DIMENSION MAXIMIZING MEASURES FOR SELF-AFFINE SYSTEMS

BALAZS BARANY AND MICHAL RAMS

ABSTRACT. In this paper we study the dimension theory of planar self-affine sets satisfying domin-
ated splitting in the linear parts and strong separation condition. The main results of this paper is
the existence of dimension maximizing Gibbs measures (Kdenmé#ki measures). To prove this phe-
nomena, we show that the Ledrappier-Young formula holds for Gibbs measures and we introduce a
transversality type condition for the strong-stable directions on the projective space.

1. INTRODUCTION AND STATEMENTS

Let A := (A1, As,...,AN) be a finite set of contracting, non-singular 2 x 2 matrices, and let
S = {fi:x— Az + ti}i]\il be an iterated function system (IFS) on the plane with affine mappings,
where |A;| < 1 and t; € R? for i = 1,...,N. It is a well-known fact that there exists an unique

non-empty compact subset A of R? such that

We call the set A the attractor of ® or self-affine set.

Let us denote the Hausdorff dimension of a set X by dimpy X. Moreover, denote by dimp X and
by dimpX the lower and upper box dimension. If the upper and lower box dimensions coincide then
we call the common value the box dimension and denoted by dimpg X. For the definitions and basic
properties, we refer to Falconer [7].

The image of the unit ball under the affine mapping f(z) = Az + t is an ellipse. The length of
the longer and shorter axes of the ellipse depends only on the matrix A, and we call these values the
singular values of A. We denote the ith singular value of A by «;(A). More precisely, a;(A) is the
positive square root of the ith eigenvalue of AA*, where A* is the transpose of A. We note that in
this case, a1(A4) = ||A]| and a(A) = |A~Y|7L, where ||.| is the usual matrix norm induced by the
Euclidean norm on R2. Moreover, ay(A)as(A) = |det A|.

The natural cover of these ellipses play important role in the calculation of the dimension of self-
affine sets. The image of the unit ball under an affine mapping can be covered by 1 ball with radius
a1(A), or can be covered by approximately aj(A)/az(A) balls with radius as(A). This leads us to
the definition of singular value function. For s > 0 define the singular value function ¢° as follows

ay(A)* 0<s<1
¢*(A) :={ on(A)ag(A)P™ 1<s<2 (1.1)
(a1(A)az(A)*? s> 2.
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Falconer [6] introduced the subadditive pressure

S

PA( ) nh_{%onlogZhgl 1¢ ( 11 zn) (1'2)
The function P4 : [0,00) — R is continuous, strictly monotone decreasing on [0,00), moreover
P4(0) =log N and lims_,o, P4(s) = —o0. Falconer [6] showed that for the unique root sg := so(A) of
the subadditive pressure function dimpA < min {2, so} and if ||4;] < 1/3 for every i = 1,..., N then

dimpy A = dimp A = min {2, so} for Lebesgue-almost every t = (£, ...,ty) € R?Y.

The condition was later weakened to |A4;| < 1/2 by Solomyak, see [17]. We call the value so the
affinity dimension of ®. Kiaenméki [11] showed that for Lebesgue-almost every t = (¢;,...,ty) € R?Y
there exists an invariant measure v supported on A such that dimg v® = dimyg A = min {2, sp}.
Under our assumptions: SSC (see below) and dominated splitting (see below, Definition 2.1) this
measure is image of a Gibbs (Definition 2.6), but in general not image of a Bernoulli.

Other type of ’almost surely’ result was unknown previously. The main advantage of this paper
is to give an almost everywhere condition on the set of matrices instead of on the set of translation
vectors.

In this paper we consider IFSs of affinities which satisty the strong separation condition (SSC), i.e

fi(A) N fj(A) = & for every i # j.

We note that the strong separation condition implies sg < 2.

Falconer [8] proved that if ® satisfies a separation condition (milder than SSC) and the projection
of A in every direction contains an interval then the box dimension of a self-affine set is equal to the
affinity dimension. Hueter and Lalley [10] gave conditions, which ensure that the Hausdorff and box
dimension of a self-affine set equal to the affinity dimension.

In the recent paper of Bardny [2], the result of Hueter and Lalley [10] was generalised for self-affine
measures. That is, under the same conditions of Hueter and Lalley [10] the Hausdorff dimension of
any self-affine measure is equal to its Lyapunov dimension. In particular, in [2] the author proved that
under slightly more general conditions any self-affine measure is exact dimensional and gave a formula,
which connects entropy, Lyapunov exponents and the projection of the measure (Ledrappier-Young
formula).

Recently, Falconer and Kempton [9] used methods from ergodic theory along with properties of
the Furstenberg measure and obtained conditions under which certain classes of plane self-affine sets
have Hausdorff and box dimension equal to the affinity dimension. By adapting the conditions of
Falconer and Kempton [9] and Barany [2] we prove that for ”typical” linear parts ({4;}) ) if the
SSC holds then the dimension of self-affine set is equal to the affinity dimension. Precisely, let

| det A\
A7 =

M = {A e R¥*?2 UR?*? .0 < = and |A| < 1} (1.3)

where

Al = min o] + ]+ ) for 4 = [ & 0]

Let us define the following sets
Ni={AeM: A [A|]* <1} and Oy := {Ae MY : 5o(A) > 5/3}, (1.4)

for every N = 2
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Theorem 1.1. Let N = 2. For Lyn-almost every A € nN UON, ift = (t1,....tx) € R2N s chosen
such that ® := {f; : x — Ajz + Q}f\il satisfies the SSC then there exists a measure v supported on
the attractor A of ® such that

dimpy % = dimy A = dimp A = so(A).

We call the measure v/ the Kdenmdki measure.

The authors were recently informed of the result of Rapaport [14] and Morris and Shmerkin [13].
By applying the main theorem of Rapaport [14], one can extend the bound 5/3 to 3/2 in (1.4). Morris
and Shmerkin [13] proved similar statement to Theorem 1.1 under significantly different conditions
on the matrices.

To prove Theorem 1.1, we will need a more detailed study of the dimension of invariant measures.
More precisely, we extend the results of [2] for the natural projections of Gibbs measures. Theorem 1.1
is studied in higher generality.

Structure of the paper. After the Preliminaries (Section 2) we introduce the main technical result
of the paper, the Ledrappier-Young formula generalised for Gibbs measures (Section 3). In Section 4
we introduce the strong-stable transversality condition (Definition 4.1) and show that under this
condition there exists a dimension maximizing Gibbs measure (Kdenméki measure) almost surely.
In the last section we show Theorem 1.1 as a consequence of the previous studies.

2. PRELIMINARIES

Let ¥ = {1,... ,N}Z be the symbolic space of two side infinite sequences, ¥t = {1,... ,N}N be
the set of right side and £~ = {1,...,N}*  be the set of left side infinite words. Denote the left
shift operator on ¥ and X% by ¢ and denote the right shift operator on ¥ and ¥~ by o_. Thus, o
and o_ are invertible on ¥ and 0~! = o_. For any i€ ¥ (or j € %)

[ij2]:={je X (orje £%) 1 iy = jj for m < k <n}.

