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Abstract. This paper studies how long it takes the orbit of the chaos game to reach a cer-
tain density inside the attractor of a strictly contracting iterated function system of which
we only assume that its lower dimension is positive. We show that the rate of growth of
this cover time is determined by the Minkowski dimension of the push-forward of the shift
invariant measure with exponential decay of correlations driving the chaos game. Moreover,
we bound the expected value of the cover time from above and below with multiplicative log-
arithmic correction terms. As an application, for Bedford-McMullen carpets we completely
characterise the family of probability vectors which minimise the Minkowski dimension of
Bernoulli measures. Interestingly, these vectors have not appeared in any other aspect of
Bedford-McMullen carpets before.

1. Introduction

The chaos game is a simple random iterative procedure introduced by Barnsley [4] to gen-
erate the attractor of an iterated function system (IFS) which is a tuple F = {f1, f2, . . . , fN}
of contracting transformations on Rd. Given a fixed non-degenerate probability vector p =
(p1, . . . , pN ), the game starts from an initial point x0, chooses a random function fi1 from
F according to p and returns the point x1 = fi1(x0). It continues iteratively generating a
sequence of points x2, x3, . . ., where xn = fin(xn−1) and the indices in are independently and
identically distributed (i.i.d.) according to p. The attractor Λ ⊆ Rd, which is the unique

non-empty, compact set satisfying Λ =
⋃N
i=1 fi(Λ) is then almost surely (regardless of the

starting point) obtained as the ω-limit set of the orbit (xn)∞n=0, i.e. Λ =
⋂∞
m=1 {xn : n ≥ m}.

The almost sure property is with respect to the Bernoulli measure µp = pN defined on infinite
sequences i from the symbolic space Σ = {1, 2, . . . , N}N. In particular, if x0 ∈ Λ (for example,
x0 is a fixed point of one of the fi) then (xn)∞n=0 is almost surely a dense subset of Λ. For the
remainder we will always assume that x0 ∈ Λ.

The chaos game can be naturally generalised to allow the indices in to be chosen in a non-
i.i.d. way. The left shift σ : Σ→ Σ is defined σ(i1i2i3 . . .) = i2i3 . . . and a measure µ on the
symbolic space Σ is σ-invariant if µ(σ−1(·)) = µ(·). Then we also consider the chaos game
with respect to a σ-invariant measure µ, where for every n ∈ N and i1, . . . , in ∈ {1, . . . , N}n,
the first n indices in the chaos game are chosen to be i1, . . . , in with probability µ([i1 . . . in]),
where [i1 . . . in] denotes the cylinder set {j ∈ Σ : jl = il for l = 1, . . . , n}.
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The natural question we address in this paper is: given µ, how long does it take the chaos
game to reach a certain ‘resolution’ of the fractal? Moreover, for which µ will it take the
least number of steps to reach that resolution? We formulate these questions rigorously in
a moment. We are only aware of [21] and [27] that study this direction. The former is an
informal investigation, while the latter work of Morris and the second named author answer
these questions for self-similar sets satisfying the open set condition in the i.i.d case. Our
results greatly extend this scope and give additional context explaining and illustrating the
results. A number of papers show convergence of the chaos game for more general IFSs,
see [5–7, 33] for example, while others show ergodic theorems for time averages along the
orbit [10,16,44]. We do not pursue these directions further here.

The question addressed in this article is a type of “covering problem”, which are problems
with a rich history in the probability literature, originating with the classical coupon collector
problem. Covering problems are concerned with the time taken for a stochastic process to
“exhaust” its state space, in a precise sense which depends on the model being studied.
Classical examples include the first time that a random walk on a finite path-connected graph
visits all of the vertices [2] and the first time that an irreducible finite-state Markov chain
visits all of its states [34, 36]. The geometric covering problems studied in [1, 38] are closely
related to our problem, except that while our sequence of points x1, x2, x3 . . . is determined
in a dynamical way through the chaos game, the points belonging to the sequences in [1, 38]
are chosen at random in an i.i.d. way. Another closely related field is the study of recurrence
in chaotic dynamical systems through hitting time statistics [22, 35]. This is concerned with
the study of the hitting time of an orbit under a chaotic dynamical system, to a ball which is
shrinking down to a point in the state space.

Setup. Throughout, we assume that the IFS F is strictly contracting in the sense that there
exists 0 < a < 1 such that

‖fi(x)− fi(y))‖ ≤ a‖x− y‖ for every i = 1, . . . , N. (1.1)

A priori we do not assume any separation condition on the first level cylinder sets fi(Λ) nor
any further smoothness conditions on the maps fi.

The orbit of the starting point x0 ∈ Λ according to i ∈ Σ for the first n steps is

On(i, x0) =
{
x0, fi1(x0), fi2 ◦ fi1(x0), . . . , fin ◦ . . . ◦ fi2 ◦ fi1(x0)

}
.

For compositions of maps we use the standard notation fi|n := fi1 ◦ fi2 ◦ . . . ◦ fin , where
i|n = i1i2 . . . in. Compositions are taken in reverse order in On(i, x0), for this we introduce

the notation
←−
i|n := inin−1 . . . i1 and so f←−

i|n = fin◦fin−1◦. . .◦fi1 . We measure the ‘resolution’ of

On(i, x0) as a subset of Λ according to the Hausdorff distance dH between them. In particular,
for any r > 0

dH

(
On(i, x0),Λ

)
< r ⇐⇒ (∀x ∈ Λ) (∃y ∈ On(i, x0)) such that x ∈ B(y, r).

In this case, we also say that On(i, x0) is r-dense in Λ. To measure the first instance when
On(i, x0) becomes r-dense in Λ, we introduce the waiting time

Tr(i, x0) := inf{n ≥ 0 : dH

(
On(i, x0),Λ

)
< r}.
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Let µ be a left-shift invariant measure. We say that µ has one-sided exponential decay if
there exists ε > 0 and κ > 0 such that for any finite words ı,  ∈ Σ∗

µ([ı] ∩ σ−n[]) ≤ (1 + κ2−ε(n−|ı|))µ([ı])µ([]). (1.2)

Such a measure µ is necessarily strongly mixing. To see this, note that (1.2) immediately
implies that for all finite words ı,  ∈ Σ∗, µ satisfies the one-sided strong mixing property
lim supn→∞ µ([ı] ∩ σ−n[]) ≤ µ([ı])µ([]). The other side can then be obtained by applying
the one-sided strong mixing property to µ((Σ \ [ı]) ∩ σ−n[])). It is easy to see that Bernoulli
measures satisfy the one-sided exponential decay property (1.2), but it is also satisfied by
many other measures, such as Gibbs measures for Hölder continuous potentials on Σ and
certain Käenmäki measures, both of which are important in the analysis of fractals and
motivate the study of the chaos game beyond the i.i.d. case. A more detailed discussion of
the applicability of our results to these classes of measures can be found in Section 2.1.

We define the reversed measure of a σ-invariant measure µ, denoted by ←−µ , as

←−µ ([ı]) = µ([
←−
ı ]) for every ı ∈ Σ∗.

Since µ is σ-invariant it follows that ←−µ is a well defined σ-invariant measure on Σ. We let
←−ν := π∗

←−µ where π∗
←−µ is the pushforward measure of ←−µ through the natural projection

π : Σ→ Λ defined by
π(i) := lim

n→∞
fi|n(0). (1.3)

Main contribution. Informally, our main result states that if Λ has positive lower dimension
dimL Λ > 0, see (2.1) for a definition, and µ is an invariant measure with one-sided exponential

decay then Tr(i, x0) asymptotically scales as r−α(1+o(1)) as r → 0, where the exponent α is
given by the Minkowski dimension of←−ν as defined by Falconer, Fraser and Käenmäki in [14],
see Section 1.1 below. We obtain more precise bounds for the expected value of Tr(i, x0) with
respect to µ by showing that

(r(log(1/r))2/dimL Λ)−α+o(1) ≤ EµTr(x0) ≤ (log(1/r))2 r−α−o(1).

Moreover, we give a complete characterisation of the probability vectors p which minimise
the value of α for the pushforward measure νp in the case of Bedford–McMullen carpets. See
Section 2 for the precise formulation of these statements.

1.1. Minkowski dimension of measures. Let ν be a fully supported finite Borel measure
on a compact metric space X. Then the upper Minkowski dimension of ν is defined as

dimM(ν) := inf{s ≥ 0 : there exists a constant c > 0 such that

ν(B(x, r)) ≥ crs for all x ∈ X and 0 < r < 1}
and its lower Minkowski dimension is

dimM(ν) := inf{s ≥ 0 : there exist a constant c > 0 and a sequence (rn)n∈N
of positive real numbers such that lim

n→∞
rn = 0 and

ν (B (x, rn)) ≥ crsn for all x ∈ X and n ∈ N}

(here B(x, r) denotes an open ball). If the two values coincide, then the common value,
called the Minkowski dimension of ν, is denoted by dimM ν. It is also referred to as the box
dimension of ν, see [18, Chapter 4.2].
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The upper and lower Minkowski dimension of a set X is denoted by dimMX and dimMX,
respectively. The main result of [14] is to give an alternative characterization of these quant-
ities by showing that

dimMX = min
{

dimM(ν) : ν is a fully supported finite Borel measure on X
}
, (1.4)

and an analogous claim holds for dimMX. In general, for the attractor of an IFS, the measure
that achieves the minimum is not invariant. However, an interpretation of the result in [27]
is that for a self-similar set Λ satisfying the open set condition, dimM Λ is achieved by a
self-similar measure νp if and only if p is the so-called ‘natural measure’ associated to the
IFS generating Λ. On the other hand, in the case of a family of self-affine sets called Bedford–
McMullen carpets there is indeed a positive gap dimM Λ < minp dimM νp unless the Hausdorff
and Minkowski dimensions of Λ coincide, see Remark 2.6. A key contribution of the current
paper is to identify the family of vectors p which minimise dimM νp. Hence, these are the
vectors for which the chaos game reaches a certain ‘resolution’ in the least number of steps.

Here we give a simple, yet useful equivalent characterization of dimM ν. Let

α(ν) := lim inf
r→0

max
y∈Λ

log ν(B(y, r))

log r
and α(ν) := lim sup

r→0
max
y∈Λ

log ν(B(y, r))

log r
.

We note that miny∈Λ ν(B(y, r)) exists for each r by compactness of Λ and lower semi-
continuity of y 7→ ν(B(y, r)), thus the above two definitions make sense.

Lemma 1.1. Let ν be a compactly supported finite Borel measure. Then

α(ν) = dimM(ν) and α(ν) = dimM(ν).

Proof. The proof follows from the definition of the upper and lower Minkowski dimensions.

Let X be the support of ν. Let s > dimM(ν) be arbitrary. Then for every x ∈ X, log ν(B(x,r))
log r ≤

s+ log c
log r and so, α(ν) ≤ s. Since s was arbitrary, we have α(ν) ≤ dimM(ν).

Now, let s < dimM(ν). Then by definition for every c > 0 there exists xc ∈ X and
0 < rc < 1 such that ν(B(xc, rc)) < c(rc)

s. Hence,

max
y∈X

log ν(B(y, rc))

log rc
≥ log ν(B(xc, rc))

log rc
> s+

log c

log rc
.

Letting c→ 0, necessarily we have that rc → 0, and since log c
log rc

≥ 0, we get α(ν) ≥ s. Since s

was again arbitrary, we have α(ν) ≥ dimM(ν).

The proof of the other equality is similar. Let s > dimM(ν). Then there exist c > 0 and a
sequence rn with rn → 0 such that

lim inf
r→0

max
x∈X

log ν(B(x, r))

log r
≤ lim inf

n→∞
max
x∈X

log ν(B(x, rn))

log rn
≤ lim inf

n→∞

(
s+

log c

log rn

)
= s.

