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Abstract. In the last two decades considerable attention has been paid to the
dimension theory of self-affine sets. In the case of the generalized four corner
sets (see Figure 1) the IFS obtain as the projection of the self-affine system
have maps of common fixed points. In this paper we extend our result [3] which
introduced a new method of computation of the box and Hausdorff dimension
of self-similar families where some of the maps have common fixed point. The
extended version of our method presented in this paper, makes it possible to
determine the box dimension of the generalized four corner set for Lebesgue-
typical contracting parameters.

1. Introduction and Statements

We call a set self-affine if it can be represented as a finite union of its affine copies.
That is Λ ⊂ R

2 is self-affine if there exists a finite list of contracting affine maps
{fi(x) = Aix+ ai}

m
i=1 such that Λ = ∪m

i=1fi(Λ), where Ai are 2 × 2 real matrices
on the plane. The dimension theory of self-affine sets is far from well understood
even in the diagonal case, that is when all Ai are diagonal matrices.

We consider the generalized four corner set Λ(α, β) which is the attractor of the
self-affine iterated function system (IFS) of Figure 1. (For a precise definition see
Section 4.) The parameters α = (α0, α1, α2, α3) and β = (β0, β1, β2, β3) are chosen
such that the rectangles R0, R1, R2, R3 on Figure 1 are disjoint. One of the main
goals of the present paper is to determine the box dimension of this set for Lebesgue
typical parameters.

Figure 1. Maps of the generalized 4-corner set.
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The most natural upper bound of the box dimension is the subadditive-pressure
formula which is called Falconer-dimension or singularity dimension and introduced
by Falconer [4] and Barreira [2]. Namely, the Falconer Theorem (see [4]) states that
the Hausdorff- and box dimension of a self-affine attractor coincide for almost every
translation parameters and equal to the singularity dimension, whenever the norm
of all the affine maps of IFS is smaller than 1/3. However, in our case we work
with fixed translations and we modulate the multiplicative part of the affine maps.
On the other hand, we do not impose any conditions of the norm involved the
rectangles on Figure 1 are disjoint.

In the case of the generalized 4-corner set, the singularity dimension can be given
by the following formula (see for example [9])

dsing = inf



s :

∞∑

n=1

∑

i1···in∈{0,...,3}
n

φs(i1 · · · in) <∞



 (1.1)

where

φs(i1 · · · in) =

{
a(i1 · · · in)s if 0 ≤ s ≤ 1

a(i1 · · · in)b(i1 · · · in)s−1 if 1 ≤ s ≤ 2

where a(i1 · · · in) = max {αi1 · · ·αin , βi1 · · · βin} and
b(i1 · · · in) = min {αi1 · · ·αin , βi1 · · · βin}. For another method of calculation of the
singularity dimension in our case see [7].

We will prove that for Lebesgue-typical parameters α, β the Hausdorff dimen-
sion and even the box dimension of the generalized 4-corner set is strictly smaller
than the singularity dimension (1.1). The reason of this phenomena is the very
special relative geometric position of the rectangles which generate the generalized
4-corner set. The speciality of the maps is that the fixed points are the corners
of the unit square, so they do not move when we change the parameters α, β.
Therefore the orthogonal projection to the x-axis (and to the y-axis respectively)
is an attractor of a special iterated function system of four similarities where the
similarities derived from the maps having fixed points with same coordinate y (and
with same coordinate x) have common fixed points.

In [3] we considered the IFS {γx, λx, λx+ 1}, γ < λ on the real line. See Figure
2 for the images of the convex hull of the attractor generated by the functions of
this IFS. The novelty of the result obtained in [3] about the dimension of Λ was
to tackle the difficulty which comes from the fact that the first two maps have the
same fixed point. In this paper we extend the scope of that result in the following
way:

Principal Assumptions:

(A1) Let F be a finite set of linear, real functions such that for every ϕ ∈ F ,
Fix(ϕ) ∈ {0, 1} and ϕ([0, 1]) ⊆ [0, 1].

(A2) For arbitrary ϕi, ϕj ∈ F suppose either ϕi([0, 1]) ∩ ϕj([0, 1]) = ∅ or
Fix(ϕi) = Fix(ϕj).

By Theorem 1.1 we will be able to calculate the Hausdorff and box dimension of
the attractor of iterated function schemes satisfying both of the assumptions (A1)
and (A2).

Now we introduce some notation about our iterated function system. Let

ϕ0,1(x) = γ0,1x

ϕ0,2(x) = γ0,2x+ (1 − γ0,2)
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Figure 2. The first cylinder sets of the IFSs in [3] and of the ex-
tended version.

and suppose that γ0,1 +γ0,2 < 1, which is equivalent with ϕ0,1([0, 1])∩ϕ0,2([0, 1]) =
∅.

Let p, q be positive integers and let

ϕi,1(x) = γi,1x for i = 1, . . . , p

ϕi,2(x) = γi,2x+ (1 − γi,2) for i = 1, . . . , q.

Moreover suppose that 0 < γi,1 < γ0,1 for every i = 1, . . . , p and 0 < γi,2 < γ0,2 for
every i = 1, . . . , q.

Theorem 1.1. Let F = {γi,1x}
p
i=0 ∪ {γi,2x + (1 − γi,2)}q

i=0 such that
0 < γi,1 < γ0,1 < 1 for i = 1, . . . , p and 0 < γj,2 < γ0,2 < 1 for j = 1, . . . , q (see
Figure 1), then

dimB Λ = dimH Λ = min {1, s} , (1.2)

where s is the unique solution of

p∏

i=0

(1 − γsi,1) +

q∏

i=0

(1 − γsi,2) = 1 (1.3)

for Lebesgue almost every (γ
1
, γ

2
) ∈ (0, γ0,1)p×(0, γ0,2)q, where γ

1
= (γ1,1, . . . , γp,1)

and respectively γ
2

= (γ1,2, . . . , γq,2).

Moreover L (Λ) > 0 for Lebesgue almost every (γ
1
, γ

2
) if s > 1.

Note that whenever γ0,1 + γ0,2 ≥ 1 the attractor of F is an interval which
immediately implies Theorem 1.1. In this way without loss of generality in the rest
of the paper we may assume that γ0,1 + γ0,2 < 1.

The following shows that we can calculate the box dimension of the generalized
4-corner set from the dimensions of its orthogonal projections to the axis which are
calculable by Theorem 1.1 as we already mentioned.
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Theorem 1.2. Let Λ(α, β) be the attractor of the self-affine IFS of Figure 1. Then

dimB Λ(α, β) = max {dα, dβ} , for Lebesgue almost every (α, β) such that

max {αi + αi+2, βi + βi+2} < 1 and min {αi + α3−i, βi + β3−i} < 1 for i = 0, 1
(1.4)

where dα and dβ are defined in two steps. First we define two numbers sα, sβ as
the unique solution of the equations

αsα
0 + αsα

1 + αsα
2 + αsα

3 − αsα
0 α

sα
1 − αsα

2 α
sα
3 = 1

β
sβ
0 + β

sβ
1 + β

sβ
2 + β

sβ
3 − β

sβ
0 β

sβ
2 − β

sβ
1 β

sβ
3 = 1.

Then we can define dα and dβ as the unique real numbers such that

3∑

i=0

α
min{1,sα}
i β

dα−min{1,sα}
i = 1,

3∑

i=0

β
min{1,sβ}
i α

dβ−min{1,sβ}
i = 1. (1.5)

The condition in (1.4) is equivalent to that the rectangles R0, R1, R2, R3 are
pairwise disjoint.

The same formula as in the equation (1.5) appeared in Gatzouras-Lalley [10] and
also in Barański [1] for different kind of self-affine sets. The method of the proof of
(1.5) follows the proof of Feng-Wang [8, Theorem 1] and Barański [1, Theorem B].

Organization of the paper:

In Section 2 we mention some method to prove the so-called transversality con-
dition. In Section 3 we prove Theorem 1.1. We decompose this section into three
parts. In Subsection 3.1 we introduce some notation about the natural projection.
In Subsection 3.2 we prove the transversality condition and in Subsection 3.3 we
calculate the Hausdorff dimension. Note, that our original system does not satisfy
transversality (see later the precise arguments). The method of the proof is that
we consider higher-order iterates of the system, we throw away some of the maps
from it and then for this restricted family we apply the transversality condition.
Taking higher and higher iterates we are approximating the original system.

