cos(π/2− ε). Since the angle between e3 − e1 and e2 − e1
is π/3, by choosing ε = π/12 we get that there is an i ∈ {2, 3} such that

∥projBj(ei − e1)∥ ≥ cos(5π/12)∥ei − e1∥α1(projBj |V ).

The claim of the lemma follows from the combination of the previous in-
equality with (16).
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3.2 Upper bound

The proof of the upper bound is standard and follows easily from [14], but
we give here the details for the convenience of the reader. First, we show
that s0 ≤ 2.

Lemma 10. Under the assumptions above, s0 ≤ 2.

Proof. By Lemma 6 and Lemma 8, for every n ∈ N,
⋃

j∈Σn

proj ◦Gj(T0) ⊂ T0

and Gj(T0)
o ∩Gi(T0)

o = ∅ for every j ̸= i ∈ Σn. Hence, by Lemma 7

Area(proj(T0)) ≥
∑
j∈Σn

Area
(
proj(Gj(T0))

)
≥ C

∑
j∈Σn

α1(Bj)α2(Bj).

On the other hand, by Lemma 1 and the regularity of the chipping rates p,
we have that for every j ∈ I∗, δ < λj < 1, and so by Lemma 3, there exists
a constant C > 0 such that for every j ∈ Σ∗

α3(Bj) ≤ α1(Bj) ≤ C(1− δ)|j|. (17)

Thus, for every s > 2

∞∑
n=1

∑
j∈Σn

α1(Bj)α2(Bj)α3(Bj)
s−2 ≤ Cs−2

∞∑
n=1

(1− δ)n(s−2) < ∞.

Lemma 11. Under the assumptions above, dimB(X) ≤ s0.

Proof. Let s0 < s < 3 be arbitrary but fixed, and let K :=
∑

j∈Σ∗
φs(Bj),

and let ℓ = ⌈s⌉. For every infinite mother sequence j ∈ Σ and δ > 0, there
exists a unique n = n(j, δ) ∈ N such that αℓ(Aj0Bj|n) ≤ δ < αℓ(Aj0Bj|n−1

).
Let

Mδ = {j ∈ Σ∗ : αℓ(Aj0Bj) ≤ δ < αℓ(Aj0Bj||j|−1
)}.

Let B(0, 1) be the unit ball centred at the origin. Since T ⊂ B(0, 1),
X ⊂

⋃
j0∈I(P ),j∈Mδ

Fj0 ◦ Gj(B(0, 1)) for every δ > 0. Furthermore, Fj0 ◦
Gj(B(0, 1)) is an ellipse with main semi-axis of length αi(Aj0Bj). Let
Rj be the smallest closed rectangle with axis parallel to the main axis of
Fj0 ◦ Gj(B(0, 1)). Then, for every j ∈ Mδ, Rj can be covered by at most
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∏ℓ−1
n=1

⌈
αn(Aj0

Bj)

αℓ(Aj0
Bj)

⌉
-many cubes of side length δ > 0. Thus,

N√
3δ(X) ≤

∑
j∈Mδ

ℓ−1∏
n=1

⌈
αn(Aj0Bj)

αℓ(Aj0Bj)

⌉
≤ 4

∑
j∈Mδ

ℓ−1∏
n=1

αn(Aj0Bj)

αℓ(Aj0Bj)

≤ 4δ−s
∑
j∈Mδ

ℓ−1∏
n=1

αn(Aj0Bj)

αℓ(Aj0Bj)
αℓ(Aj0Bj)

s

≤ 4δ−s
∑
j∈Mδ

φs(Aj0Bj) ≤ 4δ−s max
j∈I(P )

φs(Aj)K,

which completes the proof since s0 < s was arbitrary.

3.3 Lower bound

Before we turn into the lower bound, observe that by Gj′,j(W ) ⊂ W we
get that for every j ∈ I(P ) there exists a non-empty compact set Zj =⋂∞

n=1

⋃
j∈Σn

Gj(W ), moreover, X =
⋃

j∈I(P ) Fj(Zj).

Lemma 12. Under the assumptions above, s0 ≥ 1.

Proof. Clearly, for every i ∈ I(P ), Zi contains a curve connecting e1 and e2.
Let us denote this curve by Γ. Let Dn(i) := {j ∈ Σn : Gj(W )o ∩Γ ̸= ∅}. By
(5), we can order Dn(i) = {j

1
, . . . , j

#Dn(i)
} such that Gj

ℓ
(e1) = Gj

ℓ+1
(e2).

Hence,

√
2 = ∥e2 − e1∥ ≤

∑
j∈Dn(i)

∥Bj(e2 − e1)∥ ≤
∑
j∈Σn

α1(Bj)∥e2 − e1∥,

which implies
∑

j∈Σ∗
α1(Bj) = ∞.