Now, let s < dimM(ν). Then for every c > 0 and every sequence rn with rn → 0 there exists
x ∈ X such that ν(B(x, rn)) < c(rn)s. Hence, choosing rn to be the sequence for which α(ν)
is achieved, we get that

α(ν) = lim
n→∞

max
y∈X

log ν(B(y, rn))

log rn
≥ lim

n→∞
s+

log c

log rn
= s.

�
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The relationship of the Minkowski dimension of ν to other well-studied notions becomes
more apparent from this formulation. Recall that the lower and upper local dimensions of a
measure ν at a point x are

dimloc(ν, x) = lim inf
r→0

log ν(B(x, r))

log r
and dimloc(ν, x) = lim sup

r→0

log ν(B(x, r))

log r
.

The local dimension looks at the measure of a ball around a fixed point x, while the Minkowski
dimension always takes the point yr at scale r for which ν(B(yr, r)) is minimal, the ‘least
accessible part’ of the attractor. For self-similar sets taking a point x∗ which maximises
dimloc(νp, x) automatically provides a sequence yr ≡ x∗ that gives dimM νp. However,
for the Bedford–McMullen carpets we will show that dimM νp can be strictly larger than
maxx dimloc(νp, x), see Remark 5.2. Another related concept is the quantization problem for
probability measures, see [31] for some background.

2. Main results

We begin with the asymptotic pointwise almost sure behaviour of Tr(i, x0). Let Nr(X)
denote the smallest number of open sets of diameter r required to cover the set X. The lower
dimension of X is

dimLX = sup
{
α : (∃C > 0) such that (∀ 0 < r < R ≤ |X| and x ∈ X)

Nr(B(x,R) ∩X) ≥ C(R/r)α
}
. (2.1)

Recall, ←−ν = π∗
←−µ is the pushforward measure of ←−µ through the natural projection π defined

in (1.3). If µ is a Bernoulli measure µ = µp, then since the µp measure of a cylinder set is
independent of the order of digits, we clearly have ←−µp = µp. Thus, in case of the measure
νp = π∗µp, which equivalently is the unique measure that satisfies

νp(·) =

N∑
i=1

piνp(f−1
i (·)), (2.2)

one can replace ←−ν by νp.

Theorem 2.1. Let F be an arbitrary IFS which satisfies (1.1) and whose attractor Λ satisfies
dimL Λ > 0. Then for any measure µ on Σ with one-sided exponential decay of correlations
(1.2) and for µ-a.e. i and every x0 ∈ Λ

lim inf
r→0

log Tr(i, x0)

− log r
= dimM(←−ν ) and lim sup

r→0

log Tr(i, x0)

− log r
= dimM(←−ν ).

In particular, if µ = µp is Bernoulli, then one can replace ←−ν by νp.

Theorem 2.1 can easily be flipped over to obtain the decay rate of dH

(
On(i, x0),Λ

)
.

Corollary 2.2. Let F be an arbitrary IFS which satisfies (1.1) and whose attractor Λ satisfies
dimL Λ > 0. Then for any measure µ with one-sided exponential decay of correlations (1.2)
and for µ-a.e. i and every x0 ∈ Λ

lim inf
n→∞

log dH

(
On(i, x0),Λ

)
− log n

=
1

dimM(←−ν )
and lim sup

n→∞

log dH

(
On(i, x0),Λ

)
− log n

=
1

dimM(←−ν )
.

Again, if µ = µp is Bernoulli, then one can replace ←−ν by νp.
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Proof. From the definition of Tr(i, x0) it follows that r ≤ dH

(
On(i, x0),Λ

)
for every n <

Tr(i, x0), in particular, we have n ≤ TdH(On(i,x0),Λ)/2(i, x0). This and Theorem 2.1 imply that

1

dimM(←−ν )
= lim inf

r→0

− log r

log Tr(i, x0)
≥ lim inf

r→0

− log dH

(
OTr(i,x0)−1(i, x0),Λ

)
log Tr(i, x0)

≥ lim inf
n→∞

− log dH

(
On−1(i, x0),Λ

)
log n

= lim inf
n→∞

− log dH

(
On(i, x0),Λ

)
log n

≥ lim inf
n→∞

− log dH

(
On(i, x0),Λ

)
log TdH(On(i,x0),Λ)/2(i, x0)

≥ lim inf
r→0

− log r

log Tr/2(i, x0)
=

1

dimM(←−ν )
.

The proof of the second part is similar. �

Remark 2.3. The condition of one-sided exponential decay seems necessary. The other
condition dimL Λ > 0 seems purely technical and we believe the result should still hold
without it. In particular, we will show in Section 3.2 some examples when this condition
can be omitted. It is assumed only to ensure that there are sufficiently many small balls,
where dimM π∗

←−µ is attained and so the initial point x0 cannot cause a strict drop in the
approximation by beginning the chaos game at the least accessible part of Λ. Note, however,
that dimL Λ > 0 is not a very restrictive condition. For example, all self-affine sets are
uniformly perfect [45] which is equivalent to having positive lower dimension [29, Lemma
2.1]. As an application, we look at Bedford–McMullen carpets, see Section 2.2.

Next we consider the expected value of the cover time EµTr(x0), which denotes the expect-
ation of Tr(i, x0) with respect to the measure µ. We find that, roughly speaking, this can be
bounded in terms of (1/r)α (the reciprocal of the measure of the ball of minimum measure
at scale r), up to some logarithmic correction factors. Define

o(r) := max
x∈Λ

log←−ν (B(x, r))

log r
− α and o(r) := max

x∈Λ

log←−ν (B(x, r))

log r
− α. (2.3)

Theorem 2.4. Let F be an arbitrary IFS which satisfies (1.1). Fix a σ-invariant measure µ
on Σ and let α = dimM(ν) and α = dimM(ν).

(a) If µ has one-sided exponential decay, there exists a constant1 C1 such that for all

x0 ∈ Λ and r > 0 such that |o(r/4)| < α/2 and (r/4)α/2 < 1/2κ,

EµTr(x0) ≤ C1 (log(4/r))2 (r/4)−α−o(r/4),

where κ is the constant defined in (1.2).
(b) If dimL Λ > 0 then for all r > 0 sufficiently small2 and all x0 ∈ Λ,

EµTr(x0) ≥ R−α+o(Rr)
r

where C2(r(log(1/r))2/dimL Λ) ≤ Rr ≤ C3(r(log(1/r))2/ dimL Λ) for some uniform con-
stants C2, C3. The dependence of Rr on r and other parameters will be made explicit
in the proof of Lemma 4.3.

1The constant C1 will be made explicit in the proof of Lemma 4.2.
2The assumptions on the size of r will be made explicit in Lemma 4.3.
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Since r−α+o(r) and r−α−o(r) are lower and upper bounds respectively on the measure of the
ball of minimum measure at scale r, the main terms in Theorem 2.4(a) and (b) are essentially
analogous to the main theorem in [27]. Moreoever, Theorem 2.4(a) is essentially analogous
to the upper bound on the cover time for the chaos game induced by a Bernoulli measure on
self-similar sets in [27] (except we have gained an extra logarithmic factor log(1/r) due to the
fact that the measure is not necessarily Bernoulli but only has exponential decay). However,
the lower bound in Theorem 2.4(b) is essentially just the trivial bound which estimates the
expected cover time from below by the expected time to hit the ball of minimum measure. In
order to improve this (to be analogous to the lower bound in [27] for instance), one would need
some extra information on where the balls of minimum measure were located, in particular
to guarantee that they are sufficiently far from each other, in a dynamical sense.

2.1. Examples with optimal rate. From an applied point of view, the chaos game provides
an efficient algorithm to produce images well-approximating the attractor of an IFS. The
choice of the measure µ driving the chaos game influences the “quality” of the image we
obtain. For any r > 0, consider a maximal r-packing of the attractor Λ, i.e. a collection of
sets of diameter r with disjoint interiors that cover Λ. The orbit On(i, x0) becomes r-dense in
Λ once it has visited all elements of the r-packing. Therefore, the practicality of the algorithm
depends on how easy is it to define the r-packing and to keep track which elements of the
r-packing the orbit has visited.

2.1.1. Self-similar sets with SSP. If the IFS satisfies the strong separation property, i.e.
fi(Λ) ∩ fj(Λ) = ∅ for every i 6= j, then the natural projection π : Σ → Λ defined in (1.3) is
a bijection between the symbolic space and the attractor. Hence, there is a chance to define
the packing in terms of finite length strings. When the fi are all similarity mappings with
contraction ratios 0 < λi < 1, then the symbolic r-packing consists of those cylinder sets
[i1, . . . , im] for which λi1 · . . . · λim ≤ r < λi1 · . . . · λim−1 . If j is the next chosen index, then
the chaos game transitions from the current state [i1, . . . , im] to the unique cylinder of the
packing containing the cylinder [j, i1, . . . , im]. As mentioned before, dimM Λ is achieved by a
self-similar measure νp if and only if pi = λsi , where s, often called the similarity dimension,
is the unique solution to the equation

∑
i λ

s
i = 1. By Theorem 2.1 and (1.4), the shortest

running time to approximate Λ with resolution r is to choose p this way. Note that this also
follows from [27].

2.1.2. Self-similar sets with overlaps. The separation condition is important, but can be cir-
cumvented in some cases in order to achieve the optimal possible rate. Suppose that the
similarity dimension s of the self-similar IFS {fi(x) = λiOix + ti}Ni=1 on Rd is smaller than
the dimension of the state space. Moreover, suppose that dimM Λ = s, which happens gener-
ically, see [23,24]. Then for the self-similar measure νp with pi = λsi we have

log νp((B(x, r))

log r
≤ log νp(π([i1, . . . , im]))

log r
≤ s+

smini log λi
log r

,

and so dimMνp ≤ s. On the other hand, by our assumption dimMνp ≥ dimMΛ = s.

2.1.3. Bernoulli convolution. We saw that the most efficient convergence rate can be found
for a wide class of self-similar systems if the similarity dimension is smaller than the dimension
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of the state space. However, this is not the case for Bernoulli convolutions. For λ ∈ (1/2, 1),
consider the overlapping IFS

F = {λx− 1, λx+ 1}, with attractor Λ =
[ −1

1− λ
,

1

1− λ

]
. (2.4)

The self-similar measure νp associated to F is the well-known biased Bernoulli convolution.
There is extensive literature on it, especially for the non-biased p = (1/2, 1/2) case, see the
survey [39] or the recent influential papers [41,43] and references therein. Clearly, dimM Λ =
s = 1, however it is easy to see that

dimM νp ≥ lim
r→0

max
x∈{−(1−λ)−1,(1−λ)−1}}

log νp(B(x, r))

log r
=

min{log p1, log p2}
log λ

≥ log 2

log(1/λ)
> 1

implying that there is no Bernoulli measure which achieves dimM Λ.

There are two further natural classes of measures satisfying one-sided exponential decay
(1.2) which motivate the study of the chaos game beyond the i.i.d. and self-similar case.

2.1.4. Self-conformal sets. For conformal IFS {f1, . . . , fN} on Rd, where the contractions are
C1+ε, the natural measure ←−ν on the attractor Λ can be expressed as the push-forward of the
Gibbs measure ←−µ for the Hölder continuous potential i 7→ s log |f ′i1(π(σi))|, i.e. ←−ν = π∗

←−µ ,
where s is the conformality dimension, see [13, p. 89]. Such Gibbs measures with Hölder
continuous potentials satisfy (1.2) (see [9, p. 15]), thus our results are applicable to the
reversed Gibbs measure µ (which clearly also satisfies (1.2)). In particular, there exists a
constant C > 0 such that for every x ∈ Λ and every finite word ı

C−1 ≤
←−µ ([ı])

|f ′ı(x)|s
≤ C. (2.5)

Let us further assume that dimM Λ = s ≤ d, which holds for instance under the strong
separation property (see [13, p. 89]) or for typical systems (see [42, Theorem 6.1]). Similarly
to the self-similar case, it is easy to show in this case that dimM

←−ν = s. Hence, the chaos
game driven by µ will distribute mass most uniformly over Λ.