For an i = (...i_2i_1ipi1...) € X, denote by i} = (igi1...) the right-hand side and by i =
(...i_9i_1) the left-hand side of i. To avoid confusion, we write also i} if i, € X7 and i_ ifi_ e ¥,

Foranyi;,jy € Xt letiz Ajr = min{n > 0: i, # j,}. Wedefinei_Aj_ =min{n —1>0:i_, # j_n}
similarly.

Let us denote the set of finite length words by ¥* = [J° ,{1,...,N}", and for every 7 =
(i1,...1p) € X* denote the reversed word by 7" = (ip,...,i1). Sometimes, we may also write (X7)*

for finite length words to emphasize the negative indexes.
If ®:={fi(x) = Ajz + L}f\; | is an iterated function system on R? with affine mappings such that

[Aill <1fori=1,...,N, we define the natural projection m_ from ¥~ to A in a natural way
7T_(...7:_Qi_1) = lim fi,1 ooan(Q) (21)
n—0o0
Let A :={A1, Ag,..., AN} be a finite set of non-singular 2 x 2 real matrices. Define a map from

¥ to A in a natural way, i.e. A(i):= A;,. Let A (i) := A(c" ). - A(i) forie ¥ and n > 1.

Definition 2.1. We say that a set A = {Ai}fil of matrices satisfies the dominated splitting if there
are constants C, 3 > 0 such that for every n =1 and every ig,...,in—1 € {1,...,N}
o (Aig -+ Ai, )

> Ce™P.
O‘Q(Aio e Ain—1)

Let Cy = {(z,y) € R*\{(0,0)} : zy = 0} be the standard positive cone. A cone is an image of C
under a linear isomorphism and a multicone is a disjoint union of finitely many cones. We say that a



4 BALAZS BARANY AND MICHAL RAMS

multicone M is backward invariant w.r.t. A if e 4 A~ (M) < M°, where M° denotes the interior
of M.

For a 2 x 2 matrix A and a subspace 6 of R? we introduce the notation ||A|6]|, which is the norm
of A restricted to the subspace 0, i.e. |A|f] = sup,eq [|Av|/[v]. Since 6 is one dimensional, we get
that for any v # 0 € 0, |A|0| = | Av||/|v[|, which is not true in higher dimension.

Lemma 2.2 ([1], [3],[4], [19]). The set A of matrices satisfies the dominated splitting then for every
ie X there are two one-dimensional subspaces e**(i), e®(i) of R? such that

(1) A el (i) = €’ (oi) for everyie X and j = s, ss,
(2) there is a constant C' > 0 such that for everyn =1 andie X

e*(i)] < ar(A™ (1)) < CA™ (i)[e* (i)] and
s )

1AM () < <
e (1) < an(AM (1)) < CAM () e (1)),

|
A ()]

(8) there is a backward-invariant multicone M that

ﬂ _(M¢) and e** ﬂ A 1(M)7

where M¢ denotes the closure of the complement of M.
(4) The angle between e*(i), e**(i) is uniformly bounded below.

We call the family of subspaces €*(i) stable directions and e**(i) strong stable directions.

Let us observe that e®(i) depends only on i_ and e**(i;) depends only on iy, so €% can be con-
sidered as a natural prOJectlon from £t to P!, where P! denotes the projective space. In particular,
|A™ (i)[e5(i)| and ||A"™ (i)|e**(i)| describe the local growth in the stable/strong stable directions,
and can be considered as finite time approximations of the corresponding Lyapunov exponent.

For x,5 € P! denote by ¥x(z,y) the usual metric on P!, that is the angle between the subspaces
corresponding to  and y. Thus, Lemma 2.2(4) can be formalized as follows, there exists a constant
C > 0 such that for every i_ € ¥~ and j; € X1, x(e**(j1),e*(i-)) > C. In the later analysis, the
dimension of strong stable directions in P! plays an important role.

For any v,w € R2 denote by Area(v,w) the area of parallelogram formed by v, w.

Lemma 2.3. For every =,y € P!

Area(v, w) 2Area(v, w)

< X(z,9) <
vl aw]

vl
where v,w € R? are arbitrary non-zero vectors from the subspaces corresponding to x and y.
The proof of the lemma is straightforward.
Lemma 2.4. There exists a constant C' > 0 such that for every i,je X
x(e%(1),e%(§)) < Ce P74 and x(e2(i), e*(j)) < CePl-7-)

where [ is the domination exponent in Definition 2.1. Thus, the maps i € X1 — e%(iy) and
i_eX —logl|lAi,|le*(c-i)| are Hélder continuous.
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Proof. We prove only the inequality for e**, for e® the argument is similar. Fixi,je X withiy AjL = n.
Let v € e*(0™i4) and w € €*(0™j4+) be arbitrary such that ||v| = |w| = 1. Then by Lemma 2.3,

Area(Ai_O1 AT s AZ-_O1 AT w)

2 In— In—1-—
| A" AL Jess(omin )| At AT L fess (o))

Tn—1 In—1
,ldet(A - A )|
jA ALY |2

In—1

*(e¥(1),e*()) <

<
I

Area(v, w) < 2C%e P,

O

Let ¢ : ¥~ — R be a Holder continuous potential function. Then there exist a constants C' >
0, P € R and o_-invariant Borel probability measures y— and g on ¥~ and X such that

T (M)

T PN plotin)

SR (L)
T P ook D)

< C, for every i_ € X7, (2.2)

< C, for every ie 3. (2.3)

We call the measures p— and p the Gibbs measures of the potential ¢ on ¥~ and ¥. Moreover,
pu— and p are ergodic, see [5, Chapter 1]. Let v = (7~ ),pu—, where 7~ is defined in (2.1). Let us
denote the projection from X to Xt by p; : ¥ +— XT, and similarly, the projection from X to X~ by
p—: X — Y. It is easy to see that (p_)sp = p—.

Lemma 2.5. The measure iy = (p4)«p is o-invariant, ergodic quasi-Bernoulli measure on X with
entropy hy, = hy, =h, =P —{p(i)du(i).

We call a measure m on X1 quasi-Bernoulli, if there exists a uniform contant C' > 0 such that for
every 7, € X*

Chu([v((a) < v([@]) < Cv([)w (D),

where 77 is the concatenation of 7 and 7.

Proof. First, we prove invariance. Let A € ¥ be measurable set. Then by using that u is o-invariant
we get

N N

(o A) = py (U iA) = u (E‘ < iA) = u(37 x A) = py(A).
i=1 i=1

Let A < X% be an arbitrary o-invariant subset of ¥*. Then o7 !X~ x A = ¥~ x (Uf\il iA) =

Y~ x 0 !A =%~ x A. Therefore, (X~ x A) = 0 or 1, which implies the ergodicity of y.
Finally, let (ig, ..., in+m+1) € (X7)* be arbitrary and let j € ¥~ be such that j_1 = fpimit,---,
j—(n+m+2) = ig. Then by (2.3)

,U/-i-([iO) cee in+m+l]) = N(Ei X [iOa ce ain-i-m-&-l]) =

(17 sy < Cem M DP S o(oh))

Co—(n+ VP + S 0(0k ) ,~(m + DP + Tig ook (715)
O (I D™ 5y ) = CP(E™ x [ion i Da(E X [, - inmia]) =

03M+([i07 s 7in])ﬂ+<[in+17 cee 7in+m+1]>-
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The inequality gy ([io,---sintms1]) = C 3y ([io, -+ in))ps ([ins1,- -+ intme1]) can be proven
similarly. By using the definition of entropy, see [18, Theorem 4.10, Theorem 4.18],

hyy = 7}21010_* Z p+([2]) log pi-([2]) < _JE};OE Z p+ () e(7]) =
7ES™ 7ES™
P lim o 3 () = P [ edut
eS”

By Oseledec’s multiplicative ergodic theorem, there are constants 0 < xj, < x;° that

n—0o0

1
lim —glog a1 (Aig -+ Ai, ) = X, and

1
lim ——logaa(Aj, -~ Ai,_,) = X, for p-a.e. ie ¥ (or pi-aei, € X7).
n

n—0o0

We call the values xj, the stable and xj’ the strong stable Lyapunov exponent of u. We define the
Lyapunov exponents for p_ similarly.