Let us now define a modified cut of the mother sequences: let i ∈ I(P ),
and let

Mn(i) := {j ∈ Σ∗ : j0 = i and C(1− δ)n+1 < α2(Bj) ≤ C(1− δ)n},

where C(1 − δ)n is the upper estimate in Lemma 3. Hence, for every j ∈
Mn(i), |j| ≤ n. Furthermore, Σ∗ =

⋃
i∈I(p)

⋃∞
n=1Mn(i).

Lemma 13. If
∑

j∈Σ∗
φs(Bj) = ∞ then there exists a sequence nk and an

i ∈ I(P ) such that
∑

j∈Mnk
(i) φ

s(Bj) > n−2
k .

Proof. Let us argue by contradiction. Suppose that there exists N ≥ 1 such
that for every n ≥ N and i ∈ I(P )∑

j∈Mn(i)

φs(Bj) ≤ n−2.
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Hence,

∑
j∈Σ∗

φs(Bj) =
∑

i∈I(P )

∞∑
n=1

∑
j∈Mn(i)

φs(Bj)

≤
∑

i∈I(P )

N∑
n=1

∑
j∈Mn(i)

φs(Bj) + #I(P )
∞∑

n=N

1

n2
< ∞,

which is a contradiction.

Lemma 14. For every s ≥ 1 and i ∈ I(P ) such that
∑

j∈Σ∗:j0=i

φs(Bj) = ∞,

dimBproj(Zi) ≥ s.

Proof. Trivially, proj(Zi)∩projGj(T0) contains curves connecting projGj(e1)
and projGj(e2), projGj(e1) and projGj(e3). Then for every j ∈ Σ∗

Nr

(
proj(Zi) ∩ proj(Gj(T0))

)
≥

∥ projBj(ek − e1)∥
r

Hence, by choosing r = C(1 − δ)n+1 and j ∈ Mn, and applying Lemma 9
we get

NC(1−δ)n+1

(
proj(Zi) ∩ proj(Gj(T0))

)
≥ C ′α1(Bj)

α2(Bj)

for some uniform constant C ′ > 0. Since for every x ∈ proj(Zi) there exist
at most 2 j ∈ Σm for every m = 1, 2, . . . such that x ∈ projGj(T0) we get
that for every m ≤ n

NC(1−δ)n+1(proj(Zi)) ≥ NC(1−δ)n

proj(Zi) ∩
⋃

j∈Mn(i)∩Σm

projGj(T0)


≥ C ′

2

∑
j∈Mn(i)∩Σm

α1(Bj)

α2(Bj)

and so

nNC(1−δ)n+1(proj(Zi)) ≥
C ′

2

∑
j∈Mn(i)

α1(Bj)

α2(Bj)
≥ C ′

2Cs(1− δ)sn

∑
j∈Mn(i)

φs(Bj)

Hence, by Lemma 13, there exists a subsequence nk such that

NC(1−δ)nk+1(proj(Zi)) ≥
C ′

2Cs(1− δ)snkn3
k

,

which implies the claim.
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Proof of Theorem 1. By Lemma 11 and (12), the upper bound dimB(X) ≤
s0 follows.

For the lower bound, we have by Lemma 14 that for every s ≥ 1 with
s < s0 or s = 1

dimB(X) = max{dimB(Fj(Zj)) : j ∈ I(P )}
≥ max{dimB(Zj) : j ∈ I(P )}
≥ max{dimB(proj(Zj)) : j ∈ I(P )} ≥ s.

Since s was arbitrary, the claim follows.

4 The Hausdorff dimension of the edge net of the
abraded polyhedron with constant chipping rate

In this section, we turn to the case when the chipping rates are constant.
As we have seen, X =

⋃
F ′∈F(0) F ′(Y ) in this case, where Y is the unique

non-empty compact set satisfying (11). That is, X is a finite union of affine
images of the self-affine set Y .

Let us now introduce two new definitions. A finite collection of d ×
d matrices {A1, . . . , Am} is called proximal if there exists a finite product
Ai1 · · ·Ain such that the maximal eigenvalue in modulus has multiplicity
one. Moreover, we call the collection of d×d matrices {A1, . . . , Am} strongly
irreducible if there is no finite collection of proper subspaces V1, . . . , Vn of
Rd such that Ai

⋃n
j=1 Vj ⊆

⋃n
j=1 Vj for every i = 1, . . . ,m.

We state the result of Bárány, Hochman and Rapaport [1, Theorem 1.1]
and Morris and Sert [22, Theorem 1.5], which we intend to apply to prove
Theorem 2.

