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Abstract. In 1957, Blackwell expressed the entropy of hidden Markov chains
using a measure which can be characterised as an invariant measure for linear
fractional transformations with a certain class of rational weights. This measure,
called the Blackwell measure, plays a central role in understanding the entropy
rate and other important characteristics of fundamental models in information
theory. We show that for a suitable set of parameter values the Blackwell meas-
ure is absolutely continuous for almost every parameter in the case of binary
symmetric channels.

1. Introduction and Statements

Blackwell [1] expressed the entropy for hidden Markov chains using a measure
which is called the Blackwell measure and can be characterised as an invariant
measure of an Iterated Function System (IFS). The properties of the Blackwell
measure are examined by several papers, for example [6, 7, 10, 13] etc. Blackwell
showed some examples, where the support of the measure is at most countable,
hence, the measure is singular, see [1, Section 3]. In our paper we focus on the
Blackwell measure defined by the binary-symmetric channel with crossover prob-
ability ε. Bárány, Pollicott and Simon showed a set of parameters, where the
measure is singular, see [3, Theorem 1]. Our goal is to give a set of parameters
for which the Blackwell measure is absolutely continuous (a.c.) with respect to
the Lebesgue measure. To the best of our knowledge, absolute continuity of the
Blackwell measure has not been proved for any example before.

Let us introduce the basic notations for the binary symmetric channel. Let
X := {Xi}∞i=−∞ be a binary, symmetric, stationary, ergodic Markov chain source,
Xi ∈ {0, 1} with probability transition matrix

Π :=

[
p 1− p

1− p p

]
.

Then it is well known that the entropy H(X) is given by

H(X) = −p log p− (1− p) log(1− p).

By adding to X a binary independent and identically distributed (i.i.d.) noise
E = {Ei}∞i=−∞ with

P(Ei = 0) = 1− ε, P(Ei = 1) = ε,
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we get a Markov chain Y := {Yi}∞i=−∞, Yi = (Xi, Ei) with states {(0, 0), (0, 1), (1, 0),
(1, 1)} and transition probabilities:

M :=


p(1− ε) pε (1− p)(1− ε) (1− p)ε
p(1− ε) pε (1− p)(1− ε) (1− p)ε

(1− p)(1− ε) (1− p)ε p(1− ε) pε
(1− p)(1− ε) (1− p)ε p(1− ε) pε

 .
Let Ψ : {(0, 0), (0, 1), (1, 0), (1, 1)} 7→ {0, 1} be a surjective map such that

Ψ(0, 0) = Ψ(1, 1) = 0 and Ψ(0, 1) = Ψ(1, 0) = 1.

We consider the ergodic stationary process Z = {Zi = Ψ(Yi)}∞i=−∞, is the corrupted
output of the channel. Equivalently, Z is the stationary stochastic process

Zi = Xi

⊕
Ei,

where
⊕

denotes the binary addition. According to [6, Example 4.1] and [3, Section
3.1,3.2], the entropy of Z can be characterized as

H(Z) = −
∫ 1

0
pε,p0 (x) log pε,p0 (x) + pε,p1 (x) log pε,p1 (x)dµε,p(x),

where the Blackwell measure µε,p can be obtained as follows. Let {Sε,p0 , Sε,p1 } be a
set of functions on the interval [0, 1],

Sε,p0 (x) :=
x · p · (1− ε) + (1− x) · (1− p) · (1− ε)

x · [p(1− ε) + (1− p) · ε] + (1− x) · [(1− p)(1− ε) + p · ε]
, (1.1)

Sε,p1 (x) :=
x · p · ε+ (1− x) · (1− p) · ε

x · [pε+ (1− p) · (1− ε)] + (1− x) · [(1− p)ε+ p · (1− ε)]
. (1.2)

We call {Sε,p0 , Sε,p1 } an iterated function system (IFS) on [0, 1]. Further, let us
define two other functions on the interval [0, 1]

pε,p0 (x) = x · [p(1− ε) + (1− p) · ε] + (1− x) · [(1− p)(1− ε) + p · ε] , (1.3)

pε,p1 (x) = x · [pε+ (1− p) · (1− ε)] + (1− x) · [(1− p)ε+ p · (1− ε)] . (1.4)