Now we define the Holder continuous potential function and the corresponding Gibbs measure mo-
tivated by the singular value function. This measure is our candidate to be the dimension maximizing
measure.

Definition 2.6. Let A = {A, As,..., Ax} be a finite set of contracting, non-singular 2 x 2 matrices
such that A satisfies the dominated splitting. Moreover, let so = so(A) be the unique root of the
subadditive pressure (1.2). We define ¢ : ¥~ +— R be Hélder continuous potential function as follows,

log |[Ai_,|e*(a-i-)]* fO<so<1,

pli-) = { log (| det A; [~ A;_ |e(0_i_)[20) if L < sp < 2. (24)

Then we call the Gibbs measure u™ with potential ¢ the Kienmiki measure on ~. In particular,
there exists a constant C' > 0 such that

pX ([i-Za))
@S0 (Ai,1 . Az,n)

where ¢° is the singular value function (1.1).

-1
C <

< C, for everyi_e X,

Observe that exp(Y7—s p(0™i_)) is essentially ¢*0(A; , --- A; ) (defined in (1.1)), where sq is
the unique root of the subadditive pressure function (1.2). That is by Lemma 2.2, if sp < 1 then
for every n =1, ¢%0(A; -~ A ) ~ | Ai, - Ai [e®(07i)]* = exp(33Z5 ¢(6™i_)). On the other
hand, if 1 < sg <2 then

O (Ai_, - Ail) = on(Ai - Al )aa((Aiy -+ A ,)* 7 =
(ar(Aiy A Das((Ai - A ) an(Ai, - A )P0 ~

det(A;_, - Ay )7 A, - Ai |e*(0™i)[?7%0 = exp Z

The Hoélder continuity of potential ¢ in (2.4) follows by Lemma 2.4. Basically, the dominated splitting
condition (Definition 2.1) allows us to show that the potential  is Holder, hence the measure pu* is
Gibbs. Without dominated splitting the map i — log |A;_,|e*(o_1)| is in general only measureable
(by Oseledec Theorem).
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3. LEDRAPPIER-YOUNG FORMULA FOR (GIBBS MEASURES

In this section, we extend the result [2, Theorem 2.7] for Gibbs-measures. For every 6 € P! we
denote the orthogonal projection in the direction of 6 by proj,. Let us define the transversal measure
for every iy € ¥ by Vij:r =vo (projess(i”)_l. That is, Vi{ denotes the orthogonal projection of the
measure v along the line (i ).

Theorem 3.1. Let A = {A1, Ay,..., AN} be a finite set of contracting, non-singular 2 x 2 matrices,
and let ® = {fi(z) = Ajz + Li}fil be an iterated function system on the plane with affine mappings.
Let p— be a right-shift invariant and ergodic Gibbs measure on X~ defined in (2.2), and v = (7~ ) xpi—
be the push-down measure of u—. If

(1) A satisfies the dominated splitting,
(2) ® satisfies the strong separation condition

then v is exact dimensional and
. hy, Xpi\ 4. T . n
dimpv=—-+|1— —= | dimpyv; for py-almost every iy € X7.
I I

During the proof of Theorem 3.1, we follow the proof of [2, Theorem 2.7]. The proof of [2, The-
orem 2.7] is decomposed into four propositions [2, Proposition 3.1, Proposition 3.3, Proposition 3.8
and Proposition 3.9]. However, [2, Proposition 3.1] and [2, Proposition 3.9] hold for general ergodic
measures. On the other hand, [2, Proposition 3.8] follows from [2, Proposition 3.3] exactly in the
same way for Gibbs measures as for Bernoulli measures. So, we extend in the rest of the section [2,
Proposition 3.3] for Gibbs measures.

Let F be the dynamical system defined in [2, Section 3] acting on O x ©*. Namely,

F(g, 1) = (fio(g)’o'i))

where O is an open and bounded set such that
N p— —
| £i(0) € 0 and [;(0) n f;(O) = & for i # j.
=1

Since F is a hyperbolic map acting O x X%, its unique non-empty and compact F-invariant set
is (_o F"(O x %) = A x . It is easy to see that F is conjugate to o by the projection
m: X~ Ax Xt where 7(i) := (7~ (i-),i;). That is, m o 0 = F o 7. Denote the measure m,p by .
Then 7 is F-invariant ergodic measure.

Since e** depends only on i, it defines a foliation on O for every iy € ¥ ¥. Hence, it defines
a foliation £ on A x XT. Namely, for a y = (z,iy) € A x X7 let l55(y) be the line through x
parallel to egs(iy) on R? x {i;}. Let the partition element £%*(y) be the intersection of the line
lss(y) with A x {i;}. Denote by F¢* the image of the partition £*° under F, i.e. for every y,
(FE)(y) = F(5°(F~(y))). Tt is easy to see that F&%° is a refinement of £, that is, for every y,
(F&E*)(y) < €*(y)-

We decompose the measure 7 on A x ¥ "according to two different partitions. First, we construct
a family of measures supported on A. More precisely, supported on A x {i;} for p,-a.e. i;. So,
applying Rokhlin’s Theorem [15], for pi-a.e. iy € X there exists a uniquely defined system of
conditional measures i, up to a set of zero measure, supported on ¥~ x {i}} and

p(A) = [ (s i),
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By defining 7, := (77 )spi, , we get
p= fﬁudwm-

In the focus of our study stand the geometric measure theoretical properties of the family of measures

7;, along the Strong stable directions. Therefore, first we define the transversal measure, i.e. for p -

a.e. iy € X1, let U 1/ be the orthogonal projection of 7, along the subspace e**(iy). That is,
~T . ~
Vi, 1= (DrOjess(i,))«Viy -

On the other hand, we need the conditional measures of 7;, along the subspace e*(i;.). Applying
Rokhlin’s Theorem [15] again, there exists a canonical system of conditional measures, i.e. for v-a.e.
y € A x X7 there exists a measure 1/ ¢ supported on {**(y) such that the measures are uniquely

defined up to a zero measure set of y and for every measurable set A the function y — D3°(A) is

measurable. Moreover,
v(A) = fﬁ;s(A)dﬁ(y). (3.1)

By the uniqueness of the conditional measures, we get that the measure 17;5 is conditional measure
of 74, , namely,

I’/\i+ = J‘ (;Ul )dV ( ) for H4-a.e. i+ € E+.

Let us define the conditional entropy of F¢%° with respect to £°° in the usual way,

H(FES|¢%) = f log 937 ((F€™)(y))di (y).