In Section 4 we apply Theorem 1.1 to prove the formula of the box dimension of
generalized 4-corner set. We obtain an almost all type result with respect to the
contraction coefficients. Further, using the method of Barański [1] and Feng, Wang
[8], we give a general formula (Theorem 4.1) for the box dimension of the self-affine
sets on the plane which are constructed with axes parallel rectangles having disjoint
interiors.

2. Transversality methods

First let us introduce the transversality condition for self-similar IFS on the
real line with d dimensional parameter-space. The technique of the transversality
condition was first introduced in [11] to calculate the Hausdorff dimension of λ-
expansions with deleted digits.

The definition corresponds to the definition of Simon, Solomyak and Urbański
[13],[14] which was introduced for much more general IFS.

Let U be an open, bounded subset of Rd with smooth boundary and I a finite

set of symbols. Let Ψt =
{
ψ
t
i(x) = λi(t)x+ di(t)

}
i∈I

, where λi, di ∈ C1(U) and

0 < α ≤ λi(t) ≤ β < 1 for every i ∈ I and t ∈ U and for some α, β ∈ (0, 1). Let
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Λt be the attractor of Ψt and πt is the natural projection from the symbolic space

Σ = IN to Λt. More precisely, for i = (i0i1 . . . ) ∈ Σ we write

πt(i) = lim
n→∞

ψ
t
i0
◦ ψt

i1
◦ · · · ◦ ψt

in
(0). (2.1)

It is well-known that the limit exists and is independent of the base point 0.
Moreover, πt is a continuous, surjective function from Σ onto Λt. Denote σ the
left-shift operator on Σ. That is σ : (i0i1 . . . ) 7→ (i1i2 . . . ). It is easy to see that

πt(i) = ψ
t
i0

(πt(σi)).

Definition 2.1. We say that Ψt satisfies the transversality condition on an

open, bounded set U ⊂ R
d, if for any i, j ∈ Σ with i0 6= j0 there exists a constant

C = C(i0, j0) such that

Ld(t ∈ U : |πt(i) − πt(j)| ≤ r) ≤ Cr for every r > 0,

where Ld is the d dimensional Lebesgue measure.

In short, we say that there is transversality if the transversality condition holds.
This definition is equivalent to the ones given in e.g. [13], [14]. As a special case
of [13, Theorem 3.1] we obtain:

Theorem 2.2 (Simon, Solomyak, Urbański). Suppose that Ψt satisfies the trans-

versality condition on an open, bounded set U ⊂ R
d. Then

(1) dimH Λt = min {s(t), 1} for Lebesgue-a.e. t ∈ U ,
(2) L1(Λ

t) > 0 for Lebesgue-a.e. t ∈ U such that s(t) > 1,

where s(t) is the similarity dimension of Ψt. More precisely, s(t) satisfies the
equation ∑

i∈I

λi(t)
s(t) = 1. (2.2)

We can use the following Lemma to prove transversality which follows from [13,
Lemma 7.3].

Lemma 2.3. Let U ⊂ R
d be an open, bounded set with smooth boundary and

gi,j(t) = πt(i) − πt(j). If for every i, j ∈ Σ with i0 6= j0 and for every t0 ∈ U

gi,j(t0) = 0 ⇒ ‖gradtgi,j
∣∣
t=t0

‖ > 0 (2.3)

then there is transversality on any open subset V whose closure is contained in U .

3. Proof of Theorem 1.1

3.1. Natural projection. Let p, q be positive integers and let

ϕi,1(x) = γi,1x for i = 0, . . . , p

ϕi,2(x) = γi,2x+ (1 − γi,2) for i = 0, . . . , q.

Then our main assumptions (A1), (A2) are equivalent to 0 < γi,1 < γ0,1 < 1 for
every i = 1, . . . , p and 0 < γi,2 < γ0,2 < 1 for every i = 1, . . . , q, moreover,

γ0,1 + γ0,2 < 1.

Therefore, without loss of generality we can assume that

γi,1 = ci,1γ0,1

γi,2 = ci,2γ0,2,
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where 0 < ci,1, cj,2 < 1 for i = 1, . . . , p and j = 1, . . . , q. Then F can be written in
the form

F = {γ0,1x, γ0,2x+ (1 − γ0,2)}
⋃

{ci,1γ0,1x}
p
i=1

⋃
{ci,2γ0,2x+ (1 − ci,2γ0,2)}q

i=1 .

Let us introduce the vectors of parameters, namely, c1 = (c1,1, . . . , cp,1) ∈ (0, 1)p

and c2 = (c1,2, . . . , cq,2) ∈ (0, 1)q , moreover c = (c1, c2).
Denote the set of symbols of the functions with fixed point 0 by A1, and similarly,

denote the set of symbols of the functions with fixed point 1 by A2. So

A1 = {(0, 1), . . . , (p, 1)} and A2 = {(0, 2), . . . , (q, 2)} .

Let Σ be the symbolic space generated by A1 ∪ A2 and Σ∗ the set of finite words.
That is, Σ = (A1 ∪A2)

N and Σ∗ =
⋃∞

n=0 (A1 ∪A2)n. For any
i = ((i0, κ0)(i1, κ1) · · · (in, κn)) ∈ Σ∗ we use the notation

ϕi = ϕi0,κ0 ◦ ϕi1,κ1 ◦ · · · ◦ ϕin,κn and γi = γi0,κ0 · · · γin,κn .

For an i ∈ Σ we write i(k) as the first k elements of i. In particular, i(k) =
((i0, κ0) · · · (ik−1, κk−1)) and i(0) = ∅. For j = 1, 2 and i = 0, . . . , p or q, we define
♯i,ji(k) as the number of (i, j) in i(k). Moreover, for j = 1, 2 we define ♯ji(k)
as the number of symbols from Aj in i(k). Clearly, ♯1i(k) =

∑p
i=0 ♯i,1i(k) and

respectively ♯2i(k) =
∑q

i=0 ♯i,2i(k). Using this notations and the definition of the
natural projection (2.1),

πc(i) =

∞∑

k=0

(
q∑

l=0

δ
(l,2)
(ik ,κk)

(1 − γl,2)

)
γ
♯1i(k)
0,1 γ

♯2i(k)
0,2

p∏

i=1

c
♯(i,1)i(k)

i,1

q∏

i=1

c
♯(i,2)i(k)

i,2 , (3.1)

where

δkj =

{
1 if j = k
0 otherwise

.

The set of k’s satisfying (ik, κk) ∈ A2 gives us non-zero elements in the infinite
sum above. Hence it is useful to define βii as the number of (i, 2) in i and βi the
number of symbols from A2 in i. Clearly, βii = limk→∞ ♯(i,2)i(k) and βi =

∑q
l=0 β

i
l .

Moreover, let mi
k be the position of the kth symbol from A2 in i. Applying the

notation ♯2i(m
i
k) = k − 1 and

πc(i) =

βi∑

k=1

(
q∑

l=0

δ
(l,2)
(i

mi
k
,κ

mi
k
)(1 − γl,2)

)
γk−1
0,2 γ

♯1i(mi
k
)

0,1

p∏

l=1

c
♯(l,1)i(m

i
k
)

l,1

q∏

l=1

c
♯(l,2)i(m

i
k
)

l,2 .

(3.2)

For every i = 1, . . . , p we write (3.2) as the power series of ci,1. So we collect all

the different exponents of ci,1 into the set P i
i . It is easy to see that if βi = 0 then

P i
i = ∅, otherwise

P i
i =

{
m ≥ 0 : ∃k ≥ 1, ♯(i,1)i(m

i
k) = m

}
for i = 1, . . . , p.

Then we can write the natural projection in the following form

πc(i) =
∑

m∈P i
i

hmi (i)cm(i,1). (3.3)
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For every m ∈ P i
i the coefficient hmi (i) of cmi,1 is the sum of those elements of (3.2)

divided by cmi,1 which’s indexes k satisfy ♯(i,1)i(m
i
k) = m. Precisely,

hmi (i) =

sim(i)∑

k=sim(i)

(
q∑

l=0

δ
(l,2)
(i

mi
k
,κ

mi
k
)(1 − γl,2)

)
γk−1
0,2 γ

♯1i(mi
k
)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i
k
)

l,1

q∏

l=1

c
♯(l,2)i(m

i
k
)

l,2 .