2.1.5. Self-affine sets with small dimension. Let {Si(·) = Ai(·) + ti}Ni=1 be a self-affine IFS,
where Ai ∈ GL(d,R) and ti ∈ Rd. The attractor of this IFS is called a self-affine set E.
The affinity dimension s0 is the expected Hausdorff and Minkowski dimension of E [11].
Generically, the measure of maximal Hausdorff dimension on E is the pushforward←−ν = π∗

←−µ
of a measure ←−µ on Σ which is the equilibrium state for a particular sub-additive potential
(which depends on s0) [28], where by “generically” we mean in the sense that if a set of linear
parts Ai are fixed (where each ‖Ai‖ < 1/2) then the conclusion holds for Lebesgue typical
choices of translations ti, see [25]. We shall refer to this measure ←−µ as a Käenmäki measure.
Piraino proved that if the linear parts {Ai}Ni=1 generate a strongly irreducible semigroup
which contains a matrix with a simple leading eigenvalue, then (1.2) holds for the Käenmäki
measure ←−µ , see [40, Theorem 3.3]. Therefore, our results are applicable to the reversed
Käenmäki measure µ, which is a natural candidate that we expect to optimise the cover time
of the chaos game on E. If we additionally assume that s0 ≤ 1 then µ does indeed optimise
the cover time of the chaos game, i.e. dimM

←−ν = dimME = s0. To see this, note that under
the assumptions of ‖Ai‖ < 1/2, dimME = s0 for Lebesgue almost every translations, see [12],
therefore dimM

←−ν ≥ s0. On the other hand, the strong irreducibility implies that←−µ satisfies a
type of “Gibbs property” for the weighted norm potential [30, Remark 4.2], and using this and



ON THE CONVERGENCE RATE OF THE CHAOS GAME 9

the definition of the Minkowski dimension, it is not difficult to show that dimM
←−ν ≤ s0. As

a result, dimM
←−ν = dimME = s0, i.e. µ optimises the cover time. Since dimME = s0 under

the assumptions of strong irreducibility and strong open set condition for planar systems, see
[3], we can repeat the argument above for that situation as well.

Leaving the self-similar setting, except for special cases, the construction of the r-packing
and keeping track of the orbit is difficult. One such special setting is the family of planar
self-affine carpets. We continue by introducing the class of Bedford–McMullen carpets, give a
complete characterisation of the vectors p which minimise dimM νp in Theorem 2.5, and later
in Section 5.4 present how to keep track of the orbit on the appropriately defined symbolic
r-packing together with some simulations.

2.2. Application to Bedford–McMullen carpets. Bedford–McMullen carpets are self-
affine sets on the plane introduced independently by Bedford [8] and McMullen [37]. There is
an abundant amount of literature on them, we refer to the recent survey [19] and references
therein, thanks to the simplicity of their construction and at the same time exhibiting many
interesting features. Here we show another such interesting feature regarding the optimisation
problem

min
p

dimM νp. (2.6)

As discussed in Remark 2.3, our results are applicable. In fact, an explicit formula is known
for the lower dimension of Bedford–McMullen carpets [17]. Thus, any vector p∗ minimising
dimM νp has the interpretation that the chaos game run with p∗ has the fastest running time
among Bernoulli measures to reach a certain resolution.

Split R = [0, 1]2 into m columns of equal width and n rows of equal height for some integers
n > m ≥ 2 and consider orientation preserving maps on R of the form

f(i,j)(x) :=

(
1/m 0

0 1/n

)(
x
y

)
+

(
i/m
j/n

)
for the index set (i, j) ∈ A ⊆ {0, . . . ,m − 1} × {0, . . . , n − 1}. The attractor Λ of the IFS
F = {f(i,j)}(i,j)∈A is called a Bedford–McMullen carpet, see Figure 1 for three examples. For
our purposes it only matters how many maps there are in each column. Therefore, the input
parameters of a carpet for us are the following.

Considering all non-empty columns, assume that the number of maps in a column take M0

different values. In ascending order, let N1 < N2 < . . . < NM0 denote these different values.
Moreover, let Ri denote the number of columns with Ni number of maps. If M0 = 1, then we
say that the carpet has uniform vertical fibres. The total number of non-empty columns is
M = R1 + . . .+RM0 ≤ m and the total number of maps is N = R1N1 + . . .+RM0NM0 ≤ nm.
For a distinguished index 1 ≤ K ≤M0, let |RK | := R1 + . . .+RK , i.e. the number of columns
with at most NK rectangles, and ‖RCK‖ := RK+1NK+1 + . . .+RM0NM0 , i.e. the total number
of rectangles in columns with strictly more than NK rectangles.

Recall, every non-degenerate probability vector p defines the measure νp on Λ via (2.2).
Let Q :=

{
q = (q1, . . . , qM0) : R1q1 + . . .+RM0qM0 = 1 and qk > 0 for all 1 ≤ k ≤M0

}
and

define the function

α(q) := max
1≤ k,`≤M0

{
log(qk/Nk)

− log n
+

(
1− logm

log n

)
log q`
− logm

}
. (2.7)
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Figure 1. Three Bedford–McMullen carpets (in red) and the images of [0, 1]2

under the maps in each IFS (shaded rectangles). In each case, dimM νp is
minimised by a different vector p, see Table 1.

Theorem 2.5. Let Λ be a Bedford–McMullen carpet with non-uniform vertical fibres. Then

min
p

dimM νp = min
q∈Q

α(q).

Moreover, minq∈Q α(q) is attained at a vector either of the form qK = (qK,1, . . . , qK,M0) for
a distinguished 1 ≤ K ≤M0 defined by

qK,k =

{
NK ·

(
NK |RK |+ ‖RCK‖

)−1
, for all k ≤ K,

Nk ·
(
NK |RK |+ ‖RCK‖

)−1
, for all k > K;

(2.8)

or of the form QK = (QK,1, . . . , QK,M0) for a 1 ≤ K ≤M0 − 1 defined by

QK,k =

(
1− logm

log n

)
1

|RK |
for all k ≤ K and QK,k =

logm

log n

Nk

‖RCK‖
for all k > K. (2.9)

Furthermore, if α(q∗) = minq∈Q α(q), then q∗ defines a solution p∗ to (2.6) by defining
p∗i := q∗k/Nk if i belongs to a column with Nk rectangles (i.e. mass in each column is distributed
uniformly amongst the rectangles within it).

Remark 2.6.

(1) We give a procedure to determine which vector minimises α(q) in Proposition 5.4.
For all three examples in Figure 1 a different vector is the minimiser, see Table 1.

(2) A Bedford–McMullen carpet Λ has uniform vertical fibres if and only if its Haus-
dorff and Minkowski dimensions are equal. It is easy to see that in this case the
vector minimising dimM νp is the uniform vector p∗ = (1/N, . . . , 1/N). Moreover,
dimM νp∗ = dimM Λ. If Λ has non-uniform vertical fibres, then there is a positive gap
minp dimM νp > dimM Λ. See Claim 5.1 for details.

(3) The vector minimizing dimM νp is not necessarily unique, see Section 5.5.

Structure of paper. In Section 3 we prove Theorem 2.1, while Section 4 contains the proof
of Theorem 2.4. The results for Bedford–McMullen carpets are proved in Section 5. It also
contains concrete examples and results of simulations. Section 6 contains a short list of
questions that arise naturally from our investigations.
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3. Proof of Theorem 2.1

We begin by recalling and introducing necessary notation. Elements of the symbolic space
Σ = {1, . . . , N}N are denoted i, j. The set of all finite words is Σ∗ =

⋃∞
n=0{1, . . . , N}n, where

for n = 0 we get the empty word and let Σ := Σ ∪ Σ∗. Elements of Σ∗ are denoted by ı,  or
as a truncation i|n = i1, . . . in of an infinite word. For ı = i1 . . . in we let |ı| denote the length
n of the word ı. The left shift operator on Σ is σ, i.e. σ(i1i2i3 . . .) = i2i3 . . .. The cylinder
set defined by the finite word ı of length n is [ı] = {i ∈ Σ : i|n = ı}. The natural projection
π : Σ→ Λ is well defined by the limit

π(i) := lim
n→∞

fi|n(x0),

where the limit is independent of the starting point x0. The map π is continuous, surjective,
but may fail to be injective.

Let ı− denote the finite word which is obtained from ı by dropping the last symbol of ı.
Let

Pr := {ı ∈ Σ∗ : |fı(Λ)| ≤ r < |fı−(Λ)|}.
For much of the time it is enough to work along subsequences of {2−n}n∈N. Slightly abusing
notation, we write Pn := P2−n and Tn(i, x0) := T2−n(i, x0). This should make no confusion,
since from the context it should be clear whether the subscript will tend to∞ or 0. Similarly,
let Qr(A) and Qn(A) denote a maximal packing of A by balls centered in A with radius r and
2−n respectively. The definition of the Minkowski dimension implies that there exists C0 > 0
such that

#Qr(Λ) ≤ C0r
−2D for every n, (3.1)

where D = dimMΛ. In particular #Qn(Λ) ≤ C022Dn for every n.

It readily follows from our assumption (1.1) that for all r > 0,

L(r) :=
log r

log a
− log(|Λ|/a)

log a
≥ max{|ı| : ı ∈ Pr} (3.2)

In particular for every n ∈ N

L(n) := n
log 2

− log a
− log(|Λ|/a)

log a
≥ max{|ı| : ı ∈ Pn}. (3.3)

For i ∈ Σ, let Pr(i) be the unique element ı ∈ Pr such that i ∈ [ı]. Let us define the symbolic
ball as

B̃(x, r) := {ı ∈ Pr : B(x, r) ∩ π[ı] 6= ∅}.
Then

B(x, r) ∩ Λ ⊆ πB̃(x, r) ⊆ B(x, 2r) ∩ Λ.

Recall the definition of lower dimension from (2.1). If d := dimL(Λ) > 0 then there exists a
constant c0 > 0 such that for every 0 < r < R < |Λ| and x ∈ Λ

Nr(Λ ∩B(x,R)) ≥ c0

(
R

r

)d/2
. (3.4)

Theorem 2.1 follows from the following two propositions.
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Proposition 3.1. Suppose that dimL Λ > 0 and let µ be an arbitrary σ-invariant measure.
Let nk →∞ be a sequence such that the limit

lim
k→∞

max
y∈Λ

log←−ν
(
B
(
y, ((L(nk) + 2)/c0)2/d 2−nk+2

))
−nk log 2

exists. Let α denote this limit. Then for µ-a.e. i and every x0 ∈ Λ

lim inf
k→∞

log Tnk(i, x0)

nk log 2
≥ α.

Proposition 3.2. Let µ be a σ-invariant measure with exponential decay of correlation. Let
nk →∞ be a sequence such that the limit

lim
k→∞

max
y∈Λ

log←−ν (B(y, 2−nk))

−nk log 2

exists. Let α denote this limit. Then for µ-a.e. i and every x0 ∈ Λ

lim sup
k→∞

log Tnk(i, x0)

nk log 2
≤ α.

Proof of Theorem 2.1. Let nk →∞ be a sequence for which

dimM(←−ν ) = lim
k→∞

max
y∈Λ

log←−ν (B(y, 2−nk))

−nk log 2
.

Then by Proposition 3.2 and Lemma 1.1, for µ-almost every i and every x0 ∈ Λ

lim inf
n→∞

log Tn(i, x0)

n log 2
≤ lim inf

k→∞

log Tnk(i, x0)

nk log 2
≤ dimM(←−ν ).