One of the main goals of this paper is to show that there is a dimension maximizing Gibbs measure
for self-affine sets. However, our method allows us only to handle the dimension of the conditional
measures /i, . The next lemma is devoted to show that ;. is not necessarily equal to but equivalent
with a Gibbs measure on ¥~

Lemma 3.2. There exists a constant C > 0 such that C™ pu_ x py < pp < Cp_ x piy. In particular,
C - <pi, <Cpu— for ps-ace. iy € X7, (3.2)
Proof. 1t is enough to show that there exists a C' > 0 such that for every i € X and n,m = 0
C™ (=D s+ (GIED < w([il™]) < Cr— (=R ([HF)-

Indeed, every set A in the g-algebra can be approximated by cylinder sets. By the definition of Gibbs
measure [

s|m m —(n+m n+m ok O'm i
p(7]) = p([o™ Iy ]) < Cem(rFmEDPELig plomem )
—n a' i —(m m O’k om+1i . m

O Pz et DR R < O ({5 Do I ) =

C ([ =D a5 = Cp— (I D i (D).

The other inequality can be proven similarly. The relation (3.2) follows by the fact that the conditional
measures are uniquely defined up to a set of zero measure. O

By Lemma 3.2, the measures 7, and v are equivalent for py-a.e. iy € ¥*. Similarly, the measures

T T : ; +
Vi, and v;, are equivalent for py-a.e. i € X7
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For the examination of the local dimension of the projected measure, instead of looking at balls on
lines we introduce the transversal stable balls associated to the projection. Let B.(x,1i) be transversal
stable ball with radius r, i.e

Bl(z,i) = {(y,]) :1 =] & dist(lss(z, 1), lss(y,§)) < 21},
where Igs(z,1) denotes the line through z parallel to ess(i). Here, dlst(., .) is the usual Euclidean
distance between parallel lines.

For technical reasons, we also have to introduce the modified transversal stable ball. Since the
IFS @ satisfies the SSC, for an y = (z,i) € A x X7 we can define the stable direction es(y) of y by
es(y) = es(z) = es(i ) where 7_(i_) = z. Denote dist es(y) the natural Euclidean distance on the
subspace e,(y). B

Then for an (z,i) € A x 1, we define the modified transversal stable ball with radius § by

Bl (z,1) = {(g,) e A x BT i =] & diste, (g5 (lss(z, 1), lss (. §)) < 6},

where dist,_ (i) (lss(z, 1), lss(y,j)) means the distance of the intersections of the lines lss(z, 1), lss(y,J)
with the subspace es(z,1) with respect to the distance diste, (z,)- Since there exists a constant o > 0
such that

x(es(i), ess(iy)) = a >0, foreveryi_ € ¥~ and iy € 27,
there exists a constant ¢ > 0 that for every y € A x X+ and 7 > 0

Bl (z,1) € Bi(z,1) € Bl(z, ). (3.3)

We are going to prove the following proposition.

Proposition 3.3. For pu-a.e. i, € X1 the measure 1/5

v _ hy— HFE|E™)

dimpy vy, = .
Xy

1s exact dimensional and

In particular,
BT . h, — H(Fg£ss|£58
lim B, (&,84)) _ b (FEle >f07" v-a.e. (x,iy).
r—0+ log r X,

Let P be the natural partition ie. P={fi(A) x E+}i]il. Denote the kth refinement of P by PF,
i.e. forevery y € Ax ST, Ph(y (\/,L L FY(P )( ) =Py)nF(P(FY(y)))n - nF¥PF*(y))).

In other words, 731 is the Standard partition into k-level cylinders.
Let us define almost everywhere the measurable functions gx(y) := §° (Pi(y)) and

21, (B (y) 0 PE(y))
D, (B (v))
By definition, gs(y) is the § approximation of the measure of Pf(y) according to the conditional

measure. By Rokhlin’s Theorem, g5, — g as § — 04 for ¥ almost everywhere and, since 0 < g5 < 1,
(3.1) implies gsx — g in L*(D) as § — 0+.

g&,k(z) =

Lemma 3.4. The function sups-q{—log gs} is in L' (D) for every k >
The proof of Lemma 3.4 coincides with [2, Lemma 3.6].

Lemma 3.5. For everyz =7 (i_1,i-92,...) €A, i, €Xt, § >0 and k > 1

£ (Bg (EH @) * [k ’“D - <BHTAi_1-~-Ai_k|es<F—k<x>>||5(X) NP (X)> x T

where y = (z,iy).
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By using the fact that v = (77 )spu— = (77 )« (p—)«u, we have
v(BY(y) nP}) =7 (B (y) n PEx =) =

(o (3 76 50)) <5 (3.

(k15 E @) X [k, - 72’—1]) :

where in the last equation we used Lemma 3.5. By Lemma 3.2,

V(BéT(X) a Pf(X)) =v (B”TALI... (ka(z))ufl(s(F_k(X)) X ik, ... ,ifl]) <

Cv (BHTA Ai_k.|es<F—k(x))\\—la(F*k(X)»"*([L’f"“’i—l])’ (34)

11"

Aiik|es

and

v(Bf (y) n Pl(y)) = v (B,

i1 Az_k |€s

(F—k(xnu—l(s(F_k(z))) por (limks - -y i-1]) (3.5)

for every 6 >0,k >1,and y e A x X%,

Proof of Proposition 3.3. By the definition of the transversal measure, the statement of the propos-
ition is equivalent to

1 Bt s — H(FE&ss|g38
i og l/( 6(§7 1+)> _ hl’ ( 5 ’g ) for v % [Li-a.e (£7 i+)
6—0+ log 6 X5

Hence, by (3.3) and by Lemma 2.2, it is enough to show that if y = (z,iy) € A x X% with

z=m_(i—1,i-2,...),

T
log v (BAi_l...Aipk|es(F—pk(y)) (Y)> h, — H(ngs’é_ss)

lim for v x pi-a.ey.
p—0 log a1 (Ai,1 s Ai,pk> XZ He Y
By Oseledec’s Theorem, we have
1 .
ple L logai(Ai, - Ai_,) = —kxj, for p_-aei_. (3.6)

By applying (3.4), (3.5) and Lemma 3.2,

< IA;_ 1~--Ai_pk\eS(F—pk(X))”(Z)) =

r —(i-1)
v (BY(F ) I ’ (BAz oA pleeE i) ())> g
=1 v B (F-k(y))
[Ai_yp—y - Ai_ i les(FPR(y)] y
CP (BT(F—pk)> l_[ Y (BTAi(ll)k1'"Aipk68(F_pk(Y))(F(ll)k(y)) M*'([Z‘*(l*l)k*l’ R i*lk]) _
l/ ~
- i —(I-1)k k(p—(1-1)k
o (B'Az HH~~Ai_pkles(F—pk<z>>u(F (¥)) 0 Py(F (y)>

)

Vp-(- Dk (y) (BTAi_(l_l)k_l-~~Ai_pk|65(FPk(y))| (F_(l_l)k(Y))> /J’Jr([i—(l—l)k—lv s 7i—lk])

) (BTA- Ac_plestrrico) F _(’_”’“(W)ﬂP{“(F‘("”’“(W)

L (1—1)k—1" o pk 1™
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Similarly,
T
v (B\\Ai_l-- (F=7k(y))] (X)> >
c=ry (BT (F)) -
p AF—(Z—I)k(X) <B|TAZ