(3.4)

where

sim(i) = sup
{
k : ♯(i,1)i(m

i
k) = m

}
and sim(i) = inf

{
k : ♯(i,1)i(m

i
k) = m

}
.

Lemma 3.1. Let i ∈ Σ then for every i = 1, . . . , p and every m ∈ P i
i

hmi (i) ≤ γ
sim(i)−1
0,2 γ

♯1i(mi

sim(i)
)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i

sim(i)
)

l,1 .

Moreover, if 0 ∈ P i
i then

h0i (i) ≥ γ
mi

1−1
0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i
1)

l,1 (1 − γ0,2).

Proof. Let i ∈ Σ and for m ∈ P i
i let im = ((im

sim(i)
, κm

sim(i)
) · · · (im

sim(i)
, κm

sim(i)
)).

By the definition of sim(i) and sim(i), im is the segment of i corresponds to the
coefficient hmi (i). By (3.4)

hmi (i) = γ
sim(i)−1
0,2 γ

♯1i(mi

sim(i)
)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i

sim(i)
)

l,1

q∏

l=1

c
♯(l,2)i(m

i

sim(i)
)

l,2 ϕim
(0).

By the definition κm
sim(i)

= 2 which implies that

1 − γ0,2 ≤ ϕim
(0) ≤ 1,

for every m ∈ P i
i .

If 0 ∈ P i
i then before the first (i, 1) there have to be at least one symbol from

A2. Therefore si0 = 1. Moreover, before the place of the first symbol from A2 the
number of symbols from A1 is mi

1−1. This proves the assertion of the Lemma. �

3.2. Proof of the transversality condition. For every i, j ∈ AN
κ (κ = 1, 2)

πc(i) ≡ πc(j) as the functions of c. This implies the IFS F does not satisfy the
transversality condition. The goal of this section is to introduce a sequence of iter-
ated function system which satisfy the transversality and suitable to approximate
the Hausdorff dimension of the attractor of F .

Since ϕi0,κ◦ϕi1,κ = ϕi1,κ◦ϕi0,κ holds for every (i0, κ), (i1, κ) ∈ Aκ which is in the
way of transversality. To eliminate this problem we choose a sequence of subsets
of Σ∗ such that we order the symbols in each word by the first coordinate.

Define

P0 = {(0, 1); (0, 2)} and

P1 = {(1, 2)(0, 1); . . . ; (q, 2)(0, 1); (1, 1)(0, 2); . . . ; (p, 1)(0, 2)}
(3.5)
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and by induction for k ≥ 2

Pk =




p⋃

j=1

⋃

i∈Pk−1
κ0 6=1∨j≤i0

{(j, 1)i}




⋃



q⋃

j=1

⋃

i∈Pk−1
κ0 6=2∨j≤i0

{(j, 2)i}


 . (3.6)

and

Uk =

k⋃

l=0

Pl. (3.7)

Denote Σk = UN

k and the sequence of IFS’s

Ψk =
{
ϕi

}
i∈Uk

. (3.8)

Proposition 3.2. Let ξ > 0 be arbitrary small, then the system Ψk satisfies the
transversality condition on c ∈ (ξ, 1 − ξ)p+q for every k ≥ 1.

Proof. Suppose that c ∈ (ξ/2, 1 − ξ/2)p+q and let i′, j′ ∈ Σk = UN

k such that
i0 6= j

0
∈ Uk. Denote i′ (and j′) as the element of Σ by i (and j respectively). To

prove transversality by Lemma 2.3 it is enough to show that

πc(i) = πc(j) =⇒ gradc

(
πc(i) − πc(j)

)
6= 0. (3.9)

Suppose that πc(i) = πc(j). Since γ0,1 + γ0,2 < 1, the first element of i, (i0, κ0),
and the first element of j, (j0, τ0), have to satisfy that κ0 = τ0. Then i, j can be
written in the form

i =

r0︷ ︸︸ ︷
(0, κ) · · · (0, κ)

r1︷ ︸︸ ︷
(1, κ) · · · (1, κ) · · ·

rs︷ ︸︸ ︷
(s, κ) · · · (s, κ)(l1, 3 − κ) · · ·

j =

t0︷ ︸︸ ︷
(0, κ) · · · (0, κ)

t1︷ ︸︸ ︷
(1, κ) · · · (1, κ) · · ·

ts︷ ︸︸ ︷
(s, κ) · · · (s, κ)(l2, 3 − κ) · · · ,

where ri, ti ≥ 0 for i = 1, . . . , s, s = p if κ = 1 and s = q otherwise.
If ri ≤ ti for every i = 0, . . . , s and there exists an 1 ≤ i ≤ s such that ri < ti

then by γ0,1 + γ0,2 < 1, πc(i) 6= πc(j), which is a contradiction. Therefore there are
two possibilities, there exist i 6= j such that ri > ti and rj < tj or ri = ti for every
i = 0, . . . , s. In the last case

0 = πc(i) − πc(j) = γ
∑s

i=0 ri
0,κ

s∏

i=1

crii,κ

(
πc(σ

∑s
i=0 rii) − πc(σ

∑s
i=0 rij)

)
.

Since ci,κ > ξ/2 for every κ = 1, 2 and i = 1, . . . , p or q and moreover i0 6= j
0

without loss of generality we can assume the first case.
Firstly, let us suppose that κ = 1 then i and j are in the form

i =

r0︷ ︸︸ ︷
(0, 1) · · · (0, 1)

r1︷ ︸︸ ︷
(1, 1) · · · (1, 1) · · ·

rp︷ ︸︸ ︷
(s, 1) · · · (s, 1)(l1, 2) · · ·

j =

t0︷ ︸︸ ︷
(0, 1) · · · (0, 1)

t1︷ ︸︸ ︷
(1, 1) · · · (1, 1) · · ·

tp︷ ︸︸ ︷
(s, 1) · · · (s, 1)(l2, 2) · · · ,

and there exists 1 ≤ j ≤ p such that rj < tj . There exists also an 0 ≤ i ≤ p such
that ri > ti and i 6= j, but we prove transversality derivation in cj,1.
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Let

i∗ =

r0︷ ︸︸ ︷
(0, 1) · · · (0, 1) · · ·

rj−1︷ ︸︸ ︷
(j − 1, 1) · · · (j − 1, 1)

rj+1︷ ︸︸ ︷
(j + 1, 1) · · · (j + 1, 1) · · · (l1, 2) · · ·

and

j∗ =

t0︷ ︸︸ ︷
(0, 1) · · · (0, 1) · · ·

tj−rj︷ ︸︸ ︷
(j, 1) · · · (j, 1) · · · (l2, 2) · · · .

Then

πc(i) − πc(j) = γ
rj
j,1c

rj
j,1

(
πc(i

∗) − πc(j
∗)
)
.

Let a(c) = πc(i
∗) − πc(j

∗). Since cj,1 > ξ/2 to prove transversality it is enough
to show that

a(c) = 0 =⇒
∂a

∂cj,1
(c) 6= 0

for every c ∈ (ξ/2, 1 − ξ/2)p+q. But instead of showing that we prove

∂a

∂cj,1
(c) = 0 =⇒ a(c) > 0 (3.10)

for every c ∈ (ξ/2, 1 − ξ/2)p+q. By (3.3) we have

a(c) = h0j (i∗) +
∑

m∈P j

i∗
\{0}

hmj (i∗)cmj,1 −
∑

m∈P j

j∗

hmj (j∗)cmj,1.

Let c ∈ (ξ/2, 1 − ξ/2)p+q such that ∂a
∂cj,1

(c) = 0 then

0 = cj,1
∂a

∂cj,1
(c) = h0j (i∗)




∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)
mcmj,1 −

∑

m∈P j

j∗

hmj (j∗)

h0j (i∗)
mcmj,1


 ≤

h0j (i∗)




∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)

(m− 1)cmj,1 +
∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)
cmj,1 −

∑

m∈P j

j∗

hmj (j∗)

h0j (i∗)
cmj,1


 .