For an arbitrary r > 0 there exists a unique integer n such that 2−n ≤ r < 2−(n−1). Hence,

n− 1

n

log Tn−1(i, x0)

(n− 1) log 2
≤ log Tr(i, x0)

− log r

and so lim inf
n→∞

1
n log 2 log Tn(i, x0) = lim inf

r→0

1
− log r log Tr(i, x0). This gives one direction. On the

other hand

lim inf
r→0

max
y∈Λ

log←−ν (B(y, r))

log r
= lim inf

n→∞
max
y∈Λ

log←−ν
(
B
(
y, ((L(n) + 2)/c0)2/d 2−n+2

))
−n log 2

.

By Lemma 1.1, this common value equals dimM(←−ν ). Hence, Proposition 3.1 implies that for
µ-a.e. i and every x0 ∈ Λ

lim inf
n→∞

log Tn(i, x0)

n log 2
≥ dimM(←−ν ),

proving the first assertion. The proof of the other assertion is analogous. �

The next two subsections contain the proofs of the two remaining propositions. Both proofs
are Borel-Cantelli arguments.
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3.1. Lower bound, proof of Proposition 3.1. In this proof we will estimate the cover
time Tn from below in terms of the time to hit the “least accessible” part of Λ (i.e. the
ball of minimum measure at scale 2−n). Moreover, we will use the positive lower dimension
assumption to deduce that there are sufficiently many small balls of measure comparable to
the ball of minimum measure, so that the choice of initial point for the chaos game cannot
cause the cover time to drop by beginning in the least accessible part of Λ.

Recall the notations L(n) from (3.3) and c0 from (3.4). The first time an orbit hits a ball
around a point y with radius r is denoted by

Tr(i, y, x0) := min{n ≥ 1 : f←−
i|n(x0) ∈ B(y, r)}. (3.5)

Observe that Tr(i, y, x0) ≤ Tr(i, x0) for every y ∈ Λ. Let nk →∞ be a sequence such that

α := lim
k→∞

max
y∈Λ

log←−ν
(
B
(
y, ((L(nk) + 2)/c0)2/d 2−nk+2

))
−nk log 2

,

moreover, let y′k ∈ Λ be a point for which the maximum is attained for nk. Therefore, for
every integer K ≥ 1, we can find N(K) such that

←−ν
(
B
(
y′k, ((L(nk) + 2)/c0)2/d 2−nk+2

))
≤ 2−nk(α− 1

2K
) for every k ≥ N(K). (3.6)

Choosing r = 2−nk+2 and R = ((L(nk) + 2)/c0)2/d · r and letting D denote the dimension
of the state space RD containing Λ, we see that

L(nk)+2 ≤ Nr

(
Λ∩B

(
y′k, R

))
≤ #Qnk−1

(
Λ∩B

(
y′k, R

))
≤
(

2R

r

)D
= 2D((L(nk)+2)/c0)2D/d,

(3.7)
where the upper bound is trivial and the lower bound follows from (3.4). Hence, for each
i ∈ Σ there exists yk(i) ∈ Λ such that B(yk(i), 2

−nk+1) ∩ OdL(nk)e(i, x0) = ∅ and

B(yk(i), 2
−nk+1) ⊂ B

(
y′k, ((L(nk) + 2)/c0)2/d 2−nk+2

)
.

Let j be an arbitrary coding of x0. Then,

µ
({

i : T2−nk (i, x0) < 2nk(α−1/K)
})

≤ µ
({

i : T2−nk (i, yk(i), x0) < 2nk(α−1/K)
})

≤ µ
({

i : there exists dL(nk)e+ 1 ≤ ` < 2nk(α−1/K) s.t. f←−
i|`(x0) ∈ B(yk(i), 2

−nk)
})

≤ µ
({

i : there exists dL(nk)e+ 1 ≤ ` < 2nk(α−1/K) s.t. Pnk(
←−
i|`j) ∈ B̃(yk(i), 2

−nk)
})

(3.8)

where the first inequality follows because for all i ∈ Σ, T2−nk (i, x0) ≥ T2−nk (i, yk(i), x0),
the second inequality is because for all i ∈ Σ, yk(i) is chosen such that B(yk(i), 2

−nk+1) ∩
OdL(nk)e(i, x0) = ∅ and the final inequality is because B(yk(i), 2

−nk) ⊆ B̃(yk(i), 2
−nk).
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Next, let Yk denote the set of centres of the balls in Qnk−1

(
Λ ∩ B

(
y′k, R

))
. The subset of

Σ that appears in (3.8) is easily seen to be contained inside

⋃
y∈Yk

b2nk(α−1/K)c⋃
`=dL(nk)e+1

⋃
ı∈B̃(y,2−nk )

{
i : Pnk(

←−
i|`j) = ı

}
.

Thus we can bound (3.8) by sum of measures of sets appearing in the above union to obtain
that for k ≥ N(K)

µ
({

i : T2−nk (i, x0) < 2nk(α−1/K)
})
≤
∑
y∈Yk

b2nk(α−1/K)c∑
`=dL(nk)e+1

∑
ı∈B̃(y,2−nk )

µ
({

i : Pnk(
←−
i|`j) = [ı]

})
≤ 2nk(α−1/K)

∑
y∈Yk

∑
ı∈B̃(y,2−nk )

µ([
←−
ı ])

≤ 2nk(α−1/K)
∑
y∈Yk

←−ν (B(y, 2−nk+1))

≤ 2D((L(nk) + 2)/c0)2D/d2nk(α−1/K)2−nk(α−1/(2K))

= 2D((L(nk) + 2)/c0)2D/d2−nk/(2K).

The second inequality follows because Pnk(
←−
i|`j) depends only on i for ` ≥ dL(nk)e by (3.3).

The third inequality follows because µ([
←−
ı ]) = ←−µ ([ı]) and πB̃(y, 2−nk) ⊆ B(y, 2−nk+1). The

fourth inequality follows by (3.6), (3.7), and the fact that for any y ∈ Yk, B(y, 2−nk+1) ⊂
B
(
y′k, ((L(nk) + 2)/c0)2/d 2−nk+2

)
. Thus, the Borel-Cantelli lemma implies that

µ
({

i : T2−nk (i, x0) < 2nk(α−1/K) for infinitely many k’s
})

= 0.

Since K ≥ 1 was arbitrary, we get

µ

({
i : lim inf

k→∞

log T2−nk (i, x0)

nk log 2
≥ α

})
= 1.

3.2. Notes on positive lower dimension. Let us observe that the condition dimL Λ > 0
is purely technical and used only to show the independence of the initial point x0 ∈ Λ
by providing sufficiently large collection of balls with approximately the smallest possible
measure. However, this condition can be circumvented by some other conditions. For example,
the lower dimension of the attractor of the system {f1(x) = x1/x/3, f2(x) = (x + 2)/3} is 0,
see [18, Section 6.3] but the claim of Proposition 3.1, and in particular Theorem 2.2, holds
for this system as well with measures with one-sided exponential decay.

Proposition 3.3. Let F be an IFS satisfying (1.1) and the strong separation property.
Moreover, let us assume that there exist ı 6=  ∈ Σ∗ and a constant 0 < b < 1 such that

‖fı(x)− fı(y)‖, ‖f(x)− f(y)‖ > b‖x− y‖ for all x, y ∈ Λ.

Let µ be a σ-invariant measure such that there exists a constant C > 0 such that for every
ı,  ∈ Σ∗

µ([ı]) ≤ Cµ([ı])µ([]). (3.9)
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Let nk →∞ be a sequence such that the limit

lim
k→∞

max
y∈Λ

log←−ν
(
B
(
y, b−1L(nk)

− log b2−nk
))

−nk log 2

exists. Let α denote this limit. Then for µ-a.e. i and every x0 ∈ Λ

lim inf
k→∞

log Tnk(i, x0)

nk log 2
≥ α.

Proof. Let y′k ∈ Λ be where maxy∈Λ
log←−ν

(
B
(
y,L(nk)− log b2−nk

))
−nk log 2 is attained. By the strong

separation, there exists δ > 0 such that d(fı(Λ), f(Λ)) > δ. Let ~1, . . . , ~2mk ∈ {ı, }mk be
words such that logL(nk) ≤ mk < logL(nk) + 1. By the strong separation

B(f~i(y
′
k), 2

−nk) ∩B(f~j (y
′
k), 2

−nk) = ∅

for every i 6= j and k sufficiently large. Indeed, if the intersection above was non-empty then

2−nk+1 ≥ ‖f~i(y
′
k)− f~j (y

′
k)‖ ≥ bmkδ ≥ bL(nk)

− log bδ,

which is absurd as k → ∞. Hence, by the definition of mk for every i ∈ Σ there exists
yk(i) ∈ {f~i(y′k)}2

mk

i=1 such that B(yk(i), 2
−nk) ∩ OdL(nk)e(i, x0) = ∅.

It is easy to see that ←−µ satisfies (3.9) too, and by using the strong separation, we get that
for every ←−ν -measurable set E and finite word ~ ∈ Σ∗

←−ν (f~(E)) =←−µ (σ−|~|π−1(E) ∩ [~]) ≤ C←−µ (σ−|~|π−1(E))←−µ ([~]) ≤ C←−µ (π−1(E)) = C←−ν (E).
(3.10)

Moreover, by our assumptions on fı, f

B(f~i(y
′
k), 2

−nk) ⊆ f~i
(
B(y′k, b

−m2−nk)
)
⊆ f~i

(
B
(
y′k, b

−1L(nk)
− log b2−nk

)))
,

for all i = 1, . . . , 2m. Hence, by (3.10)

←−ν
(
f~i

(
B
(
y′k, b

−1L(nk)
− log b2−nk

))))
≤ C←−ν

(
B
(
y′k, b

−1L(nk)
− log b2−nk

)))
and so, for any K ≥ 1 and every sufficiently large k

log←−ν (B(f~i(y
′
k), 2

−nk))

−nk log 2
≥

log←−ν
(
B
(
y′k, b

−1L(nk)
− log b2−nk

)))
−nk log 2

+
logC

−nk log 2
≥ α− 1

2K
.

Now, the proof now can be finished as in Proposition 3.1 and left for the reader. �

Observe that the strong separation played a crucial role in the Proof of Proposition 3.3.
Since in the overlapping case it might happen that (3.10) fails and the←−ν measure of f~(B(y, r))
is much larger than the measure of the set B(y, r).

3.3. Upper bound, proof of Proposition 3.2. The upper bound is also a Borel-Cantelli
argument, and for this we will need to estimate the probability that the cover time is asymp-
totically larger than what is claimed. In order to estimate this probability, we will use the
one-sided exponential decay of correlations assumption to allow us to consider subsequent
visits independently of one another.
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Let nk →∞ be a sequence such that

α := lim
k→∞

max
y∈Λ

log←−ν (B(y, 2−nk))

−nk log 2
.

Since

lim
k→∞

max
y∈Λ

log←−ν (B(y, 2−(nk+3)))

−nk log 2
= α

we can, for every K ≥ 1, define N(K) such that

min
y∈Λ

←−ν (B(y, 2−(nk+3))) ≥ 2−nk(α+1/(2K)) (3.11)

for every k ≥ N(K).

Let us consider the packing Qnk+2(Λ) of Λ with balls of radius 2−nk−2. Let Yk denote the
centres of balls in the packing Qnk+2. Define

tnk(i) := min
{
m ≥ 1 : (∀B ∈ Qnk+2) (∃` ≤ m) such that f←−

i|`(x0) ∈ B
}
.