[

=1 /V\F,(lfl)k(z) <B,1:'Ai_(l_l)k_1"'Ai_pkeS(F_pk(y)) (Ff(lfl)k(z)) N ,P{{:(F(ll)k(y)>

By taking logarithm and dividing by p we get

A

i pk ‘es

Ay les(F7PR(y))] (F(ll)k(Y))> M+([i—(l—1)k—1v coy k)

(1—1)k—1"

—lk
e Anles(ErEy) LR (T () +

1 1g
» logv <Bf(F_pk)> —3logC — » Z log g4
=1

1 , , 1 T
p;logﬂ+([l—(l—l)k—la ceyigg]) < Elogu <BHAZ-_1~~~Ai_pk|eS(F—P’€(X))H (X))
and

1 T 1 T p—pk
p o8 <BHAL1...Ai_,,k|e5<F—pk<z>>||(X)) < plosy (BI () + 3log 0

1g _ 1 , ,
5 22108914 i lenPorro (@) + 2 D log e ([ignpiens i)
=1 =1

By Lemma 3.4, we may apply the result of Maker’s Ergodic Theorem [12, Theorem 1], so we get

e letr-s A ) = = [loga(y)dn(y) = kH(FEIE)

k-1

for v-a.e. y. Applying Birkhoff’s ergodic theorem and (3.6) we get
—310g0 B kH(F§ ‘g ) — Ziesk M-‘r([ﬂ) log/‘+([i]> < d}/,T (Q) < EV.T (E) <
kX:Z 1L g
3log €' — kH(FE*[€%) — > esr it ([2]) log pu4 ([2])
kx;,

for U-a.e. y and every k > 1.

By taking the limit £k — o0, we get that

h, — H(Fgss|ess
z) =+~ (FE]e™) for v-a.e. y.
i iy Xfl, -

Since U is equivalent to v x ., the statement follows. [l

Proof of Theorem 3.1. Since the proofs of [2, [Proposition 3.1, Proposition 3.8 and Proposition 3.9]
do not use that the examined measure is Bernoulli, one can modify them to show that for v-a.e.
y € A x ¥ the measure 7;° is exact dimensional and

H F SS| ¢SS
o H

Moreover,

lim inf ﬁi* (B:(z)) > H(ngs‘gss) + h# — H(F§%|6%7)

for v-a.e. (x,is
00 logr X5 X5 (2, 1+)
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and by using that v = (p_)«U
SS SS _ H F 88 SS
o VB @) _ HFEE) | by — H(FE[€”)
r—00 logr X; X5

Since the measure v is equivalent to 75, for pi-a.e. iy, the statement follows by Proposition 3.3. [

for v-a.e. x.

As a corollary of Theorem 3.1, we are able to give two conditions which ensure that the dimension
of a Gibbs measure is equal to its Lyapunov dimension. The second part of condition (iii) in the next
theorem appears in [9], as well, for the Gibbs measure generated by the subadditive pressure.

Theorem 3.6. Let A = {Ak}szl be a family of 2x2 real non-singular matrices and ® = {Apz + Ek}ii;v=1
be an IFS of affinities on the plane. Moreover, let p— be a o_-invariant ergodic Gibbs measures on
37, let p be its unique extension to 3 and let 4 be the quasi-Bernoulli measure defined in Lemma 2.5.
Assume that

(i) the IF'S ® satisfies the strong separation condition,

(ii) A satisfies dominated splitting condition
(iii) either dimp (€*®)sp = min {1, dimpyap p—} or dimg (e*)spq + dimpy (77 )sp— > 2
Then h .

dimg (7™ )xp = min {h’;, 1+ ”SSX“} .
Xy, Xy,
By Theorem 3.1, the proof is similar to the proofs of [2, Theorem 2.8 and Theorem 2.9].

4. DIMENSION OF (GIBBS MEASURES AND TRANSVERSALITY CONDITION OF STRONG STABLE
DIRECTIONS

In this section and the rest of the paper, we are going to study the dimension of Gibbs measures.
To be able to calculate the dimension of Gibbs measure, we have to handle the dimension of strong
stable directions, see (iii) of Theorem 3.6. In the case, when the matrices satisfies the backward non-
overlapping condition, i.e. there exists a backward invariant multicone M such that A;'(M°) < M°
and A;H(M°) n A;l(M °) = & for every i # j, it is possible to calculate the dimension of strong
stable directions. Namely, by [2, Lemma 4.2], for every o-invariant ergodic measure p on X%

i h
dimg (e®)up = m,
where h, denotes the entropy of p.

In general a set of matrices does not satisfy this phenomena. In this section we introduce a
condition, which makes us able to handle the problem of overlaps. Namely, we consider a parametrized
family of matrices A(A) with the corresponding map of stable- and strong stable directions e and
ey’

Definition 4.1. Let U < R? be open and bounded. We say that a parametrized family of matrices
AN) = {Ai(N)}Y | satisfies the strong-stable transversality on U if
e the parametrisation A — A;(A) is continuous for everyi =1,..., N on an open neighbourhood
of U
e for every X € U the set A(\) satisfies the dominated splitting
e there exists a constant C > 0 that for every i,j € X1 with iy # jo

Li{AeU: x(ex’(1),ex’(j)) <r} < Cr for every r > 0.

The definition of strong-stable transversality is a natural generalisation of the transversality con-
dition for iterated function systems, see [16, (2.9)].
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Theorem 4.2. Let U < R? be an open and bounded set and let A(X) = {AR(A)}A_, be a parametrized
family of 2 x 2 real matrices and ®(X) = {Ax(A)z + tk()\)}gzl be a parametrized family affine IFSs
on the real plane such that

(i) for every A € U the IFS ®(X) satisfies the strong separation condition,
(ii) A(X) satisfies the strong-stable transversality on U.

Let {pux} ey be a parametrized family of o_-invariant ergodic Gibbs measures on X~ such that the
family of the corresponding Hélder continuous potential functions {¢px} ey 15 uniformly continuously
parametrized, moreover,

hus , { hyux }
> min« 1, or
X5 (A) = x5, (A) Xiia (A)

h,uA 1 hlt)\ - XZ)\ (A)
Xia(A) X (D)

The proof of Theorem 4.2 is based on the combination of Theorem 3.6 and the following theorem.

s, s

+ 2 > 2
XA = x5, () xS ()

(iii) either

Then

dimp (7 )spix = min{ } for Lg-a.e. Xe U.