Theorem 3. Let Φ = {Fi(x) = Aix + ti}mi=1 be a finite collection of affine
contractions on Rd for d = 2, 3. Suppose that the matrices {A1, . . . , Am}
are invertible, proximal, strongly irreducible and there exists an open and
bounded set U such that Fi(U) ∩ Fj(U) = ∅ for every i ̸= j and Fi(U) ⊆ U
for every i. Then

dimH(X) = inf{s > 0 :

∞∑
n=1

m∑
j1,...,jn=1

φs(Aj1 · · ·Ajn) < ∞},

where X is the unique non-empty compact set such that X =
⋃m

i=1 Fi(X).

Our main goal is now to verify the conditions of Theorem 3 for the system
in (11). For the convenience of the reader, let us recall that

C1 =

1− 2p −p −p

0 p 0

0 0 p

 , C2 =

 p 0 0

−p 1− 2p −p

0 0 p

 , C3 =

 p 0 0

0 p 0

−p −p 1− 2p

 .
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Lemma 15. The matrices {C1, C2, C3} are proximal for every 0 < p < 1/2.

Proof. Since the eigenvalues of the matrix C1 are 1−2p with multiplicity one
and p with multiplicity two, the proximality is straightforward if p < 1/3.
For the case p ≥ 1/3, consider the product

C1C2 =

p− p2 −(1− 2p)p 0

−p2 (1− 2p)p −p2

0 0 p2

 ,

which has eigenvalues

0 <
p
(
2− 3p−

√
(4− 7p)p

)
2

< p2 <
p
(
2− 3p+

√
(4− 7p)p

)
2

for 1/3 ≤ p < 1/2, which completes the proof.

Lemma 16. The matrices {C1, C2, C3} are strongly irreducible for every
p ∈ (0, 1/2) \ {1/5}.

Proof. Let us argue by contradiction. That is, suppose that there exists a
finite collection of proper subspaces V1, . . . , Vn of R3 such that Cj

⋃n
i=1 Vi ⊆⋃n

i=1 Vi for every j = 1, 2, 3. Since the matrices {C1, C2, C3} are invertible,
the image of a two-dimensional subspace is a two-dimensional subspace. Let
{W1, . . . ,Wm} ⊆ {V1, . . . , Vn} be the subset containing the two-dimensional
subspaces. Using that the matrices are invertible, Cj

⋃m
i=1Wi =

⋃m
i=1Wi for

every j = 1, 2, 3.
LetW⊥

i be the orthogonal complement ofWi. By a similar argument like
in Lemma 5, we get that (C−1

j )T
⋃m

i=1W
⊥
i =

⋃m
i=1W

⊥
i . In particular, for ev-

ery i = 1, 2, 3, there exists a permutation map qi : {1, . . . ,m} → {1, . . . ,m}
such that (C−1

i )TWj = Wqi(j). Since the permutations form a finite group,

by Lagrange’s theorem qm!
i is the identity map, i.e. (C−m!

i )TWj = Wj for ev-
ery i = 1, 2, 3 and j = 1, . . . ,m. That is, Wj is a one-dimensional eigenspace
of (C−m!

i )T and simple calculations show that Wj must be a one-dimensional
eigenspace of (C−1

i )T for every j = 1, . . . ,m and i = 1, 2, 3. Hence, for i = 1

W⊥
j = {(a(1− 3p),−pa,−pa) : a ∈ R} or W⊥

j ⊂ {(0, a, b) : a, b ∈ R} .

If p ̸= 1/3, then the first case is not possible since it is not invariant with
respect to (C−1

2 )T . So

W⊥
j ⊂ {(0, a, b) : a, b ∈ R} ∩ {(a, 0, b) : a, b ∈ R} ∩ {(a, b, 0) : a, b ∈ R} ,

which is impossible. If p = 1/3 then the subspace in the first case is con-
tained in the subspace in the other possibility, and so, every subspace in the
collection {V1, . . . , Vn} must be one-dimensional.
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However, similar argument shows that then every subspace Vj must be
a one-dimensional eigenspace of every matrix Ci. It is easy to see that
the eigenspace of the eigenvalue 1 − 2p of any of the three matrices is not
invariant with respect to the other matrices. If p = 1/3 then there are no
further eigenspaces. If p ̸= 1/3, then simple algebraic manipulations show
that every vector in the two-dimensional eigenspace of Ci corresponding to
the eigenvalue p is an eigenvector. The three two-dimensional eigenspace of
the matrices {C1, C2, C3} has non-trivial intersection if and only if

0 = det


 1 −p

1−3p
−p

1−3p
−p

1−3p 1 −p
1−3p

−p
1−3p

−p
1−3p 1


 ,

where the column vectors above are the normal vectors of the two-dimensional
eigenspaces corresponding to the eigenvalue p. But the equation above holds
if and only if p = 1/5, which completes the proof.

