DIMENSION OF THE GENERALIZED 4-CORNER SET AND ITS
PROJECTIONS

BALAZS BARANY

ABSTRACT. In the last two decades considerable attention has been paid to the
dimension theory of self-affine sets. In the case of the generalized four corner
sets (see Figure 1) the IFS obtain as the projection of the self-affine system
have maps of common fixed points. In this paper we extend our result [3] which
introduced a new method of computation of the box and Hausdorff dimension
of self-similar families where some of the maps have common fixed point. The
extended version of our method presented in this paper, makes it possible to
determine the box dimension of the generalized four corner set for Lebesgue-
typical contracting parameters.

1. INTRODUCTION AND STATEMENTS

We call a set self-affine if it can be represented as a finite union of its affine copies.
That is A C R? is self-affine if there exists a finite list of contracting affine maps
{fi(x) = Ajz + a;};~, such that A = U™, f;(A), where A; are 2 x 2 real matrices
on the plane. The dimension theory of self-affine sets is far from well understood
even in the diagonal case, that is when all A; are diagonal matrices.

We consider the generalized four corner set A(q, 3) which is the attractor of the
self-affine iterated function system (IFS) of Figure 1. (For a precise definition see
Section 4.) The parameters a = (ag, a1, a2, a3) and 8 = (Bo, f1, P2, B3) are chosen
such that the rectangles Ry, R1, Ro, R3 on Figure 1 are disjoint. One of the main
goals of the present paper is to determine the box dimension of this set for Lebesgue
typical parameters.
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FIGURE 1. Maps of the generalized 4-corner set.
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The most natural upper bound of the box dimension is the subadditive-pressure
formula which is called Falconer-dimension or singularity dimension and introduced
by Falconer [4] and Barreira [2]. Namely, the Falconer Theorem (see [4]) states that
the Hausdorff- and box dimension of a self-affine attractor coincide for almost every
translation parameters and equal to the singularity dimension, whenever the norm
of all the affine maps of IFS is smaller than 1/3. However, in our case we work
with fixed translations and we modulate the multiplicative part of the affine maps.
On the other hand, we do not impose any conditions of the norm involved the
rectangles on Figure 1 are disjoint.

In the case of the generalized 4-corner set, the singularity dimension can be given
by the following formula (see for example [9])

ding =Inf{s: > > ¢ (irerin) < o0 (1.1)

n=14;.i,€{0,...,3}"

where ( ) .
s/ . a(ty---ip if0<s<1
O (- in) = { aliy - in)b(iy - -in)*"L 1< s<2
where a(iy -+ -i,) = max {oy, - -, i, - Bi, } and
b(iy -+ ip) =min{ay, -, , By - Bi, }- For another method of calculation of the
singularity dimension in our case see [7].

We will prove that for Lebesgue-typical parameters a, 5 the Hausdorff dimen-
sion and even the box dimension of the generalized 4-corner set is strictly smaller
than the singularity dimension (1.1). The reason of this phenomena is the very
special relative geometric position of the rectangles which generate the generalized
4-corner set. The speciality of the maps is that the fixed points are the corners
of the unit square, so they do not move when we change the parameters «, .
Therefore the orthogonal projection to the z-axis (and to the y-axis respectively)
is an attractor of a special iterated function system of four similarities where the
similarities derived from the maps having fixed points with same coordinate y (and
with same coordinate x) have common fixed points.

In [3] we considered the IFS {~vx, Az, \x + 1}, v < A on the real line. See Figure
2 for the images of the convex hull of the attractor generated by the functions of
this IF'S. The novelty of the result obtained in [3] about the dimension of A was
to tackle the difficulty which comes from the fact that the first two maps have the
same fixed point. In this paper we extend the scope of that result in the following
way:

Principal Assumptions:

(A1) Let F be a finite set of linear, real functions such that for every ¢ € F,

Fix(¢) € {0, 1} and ([0,1]) C [0, 1].
(A2) For arbitrary ¢;,¢; € F suppose either ¢;([0,1]) N¢;([0,1]) =0 or
Fix(¢i) = Fix(i,).