Theorem 4.3. Let U = R? be an open and bounded set and let A(X) = {Ak()\)}]kvzl be a parametrized
family of 2 x 2 real matrices such that A(X) satisfies the strong-stable transversality on U. Moreover,
let {pa}yep e a family of o-invariant quasi-Bernoulli ergodic measures on X1 such that X — hy,, is
continuous and for every Ao € U and & > 0 there exists a 6 = 0(e,Ng) > 0 that for everyie X, every
n =1 and every |[A — Ao| <0

:UA([i g_l]) g
TR R 1)

hua }
, 14 for Lg-a.e AeU.
Xin (A) = X5 (A)

The proof uses the standard transversality method but for completeness we present it here. First,
we give an upper bound for the dimension.

e <

Then

dimp(e3)«px = min {

Lemma 4.4. Let A = {Ai}i]\il be a set of matrices satisfying the dominated splitting and let e°° :

YF > Pl be the map to strong-stable directions. Then for every o-invariant ergodic measure p on
»t,
: ss : hH
dimp (€*)xpp < min {1, ————— 1.
o X
Proof of Lemma 4.4. For any = € P! let B*(z) := {y e Pl x(z,y) < r}. It is enough to show that

S8 X(,85(%
lim it 1087 (B (M) - hy

< for p-a.e. ie oV,
r—0+ logr X5 = X,

By Lemma 2.3 and Lemma 2.2(2), if i,j € T that i = ji for k =0,...,n
-1 -1, 4-1 -1 -1 -1
Area(A; - A v, Ayt A w) _ |det(A; -+ A7)

< in
~= —_ —_ . —_ —_— . — —
HAiol T Ainl|ess(‘7n+1J)” HAz'Ol T Az‘nl‘ess(anﬂl) HAz'Ol e 'Ain1H2 7

*(e”(1),e(j))

|
where v € e**(0"*1i) and w € e**(¢"*1j) such that |v| = |w| = 1. Let n(r,i) € N be the smallest
number such that

|det(A; 1 A7)

< C7 by,
—1 —1
HAZ‘O "‘Ain H2
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Hence, (e%%).u(BF(e**(i))) = u([i g(r’i)]). Therefore,

log(e")cu(BE (e (1)) _ log p([il5 ") “2)
log 7 log C + log | det(A; " -- 'Aﬁr,i)q” —2log |A;;- - A;LJH I
By ergodicity and Lemma 2.2(2),
. 1 ‘i
nh_f}go o log pu([i[g]) = Ay
. 1 —1 —1
7}1_1;%0 _E log ’ det(AZO o Ainfl)’ = —XZS B XZ
.1 -1 -1 s oy
Jgrgoﬁlog 1Az, - A = X)) for p-ae. i€ X7
Putting these limits into (4.2) completes the proof. O

Lemma 4.5. Let U < R? be open and bounded and let A(X) = {Ai(/\)}fil be a parametrized family of
matrices such that the map X — A;(X) is continuous for anyi = 1,..., N in an open neighbourhood of
U, and A(X) satisfies the dominated splitting on U. Then the map X — €5 (i) is uniformly continuous
for everyie XF. That is, for every Ao € U and every € > 0 there exists a § = 6(Xo,e) > 0 that

X=Xl <0 = x(eX(i),ex (i) < e for everyie XF.

Proof. Let Ag € U and € > 0 be arbitrary but fixed. Let M be the backward invariant multicone of
A(Xo). By definition of backward invariant multicone, there exists a &' = §'(Ag) > 0 that for every
A with |A = Xg|| < &', M is a backward invariant multicone for A(X). Hence, the angles between the
directions of the dominated splitting are uniformly bounded from below. Thus, by Lemma 2.2(2)
and Lemma 2.3, there exists a constant C' = C'(Ag) > 0 that for every for every, m > 0 integer we
have

*(ex (i), ex, (1) <
XA o) -+ A7 (Na)exs (01, AT (Xo) -+ A7 H(Ro)ex (0™ )+
x(A5 X0) - A7 (Ao)ex (0™ H), AL HA) - AT TN )ex (0™ ) <
det(A; ' (Xg) - A7 (A
(2 8 20 -4, o))
|47 (Xo) -+ A5 (Qo|
S 1AL ) - AT N ws x A M) - A ()| 55 AN ATV x AT (o) - A7 (No)ug |
[Aig (A) -+ A (N[ Aig (o) -+ - Airp, (Ro) [ ’
where u;, u, is the standard basis of R?. Since A(X) satisfies the dominated splitting on U, there
exists an integer m = m(Ag) > 0 that
det(A; ' (Xo) -+ A; 1A
C(A0)22| e (_lzo (Ao) _1%( 02))| <L
|47 (Xo) -+ A5 Qo] 2

for every ig,...,im € {1,..., N}. Let f(X, Xo) := supsex+ ¥ (e (1), €% (1)), then

{Z?—l A5 (V) - AT (N x AL (M) -+ A (Ao

(e (0™, e, (0™ )

(A, A0) <2 max
90seeeyim

[Aig(A) -+ Aiy (M) 71 Aig (Xo) -+ - Aiy, (Xo) [ 71
‘Z?:I A;(Jl(}\) T A;l()‘)ui X Az’;l(AO) T Afl(AO)Msfﬂ }

m po

[ A (A) -+ Aiyy (V) Aig (Ro) - -+ Ay, (Ro) [
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Since the maps A — A;(A) are continuous, there exists a & = §(Ag,&) > 0 that the right hand side is
less that e > 0 for every A with |A — Ao/ < 4. O

Lemma 4.6. Let U c R% be open and bounded and let {r}rey be a family of o-invariant quasi-
Bernoulli ergodic measures on X1 that (4.1) holds. Then the map X — puyx is continuous in weak*-
topology. Moreover, if A(A) = {Ai()\)}fil is a parametrized family of matrices that the map XA —
A;(X) is continuous for any i = 1,..., N in an open neighbourhood of U, and for every X € U the set
A(X) satisfies the dominated splitting then the maps A — x;5 (A) and A — x;,, (A) are continuous.

Proof. To prove the first assertion of the lemma it is enough to show that for every O < X' open
set and every Ag € U

lim inf 123 (O) = 413, (0)- (4.3)

Since the cylinder sets form a base of open sets we get O = |J,_;[ix[;’*]. Since for every cylinder
ikl ] = Uljjzn, LFo™ ir]o"*] without loss of generality we may write O = | J;~;[ix]g"*]. On the other
hand, for every pair of cylinder sets of the form [ix|g'*] either they are disjoint or one contains the
other, thus, we may assume that [ix|y"*] N [il\gl’] = & if k # [. Hence,

fixo (0) = lim. (!
e
Therefore, by (4.1) for every n > 1
hmlnf,uA( Z = Z fxo ([])-
['iz ['i]':z

Since n > 1 was arbitrary we get (4.3).
To prove the second assertion, by Lemma 2.2(2) and multiplicative ergodic theorem

Xpix (A) = flog |45 N)ex (o) [ dpea (i) and x5 (X) + x5 (A) = flog | det (A7 (N)|dua(d).

By Lemma 4.5, the map A — log \\Ai_ol()\)|e§\s(ai)H is continuous, thus by the weak*-continuity of
A — y, the map A — Xff(/\) is continuous. The continuity of A — xj,| (A) follows by the continuity

of X pa, A= x5 (A) and A — log | det(A; ' (X)) O

Proposition 4.7. Assume that the assumptions of Theorem 4.3 hold. Then for every Ao € U and
€ > 0 there exists a § > 0 such that

h
dimg(e3’)spx = min< 1, o — ¢ for Lg-a.e. X € Bs(Ag).
A “AO (AO) XZA (AO)

Before we prove Proposition 4.7, we prove that for every A € U the map i — e5’(i) is Holder
continuous.