It is enough to prove that

∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)

(m− 1)cmj,1 < 1.

By Lemma 3.1 we have

∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j (i∗)
(m− 1)cmj,1 ≤

∑

m∈P j

i∗
\{0}

γ
s
j
m(i∗)−1

0,2 γ
♯1i

∗(mi∗

s
j
m(i∗)

)

0,1

∏p
l=1
l 6=j

c
♯(l,1)i

∗(mi∗

s
j
m(i∗)

)

l,1

γ
mi∗

1 −1
0,1

∏p
l=1
l 6=j

c
♯(l,1)i(m

i∗

1 )

l,1 (1 − γ0,2)
(m− 1)cmj,1. (3.11)

Since i∗ does not contain (j, 1) before the first element from A2, sj0(i∗) = 1 and

♯1i
∗(mi∗

s
j
m(i∗)

) ≥ mi∗

1 +m− 1 for every m ∈ P j
i∗
\ {0}.
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Let q1 = minP j
i∗\ {0} and q2 = minP j

i∗\ {0, q1}. We define the minimum of the

empty set as infinity. Then sjq1(i∗) ≥ 2 and sjq2(i∗) ≥ 3. This implies that the right
hand side of (3.11) is less than or equal to

γq10,1γ0,2

1 − γ0,2
(q1−1)cq1j,1+

γq20,1γ
2
0,2

1 − γ0,2
(q2−1)cq2j,1+

γ30,2
1 − γ0,2

∑

m∈P j

i∗
\{0,q1,q2}

γm0,1(m−1)cmj,1.

(3.12)

Using that (n− 1)γn0,1 ≤
−γ0,1
e lnγ0,1

for every n ∈ N, we get that (3.12) is less than or

equal to

−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

∞∑

m=3

(m−1)γm0,1 =
−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

γ30,1(2 − γ0,1)

(1 − γ0,1)2
.

Using the assumption γ0,1 + γ0,2 < 1 by some algebraic manipulation we get that

−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

γ30,1(2 − γ0,1)

(1 − γ0,1)2
< 1,

which implies (3.10).
To prove transversality in the second case when κ = 2 we introduce the function

η(x) = −x+ 1. Let us observe that η ◦ η(x) = x. Let

ϕ̃i,1(x) := η ◦ ϕi,1 ◦ η(x) = γi,1x + (1 − γi,1) for i = 0, . . . , p

ϕ̃i,2(x) := η ◦ ϕi,2 ◦ η(x) = γi,2x for i = 0, . . . , q.

The IFS F̃ = {ϕ̃i,1}
p
i=0 ∪ {ϕ̃i,2}

q
i=0 and F are equivalent. More precisely, let π̃c be

the natural projection of F̃ then π̃c(i) = −πc(i) + 1 for every i ∈ Σ. Using this fact
one can prove transversality in the case κ = 2 as in κ = 1.

The proof can be finished applying Lemma 2.3. �

3.3. Hausdorff dimension. In the first part of the section we calculate the Haus-
dorff dimension of the attractor of Ψk (see 3.8) and in the second part we will prove
that the limit will correspond with the dimension of the attractor of F .

Let for k ≥ 0

dk(s) =
∑

i∈Uk

γsi .

By the definition of Uk (see 3.7) for k ≥ 1

dk(s) = γs0,1 + γs0,2 + γs0,1

k∑

l=1

Φl + γs0,2

k∑

l=1

Υl

where

Φk =
∑

i∈Pk

(ik,hk)=(0,1)

γsi
γs0,1

and

Υk =
∑

i∈Pk
(ik,hk)=(0,2)

γsi
γs0,2

.
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Lemma 3.3. Let us denote the attractor of Ψk by Λk. Then

dimH Λk = min {1, sk} for Lebesgue-a.e. c ∈ (0, 1)p+q

where sk is the unique solution of dk(s) = 1.

Proof. By Proposition 3.2, Ψk satisfies the transversality condition on c ∈ (ξ, 1 − ξ)p+q

for every arbitrary small ξ > 0. Since dk(s) is the sum of the contraction ratios of
the functions in the IFS Ψk to the power s, Theorem 2.2 implies that the Hausdorff
dimension of Λk is equal to min {1, sk} where sk is the unique solution of

dk(s) = 1 (3.13)

for Lebesgue almost every c ∈ (ξ, 1 − ξ)p+q. Since ξ > 0 was arbitrary the Lemma
is proved. �

Lemma 3.4. Let sk be the unique solution of dk(s) = 1. Then the limit limk→∞ sk =
s exists and s is the unique solution of

p∏

i=0

(1 − γsi,1) +

q∏

i=0

(1 − γsi,2) = 1. (3.14)

The proof of Formula (3.14) is a sequence of tedious algebraic manipulations
carried out in the following pages.

Proof of Lemma 3.4. Without loss of generality we can assume that p ≤ q. Let

Φi,κ
k =

∑

i∈Pk
(ik,κk)=(0,1)

(i1,κ1)=(i,κ)

γsi
γs0,1

, Υi,κ
k =

∑

i∈Pk
(ik,κk)=(0,2)

(i1,κ1)=(i,κ)

γsi
γs0,2

,

then Φk =
∑p

i=1 Φi,1
k +

∑q
i=1 Φi,2

k and Υk =
∑p

i=1 Υi,1
k +

∑q
i=1 Υi,2

k . By the definition
of Pk (see (3.5), (3.6)) we have

Φi,1
1 = 0 for i = 1, . . . , p,

Φi,2
1 = γsi,2 for i = 1, . . . , q,

Υi,1
1 = γsi,1 for i = 1, . . . , p,

Υi,2
1 = 0 for i = 1, . . . , q,

(3.15)

moreover for k ≥ 2

Φi,κ
k = γsi,κ

(
Φk−1 −

i−1∑

l=1

Φl,κ
k−1

)

Υi,κ
k = γsi,κ

(
Υk−1 −

i−1∑

l=1

Υl,κ
k−1

)
.

(3.16)

Denote

ak,1 =
∑

1≤j0<···<jk−1≤p

γsj0,1 · · · γ
s
jk−1,1

for i = 1, . . . , p,

ak,2 =
∑

1≤j0<···<jk−1≤q

γsj0,2 · · · γ
s
jk−1,2

for i = 1, . . . , q.
(3.17)
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Applying (3.16) we have for k ≥ 2

Φk =

p∑

i=1

Φi,1
k +

q∑

i=1

Φi,2
k =

p∑

i=1

γsi,1

(
Φk−1 −

i−1∑

l=1

Φl,1
k−1

)
+

q∑

i=1

γsi,2

(
Φk−1 −

i−1∑

l=1

Φl,2
k−1

)
=

a1,1Φk−1 + a1,2Φk−1 −

p−1∑

l=1

p∑

i=l+1

γsi,1Φ
l,1
k−1 −

q−1∑

l=1

q∑

i=l+1

γsi,2Φ
l,2
k−1, (3.18)

and similarly

Υk = a1,1Υk−1 + a1,2Υk−1 −

p−1∑

l=1

p∑

i=l+1

γsi,1Υ
l,1
k−1 −

q−1∑

l=1

q∑

i=l+1

γsi,2Υl,2
k−1. (3.19)

Applying (3.16) for (3.18) and (3.19) n times, where 1 ≤ n ≤ p−1 and k ≥ n+1,
we get

Φk =

n∑

l=1

(−1)l−1al,1Φk−l + (−1)n
∑

1≤j0<···<jn≤p

γsjn,1 · · · γ
s
j1,1Φ

j0,1
k−n+

n∑

l=1

(−1)l−1al,2Φk−l + (−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γ
s
j1,2Φ

j0,2
k−n (3.20)

and

Υk =

n∑

l=1

(−1)l−1al,1Υk−l + (−1)n
∑

1≤j0<···<jn≤p

γsjn,1 · · · γ
s
j1,1Υ

j0,1
k−n+

n∑

l=1

(−1)l−1al,2Υk−l + (−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γ
s
j1,2Υ

j0,2
k−n. (3.21)

Then by (3.15) and the choosing n = k − 1 we get

Φk =
k−1∑

l=1

(−1)l−1al,1Φk−l +
k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

Υk =

k−1∑

l=1

(−1)l−1al,1Υk−l +

k−1∑

l=1

(−1)l−1al,2Υk−l + (−1)k−1ak,1

(3.22)

for 2 ≤ k ≤ p. If p < q we can apply (3.16) for (3.18) and (3.19) n times, where
p ≤ n ≤ q − 1 and k ≥ n+ 1, and we have

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +

n∑

l=1

(−1)l−1al,2Φk−l+

(−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γ
s
j1,2Φ

j0,2
k−n (3.23)
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and

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +
n∑

l=1

(−1)l−1al,2Υk−l+

(−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γ
s
j1,2Υ

j0,2
k−n. (3.24)

By (3.15) and k = n+ 1 we have

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +

k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +
k−1∑

l=1

(−1)l−1al,2Υk−l

(3.25)

for p+ 1 ≤ k ≤ q. By similar methods we get for k ≥ q + 1 that

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +

q∑

l=1

(−1)l−1al,2Φk−l

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +

q∑

l=1

(−1)l−1al,2Υk−l.