First notice that for any i ∈ Σ, T2−nk (i, x0) ≤ tnk(i). Indeed, since {2B}B∈Qnk+2 is a cover of

Λ, for every x ∈ Λ there exists B ∈ Qnk+2 such that x ∈ 2B and, by definition of tnk(i), there
exists 1 ≤ ` ≤ tnk(i) such that f←−

i|`(x0) ∈ B. In particular ‖x− f←−
i|`(x0)‖ ≤ 2−nk−1 + 2−nk−2 <

2−nk .

For short, let

mk :=
⌈
L(nk + 3) +

(α+ 1)

ε
nk
⌉

=
⌈
(nk + 3)

log 2

− log a
− log(|Λ|/a)

log a
+

(α+ 1)

ε
nk
⌉
,

where ε > 0 is defined in (1.2). Let j be an arbitrary coding of x0.

Then

µ
({

i : T2−nk (i, x0) ≥ d2(α+1/K)nkemk

})
≤ µ

({
i : tnk(i, x0) ≥ d2(α+1/K)nkemk

})
≤ µ

({
i : ∃y ∈ Yk s.t. f←−−−

i|`mk
(x0) /∈ B(y, 2−nk−2) for every 1 ≤ ` ≤ d2(α+1/K)nke

})
≤ µ

({
i : ∃y ∈ Yk s.t. P2−nk−3(

←−−−
i|`mkj) /∈ B̃(y, 2−nk−3) for every 1 ≤ ` ≤ d2(α+1/K)nke

})
,

(3.12)

where the first inequality is because T2−n(i, x0) ≤ tn(i) and the final inequality follows because

πB̃(y, 2−nk−3) ⊆ B(y, 2−nk−2). Note that since mk ≥ L(nk + 3), it follows that for any i ∈ Σ,

P2−nk−3(
←−−
i|mkj) depends only on i.

Next, observe that by (1.2), (3.3) and the fact that mk − L(nk + 3) ≥ α+1
ε nk then for any

M ∈ N and ı1, . . . , ıM ∈ Pnk+3,

µ
(
σ−(mk−|ı1|)([

←−
ı1 ]) ∩ σ−(2mk−|ı2|)([

←−
ı2 ]) ∩ · · · ∩ σ−(Mmk−|ıM |)([

←−
ıM ])

)
≤ (1 + 2−(α+1)nkκ)Mµ([

←−
ı1 ]) · · ·µ([

←−
ıM ]).

Applying this to (3.12) we obtain that



ON THE CONVERGENCE RATE OF THE CHAOS GAME 17

µ
({

i : T2−nk (i, x0) ≥ d2(α+1/K)nkemk

})
≤ (1 + 2−(α+1)nkκ)d2

(α+1/K)nke
∑
y∈Yk

(
1−

∑
ı∈B̃(y,2−nk−3)

µ([
←−
ı ])

)d2(α+1/K)nke

≤ (1 + 2−(α+1)nkκ)d2
(α+1/K)nke

∑
y∈Yk

(
1−←−ν (B(y, 2−nk−3))

)d2(α+1/K)nke
, (3.13)

where the final inequality follows because B(y, 2−nk−3) ⊆ πB̃(y, 2−nk−3).

Next, applying (3.11) to (3.13) we obtain that for k ≥ N(K),

µ
({

i : T2−nk (i, x0) ≥ d2(α+1/K)nkemk

})
≤ #Qnk+2(1 + 2−(α+1)nkκ)d2

(α+1/K)nke(1− 2−nk(α+1/(2K)))d2
(α+1/K)nke

≤ C022D(nk+2) exp
(

(2−(α+1)nkκ− 2−nk(α+1/(2K)))d2(α+1/K)nke
)

≤ C022D(nk+2) exp
(
−2nk/(2K) + 2−(1−1/K)nkκ+ 2−(α+1)nkκ− 2−nk(α+1/2K)

)
,

where in the second inequality we use (3.1) and the fact that for all x ∈ R, 1 + x ≤ exp(x).

By the Borel-Cantelli lemma

µ
({

i : T2−nk (i, x0) ≥ d2(α+1/K)nkemk for inf. many k’s
})

= 0.

Since K was arbitrary and limk→∞
logd2(α+1/K)nkemk

nk log 2 = α+ 1/K, we get

µ

({
i : lim sup

k→∞

log T2−nk (i, x0)

nk log 2
≤ α

})
= 1.

4. Expected cover time, proof of Theorem 2.4

Fix x0 ∈ Λ and let I be a finite set of pairwise disjoint Euclidean balls in Rd. For i ∈ Σ we
define TI(i, x0) to be the first time that the orbit On(i, x0) has visited each of the balls in I:

TI(i, x0) := inf{n ≥ 0 : ∀I ∈ I, ∃y ∈ On(i, x0) such that y ∈ I}.
Similarly for i ∈ Σ and I ∈ I we define TI(i, x0) to be the first time that the orbit On(i, x0)
visits the ball I:

TI(i, x0) := inf{n ≥ 0 : ∃y ∈ On(i, x0) such that y ∈ I}.
The expected values of TI(i, x0) and TI(i, x0) with respect to a measure µ on Σ are then
denoted by EµTI(x0) and EµTI(x0) respectively.

In the following proposition, we show that EµTI(x0) can be bounded above and below in
terms of uniform upper and lower bounds on EµTI(x) over x ∈ Λ. This is an adaptation of a
method of Matthews [36] for bounding the expected cover time of a Markov chain, meaning
the expected time for the Markov chain to visit all of its states, in terms of the expected
hitting times of individual states, see also [34].
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Proposition 4.1. Fix x0 ∈ Λ and a finite set I of pairwise disjoint Euclidean balls in Rd.

(a) Suppose there exists C > 1 such that for all ı,  ∈ Σ∗, µ([ı]) ≤ Cµ([ı])µ([]). 3

Additionally assume that supI∈I supx∈Λ EµTI(x) ≤ T . Then

EµTI(x0) ≤ CT
(

1 +
1

2
+ · · ·+ 1

#I

)
.

(b) Suppose there exists a constant c > 0 such that µ([ı]) ≥ cµ([ı])µ([]) for all ı,  ∈ Σ∗.
Additionally assume that infI∈I infx∈Λ\I EµTI(x) ≥ t. Then

EµTI(x0) ≥ ct
(

1 +
1

2
+ · · ·+ 1

#I

)
.

Proof. Write N = #I and write I = {I1, . . . , IN}. Let SN denote the set of permutations σ
of {1, . . . , N}. Let m be the uniform measure on SN , so that for all σ ∈ SN , m(σ) = 1

N ! .

Given σ ∈ SN , for i ∈ Σ we let T σ(k)
σ(1) (i, x0) denote the first time that the orbit On(i, x0)

has visited each of the balls Iσ(1), . . . , Iσ(k):

T σ(k)
σ(1) (i, x0) := min{n ≥ 0 : ∀1 ≤ j ≤ k, ∃y ∈ On(i, x0) such that y ∈ Iσ(j)}.

The expected value of T σ(k)
σ(1) (i, x0) with respect to µ is denoted by EµT σ(k)

σ(1) (x0). For brevity,

throughout this proof we will use the notation Tσ(k) to mean TIσ(k) .
Given σ ∈ SN and 2 ≤ k ≤ N we define

Aσ,k := {i ∈ Σ : T σ(k−1)
σ(1) (i, x0) < Tσ(k)(i, x0)}.

We also consider the following decomposition of Aσ,k into cylinder sets. In particular there
exists a set of words Cσ,k ⊂ Σ∗ such that Aσ,k =

⋃
ı∈Cσ,k [ı] and for each ı ∈ Cσ,k and each

i ∈ [ı], T σ(k−1)
σ(1) (i, x0) = |ı|.

EµTI(x0) = EµT σ(N)
σ(1) (x0) for any σ ∈ SN . Therefore,

EµTI(x0) =

∫
EµT σ(N)

σ(1) (x0)dm

=

∫
EµTσ(1)(x0)dm+

N∑
k=2

∫
Eµ(T σ(k)

σ(1) (x0)− T σ(k−1)
σ(1) (x0))dm

=

∫
EµTσ(1)(x0)dm+

N∑
k=2

∫
Eµ(T σ(k)

σ(1) (i, x0)− T σ(k−1)
σ(1) (i, x0) : i ∈ Aσ,k)dm

=

∫
EµTσ(1)(x0)dm+

N∑
k=2

∫ ∑
ı∈Cσ,k

Eµ(T σ(k)
σ(1) (i, x0)− T σ(k−1)

σ(1) (i, x0) : i ∈ [ı])dm

where the penultimate equality holds because if i /∈ Aσ,k then T σ(k)
σ(1) (i, x0) = T σ(k−1)

σ(1) (i, x0).

3Note that this is clearly satisfied by any invariant measure satisfying the one-sided exponential decay
property (1.2).
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For each ı ∈ Cσ,k there exists Dı ⊂ Σ∗ such that [ı] =
⋃
∈Dı [ı] and for all i ∈ [ı],

Tσ(k)(i, x0) = |ı|+ ||. In particular, EµTσ(k)(f←−ı (x0)) =
∑

∈Dı µ([])||.

To prove (a), notice that since µ([ı]) ≤ Cµ([ı])µ([]) for all ı,  ∈ Σ∗,∑
ı∈Cσ,k

Eµ(T σ(k)
σ(1) (i, x0)− T σ(k−1)

σ(1) (i, x0) : i ∈ [ı]) =
∑
ı∈Cσ,k

∑
∈Dı

µ([ı])||

≤ C
∑
ı∈Cσ,k

∑
∈Dı

µ([ı])µ([])|| = C
∑
ı∈Cσ,k

µ([ı])EµTσ(k)(f←−ı (x0)) ≤ CTµ(Aσ,k),

where in the final inequality we used that supI∈I supx∈Λ EµTI(x) ≤ T . Therefore

EµTI(x0) ≤ CT

(
1 +

N∑
k=2

∫
µ(Aσ,k)dm

)
.

To prove (b) notice that since µ([ı]) ≥ cµ([ı])µ([]) for all ı,  ∈ Σ∗, we similarly obtain∑
ı∈Cσ,k

Eµ(T σ(k)
σ(1) (i, x0)− T σ(k−1)

σ(1) (i, x0) : i ∈ [ı]) ≥ c
∑
ı∈Cσ,k

µ([ı])EµTσ(k)(f←−ı (x0)) ≥ ctµ(Aσ,k),

where in the final inequality we used that infI∈I infx∈Λ\I EµTI(x) ≥ t. Therefore

EµTI(x0) ≥ ct

(
1 +

N∑
k=2

∫
µ(Aσ,k)dm

)
.

Therefore to prove the proposition it suffices to show that
∫
µ(Aσ,k)dm = 1

k . Fix 2 ≤
k ≤ N . For each σ ∈ SN consider the unordered set {σ(1), . . . , σ(k)}. Note that there are
N(N−1)···(N−(k−1))

k! possible values that this set can take. For each possible value {i1, . . . , ik} ⊂
{1, . . . , N} that this set can take, let SN ({i1, . . . , ik}) denote the set of all σ for which
{σ(1), . . . , σ(k)} = {i1, . . . , ik}, thinking of these as unordered sets.

Next, we can further separate each SN ({i1, . . . , ik}) into k subsets S
ij
N ({i1, . . . , ik}), (1 ≤

j ≤ k), which determines the set of all σ ∈ SN ({i1, . . . , ik}) for which σ(k) = ij . Note that

each S
ij
N ({i1, . . . , ik}) contains (N − k)!(k− 1)! permutations, corresponding to (N − k)! ways

to order the last N−k terms and and (k−1)! ways to arrange the first k−1 terms. Over each

σ ∈ SijN ({i1, . . . , ik}), the set Aσ,k is constant. If for each 1 ≤ j ≤ k we choose a representative

σj ∈ S
ij
N ({i1, . . . , ik}) then since the balls in I are pairwise disjoint, it follows that {Aσj ,k}kj=1

are pairwise disjoint and
⋃k
j=1Aσj ,k = Σ.