Since for every x ∈ [0, 1], pε,p0 (x), pε,p1 (x) > 0 and pε,p0 (x)+pε,p1 (x) ≡ 1, the functions
(pε,p0 , pε,p1 ) can be interpreted as a place-dependent probability vector. Then the
Blackwell measure µε,p is the unique measure that satisfies the following relation
for every Borel set B with the conditions above (see [5, Theorem 1.1])

µε,p(B) =

∫
(Sε,p0 )

−1
B
pε,p0 (x)dµε,p(x) +

∫
(Sε,p1 )

−1
B
pε,p1 (x)dµε,p(x). (1.5)

As we have mentioned before, our main result shows a set of parameters (ε, p) ∈
(0, 1)2 such that the Blackwell measure µε,p � L (shown in Figure 1), where L
denotes the Lebesgue measure on the real line.

Theorem 1.1 (Main Theorem). The Blackwell measure µε,p is singular in the blue
region and absolutely continuous for every ε 6= 1/2 and Lebesgue almost every p in
the red region marked on Figure 1.

Remark 1.2. The singularity region of the measure was already showed in [3,
Theorem 2]. We will prove the absolute continuity part of the theorem and precisely
characterize the region of absolute continuity later, see Sections 3 and 4.
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Figure 1. The absolute continuity (red region) and the singularity
region (blue region) of the Blackwell measure µε,p.

We note that the IFS {Sε,p0 , Sε,p1 } is not contracting for every 0 < ε, p < 1. The

IFS is contracting if supx∈[0,1] | (S
ε,p
i )
′
(x)| < 1 for every i = 0, 1. We will restrict

ourselves to the set of parameters ε, p such that the IFS is strictly contracting
later. Then there exists a unique non-empty compact set Λε,p such that Λε,p =
Sε,p0 (Λε,p) ∪ Sε,p1 (Λε,p), see [4]. Λε,p is the attractor of the IFS {Sε,p0 , Sε,p1 }. The
measure µε,p is an invariant measure of the IFS {Sε,p0 , Sε,p1 } with place-dependent
probabilities {pε,p0 (·), pε,p1 (·)} and the support of µε,p is Λε,p.

Corollary 1.3. The Blackwell measure µε,p is equivalent to the measure L|Λε,p for

every ε 6= 1/2 and Lebesgue almost every p in the red region marked on Figure 1.

Proof. The statement follows immediately from Theorem 1.1 and [8, Theorem 1.1].
�

The properties of invariant measures of iterated function systems have been
studied by several authors, for example [11, 15], etc. They considered a family of
parameterised IFSs and used the so-called transversality condition, introduced by
Pollicott and Simon in [12] (see precise definition in Section 2) to prove absolute
continuity or to calculate the Hausdorff dimension of invariant measures. However,
the studied invariant measures were not place-dependent probability measures.
There were no tools for proving absolute continuity in place-dependent case in
lately. In [2] there was given a sufficient condition for calculating the Hausdorff-
dimension and for proving absolute continuity for place-dependent invariant prob-
ability measures, which used also the transversality condition.
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Figure 2. The transversality condition for one parameter.

Structure of the paper. In Section 2 we give a short overview of the main tool of
the proof, the transversality condition. A sketch of the proof is also given. Section
3 determines the set of parameters (ε, p) ⊂ (0, 1)2 for which the transversality
condition holds and finally Theorem 1.1 is proved in Section 4.

2. Transversality methods for place-dependent invariant measures

This section is devoted to introduce the definition of transversality condition and
state the results about place-dependent probability measures.

Denote by S = {1, . . . , k} the set of symbols. Let X be a compact interval on
the real line and U ⊂ Rd be an open, bounded set. Let us consider a parameterized
family of IFSs Ψλ =

{
fλi : X 7→ X

}
i∈S , λ ∈ U , such that there exist 0 < α < β < 1

that α <
∣∣(fλi )′(x)

∣∣ < β for every x ∈ X, λ ∈ U and i ∈ S.