(3.26)

The convergence of the infinite series
∑∞

l=1 Φl and
∑∞

l=1 Υl depends on the roots
of the characteristic polynomial of (3.26). More precisely,

∑∞
l=1 Φl and

∑∞
l=1 Υl

are convergent if and only if the roots of the characteristic polynomial are strictly
less than 1. The characteristic polynomial is

xq =

p∑

l=1

(−1)l−1al,1x
q−l +

q∑

l=1

(−1)l−1al,2x
q−l.

Since the roots of a polynomial depend continuously on the coefficients of the
polynomial. Except the coefficient of xq the coefficients tend to zero as s tends
to infinity. Therefore the roots tend to zero as s tends to infinity. So there exists
a δ > 0 such that

∑∞
l=1 Φl and

∑∞
l=1 Υl are convergent for s ∈ (δ,∞). Let δ the

infinum of s such that
∑∞

l=1 Φl and
∑∞

l=1 Υl are convergent. Let

d(s) = γs0,1 + γs0,2 + γs0,1

∞∑

l=1

Φl + γs0,2

∞∑

l=1

Υl for s ∈ (δ,∞). (3.27)

Then there exists a unique s∗ ∈ (δ,∞) such that d(s∗) = 1. The sequence sk (see
(3.13)) is monotone increasing and bounded by s∗, therefore it is convergent. It is
easy to see that limk→∞ sk = supk sk = s∗.

Let

Φ =

∞∑

k=1

Φk and Υ =

∞∑

k=1

Υk.
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Then by (3.26)

Φ =

∞∑

k=q+1

Φk +

q∑

k=1

Φk =

∞∑

k=q+1

(
p∑

l=1

(−1)l−1al,1Φk−l +

q∑

l=1

(−1)l−1al,2Φk−l

)
+

q∑

k=1

Φk =

p∑

l=1

(−1)l−1al,1

∞∑

k=q+1−l

Φk +

q∑

l=1

(−1)l−1al,2

∞∑

k=q+1−l

Φk +

q∑

k=1

Φk =

p∑

l=1

(−1)l−1al,1

(
Φ −

q−l∑

k=1

Φk

)
+

q∑

l=1

(−1)l−1al,2

(
Φ −

q−l∑

k=1

Φk

)
+

q∑

k=1

Φk.

Therefore

Φ =

∑p
l=1(−1)lal,1

∑q−l
k=1 Φk +

∑q
l=1(−1)lal,2

∑q−l
k=1 Φk +

∑q
k=1 Φk

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
, (3.28)

and similarly

Υ =

∑p
l=1(−1)lal,1

∑q−l
k=1 Υk +

∑q
l=1(−1)lal,2

∑q−l
k=1 Υk +

∑q
k=1 Υk

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
. (3.29)

Applying (3.15), (3.22) and (3.25) we get

q∑

k=1

Φk = Φ1 +

p∑

k=2

Φk +

q∑

k=p+1

Φk =

a1,2 +

p∑

k=2

(
k−1∑

l=1

(−1)l−1al,1Φk−l +
k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

)
+

q∑

k=p+1

(
p∑

l=1

(−1)l−1al,1Φk−l +

k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

)
=

q∑

k=1

(−1)k−1ak,2 +

p∑

l=1

q−l∑

k=1

(−1)l−1al,1Φk +

q∑

l=1

q−l∑

k=1

(−1)l−1al,2Φk, (3.30)

and by similar arguments

q∑

k=1

Υk =

p∑

k=1

(−1)k−1ak,1 +

p∑

l=1

q−l∑

k=1

(−1)l−1al,1Υk +

q∑

l=1

q−l∑

k=1

(−1)l−1al,2Υk. (3.31)

Hence the numerator of (3.28) is
∑q

k=1(−1)k−1ak,2 and the numerator of (3.29) is∑p
k=1(−1)k−1ak,1, which implies that

Φ =

∑q
k=1(−1)k−1ak,2

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
and

Υ =

∑p
k=1(−1)k−1ak,1

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
.

(3.32)
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Then d(s) = 1 (see (3.27)) is equivalent to

γs0,1+γs0,2+

p∑

l=1

(−1)l−1al,1+

q∑

l=1

(−1)l−1al,2+γs0,1

p∑

l=1

(−1)lal,1+γs0,2

q∑

l=1

(−1)lal,2 = 1.

Let us observe that

xp+1 −

p∑

m=0

(−1)m
∑

0≤j0<···<jm≤p

γsj0,1 · · · γ
s
jm,1x

p−m =

p∏

k=0

(
x− γsk,1

)
and

xq+1 −

q∑

m=0

(−1)m
∑

0≤j0<···<jm≤q

γsj0,2 · · · γ
s
jm,2x

q−m =

q∏

k=0

(
x− γsk,2

)
.

Then by x = 1 we get that d(s) = 1 is equivalent to

2 −

p∏

k=0

(
1 − γsk,1

)
−

q∏

k=0

(
1 − γsk,2

)
= 1

which is (3.14).
The proof will be complete if we show that (3.14) has unique solution. We have

that the left hand side is equal to 2 if s = 0 and the derivative is
p∑

l=0

γsl,1 log γl,1

p∏

k=0
k 6=l

(
1 − γsk,1

)
+

q∑

l=0

γsl,2 log γl,2

q∏

k=0
k 6=l

(
1 − γsk,2

)

which is negative for s > 0. This completes the proof. �

Now we show that the unique solution of (3.14) is an upper bound for the
Hausdorff dimension. To give a good cover of the attractor, we need to introduce
another sequence of subsets of Σ∗. Let

C0 = {(0, 1), (0, 2)} (3.33)

and by induction let

Ck =

p⋃

j=0

⋃

i∈Ck−1
κ0 6=1∨j≤i0

{(j, 1)i}
⋃ q⋃

j=0

⋃

i∈Ck−1
κ0 6=2∨j≤i0

{(j, 2)i} . (3.34)

Lemma 3.5. Let s̃k the unique solution of
∑

i∈Ck

γsi = 1,

and let s̃ = supk s̃k then

dimH Λ ≤ min {1, s̃} .

Note that the sequence s̃k is bounded since Ck ⊆ (A1 ∪A2)k+1.

Proof. Using that for every (i, κ), (j, κ) ∈ Aκ,

ϕ(i,κ) ◦ ϕ(j,κ) ≡ ϕ(j,κ) ◦ ϕ(i,κ),

and γj,κ, γi,κ ≤ γ0,κ we have that the set of closed intervals
{
ϕi([0, 1])

}
i∈Ck
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gives a cover of Λ with diameter at most γkmax, where γmax = maxi,κ {γi,κ}. Then

Hs̃
γk
max

(Λ) ≤
∑

i∈Ck

∣∣ϕi([0, 1])
∣∣s̃ =

∑

i∈Ck

γ s̃i ≤
∑

i∈Ck

γ s̃ki = 1.