Hence for any choice of {i1, . . . , ik} ⊂ {1, . . . , N},∫
SN ({i1,...,ik})

µ(Aσ,k)dm =

k∑
n=1

(k − 1)!(N − k)!

N !
µ(Aσj ,k), (4.1)

where the factor 1
N ! comes from the fact that m is uniformly distributed. Now, since⋃k

j=1Aσj ,k = Σ and {Aσj ,k}kj=1 are pairwise disjoint we have

µ(Aσk,k) = 1−
k−1∑
j=1

µ(Aσj ,k)
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and substituting this into (4.1) we obtain∫
SN ({i1,...,ik})

µ(Aσ,k)dm =

k−1∑
j=1

(k − 1)!(N − k)!

N !
µ(Aσj ,k) +

(k − 1)!(N − k)!

N !

(
1−

k−1∑
j=1

µ(Aσj ,k)
)

=
(k − 1)!(N − k)!

N !
.

Therefore, ∫
SN

µ(Aσ,k)dm =
N(N − 1) · · · (N − (k − 1))

k!
· (k − 1)!(N − k)!

N !
=

1

k
.

�

We now establish the upper bound for EµTr(x0) from Theorem 2.4(a). By Proposition 4.1
it is sufficient to estimate from above the expected hitting time to the ball I of minimum
measure at scale r. This can be estimated by bounding the probability of slow hitting times
to I, and for this estimate the one-sided exponential decay of correlations assumption will
be required to allow us to consider different segments of the orbit under the chaos game
independently of each other.

Lemma 4.2 (Proof of Theorem 2.4(a)). Suppose µ has one-sided exponential decay. Let
α = dimM(←−ν ). There exists a constant C1 (which will be made explicit) such that for all

x0 ∈ Λ and r > 0 such that |o(r/4)| < α/2 and (r/4)α/2 < 1/2κ,

EµTr(x0) ≤ C1 (log(4/r))2 (r/4)−α−o(r/4),

where κ is the constant defined in (1.2).

Proof. Recall from (2.3) that o(r) was defined as

o(r) := max
x∈Λ

log←−ν (B(x, r))

log r
− α.

Fix ε > 0. For each r > 0 for short, let Ir := Qr/4(Λ) be a maximal centred packing of Λ by
disjoint balls of radius r

4 . By (3.1) log #Ir ≤ logC0 + 2D log(4/r) for all r > 0. Also, it’ll be

useful to keep in mind that log(4/r) > 2 log 2κ
α by our assumptions on r. Since the collection

of balls of radius r
2 given by {2I}I∈Ir forms a cover of Λ, it is easy to see that EµTr ≤ EµTIr .

We will use Proposition 4.1 to bound EµTIr from above. Therefore, we begin by showing that

there exists a constant C ′1 such that for all r such that |o(r/4)| < α/2 and (r/4)α/2 < 1/2κ,

sup
I∈Ir

sup
x∈Λ

EµTI(x) ≤ C ′1 log(4/r)

(r/4)α+o(r/4)
.

By definition of o(r), ←−ν (I) ≥ (r/4)α+o(r/4) for all I ∈ Ir. Recall from (3.2) that

L(r) :=
log r

log a
− log(|Λ|/a)

log a
≥ max{|ı| : ı ∈ Pr}

and define

`(r) := L(r) +
2α

ε log 2
log(1/r).
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Now, fix any x ∈ Λ and let j be an arbitrary coding of x. Then by one-sided exponential
decay (1.2)

µ ({i : TI(x) > n}) ≤ µ
({

i : Pr(
←−−−−−−
i|k`(r/4)j) /∈ I for every 1 ≤ k ≤ dn/`(r/4)e

})
≤ (1 + 2−ε(`(r/4)−L(r/4))κ)dn/`(r/4)e(1−←−ν (I))dn/`(r/4)e

= (1 + (r/4)2ακ)dn/`(r/4)e(1−←−ν (I))dn/`(r/4)e

= (1 + (r/4)2ακ)dn/`(r/4)e(1− (r/4)α+o(r/4))dn/`(r/4)e

= (1− (r/4)α+o(r/4) + (r/4)2ακ− (r/4)3α+o(r/4)κ)dn/`(r/4)e

≤ (1− (r/4)α+o(r/4)/2)n/`(r/4),

where in the final inequality we have used that

(r/4)2ακ− (r/4)3α+o(r/4)κ < (r/4)2ακ < (r/4)α+o(r/4)/2,

since o(r/4) < α/2 and (r/4)α/2 < 1/2κ. Hence,

EµTI(x) =
∞∑
n=0

µ(TI(x) > n) ≤
∞∑
n=0

(1− (r/4)α+o(r/4)/2)n/`(r/4)

=
1

1− (1− (r/4)α+o(r/4)/2)1/`(r/4)
≤ 2`(r/4)

(r/4)α+o(r/4)
,

where in the last inequality we used the Bernoulli inequality (Mitrinovic inequality), (1+y)β ≤
1 + βy for 0 < β < 1 and y ≥ −1, which is applicable since o(r/4) > −α. Therefore we have

proved (4), where C ′1 = 4α
ε log 2 −

2
log a − α log |Λ|/a

log a log 2κ , using that log(4/r) > 2 log 2κ
α and the

definition of `(r/4).

Since µ satisfies the one-sided exponential decay property (1.2), there exists C > 1 such
that for all ı,  ∈ Σ∗, µ([ı]) ≤ Cµ([ı])µ([]). Hence by Proposition 4.1(a),

EµTr(x0) ≤ EµTIr(x0) ≤ CC ′1 log(1/r)(r/4)−α−o(r/4)

(
1 + · · ·+ 1

#Ir

)
≤ CC ′1 log(4/r)(r/4)−α−o(r/4)(1 + log #Ir)

≤ CC ′1 log(4/r)(r/4)−α−o(r/4)(1 + logC0 + 2D log(4/r)),

which completes the proof of the lemma by setting C1 = CC ′1
(
2D + α1+logC0

2 log 2κ

)
, where again

we have used that log(4/r) > 2 log 2κ
α . �

Next we establish the lower bound on EµTr(x0) that appears in Theorem 2.4(b). Recall
L(r) in (3.2) and d = dimL Λ > 0 in (3.4). Again by Proposition 4.1 it is sufficient to estimate
from below the expected hitting time to the ball of minimum measure at scale r. We will
use the assumption of positive lower dimension to ensure there are sufficiently many balls of
measure comparable to that of the ball of minimum measure at scale r, so that starting the
chaos game with an initial point x0 lying in the least accessible part of Λ will not cause a
significant drop in the expectation EµTr(x0).
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Lemma 4.3 (Proof of Theorem 2.4(b)). Assume dimL Λ > 0. Denote Rr := 2r
(
L(r)+2
c0

)2/d
.

Then for all r > 0 such that minx∈Λ
←−ν (B(x,Rr)) <

1
4 and all x0 ∈ Λ

EµTr(x0) ≥ 1

4
R−α+o(Rr)
r .

Proof. Recall that o(r) was defined as o(r) := maxx∈Λ
log←−ν (B(x,r))

log r − α. Let y′ ∈ Λ be such

that ←−ν (B (y′, Rr)) is minimal and note that

←−ν (B(y′, Rr)) = R−α−o(Rr)r . (4.2)

Similarly to (3.7),

N2r(Λ ∩B(y′, Rr)) = N2r

(
Λ ∩B

(
y′, 2r

(
L(r) + 2

c0

)2/d
))
≥ L(r) + 2.

Hence, #Qr(Λ ∩B (y′, Rr)) ≥ L(r) + 2. So for every i ∈ Σ there exists y(i) ∈ Λ such that

B(y(i), r) ∩ OdL(nk)e(i, x0) = ∅ and B(y(i), r) ⊂ B
(
y′, Rr

)
.

Let Yr be the set of centres of the balls in Qr(Λ ∩ B (y′, Rr)). Recall the definition (3.5) of
Tr(i, y, x0). So

Eµ(Tr(x0)) =
∞∑
n=0

µ(i ∈ Σ : Tr(i, x0) > n) ≥
∞∑
n=0

µ(i ∈ Σ : Tr(i, y(i), x0) > n)

=
∞∑
n=0

(1− µ(i ∈ Σ : Tr(i, y(i), x0) ≤ n)) =
∞∑
n=0

(
1−

∑
y∈Yr

µ(i ∈ [ı] : Tr(i, y, x0) ≤ n)

)

≥
∞∑
n=0

max{0, 1− n
∑
y∈Yr

←−ν (B(y, r))} ≥
∞∑
n=0

max
{

0, 1− n←−ν
(
B
(
y′, Rr

))}

=

d←−ν (B(y′,Rr))
−1e∑

n=0

max
{

0, 1− n←−ν
(
B
(
y′, Rr

))}
≥ ←−ν

(
B
(
y′, Rr

))−1
(

1

2
−←−ν

(
B
(
y′, Rr

)))
,

which completes the proof by (4.2) and since minx∈Λ
←−ν (B(x,Rr)) <

1
4 . �

5. Bedford–McMullen carpets

In this section, we give an explicit procedure to determine a vector solving the optimisation
problem (2.6) in Proposition 5.4, prove the claims of Theorem 2.5 and provide some additional
insight through examples. Recall all the notation introduced in Section 2.2, in particular, the
function α(q) and vectors qK ,QK from (2.7), (2.8), and (2.9), respectively.

To each vector qK and QK we associate the vector pK = (pK,1, . . . , pK,N ) and PK =
(PK,1, . . . , PK,N ) by distributing mass within columns uniformly, i.e. we set pK,i = qK,k/Nk

if i belongs to a column with Nk rectangles and similarly PK,i = QK,k/Nk. According to
Theorem 2.5, one of these vectors solves the optimisation problem (2.6).
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Observe that p1 gives the uniform measure p1 = (1/N, . . . , 1/N) and pM0 gives the co-
ordinate uniform measure pM0 = (1/(MNψ(1)), . . . , 1/(MNψ(N))), where the function ψ :
{1, 2, . . . , N} → {1, 2, . . . ,M0} is defined

ψ(i) := k, if i belongs to a column with Nk rectangles.

Moreover, the interpretation of the vectors PK is that all columns with at most NK maps are
given mass 1− logm

logn and this mass is further distributed within these columns in a coordinate

uniform way. While the remaining logm
logn weight is given to columns with more than NK

rectangles and this mass is distributed uniformly between all rectangles in these columns.

The uniform measure is the ‘natural measure’ in the uniform vertical fibre case (recall, when
all non-empty columns have the same number of rectangles). In the non-uniform vertical fibre
case the coordinate uniform measure has the property that its lower and Assouad dimensions
simultaneously realise the lower and Assouad dimension of the attractor provided the ‘very
strong separation condition’ holds [20], see [18, Section 8.6] for additional information and
definitions. In case of the Minkowski dimension there does not exist a self-affine measure νp
for which dimM νp = dimM Λ (unless Λ has uniform vertical fibres).

Claim 5.1. For a vector p = (p1, . . . , pN ), let qp = (qp,1, . . . , qp,M ) denote the vector defined
as

qp,̂ := sum of probabilities pi in the ̂-th column.

Then, for any self-affine measure νp on a Bedford–McMullen carpet

dimM νp = max
1≤ i≤N
1≤ ̂≤M

{
log pi
− log n

+

(
1− logm

log n

)
log qp,̂
− logm

}
. (5.1)

As a result, minp dimM νp = dimM Λ if and only if Λ has uniform vertical fibres.

Formula (5.1) is stated in [18, Theorem 8.6.2] in the case of the very strong separation
condition. For convenience of the reader, we provide the short argument for any Bedford–
McMullen carpet Λ.