Let Σ = SN be the symbolic space. Let us define the natural projection from
the symbolic space to the compact interval X as follows

πλ(i) := lim
n→∞

fλi0 ◦ · · · ◦ f
λ
in(x) for i = (i0, i1, . . . ) ∈ Σ.

Since the functions fi are uniformly contracting, the function π : Σ × U 7→ X is
well defined. Moreover, let us assume that the functions λ 7→ fλi are uniformly

continuous from U to C1+θ(X).

Definition 2.1. We say that Ψλ satisfies the transversality condition on the
open, bounded set U ⊂ Rd, if there exists a constant C > 0 such that for any
i, j ∈ Σ with i0 6= j0

Ld (λ ∈ U : |πλ(i)− πλ(j)| < r) < Cr for every r > 0, (2.1)

where Ld is the d-dimensional Lebesgue measure.

Let Pλ = {pλi : X 7→ (0, 1)}i∈S be a parameterized family of Hölder con-

tinuous place-dependent probabilities, i.e.
∑

i∈S p
λ
i (x) ≡ 1 for every λ ∈ U .

Moreover, suppose that the the functions λ 7→ pλi are uniformly continuous from

U to Cθ(X, (0, 1)). There exists a unique corresponding place-dependent invariant
measure µλ which satisfies



BLACKWELL MEASURE 5

µλ(B) =
∑
i∈S

∫
(fλi )

−1
(B)

pλi (x)dµλ(x) for every Borel set B.

The existence and uniqueness of such measure follows from [5]. Let us define the
entropy h(µλ) and Lyapunov exponent χ(µλ) of measure µλ as

h(µλ) = −
∫ ∑

i∈S
pλi (x) log pλi (x)dµλ(x), (2.2)

χ(µλ) = −
∫ ∑

i∈S
pλi (x) log

∣∣(fλi )′(x)
∣∣dµλ(x). (2.3)

According to the result of Jaroszewska and Rams [9], the quotient h(µλ)/χ(µλ)
is an upper bound for the Hausdorff dimension of the measure µλ for every λ ∈ U .
Therefore, h(µλ)/χ(µλ) > 1 is a necessary condition to prove absolute continuity
of µλ.

Theorem 2.2. [2, Theorem 1.1(2)] Suppose that all of the conditions above are
satisfied. Then µλ is absolutely continuous w.r.t. the Lebesgue measure for Ld
almost every λ ∈ {λ ∈ U : h(µλ)/χ(µλ) > 1}.

In general, to prove that the measure µλ is absolutely continuous it is sufficient
to show that the Radon-Nykodim derivative of µλ w.r.t. Lebesgue measure exists
for µλ almost-every point. The standard technique to prove that fact for Ld-a.e. λ
is to prove∫∫

lim inf
r→0

µλ(Br(x))

2r
dµλ(x)dλ ≤ lim inf

r→0

1

2r

∫∫∫
I{|x−y|<r}dµλ(y)dµλ(x)dλ <∞.

The measure µλ is a push-down measure of some measure νλ on the symbolic space
Σ, i.e. µλ = νλ◦π−1

λ , see [2, Lemma 2.3]. The difficulty of the proof of Theorem 2.2
comes from the fact that since the measure µλ is place-dependent, the measure νλ
itself depends on λ as well. To avoid this difficulty, the author integrates a function
instead of the indicator in the previous inequality, which function is constant over
the cylinder sets of Σ and majoring the indicator.

Sketch of proof. In point of view of Theorem 2.2, to prove absolute continuity
of the Blackwell measure µε,p (1.5) it is enough to show a region Rtrans ⊂ (0, 1)2

where the IFS {Sε,p0 , Sε,p1 } satisfies the transversality condition (2.1) and another
region Rratio where the quotient h(µε,p)/χ(µε,p) is strictly greater than 1.