This proves the Lemma. �

Proof of Theorem 1.1. By the definition of Ck we have that for every k ≥ 1

Ck ⊂
k⋃

l=1

U l
k. (3.35)

More precisely, every i ∈ Ck can be decomposed as a juxtaposition i = j
1
· · · j

r
,

where each j
l
∈ Uk. By similar arguments as in the proof of Proposition 3.2,

one can show that the system Ψ̃k =
{
ϕi

}
i∈Ck

satisfies transversality condition on

(ξ, 1 − ξ)p+q. Since ξ > 0 was arbitrary by Theorem 2.2 we have

dimH Λ̃k = min {1, s̃k} for L-a.e. c ∈ (0, 1)p+q , (3.36)

where Λ̃k denotes the attractor of
{
ϕi

}
i∈Ck

. Using (3.35) we have Λ̃k ⊆ Λk ⊆ Λ

which implies

dimH Λ̃k ≤ dimH Λk ≤ dimH Λ.

Therefore by Lemma 3.3 and Lemma 3.5 we have

min {1, s̃k} ≤ min {1, sk} ≤ min {1, s̃} .

By Lemma 3.4, sk is convergent and limk→∞ sk = supk sk = s. This implies that
min {1, s} = min {1, s̃}, moreover

dimH Λ = min {1, s} .

To complete the proof we have to prove the measure claim. If s > 1 then there
exists a k ≥ 2 such that sk > 1. Therefore, by Theorem 2.2 and Proposition 3.2,
L (Λ) ≥ L (Λk) > 0 for a.e. c ∈ (0, 1)p+q ∩ {c : s > 1}. �

4. Box dimension of the generalized 4-corner set

In this section we show an application of the results for two dimensional, diag-
onally self-affine iterated function systems. Before we compute the box dimension
of the generalized 4-corner set (see Figure 1), we state a general theorem on the
box dimension of diagonally self-affine sets.

Let

fi(x, y) = (αix+ ti, βiy + ui) (4.1)

for i = 0, . . . ,m such that

0 < αi, βi < 1

fi([0, 1]2) ⊆ [0, 1]2 for i = 0, . . . ,m

fi((0, 1)2)
⋂
fj((0, 1)2) = ∅ for i 6= j.

(4.2)

Denote the attractor of Ψ = {fi(x, y)}mi=0 by Λ and define projxΛ (and projyΛ)
as the projection of Λ onto the x-axis (and y-axis, respectively).
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Theorem 4.1. Let fi be in form (4.1) for i = 0, . . . ,m and let us suppose that
Ψ = {fi(x, y)}mi=0 satisfies (4.2). Then the attractor Λ of Ψ satisfies

dimB Λ = max {dα, dβ}

where dα and dβ are the unique solutions of

m∑

i=0

αsα
i β

dα−sα
i = 1 and

m∑

i=0

β
sβ
i α

dβ−sβ
i = 1,

where sα = dimB projxΛ and sβ = dimB projyΛ.

Using this and [12, Theorem 2.1] we can compute the box dimension of the
attractor at least for almost all translations such that (4.2) holds.

Corollary 4.2. Let fi be in form (4.1) for i = 0, . . . ,m and let T ⊂ R
2m+2 be

the set of translation vectors such that Ψ = {fi(x, y)}mi=0 satisfies (4.2). Then the
attractor Λ of Ψ satisfies

dimB Λ = max {dα, dβ} for almost every translations in T with respect to

2m + 2-dimensional Lebesgue measure

where dα and dβ are the unique solutions of

m∑

i=0

α
min{1,sα}
i β

dα−min{1,sα}
i = 1 and

m∑

i=0

β
min{1,sβ}
i α

dβ−min{1,sβ}
i = 1,

and sα, sβ are the unique solutions of

m∑

i=0

αsα
i = 1 and

m∑

i=0

β
sβ
i = 1.

In the proof of Theorem 4.1 we follow the proof of Feng, Wang [8, Theorem 1]
and Barański [1, Theorem B] with slight manipulations. For the convenience of the
reader, we present here this lengthy calculation. The proof is broken into Lemma
4.3, Lemma 4.4 and Lemma 4.5.

Before we prove the theorem, let us introduce some notation. Let Σ = {0, . . . ,m}N

and Σ∗ =
⋃∞

n=0 {0, . . . ,m}n. Denote the right cut on Σ∗ by δ. More precisely, let
δ(∅) = ∅ and

δ(i0 · · · ik) = i0 · · · ik−1.

For any i ∈ Σ∗ let fi = fi0 ◦ · · · ◦ fik and αi = αi0 · · ·αik , βi = βi0 · · · βik . For
every 0 < r < 1 let

∆r =
{
i ∈ Σ∗ : min

{
αδi, βδi

}
≥ r,min

{
αi, βi

}
< r
}

and

∆α
r =

{
i ∈ ∆r : αi ≥ βi

}
and ∆β

r =
{
i ∈ ∆r : αi < βi

}
.

It is easy to see that ∆r is a partition of Σ.

For every i ∈ ∆α
r we set ωα(i) =

[
αi

βi

]
and similarly, for every i ∈ ∆β

r we set

ωβ(i) =
[
βi

αi

]
. For any i ∈ ∆α

r we divide fi([0, 1]2) into ωα(i) equal rectangles

with height βi and width αi/ωα(i), denote the kth rectangle by Rα
k (i) for k =

1, . . . , ωα(i). Similarly, for i ∈ ∆β
r we divide fi([0, 1]2) into ωβ(i) equal rectangles
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with width αi and height βi/ωβ(i) and denote the kth rectangle by Rβ
k (i) for k =

1, . . . , ωβ(i).
Let

Cα
r =

{
Rα

k (i) : i ∈ ∆α
r , 1 ≤ k ≤ ωα(i), Rα

k (i) ∩ fi(Λ) 6= ∅
}

Cβ
r =

{
Rβ

k (i) : i ∈ ∆β
r , 1 ≤ k ≤ ωβ(i), Rβ

k (i) ∩ fi(Λ) 6= ∅
}
,

moreover

ηαr (i) = ♯
{
Rα

k (i) : 1 ≤ k ≤ ωα(i), Rα
k (i) ∩ fi(Λ) 6= ∅

}
for i ∈ ∆α

r and

ηαr (i) = ♯
{
Rβ

k (i) : 1 ≤ k ≤ ωβ(i), Rβ
k (i) ∩ fi(Λ) 6= ∅

}
for i ∈ ∆β

r .

Lemma 4.3. Let fi be as in form (4.1) for i = 0, . . . ,m and let us suppose that

Ψ = {fi(x, y)}mi=0 satisfies (4.2). Moreover, let Ñr = ♯
(
Cα
r ∪ Cβ

r

)
. Then the

attractor Λ of Ψ satisfies

dimBΛ = lim sup
r→0+

log Ñr

− log r
and dimBΛ = lim inf

r→0+

log Ñr

− log r
.

Proof. Let Nr be the minimal number of squares with side length r cover the
attractor Λ.

By definition Cα
r ∪C

β
r covers Λ and since for every c ≥ 1 real number 1

2c ≤ [c] ≤ c

we have that every rectangle in Cα
r ∪ Cβ

r has side length at most 2r. Therefore

N2r ≤ Ñr.

Let αmin = mini=0,...,m αi and βmin = mini=0,...,m βi, moreover let ρ = min {αmin, βmin}.

Then every rectangle in Cα
r ∪ Cβ

r have side length at least ρr. Therefore, by
condition (4.2), every square with side length ρ

2r can intersect at most 4 rectangles

in Cα
r ∪ Cβ

r , which implies that

4N ρ
2
r ≥ Ñr.