By Theorem 1.1 we will be able to calculate the Hausdorff and box dimension of
the attractor of iterated function schemes satisfying both of the assumptions (A1)
and (A2).

Now we introduce some notation about our iterated function system. Let

©o,1(x) = Y017
wo,2(x) = 0,22 + (1 —0,2)
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FIGURE 2. The first cylinder sets of the IFSs in [3] and of the ex-
tended version.

and suppose that vp,1 +70,2 < 1, which is equivalent with g ([0, 1]) N2([0,1]) =
0.
Let p, g be positive integers and let

pir(x) =y zxfori=1,....p
wia(x) =7vi2x+ (1 —yp2) fori=1,...,q.

Moreover suppose that 0 < ;1 < 0,1 for every ¢ =1,...,p and 0 < ;2 < 9,2 for
every 1 =1,...,q.

Theorem 1.1. Let F = {v;1x}l_ U {vi2z + (1 — vi2)}L, such that
0<7vi1<71<1lfori=1,...,pand0 <2 <yz2<1forj=1,...,q (see
Figure 1), then

dimp A = dimy A = min {1, s}, (1.2)

where s is the unique solution of

P q
Hl_’)/zl +H1_722 (13)
=0 1=0

for Lebesgue almost every (v,,7,) € (0,70,1)? X (0,70,2), where v, = (71,1, p,1)
and respectively v, = (V1,25 --37g,2)-
Moreover L(A) > 0 for Lebesgue almost every (v,,7,) if s > 1.

Note that whenever vo1 + 702 > 1 the attractor of F is an interval which
immediately implies Theorem 1.1. In this way without loss of generality in the rest
of the paper we may assume that vg1 + 70,2 < 1.

The following shows that we can calculate the box dimension of the generalized
4-corner set from the dimensions of its orthogonal projections to the axis which are
calculable by Theorem 1.1 as we already mentioned.
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Theorem 1.2. Let A(a, 3) be the attractor of the self-affine IFS of Figure 1. Then

dimp A(a, B) = max {da,dg}, for Lebesque almost every (o, ) such that

max {a; + aiy2, B + Bita} < 1 and min{a; + as_;, 5 + f3—i} < 1 fori=0,1
(1.4)

where do and dg are defined in two steps. First we define two numbers sq,sg as
the unique solution of the equations

ay® +aj a5 +as” — ool —asrasr =1
53 sp g 53 53 553 S8 9S8 _
o 01+ By + B85 =By By — BBy =1

Then we can define do and dg as the unique real numbers such that
3 3 . .
Zazmn{l,sa}ﬂida—mm{l,sa} _ 1’ Zﬁ;mn{l,sB}athfmm{l,sB} 1 (15)
1=0 1=0

The condition in (1.4) is equivalent to that the rectangles Ry, Ri, Ro, R are
pairwise disjoint.

The same formula as in the equation (1.5) appeared in Gatzouras-Lalley [10] and
also in Baranski [1] for different kind of self-affine sets. The method of the proof of
(1.5) follows the proof of Feng-Wang [8, Theorem 1] and Baranski [1, Theorem B].

Organization of the paper:

In Section 2 we mention some method to prove the so-called transversality con-
dition. In Section 3 we prove Theorem 1.1. We decompose this section into three
parts. In Subsection 3.1 we introduce some notation about the natural projection.
In Subsection 3.2 we prove the transversality condition and in Subsection 3.3 we
calculate the Hausdorff dimension. Note, that our original system does not satisfy
transversality (see later the precise arguments). The method of the proof is that
we consider higher-order iterates of the system, we throw away some of the maps
from it and then for this restricted family we apply the transversality condition.
Taking higher and higher iterates we are approximating the original system.

In Section 4 we apply Theorem 1.1 to prove the formula of the box dimension of
generalized 4-corner set. We obtain an almost all type result with respect to the
contraction coefficients. Further, using the method of Baranski [1] and Feng, Wang
[8], we give a general formula (Theorem 4.1) for the box dimension of the self-affine
sets on the plane which are constructed with axes parallel rectangles having disjoint
interiors.