Lemma 4.8. For every Ao € U there exists a 6 = 6(Ag) > 0 and for every r > 0 there exists a
positive integer N = N(Xg,r) that for every X € U with |[XA — Xo| < 0 and for every i,j € X1 with
o # Jo

T{(e° (1), eX () < 7} < T{(eX (0D, ex (10D)) < 2r},

where 1 = (1,1,...) € X and 1 denotes the mdzcatorfunctzon. Precisely, N(Xo,r) = | 25(()@) +c(Xo)],

where 3(Xg) is the domination exponent in Definition 2.1 and c(Xg) is some constant depending only
on Ag.
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Proof. Fix Ag € U. Then by Lemma 2.3 for every N and every i,j € X1 with i # jo

[ (ex (), X () — 2 (eX (10 D, X G < (e 1), ex (6'D)) + (X (), X (l6'D) <
[ det (45" (A) - A1 (V)]

1IN 6ss O_N+1i 635 T
AT AT e e DA - A e SR DA
’det( _I(A)AJ_A}(}\))’ ss( N+1s 88 (7
A AT Ve e A, ) A e @] T AT A

Since A — A;(A) is continuous, by Lemma 4.5, there exists a 0 = 6(Ag) > 0 that
| det(A; 1 () -+ A7 1 (V)]

JAGHN) - A V) [esd (N L) [ A7) - AL (N [ese (D] =
500) | det(A5, (Xo) -+ ANI(AO))\
|45, (X0) -+ - A7 ¢ (o) ess) (UN“ A Xo) -+ A5 (Ro)less (T)]

for every j € ¥*. Thus, by Lemma 2.2(2)

5(2) { | det(A;' (o) -~ A;0 (X))l }

[ (e° (1), eX (1)) —x(eX° (19 1), ex(Gilo )] < 2me™ 2 ¥ C(Xo)? max
JosdN HAjo ( 0): - AjN (Xo)|?
By Definition 2.1, there exists an N = N (Ao, 7) that the right hand side of the inequality is less than
r, thus the statement follows. O

Proof of Proposition 4.7. Let Ag € U and € > 0 be arbitrary but fixed. Let 6 = d(Xg,e) > 0 be
chosen according to Lemma 4.5, Lemma 4.8 and (4.1). By Shannon-McMillan-Breiman Theorem
and (4.1), for every A € Bs(Ao)

1
Py, — € < liminf ——log px([ilg™ ) < hmsup—— log ua([ilg 1)) < hyy, + € for px-ae. i€ xt.
n—00 n
Moreover, by ergodic theorem and weak*-continuity of A —

S8 S : 1 - - 88 S
Xiing (R0) + Xjiy, (M) — & < lim —log | det(A;1(A) - A7 1 ()] < x5, (M) + Xy, (Ro) + €

tn—1

S8 . 1 — _
Xiing(R0) =& < lim —log [ A; () -+ 4; 1 (N)]ex' (0™ < x5, (ho) + €

for ux-a.e. i € ¥T. By Egorov’s theorem for every A € Bs(Ag) there exists a set Qy = X1 that
wu(2x) > 1 — e and there exist a constant C(X) > 1 that for every i € ¥ and every n,m > 1

O Al Deallo™ily ) < padlilg™ ) < C)pa(lils ™ Daallo™ilg =)

and for every i € Qy and every n > 1

O e "M < palily ) < O "M, (4.4)
1 1
() e Xy )i, o) 46 \det(fi (A)-- f‘i 1(>‘2)| < O(A)e "Xy )i o))
[As"(A) -+ Ay - (A

(4.5)
By Lusin’s theorem for every ¢’ > 0 there exists a set J5(Ag) S Bs(Ao) that Li(Bs(Xo)/Js(Xo)) <€’
and there exists a C' > 1 that C(A) < C for every A € J5(Ao). Denote the measure fix := ulg, and
for a finite length word k = (ko, ..., kn,—1) denote the set

Ski={(1,J) €S tip = jm =km form=0,...,n—1and ip # jn}.
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Then for every s > 0 by Lemma 4.5, the continuity of A — A;(X) and (4.5)

= JJ o )in(eis(i))’ess ) diin () dfin(G)dA =
g 0kn JJ(;()\O) ,E"!‘{(eis(i)%ef\s(j))SdﬁA(i)d/j)\(j)d)\ <

o o (1408 V) AL QDN T e e o
go,@_nfmo)g o <z||A,:;<A>---A,::_1<A>|2 HA T DA DI <

Z e 0 )i ) e f f [ e, G Gix
Js(Xo)
By Lemma 4.8, for any k with |k| =n

Ik = J JJ 6)\ o” 1 eis<Unj))_sd/7A(i)d/7>\(j>d)\ <
Js(Xo)

ﬁ

0 1

5 s | H { (o5 (o™) eis(anj))<Qm}dﬁx(i)d%(j)dA<
J5(Xo)

m=0

© . m)T . m)7 2 T () d7ix (1
I || n{m;swl\gw T, 6500l ™) < W}dml)dmu)dx:
S\A0

m=0

o _ _ 2 ) o e
S gmins Y f f H{{(Q;S(1),68;(51))<Qm}dux(l)dm(,l)dx
m=0 |Z]=N(Xo,m) J5(R0) Kl

[B|=N(Xo,m) B

(4.6)

By applying (4.4), the quasi-Bernoulli property of jy,, (4.1) and the continuity of X — hy,,
_ _ 2) . N
[ e amem) < 2 sl (i <
J5(Xo)
_ _ 2 - -
C2f I {i(eis(hlh ex (1) < 5 } (KD EA () A ([A])dA <
Js(Xo) 2

D (D ()00 022, (A € 00 (65 (A e50D) < 57 ).

Hence, by (4.6) and the strong-stable transversality

0

m+1)s n m)) ,—n(huy, —2 c
Ty < pung ([K]) 25 20 DT g ([, ([N Qo)™ ing =2 2
m=0 1Ll =N (Ao,m)
|h|=N(Xo,m)

C//,U)\U ([E])e*”(h;o\o —4e) 2m(s—1)+2.€N()\o,m)/ log 2

?MS

0
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Since N(Xg,m)/log2 < m42—~ + ¢(Ag)

B(%o)
X ss s & 4
I < C”/ Z en(s(xu (AO)—XM()\O))—]ZMAO-FIO&‘) Z 2m(8—1+€ ﬁ(AO))
n=0 m=0

h“)\o —1le
X5 (R0)=x; (Ro)
By Frostman’s Lemma [7, Theorem 4.13],

Hence, by choosing s < min { 1—¢ 6(20)’ } the right hand side of the inequality is finite.
5 huy, — 11l
B(Xo)” x5 (Xo) — x;( o)

But for every A € Bjs(Ao), dimpy(e3’)spux = dimp(e3’)«fin, moreover, L4(Bs(Ao)/Js5(Xo)) can be
chosen arbitrary small, thus, the statement follows. O

dimg(e5’)4/ix = min {1 —¢ } for Lg-a.e. X e Js(Ag).