A region for Rratio can be shown using the results of [3, Section 4], see (4.2).
It is much harder to find a region Rtrans (3.7), especially in the case of non-linear
functions. We show such a method in Section 3, similar to [3, Section 7.1]. First,

the original IFS {Sε,p0 , Sε,p1 } is transformed to an equivalent IFS {Hε,2p−1
0 , Hε,2p−1

1 }
for easier handling. To show transversality some technical assumptions need to be
made, which are collected in Rregion (3.5), also see Figure 3.

Firstly, as mentioned before the parameters need to be picked so that the IFS
is strictly contracting which yields Rcontr (3.2). Secondly, for an IFS with two
functions it is easy to see that its attractor is either an interval or a Cantor-set.
Since the Lebesgue measure of the support of an absolutely continuous measure
needs to be positive, we will consider those parameters where Λε,p is an interval,
which gives Roverlap (3.3). A final purely technical assumption gives Rpos (3.4).

The key lemma to prove transversality is the following.
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Lemma 2.3. [14, Lemma 7.3] Let U ⊂ Rd be an open, bounded set. Suppose that
f is a C1 real-valued function defined in a neighborhood of U such that there exists
an η > 0 satisfying

|f(λ)| < η ⇒ ‖gradλf(λ)‖ > η for every λ ∈ U.

Then there exists C = C(η) such that

Ld (λ ∈ U : |f(λ)| < r) < Cr for every r > 0.

For a visualization of Definition 2.1 and Lemma 2.3 see Figure 2. As a result we
can prove absolute continuity in the region Rratio ∩Rtrans ∩Rregion.

3. Transversality region

In this section we are going to show a region of (ε, p) parameters, where the
IFS {Sε,p0 , Sε,p1 } satisfies the transversality condition using Lemma 2.3. Because of
some technical reasons, we are going to modify our original IFS. That is, we are
going to prove transversality for an IFS which is equivalent to the original one.
By symmetrical reasons, without loss of generality suppose 1/2 < p < 1 and let
q := 2p− 1.

Lemma 3.1. For every 0 < ε, q < 1, ε 6= 1/2, there exists an fε,q linear function

such that fε,q ◦Hε,q
i ◦ (fε,q)

−1 ≡ Sε,(q+1)/2
i for i = 0, 1, i.e. the IFS {Hε,q

0 , Hε,q
1 } is

equivalent to the IFS
{
S
ε,(q+1)/2
0 , S

ε,(q+1)/2
1

}
, where

Hε,q
0 (x) = − 2 + (−1 + 3q + cε,q)x

−3 + q + cε,q + 2(−1 + q)(−1 + q + cε,q)x
,

Hε,q
1 (x) =

(1 + q − cε,q)x
1 + q + cε,q + 2(−1 + q)(−1 + q + cε,q)x

,

and cε,q =
√

1 + 2(1− 8ε+ 8ε2)q + q2.

Proof. Let

Lε,qi (x) = S
ε,(q+1)/2
i (x+ 1/2)− 1/2.

Since {S0, S1}maps [0,1] into itself, {L0, L1}maps [−1/2, 1/2] into itself. Moreover,
S0 + S1(1− x) = 1 implies L0(x) = −L1(−x). Let yε,q be the fixed point of L0 in
[−1/2, 1/2]. That is

yε,q := −
−1 + q +

√
1 + 2(1− 8ε+ 8ε2)q + q2

4(−1 + 2ε)q
.

We define y1/2,q = 0. So when ε 6= 1/2 the following transformation of the function
is valid.

Qε,qi (x) := Lε,qi (yε,qx)/yε,q.

Finally, we do the last manipulation:

Hε,q
i (x) :=

Qε,qi (2(1− q)x− 1) + 1

2(1− q)
.