One can finish the proof using the definition of the lower and upper box dimension.
�

For i ∈ ∆α
r by some simple manipulation we get that

ηαr (i) = ♯
{
Rα

k (i) : 1 ≤ k ≤ ωα(i), Rα
k (i) ∩ fi(Λ) 6= ∅

}
=

♯

{[
k − 1

ωα(i)
,

k

ωα(i)

]
× [0, 1] : 1 ≤ k ≤ ωα(i),

[
k − 1

ωα(i)
,

k

ωα(i)

]
× [0, 1] ∩ Λ 6= ∅

}
=

♯

{[
k − 1

ωα(i)
,

k

ωα(i)

]
: 1 ≤ k ≤ ωα(i),

[
k − 1

ωα(i)
,

k

ωα(i)

]
∩ projxΛ 6= ∅

}
. (4.3)

and by similar arguments for i ∈ ∆β
r

ηβr (i) = ♯

{[
k − 1

ωβ(i)
,

k

ωβ(i)

]
: 1 ≤ k ≤ ωβ(i),

[
k − 1

ωβ(i)
,

k

ωβ(i)

]
∩ projyΛ 6= ∅

}
. (4.4)

Let us divide the unit interval into n ∈ N equal parts and denote N 1
n

(projxΛ)

(and N 1
n

(projyΛ)) the number of intervals with length 1
n

intersect the set projxΛ

(and projyΛ, respectively). Since projxΛ and projyΛ are self-similar sets, the box
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dimensions exist, therefore for every ε > 0 exists a c = c(ε) > 0 such that for every
integer n ≥ 1

c−1nsα−ε ≤ N 1
n

(projxΛ) ≤ cnsα+ε and

c−1nsβ−ε ≤ N 1
n

(projyΛ) ≤ cnsβ+ε,
(4.5)

where sα = dimB projxΛ and sβ = dimB projyΛ. Using (4.3) and (4.4) we have

Ñr =
∑

i∈∆α
r

ηαr (i) +
∑

i∈∆β
r

ηβr (i) ≤ c
∑

i∈∆α
r

ωα(i)sα+ε + c
∑

i∈∆β
r

ωβ(i)sβ+ε ≤

c
∑

i∈∆α
r

(
αi

βi

)sα+ε

+ c
∑

i∈∆β
r

(
βi
αi

)sβ+ε

(4.6)

and similarly

Ñr ≥ c−12−(sα−ε)
∑

i∈∆α
r

(
αi

βi

)sα−ε

+ c−12−(sβ−ε)
∑

i∈∆β
r

(
βi
αi

)sβ−ε

. (4.7)

Let dα(t) and dβ(t) be the unique solutions for t ≥ −min {sα, sβ} of

m∑

i=0

(
αi

βi

)sα+t

β
dα(t)
i = 1 and

m∑

i=0

(
βi
αi

)sβ+t

α
dβ (t)
i = 1.

We remark that dα(0) = dα and dβ(0) = dβ .

Lemma 4.4. Let fi be in form (4.1) for i = 0, . . . ,m and let us suppose that
Ψ = {fi(x, y)}mi=0 satisfies (4.2), then the attractor Λ of Ψ satisfies that dimBΛ ≤
max {dα, dβ}.

Proof. Let ε > 0 be arbitrary small. Then by (4.6)

log Ñr

− log r
≤

log c

− log r
+

log

(∑
i∈∆α

r

(
αi

βi

)sα+ε

+
∑

i∈∆β
r

(
βi

αi

)sβ+ε
)

− log r
≤

log c

− log r
+

max {dα(ε), dβ(ε)}

(
1 +

log ρ

log r

)
+

log

(∑
i∈∆α

r

(
αi

βi

)sα+ε

β
dα(ε)
i +

∑
i∈∆β

r

(
βi

αi

)sβ+ε

α
dβ(ε)
i

)

− log r
.

Since ∆r is a partition,
∑

i∈∆r

(
αi

βi

)sα+ε

β
dα(ε)
i = 1 and

∑
i∈∆r

(
βi

αi

)sβ+ε

α
dβ(ε)
i = 1 which implies that

∑

i∈∆α
r

(
αi

βi

)sα+ε

β
dα(ε)
i +

∑

i∈∆β
r

(
βi
αi

)sβ+ε

α
dβ(ε)
i ≤ 2.

Therefore

log Ñr

− log r
≤

log c

− log r
+ max {dα(ε), dβ(ε)}

(
1 +

log ρ

log r

)
+

log 2

− log r
.

Taking limit superior as r tends to 0 and by Lemma 4.3

dimBΛ ≤ max {dα(ε), dβ(ε)}
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for every ε > 0. Finally, since ε > 0 was arbitrary, we proved the lemma. �

Lemma 4.5. Let fi be in form (4.1) for i = 0, . . . ,m and let us suppose that
Ψ = {fi(x, y)}mi=0 satisfies (4.2), then

dimBΛ ≥ max {dα, dβ} .

Before we prove the lower bound of the lower box dimension, we have to state
another lemma about the dimension of the projections. To state this lemma we
need a sublemma about the partitions of Σ. First let us introduce some notation.
Let G be a partition of Σ containing only cylinder sets, and denote ⌈G⌉ the length
of the longest and denote ⌊G⌋ the length of the shortest cylinder set of G. h

Sublemma 4.6. Let G be a partition of Σ = {0, . . . ,m}N containing only cylinder
sets and let γi, i = 0, . . . ,m be positive real numbers such that

∑m
i=0 γi > 1. Then

∑

i∈G

γi ≥

(
m∑

i=0

γi

)⌊G⌋

.

Proof. We prove the statement of the sublemma by induction for the length of the
longest cylinder set of G.

For ⌈G⌉ = 1 the statement holds trivially. Let us suppose that for every partitions
with length of the longest cylinder set equal to n the statement is true. Let G be
a partition containing only cylinder sets with ⌈G⌉ = n+ 1.

If ⌈G⌉ = ⌊G⌋ then the statement is true since

∑

i∈G

γi =

(
m∑

i=0

γi

)⌊G⌋

.

Therefore without loss of generality we may assume that ⌊G⌋ < ⌈G⌉. Let [i0 · · · in] ∈
G be one of the longest cylinder sets of G. Since G is a partition of Σ, [i0 · · · in−1j] ∈
G for every j = 0, . . . ,m. Using this fact we can define a partition G2 such that for
every i ∈ G with length strictly less than n + 1, i ∈ G2 and for every i ∈ G with
length n+ 1, i|n ∈ G2. Then

∑

i∈G

γi ≥
∑

i∈G2

γi ≥

(
m∑

i=0

γi

)⌊G⌋

.

In the last inequality we used the inductional assumption and ⌊G⌋ = ⌊G2⌋ by the
definition of G2. �

Lemma 4.7. Let fi be in form (4.1) for i = 0, . . . ,m and let us suppose that
Ψ = {fi(x, y)}mi=0 satisfies (4.2), then

m∑

i=0

αsα
i β

sβ
i ≤ 1. (4.8)

Proof. We begin the proof of the lemma by dividing the [0, 1] interval on the x and
y axis into intervals with length r. Let ε > 0 be arbitrary small but fixed. Let us
take the intervals which intersect projxΛ on the x axis and projyΛ on the y axis,
moreover take the left and the right neighbor interval of those intervals. Then for
every sufficiently small r the number of intervals on the x axis (and y axis) is at

most 3
(
1
r

)sα+ε
(and 3

(
1
r

)sβ+ε
). Let us take the direct product of these intervals.
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It is easy to see that the cover constructed in this way covers the approximate

squares Cα
r ∪Cβ

r and this implies that the area of Cα
r ∪Cβ

r is less than or equal to
the area of the squares constructed above. That is

9

(
1

r

)sα+ε(1

r

)sβ+ε

r2 ≥ c−1
∑

i∈∆α
r

βi
αi

ωα(i)
ωα(i)sα−ε + c−1

∑

i∈∆β
r

αi

βi
ωβ(i)

ωβ(i)sβ−ε

≥ c−1
∑

i∈∆α
r

β2i ωα(i)sα−ε + c−1
∑

i∈∆β
r

α2
iωβ(i)sβ−ε,

where c is a constant depending only on ε as in (4.5). By simple algebraic manip-

ulations and using the definitions of ωα(i), ωβ(i) and ∆α
r ,∆

β
r we have

∑

i∈∆α
r

β2i ωα(i)sα−εrsα+sβ−2 ≥ c1r
ε
∑

i∈∆α
r

αsα
i β

sβ
i , and

∑

i∈∆β
r

α2
i ωβ(i)sβ−εrsα+sβ−2 ≥ c1r

ε
∑

i∈∆β
r

αsα
i β

sβ
i ,

where c1 depends only on ε. Then there exists a constant c̃ depending only on ε
such that for every sufficiently small r

c̃r−3ε ≥
∑

i∈∆r

αsα
i β

sβ
i .