Proof of Theorem 4.3. By Lemma 4.4 we have

h
dimg (e53) s px < min {1, £2 } for every A e U.
A S CVERYNCY

So it is enough to establish the lower bound. Let us argue by contradiction. Assume that there exist
a set U' < U with L£4(U’) > 0 such that

h
dimg (e5’)px < min {1, £ } — ¢ for Lg-a.e. XA e U’ for some € > 0.
A X () = x5 )

Let Ag € U’ a Lebesgue density point. Thus, there exists a 6y > 0 that for every dp > § > 0

h
Ly <)\ € Bs(Ao) : dimpg(ey’)xpx < min {1, a2 } — 5) > 0.
A X () = x5, (N)

By using the continuity of entropy and Lyapunov exponents we have for sufficiently small § > 0

h €
Lg| A€ Bs(Xo) : dimp(e5)spn < min< 1, 20 —— ] >0,
( A Xii, (M) = Xy, (Ro) | 2

but this contradicts Proposition 4.7. O

Proof of Theorem 4.2. By [5, Section 1], a family of Gibbs measures for a uniformly continuously
parametrized family of Holder continuous potentials is weakly continuous. Hence, {ux},.; satisfy
equation (4.1). Then by Theorem 4.3, we have

s
XiA () = X5 (A)

dimp (e5’)spxn = min{ ,1} for Li-a.e Ae U.

On the other hand, by Theorem 3.6, if
Py : { Py }
Z min , 1
XA (A) = X5 (A) Xjin (A)

the statement holds. Thus, we may assume that

h,uA hHA h#A
<1, x22(A) > 2x5, (A) and +2 > 2.
) -y~ b = 2 () and TR Y T e (0

By [2, Lemma 4.12], we get that dimp (7 )spx = 2Xi“?>\) and the statement follows by Theorem 3.6.
i
(I
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5. PROOF OoF THEOREM 1.1

Finally, in this section we prove Theorem 1.1 as an application of Theorem 4.2.
For a matrix A € R2*? U R**? let

lalz + |e|(1 — =)
(laf + [o])x + (lef + [d])(1 — )

Simple calculations show that the maps S; € C2[0, 1], Moreover,

S(z,A) =

where A = [i 2} . (5.1)

det A
sup [S'(z, A)] = max {|5(0, A)], 15'(1, )]} = 194l g (5.2)
2€[0,1] 1Al
det A|
inf |S'(xz, A)| = min {|5’(0, A)],]S'(1, A :| ,
inf 18/, )] = min [0, 401 15'0, A)]} =
where ||A| = max {|a| + |b], |c| + |d|} the usual co-norm of matrices.
Lemma 5.1. Let A = {A1,..., AN} be a set of non-singular matrices with either strictly posit-
ive or strictly negative elements such that WX_WQ < 1. Let ¢ = {Si(.) := S(.,Ai)}fil be IFS on

[0,1] and let TI : ¥t — [0,1] be the natural projection of ¢. Then for every i, € Lt the vec-
tor (T(iy) — 1,11(14))" € e*(iy).

Proof. Let A= {A;,...,An} and the IFS ¢ = {S1,...,Sn} be as required. It is easy to see that the
cone M = {(z,y) € R?/{(0,0)} : zy < 0} is backward invariant. So, by [3, Theorem B], A satisfies
the dominated splitting.

For an iy € X7 let €%(i1) be the invariant strong stable direction defined in (5.1). By the definition
of I : £* > [0, 1]

<_bion(ai+) —d;y (1 — H(Uh)))

<H(i+) - 1) _ aill(oiy) + ¢y (1 —(oiy)) _
II(iy ) (laio| + [bio NII(oit) + (lcig| + |dig ) (1 — (o))
det Ay, e <H(oi+) — 1>
(laio| + [bio DTI(0is) + (Icig| + Idip|)(1 = T(aiy)) 0\ I(oiy) /-

Thus, by Lemma 2.2 and uniqueness, the 1 dimensional subspace €**(i;.) contains (I1(i;) — 1, H(i+))T.
[l

Lemma 5.2. Let A = {Ay,..., AN} be arbitrary such that A; € M, where M is defined in (1.3).
Moreover, let A(t) = {A; +t1B1,...,Ax +tyBy}, where t e RY

o (a b; o a; + b; —(ai+bi)
A; = <Ci di> and B; = (Ci (e +di)>‘ (5.3)

N
Then there exists a 6 = (A) > 0 such that the IFS ¢ = {S?f(.) =S5, 4; + tiBZ-)} ) satisfies the

7 .
1=
transversality condition on (—6,8)N.
In particular, A(t) satisfies the strong-stable transversality condition on (—d,0).

Proof. Since MY is open, there exists a ¢ = ¢(A) > 0 that A(t) € MY for every t € (—¢,e)V. Let
¢ = {S1,...,Sn} be the IFS for A and ¢; = {S{, . ,Sf\,} be the IFS for A(t). Simple calculations
show that Sf(:c) = Si(z) +t; for every i = 1,...,N. By the definition of 9, by (5.2) and by [16,
Corollary 7.3] there exists § = §(A) > 0 such that § < ¢ and ¢, satisfies the transversality condition.

By Lemma 5.2 and Definition 4.1, it follows that A(t) satisfies the strong-stable transversality on
(—8,8)N. O
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Lemma 5.3. Let us define for every A e MY
P(A) =N~ | ] AW,

teRN
where A(t) is defined in Lemma 5.2. Then P defines a measurable partition of M.

Proof. By the definition of P it is enough to show that if A % A’ then either P(A) = P(A’) or
P(A)nPA) =@.

Let us fix A # A’ and suppose that P(A) n P(A") # . Then there exist t1,...,ty € R and
th,...,ty € Rthat A;+t;B; = Al+t,B] for every i = 1, ..., N, where B; and Bj defined in (5.3). Thus
a;+b; = a,+b; and ¢; +d; = ¢, +d}. Hence, P(A) = P(A’). The measurability is straightforward. [

Proof of Theorem 1.1. First we show that if A € 9V U O, where MY and Oy are defined in (1.4),

then condition (iii) of Theorem 4.2 holds for the Kienmiki measure u of A, defined in Definition 2.6.

h h
Indeed, if A e MY then ue > Z “ and on the other hand, if A€ Oy then

SS S

XMK - XMK XMK
hMK huK XZK + (30 - 1)Xfﬁ< XZK + (30 - 1)Xfﬁr{
ss_s+2ss: S8 __ 8 +2 ss =
XHK XHK XMK XMK X“K XMK
1 Xpr 1 5 XK
=3+ |24+ ——— |so+ 24>+ — +24->2

K X, K 3 XK X, K

e I 311 ®
pk X, K

Now, let Ve N U On < MY be a compact set such that Vo = V. Let us define for a Ae V
Q(A) :=V n P(A),
Thus, Ugep(a) {U;e(—d(B)ﬁ(B))N B(z)} defines an open cover of Q(A). Since Q(.A) is compact there is
a finite set {By, ..., By} that [ J_; {Uth(—é(Bi),é(B@-))N Bi@)} is a cover for Q(.A). But by Lemma 5.2,

for every i = 1,...,n the parametrized family of matrices B;(t) satisfies the strong-stable transvers-
ality condition on (—d(8;),(B;))V. Thus, by Theorem 4.2 for every i = 1,...,n
dimy pf = dimpg Ay = dimp Ay = so(t) for Ly-a.e t € (—0(B;),5(B;))",

where £f is the Kéenméki measure of the system B;(t) and so(t) is the affinity dimension. In
particular, for every A€V

dimpy p = dimpy A = dimp A = so(B) for Ly-a.e Be Q(A).
By Lemma 5.3, @ is a measurable foliation of V', thus, by Rokhlin’s Theorem
dimg pf = dimg A = dimg A = so(A) for Lyn-a.e. AeV.

Since V was arbitrary, the statement follows. O
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