By the definition fε,q(x) := 2(1 − q)yε,qx + (1 − q)yε,q − 1 the statement of the
lemma follows. �



BLACKWELL MEASURE 7

The importance of the modification of our original IFS comes from the fact
that limε→1/2H

ε,q
0 (x) = qx + 1 and limε→1/2H

ε,q
1 (x) = qx. Peres and Solomyak

[11] proved that the IFS {qx+ 1, qx} satisfies the transversality condition for
q ∈ (0.5, 0.65). Therefore one can claim that the transversality holds for the
IFS {Hε,q

0 , Hε,q
1 } in a neighborhood of ε = 1/2. For the proof we will use the

technique of [3, Section 7].
It is easy to check that

the functions Hε,q
0 and Hε,q

1 are mon. increasing for every 0 < ε, q < 1. (3.1)

Furthermore, Qε,q0 (1) = 1 and Qε,q1 (−1) = −1, therefore Hε,q
0 ( 1

1−q ) = 1
1−q and

Hε,q
1 (0) = 0. This fact and 3.1 implies that the functions Hε,q

0 and Hε,q
1 map the

interval [0, 1
1−q ] into itself.

As we mentioned earlier, the IFS {Hε,q
0 , Hε,q

1 } is not contracting, just eventually
contracting. Let κ(ε, q) denote the contraction ratio of the IFS,

κ(ε, q) := max

{
(Hε,q

0 )
′
(0), (Hε,q

0 )
′ ( 1

1− q
)
, (Hε,q

1 )
′
(0), (Hε,q

1 )
′ ( 1

1− q
)}

,

and let

Rcontr :=
{

(ε, q) ∈ [0, 1]2 : κ(ε, q) < 1
}
. (3.2)

Because of (3.1), Rcontr is exactly the region of parameters, where the IFS is con-
tracting.

Let πε,q denote the usual natural projection from the symbolic space Σ = {0, 1}N

to [0, 1
1−q ], that is

πε,q(i0, i1, i2, . . . ) = lim
n→∞

Hε,q
i0
◦Hε,q

i1
◦ · · · ◦Hε,q

in
(0).

Since the functions Hε,q
i are contractions for (ε, q) ∈ Rcontr, the function πε,q is well

defined.
To prove absolute continuity and in particular, transversality, it is necessary that

the maps are overlapping. That is, if Hε,q
0 ([0, 1

1−q ])∩Hε,q
1 ([0, 1

1−q ]) = ∅ then the at-

tractor of the IFS (the unique nonempty compact set Λ′ε,q = Hε,q
0 (Λ′ε,q)∪H

ε,q
1 (Λ′ε,q))

is a Cantor set with zero Lebesgue measure, which implies that any measure with
support Λ′ε,q is singular. On the other hand, if Hε,q

0 ([0, 1
1−q ]) ∩ Hε,q

1 ([0, 1
1−q ]) 6= ∅

then Λ′ε,q = [0, 1
1−q ]. However, the transversality condition works if the overlap is

”weak”. Therefore, we give a technical assumption for the set of parameters. Let
us consider the following region of parameters

Roverlap :=

{
(ε, q) ∈ [0, 1]2 : Hε,q

0 (0) < Hε,q
1

( 1

1− q
)
,

Hε,q
0 (Hε,q

0 (0)) > Hε,q
1

( 1

1− q
)

and Hε,q
1 (Hε,q

1 (
1

1− q
)) < Hε,q

0 (0)

}
. (3.3)

For the parameters in Roverlap we have

πε,q(i) = πε,q(j) and i0 6= j0 ⇒ i1 6= j1.

As a technical condition we need also that the functions
∂Hε,q

0
∂q and

∂Hε,q
1
∂q are

monotone increasing. Unfortunately, this is not true for every parameters. Let
Rpos be the set of parameters, where this is true. Precisely, simple calculations
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Figure 3. The regions Rcontr (blue region), Roverlap (red) and Rpos

(brown). The intersection of the three regions is Rregion.

show that the functions
∂Hε,q

i
∂q , Hε,q

i : [0, 1
1−q ] 7→ R are smooth functions for every

0 < ε, q < 1. Denote xiε,q the unique root of the function

∂ (Hε,q
i )
′

∂q
(xiε,q) = 0.

Let

Rpos :=

{
(ε, q) ∈ [0, 1]2 :

∂(Hε,q
i )′

∂q
(0) > 0 and xiε,q /∈

[
0,

1

1− q
]

for i = 0, 1

}
.