Now, we study the case when p = 1/5. Let us recall from Section 3.1
that proj : R3 → V denotes the orthogonal projection to the subspace V
perpendicular to the vector (1, 1, 1). If p = 1/5 then the vector (1, 1, 1) is an
eigenvector for all of the matrices C1, C2 and C3 with eigenvalue 1/5. Thus,
the linear map Dj := projCj |V : V → V satisfies that

Dj proj(v) = proj(Cjv) for every v ∈ R3. (18)

It is easy to see that Dj is invertible for every j = 1, 2, 3.

Lemma 17. For p = 1/5, the linear maps {D1, D2, D3} are strongly irre-
ducible on V .

Proof. Let us again argue by contradiction. Let {W1, . . . ,Wm} be one-
dimensional proper subspaces of V such thatDj

⋃m
i=1Wi =

⋃m
i=1Wi. Similar

argument to Lemma 16 shows that every Wi must be an eigenspace of Dj

for every j = 1, 2, 3. By (18), the orthogonal projections of the eigenvectors
of Cj are the eigenvectors of Dj . Hence, for the matrix D1,

Wj = {(0, a,−a) : a ∈ R} or Wj = {(2a,−a,−a) : a ∈ R}

for every j = 1, . . . ,m. However, none of these subspaces are invariant with
respect to D2, which is a contradiction.

Proof of Theorem 2. Our goal is to show that the maps in (11) satisfies the
conditions in Theorem 3. Since X is a finite union of affine images of Y
defined in (11), the claim of the theorem follows.

First, let us suppose that p ∈ (0, 1/2)\{1/5}. For simplicity, let Gi(x) =
Cix+ 2pei. Let W be the tetrahedron defined by the vectors {0, e1, e2, e3}.

27



Then by (6), Gi(W
o) ⊂ W o for every i = 1, 2, 3. The claim Gi(W

o) ∩
Gj(W

o) = ∅ for i ̸= j clearly follows by Lemma 8. The proximality follows
by Lemma 15 and the strong irreducibility follows by Lemma 16.

Let us turn to the case p = 1/5. Let gi : V → V be the affine maps
gi(x) = Dix+2p proj(ei). Hence, proj ◦Gi = gi◦proj by (18). Thus, proj(Y )
is the unique non-empty compact set such that proj(Y ) =

⋃3
i=1 gi(proj(Y )).

By Lemma 8, we have that gi(T
o
0 ) ⊂ T o

0 for every i = 1, 2, 3 and gi(T
o
0 ) ∩

gj(T
o
0 ) = ∅ for every i ̸= j. The linear maps D1, D2, D3 are clearly proximal,

and are strongly irreducible by Lemma 17. Hence,

dimH(Y ) ≥ dimH(proj(Y )) = inf

s > 0 :
∞∑
n=1

3∑
j1,...,jn=1

φs(Dj1 · · ·Djn) < ∞

 .

(19)
By (15) and (16), there exists C > 0 such that

α1(Dj1 · · ·Djn) ≥ Cα1(Cj1 · · ·Cjn) and

α1(Dj1 · · ·Djn)α2(Dj1 · · ·Djn) ≥ Cα1(Cj1 · · ·Cjn)α2(Cj1 · · ·Cjn),

which implies that the right-hand side of (19) equals s0, which completes
the proof.
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[24] T. Novák-Szabó, A. A. Sipos, S. Shaw, D. Bertoni, A. Pozzebon,
E. Grottoli, G. Sarti, P. Ciavola, G. Domokos, and D. J. Jerolmack.
Universal characteristics of particle shape evolution by bed-load chip-
ping. Science Advances, 4(3):eaao4946, Mar. 2018.

[25] G. Pál, G. Domokos, and F. Kun. Curvature flows, scaling laws and
the geometry of attrition under impacts. Scientific Reports, 11:20661,
2021.

[26] M. Pollicott and P. Vytnova. Estimating singularity dimension. Math.
Proc. Cambridge Philos. Soc., 158(2):223–238, 2015.

[27] A. Rapaport. On self-affine measures associated to strongly irreducible
and proximal systems. Advances in Mathematics, 449:109734, 2024.

[28] S. Redner and P. Krapivsky. Smoothing a rock by chipping. Physical
Review E, 75, 2007.

30


	Introduction
	Motivation

	The model, the iterated function scheme representation, and the dimension
	The chipping model and the limit set
	Local representation of simple convex polyhedra
	Adapted charts
	Construction of the iterated function scheme representation of chipping
	Proof of the existence of the limiting object
	The box-counting dimension
	The Hausdorff dimension

	The upper box dimension of the edge net of the abraded polyhedron
	Singular values and separation
	Upper bound
	Lower bound

	The Hausdorff dimension of the edge net of the abraded polyhedron with constant chipping rate