Proof. For an index i ∈ {1, . . . , N} let φ(i) ∈ {1, . . . ,M} denote the index of the column
to which the rectangle fi([0, 1]2) belongs to. Furthermore, for i ∈ Σ = {1, . . . , N}N define

Φ(i) = φ(i1)φ(i2) . . .. Then Σ endowed with the metric d(i, j) := m−|Φ(i)∧Φ(j)| + n−|i∧j| is a
complete metric space, where i ∧ j denotes the longest common prefix of i and j. A level K
ball according to this metric is

BK(i) =
{
j ∈ Σ : |i ∧ j| ≥ L(K) and |Φ(i) ∧ Φ(j)| ≥ K

}
, (5.2)

where L(K) is the unique integer such that m−K ≤ n−L(K) < m−(K−1). We call BK(i)
a symbolic approximate square at level K. Let BK denote the set of level K approximate
squares. Each BK(i) can be identified with the sequence (i1, . . . iL(K), φ(iL(K)+1), . . . , φ(iK)).

As before, let µp = pN. The µp measure of an approximate square BK(i) is equal to

µp(BK(i)) =

L(K)∏
`=1

pi` ·
K∏

`=L(K)+1

qp,φ(i`).
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Let p∗ = mini pi and q∗ = min̂ qp,̂. Then

min
{
µp(BK(i)) : BK(i) ∈ BK

}
= (p∗)L(K) · (q∗)K−L(K) =

(
m−K

) log p∗
− logn

+
(

1− logm
logn

)
log q∗
− logm .

This immediately implies that dimM µp equals the formula in (5.1).

The next step is to show that dimM νp = dimM µp. The way that d(i, j) is defined implies
that up some uniform multiplicative constant d(i, j) ≈ ‖π(i)− π(j)‖, where π : Σ→ Λ is the
natural projection defined in (1.3). Hence, for any approximate square diam

(
π(BK(i))

)
≈

m−K ≈ n−L(K). Since π can only increase the measure of a ball, we get dimM νp ≤ dimM µp.

To see the other inequality, consider the approximate square π(BK(i)) ⊂ Λ whose µp
measure is minimal. By assumption, on the first level at least two columns are non-empty
and at least one of them has at least two maps. Thus, there is an x ∈ π(BK(i)) and a constant

c independent of K such that B(x, cn−(L(K)+2)) ∩ Λ ⊂ π(BK(i)). As a result,

νp
(
B(x, cn−(L(K)+2))

)
≤ µp(BK(i)) ≈

(
cn−(L(K)+2)

)dimM µp .

This implies that dimM νp ≥ dimM µp. Thus, dimM νp = dimM µp.

Finally, dimM Λ = logN
logn +

(
1 − logm

logn

) logM
logm . Hence, minp dimM νp = dimM Λ if and only if

both p and qp are the uniform vectors on {1, . . . , N} and {1, . . . ,M}, respectively. This can
happen only if each column has the same number of rectangles, i.e. Λ has uniform vertical
fibres. �

Remark 5.2. The local dimension spectrum of Bedford–McMullen carpets was studied in [32]
and [26]. In particular, they showed that the upper end of the spectrum equals

max
x∈Λ

dimloc(νp, x) = max
1≤ i≤N

{
log pi
− log n

+

(
1− logm

log n

)
log qp,ψ(i)

− logm

}
.

This differs from (5.1) only in that the coordinate of qp can not be chosen independently, it
has to be the coordinate corresponding to the column of i. Hence, maxx∈Λ dimloc(νp, x) ≤
dimM νp and there is a strict inequality if pi and qp,̂ are minimised in different columns. This
is the case for the vectors PK . Such a phenomena does not hold for self-similar sets.

The next claim shows that we can reduce the minimisation problem minp dimM νp to the
lower dimensional problem minq∈Q α(q), where α(q) was defined in (2.7) and Q =

{
q =

(q1, . . . , qM0) : R1q1 + . . .+RM0qM0 = 1 and qk > 0 for all 1 ≤ k ≤M0

}
.

Claim 5.3. If q = (q1, . . . , qM0) is such that α(q) = minq′∈Q α(q′), then q has the following
two properties:

(1) minp dimM νp = α(q), where q gives a solution p∗ = (p∗1, . . . , p
∗
N ) to (2.6) by setting

p∗i := qk/Nk if i belongs to a column with Nk rectangles (i.e. mass is distributed
uniformly within columns);

(2) There exists a unique 1 ≤ K ≤M0 − 1 for which

q1 = q2 = · · · = qK ≤ min
K+1≤k≤M0

qk and
qK+1

NK+1
=

qK+2

NK+2
= · · · = qM0

NM0

≤ min
1≤k≤K

qk
Nk

. (5.3)

Proof. First observe that the maximization over the indices k and ` in the definition (2.7) of
α(q) is independent. Moreover, − log qk/Nk and − log q` are maximal if and only if qk/Nk

and q` are minimal, respectively.
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Assertion (1) simply follows from the fact that the value of − log mini pi can only increase
in the formula (5.1) for dimM νp if mass within each column is not distributed uniformly.
This argument also implies that for each k = 1, . . . ,M0, the mass within the collection of Rk
columns should also be uniformly distributed amongst the columns. Thus, it is enough to
consider the M0 − 1 dimensional problem minq∈Q α(q) to solve minp dimM νp.

Assume q = (q1, . . . , qM0) is such that α(q) = minq′∈Q α(q′). To see (2), first notice that
for each k = 1, . . . ,M0 at least one of the following holds:

(a) qk = min
1≤ `≤M0

q`, (b) qk/Nk = min
1≤ `≤M0

q`/N`.

This is because if there existed an index 1 ≤ k0 ≤M0 such that qk0 > min` q` and qk0/Nk0 >
min` q`/N`, then mass could be transferred from that column into the columns attaining
(either) minimum, therefore reducing the maximum in the definition of α(q).

Secondly, observe that if 1 ≤ K1 6= K2 ≤ M0 are two distinct indices such that qK1 =
min1≤ `≤M0 q` and qK2/NK2 = min1≤ `≤M0 q`/N`, then K1 < K2. Indeed by the choice of K1

and K2

qK2/NK2 ≤ qK1/NK1 ≤ qK2/NK1 =⇒ NK1 ≤ NK2 .

Since Nk are in ascending order and K1 6= K2, it follows that K1 < K2. In particular (2)
holds.

The uniqueness of K follows by the simple observation that since N1 < · · · < NM0 and
qK+i/NK+i = qK+i+1/NK+i+1 for i = 1, . . . ,M0 − K − 1 we have qK+i+1 > qK+i for i =
1, . . . ,M0 −K − 1. �

5.1. Finding a vector minimising dimM νp. Claim 5.3 shows that to find a vector that
minimises dimM νp, it is enough to find a vector that minimises α(q) and then distribute mass
within columns evenly amongst rectangles. The next proposition shows how to find a vector
which minimises α(q).

Recall, for an index 1 ≤ K ≤ M0, we denote |RK | = R1 + . . . + RK and ‖RCK‖ =
RK+1NK+1 + . . .+RM0NM0 . Also recall the definitions of qK and QK from (2.8) and (2.9).
For each 1 ≤ K ≤M0 − 1 let

AK :=

(
log n

logm
− 1

)
‖RCK‖
|RK |

. (5.4)

Proposition 5.4. Assume the parameters n,m,N1, . . . , NM0 , R1, . . . , RM0 define a Bedford–
McMullen carpet Λ with non-uniform vertical fibres. Then

min
p

dimM νp = min
{
α1, α2, . . . , αM0−1

}
,

where for 1 ≤ K ≤M0 − 1,

αK := min
{
α(qK), α(QK), α(qK+1)

}
=


α(qK), if AK < NK ,

α(QK), if NK ≤ AK ≤ NK+1,

α(qK+1), if AK > NK+1.

We note that α(qK) = α(QK) if AK = NK , similarly, α(qK+1) = α(QK) if AK = NK+1.
Before turning to the proofs, we give examples when M0 = 2 or 3 and when the optimiser
solving minp dimM νp is not unique.
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5.2. Proof of Theorem 2.5 and Proposition 5.4. Recall from Claim 5.3 that it is enough
to consider a vector q = (q1, . . . , qM0) which satisfies (5.3) for some 1 ≤ K ≤M0 − 1. Recall
that |RK | = R1 + . . .+RK and ‖RCK‖ = RK+1NK+1 + . . .+RM0NM0 . Therefore, from (5.3)
we can express qK+1/NK+1 in terms of qK using that

1 =

M0∑
`=1

R`q` = |RK |qK + ‖RCK‖
qK+1

NK+1
⇐⇒ qK+1

NK+1
=

1− |RK |qK
‖RCK‖

. (5.5)

Combining (5.3) and (5.5) yields the inequality

qK
NK+1

(5.3)

≤ qK+1

NK+1

(5.5)
=

1− |RK |qK
‖RCK‖

(5.3)

≤ qK
NK

.

After rearranging and using that |RK+1| = |RK |+RK+1 and ‖RCK+1‖ = ‖RCK‖−RK+1NK+1,
we get the condition

NK

NK |RK |+ ‖RCK‖
≤ qK ≤

NK+1

NK+1|RK+1|+ ‖RCK+1‖
. (5.6)

Also, substituting (5.5) back into α(q), recall (2.7), we obtain a one variable function in qK :

fK(qK) :=
log 1−|RK |qK

‖RCK‖

− log n
+

(
1− logm

log n

)
log qK
− logm

.

Therefore, to obtain a solution to minq α(q) it is enough to minimise fK(qK) subject to
condition (5.6).

To minimise fK(qK), first observe that the equation d
dqK

fK(qK) = 0 yields the unique

solution q∗K =
(
1− logm

logn

)
/|RK |. This is indeed a minimum, since the second derivative

d2

d(qK)2
fK(qK) =

|RK |2

(1− |RK |qK)2 log n
+

(
1− logm

log n

)
1

(qK)2 logm
> 0

for any qK , in particular, also for qK = q∗K . Hence,

fK(qK) strictly decreases for qK < q∗K and fK(qK) strictly increses for qK > q∗K . (5.7)

Recall AK from (5.4). The condition NK ≤ AK ≤ NK+1 from Proposition 5.4 is equivalent
to

NK

NK |RK |+ ‖RCK‖
≤
(

1− logm

log n

)
1

|RK |
≤ NK+1

NK+1|RK+1|+ ‖RCK+1‖
,

which can be seen by rearranging and using again that |RK+1| = |RK |+RK+1 and ‖RCK+1‖ =

‖RCK‖ −RK+1NK+1. In particular, this implies that the global minimum q∗K for fK satisfies

the bounds in (5.6). Substituting qK =
(

1− logm
logn

)
/|RK | into (5.5) we recover the measure

QK defined in (2.8). Therefore, if NK ≤ AK ≤ NK+1 then

min
q:

(5.3)holds for K

α(q) = α(QK).
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Next, note that if AK < NK then similarly to the above, we can deduce that the global
minima of fK satisfies

q∗K =

(
1− logm

log n

)
1

|RK |
<

NK

NK |RK |+ ‖RCK‖
.

In particular, the global minima for fK is not in the range determined by (5.6). Instead,

(5.7) implies that the minimum of fK subject to (5.6) is obtained at qK = NK
NK |RK |+‖RCK‖

.

Substituting qK = NK
NK |RK |+‖RCK‖

into (5.5), we recover the measure qK defined in (2.8).

Hence, if AK < NK then

min
q:

(5.3)holds for K

α(q) = α(qK).

Finally, if A > NK+1 then the global minima of fK satisfies

q∗K =

(
1− logm

log n

)
1

|RK |
>

NK+1

NK+1|RK+1|+ ‖RCK+1‖
.

This time (5.7) implies that qK =
NK+1

NK+1|RK+1|+‖RCK+1‖
is where the minimum of fK subject

to (5.6) is attained. Substituting this qK into (5.5), we recover the measure qK+1. Hence, if
A > NK+1 then

min
q:

(5.3)holds for K

α(q) = α(qK+1).