(3.4)
From now we focus our study for the set of parameters Rregion, where

Rregion := Rcontr ∩Roverlap ∩Rpos, (3.5)

see Figure 3. The definition of Rregion implies that it is open.
Define ω(ε, q) for (ε, q) ∈ Rregion as

ω(ε, q) := max

{
∂Hε,q

0

∂q

( 1

1− q
)
,
∂Hε,q

1

∂q

( 1

1− q
)}

.

Lemma 3.2. For every (ε, q) ∈ Rregion and i ∈ Σ

0 ≤ ∂

∂q
πε,q(i) ≤

ω(ε, q)

1− κ(ε, q)
.

Proof. One can check that for every (ε, q) ∈ Rregion,
∂Hε,q

0
∂q (0),

∂Hε,q
1
∂q (0) ≥ 0. Since

Hε,q
0 , Hε,q

1 and
∂Hε,q

0
∂q ,

∂Hε,q
1
∂q are monotone increasing, the first inequality holds.
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Figure 4. The region Rtrans ∩Rregion.

On the other hand,

∂

∂q
πε,q(i) =

∂

∂q
(Hε,q

i0
(πε,q(σi)))

=
∂Hε,q

i0

∂q
(πε,q(σi)) + (Hε,q

i0
)′(πε,q(σi))

∂

∂q
πε,q(σi)

≤ ω(ε, q) + κ(ε, q)
∂

∂q
πε,q(σi).

The second inequality follows by induction. �

Since the functions Hε,q
0 , Hε,q

1 are strictly monotone increasing on [0, 1
1−q ], they

are invertible. Denote the inverse functions by

Hε,q0 := (Hε,q
0 )
−1

and Hε,q1 := (Hε,q
1 )
−1
.

For simplicity, denote Hε,q
10 := Hε,q

1 ◦ Hε,q
0 and Hε,q

01 := Hε,q
0 ◦ Hε,q

1 . Then easy
calculations show that the function

Hε,q(x) :=
∂Hε,q

10

∂q
◦ Hε,q0 ◦ H

ε,q
1 (x)− ∂Hε,q

01

∂q
◦ Hε,q1 ◦ H

ε,q
0 (x) (3.6)

is a convex polynomial of second degree. Denote the minimum of it by zε,q.

Lemma 3.3. For every (ε0, q0) ∈ Rtrans ∩ Rregion and for every i, j ∈ Σ such that
i0 6= j0 we have

πε0,q0(i) = πε0,q0(j)⇒

∣∣∣∣∣ ∂∂q (πε0,q(i)− πε0,q(j))
∣∣∣∣
q=q0

∣∣∣∣∣ > 0,

where

Rtrans :=

{
(ε, q) ∈ [0, 1]2 : Hε,q(zε,q)−

ω(ε, q)κ(ε, q)2

1− κ(ε, q)
> 0

}
. (3.7)

One can see the region of parameters Rtrans ∩Rregion on Figure 4.

Proof. Suppose that πε0,q0(i) = πε0,q0(j) and i0 6= j0 then (ε0, q0) ∈ Roverlap implies

0 = πε0,q0(i)− πε0,q0(j) = Hε0,q0
1 ◦Hε0,q0

0 (πε0,q0(σ2i))−Hε0,q0
0 ◦Hε0,q0

1 (πε0,q0(σ2j)).
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So it is enough to show that the partial derivative by q of the right-hand side is
positive. Then from Lemma 3.2 it follows that

∂

∂q

(
Hε,q

10 (πε,q(σ
2i))−Hε,q

01 (πε,q(σ
2j))
)

≥ ∂Hε,q
10

∂q
(πε,q(σ

2i))− ∂Hε,q
01

∂q
(πε,q(σ

2j))− κ(ε, q)2ω(ε, q)

1− κ(ε, q)
.

Hence by the definition of Hε,q

∂Hε0,q
10

∂q
(πε0,q(σ

2i))− ∂Hε0,q
01

∂q
(πε0,q(σ

2j))
∣∣∣
q=q0

=
∂Hε0,q

10

∂q
(Hε0,q0 ◦ Hε0,q1 (πε0,q(i)))−

∂Hε0,q
01

∂q
(Hε0,q1 ◦ Hε0,q0 (πε0,q(j)))

∣∣∣
q=q0

≥ Hε0,q0(zε0,q0),

so the statement follows. �

For the sake of completeness, finally, we give a compactness argument for proving
transversality condition.