Since ε was arbitrary we have that

0 ≤ lim inf
r→0+

log
∑

i∈∆r
αsα
i β

sβ
i

log r
. (4.9)

Now let us suppose indirectly that
∑m

i=0 α
sα
i β

sβ
i > 1. Then by using Sublemma

4.6 we have

∑

i∈∆r

αsα
i β

sβ
i ≥

(
m∑

i=0

αsα
i β

sβ
i

)⌊∆r⌋

.

It is easy to see that ⌊∆r⌋ = ⌈ log rlog ρ⌉, where ρ = mini {αi, βi}. This implies that

lim sup
r→0+

log
∑

i∈∆r
αsα
i β

sβ
i

log r
≤

log
∑m

i=0 α
sα
i β

sβ
i

log ρ
< 0,

which contradicts to (4.9). �

Proof of Lemma 4.5. By Lemma 4.7 we divide the proof into two parts. First let
us assume that

m∑

i=0

αsα
i β

sβ
i = 1. (4.10)
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Let us observe that in this case dα = dβ = sα + sβ. Then by inequality (4.5) we
have

log Ñr

− log r
≥

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

+
∑

i∈∆β
r

(
βi

αi

)sβ−ε
)

− log r
≥

sα + sβ +

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

β
sα+sβ
i +

∑
i∈∆β

r

(
βi

αi

)sβ−ε

α
sα+sβ
i

)

− log r
≥

sα + sβ − ε
⌈∆r⌉ log maxi

{
αi

βi
, βi

αi

}

− log r
+

log
(∑

i∈∆r
αsα
i β

sβ
i

)

− log r
.

It is easy to see that ⌈∆r⌉ = log r
logmaxi{αi,βi}

. Applying this fact and our assumption

(4.10) we get for every ε > 0 that

lim inf
r→0

log Ñr

− log r
≥ sα + sβ − ε

1

− log maxi {αi, βi}
,

and this completes the proof in the first case.
In the second case let us assume that

m∑

i=0

αsα
i β

sβ
i < 1. (4.11)

Without loss of generality we assume that dα ≥ dβ.
Then there exists a ε∗ > 0 by (4.11) such that for every 0 < ε < ε∗,

m∑

i=0

αsα−ε
i β

sβ−ε

i < 1.

This implies that
dβ(−ε), dα(−ε) ≤ sα + sβ − 2ε. (4.12)

Then for every i ∈ ∆β
r

αsα−ε
i β

dα(−ε)−sα+ε
i

β
sβ−ε

i α
dβ (−ε)−sβ+ε

i

=

(
αi

βi

)sα+sβ−2ε−dα(−ε)

α
dα(−ε)−dβ(−ε)
i ≤ α

dα(−ε)−dβ(−ε)
i

(4.13)
and for every i ∈ ∆α

r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i

αsα−ε
i β

dα(−ε)−sα+ε
i

≤ β
dβ(−ε)−dα(−ε)
i . (4.14)

Now we prove the Lemma in the case when dα > dβ. Then there exists a ε∗∗ > 0
such that for every 0 < ε < ε∗∗, dα(−ε) > dβ(−ε). Then by (4.13)

∑

i∈∆β
r

αsα−ε
i β

dα(−ε)−sα+ε
i ≤

1

2

∑

i∈∆β
r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i ≤
1

2

holds for sufficiently small r > 0. Therefore
∑

i∈∆α
r

αsα−ε
i β

dα(−ε)−sα+ε
i ≥

1

2
. (4.15)
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Using (4.7)

log Ñr

− log r
≥

log

(
c−12−(sα−ε)

∑
i∈∆α

r

(
αi

βi

)sα−ε

+ c−12−(sβ−ε)
∑

i∈∆β
r

(
βi

αi

)sβ−ε
)

− log r
≥

log(c−12−(max{sα,sβ}−ε))

− log r
+

log r−dα(−ε)
∑

i∈∆α
r

(
αi

βi

)sα−ε

β
dα(−ε)
i

− log r
,

and by (4.15)

log Ñr

− log r
≥ dα(−ε) +

log(c−12−(max{sα,sβ}−ε))

− log r
+

log 2

log r
.

Taking limit inferior r to 0 and Lemma 4.3 we get

dimBΛ ≥ dα(−ε).

Since ε > 0 was arbitrary small we proved the Lemma in the case dα > dβ .
Now let us consider the case dα = dβ . The fact (4.12) and (4.13), (4.14) imply

for every sufficiently small ε > 0 that

∑

i∈∆β
r

αsα−ε
i β

dα(−ε)−sα+ε
i ≤

∑

i∈∆β
r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i or

∑

i∈∆α
r

β
sβ−ε

i α
dβ (−ε)−sβ+ε

i ≤
∑

i∈∆α
r

αsα−ε
i β

dα(−ε)−sα+ε
i .

Therefore
∑

i∈∆α
r

(
αi

βi

)sα−ε

β
dα(−ε)
i +

∑

i∈∆β
r

(
βi
αi

)sβ−ε

α
dβ(−ε)
i ≥ 1. (4.16)

Using (4.7)

log Ñr

− log r
≥

log(c−12−(max{sα,sβ}−ε))

− log r
+ min {dα(−ε), dβ(−ε)}+

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

β
dα(−ε)
i +

∑
i∈∆β

r

(
βi

αi

)sβ−ε

α
dβ(−ε)
i

)

− log r

and by (4.16)

log Ñr

− log r
≥

log(c−12−(max{sα,sβ}−ε))

− log r
+ min {dα(−ε), dβ(−ε)} .

Taking limit inferior r to 0 and Lemma 4.3 we have

dimBΛ ≥ min {dα(−ε), dβ(−ε)} .

Since ε > 0 was arbitrary small and dα = dβ this completes the proof of the
lemma. �

Proof of Theorem 4.1. The proof is the combination of Lemma 4.4 and Lemma
4.5. �
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Now we consider the generalized 4-corner set. Let Ψ = {f0(x), f1(x), f2(x), f3(x)}
an iterated function system on the real plane such that

f0(x) =

(
α0 0
0 β0

)
x

f1(x) =

(
α1 0
0 β1

)
x+

(
0

1 − β1

)

f2(x) =

(
α2 0
0 β2

)
x+

(
1 − α2

0

)

f3(x) =

(
α3 0
0 β3

)
x+

(
1 − α3

1 − β3

)
.

(4.17)

Assume that Ψ satisfies (4.2), see Figure 1. This condition is equivalent to
(4.18)-(4.23)

α0 + α2 < 1 (4.18)

α1 + α3 < 1 (4.19)

β0 + β1 < 1 (4.20)

β2 + β3 < 1 (4.21)

α0 + α3 < 1 or β0 + β3 < 1 (4.22)

α1 + α2 < 1 or β1 + β2 < 1. (4.23)

Let R be the set of possible parameters, that is

R =
{

(α, β) ∈ (0, 1)8 : (α, β) satisfies (4.18)-(4.23)
}
.

Theorem 4.8. Let Ψ as in (4.17) and suppose that satisfies (4.2). Let Λ the
attractor of Ψ. Then

dimB Λ = max {dα, dβ} for L-a.e.(α, β) ∈ R,

where

3∑

i=0

α
min{1,sα}
i β

dα−min{1,sα}
i = 1 and

3∑

i=0

β
min{1,sβ}
i α

dβ−min{1,sβ}
i = 1

where sα is the unique solution of

αs
0 + αs

1 + αs
2 + αs

3 − αs
0α

s
1 − αs

2α
s
3 = 1, (4.24)

and similarly sβ is the unique solution of

βs0 + βs1 + βs2 + βs3 − βs0β
s
2 − βs1β

s
3 = 1. (4.25)

Proof. The proof is an easy consequence of Theorem 1.1 and Theorem 4.1. �

Acknowledgment. The author is grateful for Professor Károly Simon for the
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Figure 3. Generalized 4-corner sets with box dimension ≈ 1.39444
and ≈ 1.40819 for sufficiently small perturbation.
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Balázs Bárány, Department of Stochastics, Institute of Mathematics, Technical

University of Budapest, 1521 Budapest, P.O.Box 91, Hungary

E-mail address: balubsheep@gmail.com