To conclude, we deduce from Claim 5.3 that minp dimM νp = min
{
α1, α2, . . . , αM0−1

}
. In

particular by Claim 5.3 item (2) we can deduce the form that the optimising vector p∗ for
(2.6) takes. This completes the proof of Theorem 2.5 and Proposition 5.4.

5.3. Special case with two different columns. The input parameters of a Bedford–
McMullen carpet with two different columns are: n > m,N1 < N2 ≤ n and R1 + R2 ≤ m.
Assume the indices of the maps fi defining the carpet are ordered such that the first R1N1

belong to columns with N1 rectangles. By Proposition 5.4,

min
p

dimM νp = α1 = min{α(q1), α(q2), α(Q1)},

therefore the optimising vector is either the uniform measure p1 = (1/N, . . . , 1/N), the co-
ordinate uniform measure p2 = (1/(MNψ(1)), . . . , 1/(MNψ(N))) or P1 defined by

P1,i =

(
1− logm

log n

)
1

R1N1
for all i ≤ R1N1 and P1,i =

logm

log n

1

R2N2
for all i > R1N1.

In this case A1 is given by

A1 =

(
log n

logm
− 1

)
R2N2

R1
.

Table 1 shows three examples where p1, P1 and p2 are the optimising vectors, respectively.
Note that in the last example, q2 is the optimizer regardless of the choice of 1 ≤ N1 < N2 ≤ n.
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R1 R2 N1 N2 m n α(q1) α(Q1) α(q2) dimM Λ

A1 < N1 1 1 2 3 2 3 1.95286 – 2 1.83404
N1 ≤ A1 ≤ N2 1 1 1 2 2 3 1.58496 1.58089 1.63093 1.36907
N2 < A1 1 1 2 3 2 5 1.75260 – 1.68261 1.56932

Table 1. Three examples in which each minimises dimM νp for a different
vector.

5.4. Simulations. We demonstrate how to keep track of the orbit and how the choice of
the measure µ driving the chaos game influences the “quality” of the image on one of the
examples presented in Table 1.

For any r > 0 consider a maximal r-packing of the attractor Λ, i.e. a collection of sets of
diameter r with disjoint interiors that cover Λ. The orbit On(i, x0) becomes r-dense in Λ once
it has visited all elements of the r-packing. For Bedford–McMullen carpets we can keep track
of the orbit using the collection of symbolic approximate squares of level K introduced in (5.2),
where K is chosen so that m−K ≤ r < m−K+1. Recall, each approximate square BK(i) is
identified with the sequence (i1, . . . iL(K);φ(iL(K)+1), . . . , φ(iK)), where φ(i) ∈ {1, . . . ,M}
denotes the index of the column to which the rectangle fi([0, 1]2) belongs to. One step of the
chaos game corresponds to the transition

(i1, . . . iL(K);φ(iL(K)+1), . . . , φ(iK)) 7−→ (j, i1, . . . iL(K)−1;φ(iL(K)), . . . , φ(iK−1))

if j was the next chosen index.

Table 2 shows the cover times in the middle example of Table 1 for various vectors at two
different scales K = 6 and K = 9. The cover times are averaged out over 400 independent runs
of the chaos game when K = 6, and averaged out over 100 independent runs for K = 9. The
vectors p1, P1 and p2 are the same as in Section 5.3, while p̂ corresponds to the McMullen
measure which maximises the Hausdorff dimension of νp defined as

p̂k = N
logm
logn

−1

ı̂ ·
( M∑
̂=1

N
logm
logn

̂

)−1
if φ(k) = ı̂.

The pair (p̃, q̃) corresponds to the uniform vectors on {1, . . . , N} and {1, . . . ,M}, respectively.
In this case, we modified the chaos game to “two dimensions”: in a transition step a new map
and a new column are chosen independently of each other according to p̃ and q̃. That is, if
k ∈ {1, . . . , N} and ` ∈ {1, . . . ,M} are chosen uniformly and independently, then a transition
step is

(i1, . . . iL(K); jL(K)+1, . . . , jK) 7−→ (k, i1, . . . iL(K)−1; `, jL(K)+1, . . . , jK−1).

The choice (p̃, q̃) is optimal in the sense that it minimises

α(p,q) := max
1≤ i≤N
1≤ ̂≤M

{
log pi
− log n

+

(
1− logm

log n

)
log q̂
− logm

}
with value α(p̃, q̃) = dimM Λ. Hence, is the most efficient possible. However, the drawback
of this modified chaos game is that it does not have any clear geometric interpretation.
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Indeed, Table 2 shows that the runtime is substantially faster with (p̃, q̃) than with the
other vectors. Table 1 suggests that the runtime with P1 should be second fastest since it
corresponds to the smallest exponent α, however, this is not supported by the empirical data
in Table 2. One explanation for this could be the fact that for small values of K the measure
of BK(i∗), which denotes the level K approximate square of minimum measure, does not
yet reflect the asymptotic behaviour inferred from the exponent α. For example, by direct
computation we obtain that at level K = 6

0.00137 = µp1(B6(i∗)) < µP1(B6(i∗)) < µp̂(B6(i∗)) < µp2(B6(i∗)) = 0.00195,

whereas for level K = 100

8.55× 10−50 = µp2(BK(i∗)) < µp1(BK(i∗)) < µp̂(BK(i∗)) < µP1(BK(i∗)) = 2.61× 10−48.

Another reason could be that the impact of the subexponential error terms on the runtime is
amplified for small values of K. For larger K, we expect the runtime would follow the order
of the exponents but, since the number of approximate squares grows exponentially in K, it
is computationally impossible to do simulations for much larger K.

R1 R2 N1 N2 m n p1 P1 p2 p̂ (p̃, q̃)

K = 6 1 1 1 2 2 3 2787 2202 2442 2060 1288
K = 9 1 1 1 2 2 3 118057 86445 112666 78910 33855

Table 2. The runtime of the chaos game on the same example with different
vectors until it visits all approximate squares at level K.

In Figure 2 we plotted the orbit starting from (1, 1) ∈ Λ using three different vectors; from
left to right P1,p1 and (0.6, 0.25, 0.15). The orbits were terminated once the game with P1

visited all approximate squares at level K = 7. It is difficult to see any difference between the
first two figures with the naked eye. However, in the third case where the vector was chosen
deliberately to be very different from the optimal, it is apparent that it hasn’t visited many
approximate squares in the same number of steps.

Figure 2. Plots of orbits using three different vectors (from left to right
P1,p1 and (0.6, 0.25, 0.15)) terminated when the game with P1 visited all
level-7 approximate squares.
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5.5. Non-unique optimiser. Let us again consider a Bedford–McMullen carpet with two
different columns, where m = 2, n = 4, R1 = R2 = 1 and N1 = 2, N2 = 4. Assume the indices
of the maps fi defining the carpet are ordered such that the first 2 belong to the column that
contains 2 rectangles. We know that minp dimM νp = α1 = α(Q1) since A1 = 4 = N2.
Moreover Q1 = q2 =

(
1
2 ,

1
2

)
, meaning that the co-ordinate uniform vector

P1 =
(1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8

)
is an optimiser for (2.6).

Now, for 0 ≤ ε ≤ 1
8 define the perturbed vector

Pε
1 =

(1

4
− ε, 1

4
+ ε,

1

8
,
1

8
,
1

8
,
1

8

)
.

From (5.1) one can check that dimM νPε1 is actually independent of ε, thus each Pε
1 is also an

optimising vector for 0 ≤ ε ≤ 1
8 . In particular, the optimising vector for (2.6) is not unique.

5.6. Special case with three different columns. The input parameters of a Bedford–
McMullen carpet with three different columns are: n > m,N1 < N2 < N3 ≤ n and R1 +R2 +
R3 ≤ m. The parameter space, shown in Figure 3, consists of vectors q = (q1, q2, q3) such
that R1q1 +R2q2 +R3q3 = 1. It may be that N2/N > 1/M , however, the line connecting q1

to (1/R1, 0) always intersects the line q1 = q2 (defining q2) and never the line connecting q3

with (0, 1/R2).

1/R11/MN1/N

N2/N
1/M

1/R2

A B

C

D

E

F

q1

q2

q1

q2

q3

Q1
Q2

min{q1, q2, q3} =


q1, if (q1, q2) ∈ A ∪B ∪ C,

q2, if (q1, q2) ∈ D ∪ E,

q3, if (q1, q2) ∈ F.

min
{
q1
N1

, q2
N2

, q3
N3

}
=


q1
N1

, if (q1, q2) ∈ A,
q2
N2

, if (q1, q2) ∈ C ∪D,
q3
N3

, if (q1, q2) ∈ B ∪ E ∪ F.

Figure 3. The parameter space of vectors q = (q1, q2, (1−R1q1−R2q2)/R3)
shown with the six regions where α(q) takes different values.

The function α(q) takes different values according to which region the vector q falls into.
The candidates that minimise α(q) are the vectors q1,q2,q3,Q1 and Q2. Q1 is a valid
candidate if and only if it lies on the line between q1 and q2. Likewise for Q2 between q2
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and q3. We leave it to the reader to find five different examples, where each one minimizes
α(q) for a different candidate. We note that the McMullen measure which maximizes the
Hausdorff dimension of νp lies somewhere in the interior of region B.

6. Open questions

Here we suggest some possible directions for future investigation appearing naturally from
the results of the presented paper.

Question 6.1. Can Theorem 2.1 be extended beyond the class of measures that satisfy the
one-sided exponential decay of correlations property? For example, to measures which satisfy
a weaker mixing property, or even to all ergodic measures?

Question 6.2. In Proposition 3.1, is it possible to omit the assumption that dimL Λ > 0 if
the IFS is overlapping? In point of view of Proposition 3.3 is it possible to relax the conditions
even further?

Question 6.3. Is it possible to relax the hyperbolicity condition in Theorem 2.1? That is, is
it possible to relax the statement to allow for parabolic iterated function systems F , where
F is no longer uniformly contracting, but it contains a map with a neutral fixed point?

Question 6.4. At least in special cases, as was shown in [27] for self-similar sets, is it possible
to obtain tighter bounds on the expected value of the cover time in Theorem 2.4?

Question 6.5. Let us consider a simple iterated function system of similarities with the
strong separation condition, and let us consider the natural self-similar measure µ defined
by the similarity dimension, and fix an r > 0. Is it possible to give tight bounds on n for
which µ({i : dH

(
On(i, x0),Λ

)
< r}) ≥ 0.95? Is it possible in the case of the weak separation

condition? Or even without any separation condition?

Question 6.6. In case of Bernoulli convolutions, recall (2.4), all self-similar measures have
Minkowski dimension strictly larger than 1. Can it be achieved if the probability vector p is
allowed to dependent on the current position of the orbit? More precisely, let p : Λ → [0, 1].
Assuming some regularity on p, see [15], there exists a unique measure ν satisfying

ν(B) =

∫
(B+1)/λ

p(x)dν(x) +

∫
(B−1)/λ

(1− p(x))dν(x)

for any Borel set B. Can dimM ν = 1 be achieved with an appropriate choice of p?

Question 6.7. Recall that the Minkowski dimensions of Bernoulli measures supported on a
Bedford-McMullen carpet Λ obtain a maximum at dimM Λ if and only if Λ has uniform vertical
fibres (Claim 5.1). Therefore it is interesting to ask whether, in the non-uniform vertical fibres
case, there exists an invariant measure supported on Λ whose Minkowski dimension equals
dimM Λ (thus which optimises the cover time for the chaos game)? Note that although
it is known that dimM Λ is always achieved by the Minkowski dimension of some measure
supported on Λ, this measure is not necessarily invariant [14].
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