Proposition 3.4. For every ε > 0 the IFS {Hε,q
0 , Hε,q

1 } satisfies the transversality

condition on any open interval V ⊂ R such that V ⊂ Rtrans∩Rregion∩([0, 1]× {ε}).

Proof. Let V ⊂ R an open set such that the closure is contained in Rtrans∩Rregion∩
[0, 1]× {ε} and let

η1 := min
q∈V

{
Hε,q(x)(zε,q)−

ω(ε, q)κ(ε, q)2

1− κ(ε, q)

}
,

where Hε,q was defined in (3.6). It is easy to see that the space Σ×Σ× V is com-
pact and the function (i, j, q) 7→ ∂

∂q (πε,q(i)− πε,q(j)) is continuous. The function

(i, j, q) 7→ πε,q(i)− πε,q(j) is continuous as well. Therefore, for every η ≥ 0, the set
Lη = {(i, j, q) : |πε,q0(i)− πε,q0(j)| ≤ η} is compact. Since∣∣∣∣ ∂∂q (πε,q0(i)− πε,q0(j))

∣∣∣∣ ≥ η1 for every (i, j, q) ∈ L0,

there exists an η2 > 0 depending only on ε such that for every q0 ∈ V and any
i, j ∈ Σ, i0 6= j0 we have

|πε,q0(i)− πε,q0(j)| < η1 ⇒

∣∣∣∣∣ ∂∂q (πε,q(i)− πε,q(j))
∣∣∣∣
q=q0

∣∣∣∣∣ > η2

2
.

This implies the statement of the proposition by Lemma 2.3. �

4. Proof of Theorem 1.1

The last section of our paper is devoted to prove the absolute continuity of the
Blackwell measure. In order to apply Theorem 2.2 we recall a result of [3] to find
the region where the quotient entropy over Lyapunov exponent is strictly greater
than 1. Let

hε,q(x) = −
(
p
ε,(q+1)/2
0 (x) log p

ε,(q+1)/2
0 (x) + p

ε,(q+1)/2
1 (x) log p

ε,(q+1)/2
1 (x)

)
.
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Figure 5. The region Rratio ∩Rtrans ∩Rregion.

Define the Perron-Frobenius operator corresponding to measure µε,p as follows

(Tε,pf)(x) := pε,p0 (x) · f(Sε,p0 (x)) + pε,p1 (x) · f(Sε,p1 (x)),

where the functions and probabilities were defined in (1.1), (1.2), (1.3) and (1.4).
According to the result [3, Corollary 12, Proposition 14, Proposition 18]

3(T 10
ε,(q+1)/2hε,q)(0) + log(ε(1− ε)q) > 0⇒

h(µε,(q+1)/2)

χ(µε,(q+1)/2)
> 1, (4.1)

where h(µε,p) is the entropy (2.2) and χ(µε,p) denotes the Lyapunov exponent (2.3)
of the measure µε,p. Define Rratio as the region where the ratio is strictly greater
than 1

Rratio :=
{

(ε, q) ∈ [0, 1]2 : 3(T 10
ε,(q+1)/2hε,q)(0) + log(ε(1− ε)q) > 0

}
. (4.2)

Proof of Theorem 1.1. For every fixed ε 6= 1/2, the IFS
{
S
ε,(q+1)/2
0 , S

ε,(q+1)/2
1

}
sat-

isfies the transversality condition by Lemma 3.1 and Proposition 3.4 for (ε, q) ∈
Rtrans ∩ Rregion. It follows from Theorem 2.2 and (4.1) that for every ε 6= 1/2
and Lebesgue-a.e q in Rratio ∩Rtrans ∩Rregion, the measure µε,(q+1)/2 is absolutely
continuous w.r.t Lebesgue measure. Using the symmetrical properties of µε,p, one
can finish the proof. �
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2012-0001**project and KTIA-OTKA # CNK 77778, funded by the Hungarian
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