2. TRANSVERSALITY METHODS

First let us introduce the transversality condition for self-similar IFS on the
real line with d dimensional parameter-space. The technique of the transversality
condition was first introduced in [11] to calculate the Hausdorff dimension of -
expansions with deleted digits.

The definition corresponds to the definition of Simon, Solomyak and Urbanski
[13],[14] which was introduced for much more general IF'S.

Let U be an open, bounded subset of R? with smooth boundary and Z a finite

set of symbols. Let U, = {w?—(:v) = \(t)x + di(ﬁ)}' = where \;,d; € C1(U) and
- 1€

7

0<a<)(it)<pB<lforeveryicTandtéc U and for some o, 3 € (0,1). Let
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AL be the attractor of U; and 7 is the natural projection from the symbolic space
> = ZN to At. More precisely, for i = (igi1...) € ¥ we write

my(i) = lim ¥f, 0 9, 0+~ 05 (0). (2.1)

in
It is well-known that the limit exists and is independent of the base point 0.

Moreover, 7; is a continuous, surjective function from ¥ onto AL. Denote o the
left-shift operator on 3. That is o : (igiy...) — (i1i2...). It is easy to see that

m(i) = ¥ (m(od).

Definition 2.1. We say that V; satisfies the transversality condition on an

open, bounded set U C R?, if for any i,j € ¥ with ig # jo there exists a constant
C = C(ig, jo) such that

La(t €U :|m(i) —m(j)| <r) < Cr for every r > 0,
where Ly 1s the d dimenstonal Lebesque measure.

In short, we say that there is transversality if the transversality condition holds.
This definition is equivalent to the ones given in e.g. [13], [14]. As a special case
of [13, Theorem 3.1] we obtain:

Theorem 2.2 (Simon, Solomyak, Urbaiiski). Suppose that W, satisfies the trans-
versality condition on an open, bounded set U C R®. Then

(1) dimg At = min {s(t), 1} for Lebesgue-a.e. t € U,

(2) L1(AY) >0 for Lebesque-a.e. t € U such that s(t) > 1,

where s(t) is the similarity dimension of W;. More precisely, s(t) satisfies the
equation

SN =1, (2.2)

€L
We can use the following Lemma to prove transversality which follows from [13,
Lemma 7.3].

Lemma 2.3. Let U C R? be an open, bounded set with smooth boundary and
Gi5(t) = m (i) — m(§). If for every i, j € ¥ with ig # jo and for every ty € U
914(to) = 0= |lgrad,gis],_, || >0 (2.3)

then there is transversality on any open subset V. whose closure is contained in U.

3. PROOF OF THEOREM 1.1

3.1. Natural projection. Let p, g be positive integers and let
wi1(z) =~z fori=0,...,p
i2(x) =722+ (1 —72) fori=0,...,q.

Then our main assumptions (A1), (A2) are equivalent to 0 < 7,1 < 1 < 1 for
every i =1,...,pand 0 < ;2 < Y2 <1 for every ¢ =1,...,q, moreover,

Y,1 + 7,2 < 1.
Therefore, without loss of generality we can assume that
Yi, 1 = Ci,170,1

Yi,2 = Ci,270,25
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where 0 < ¢;1,¢j2 <lfori=1,...,pand j=1,...,¢. Then F can be written in
the form
F = {012,702 + (1 —y02)} (J {earonztr_y [ J{eiznoer + (1= cioro2) ey -
Let us introduce the vectors of parameters, namely, ¢; = (¢1,1,...,¢p1) € (0,1)?
and ¢y = (€12,...,¢¢2) € (0,1)7, moreover ¢ = (¢, ).

Denote the set of symbols of the functions with fixed point 0 by Ay, and similarly,
denote the set of symbols of the functions with fixed point 1 by As. So

A ={(0,1),...,(p,1)} and A2 = {(0,2),...,(q,2)}.
Let ¥ be the symbolic space generated by A; U As and ¥* the set of finite words.
That is, ¥ = (A1 U A9)N and ¥* = [0, (4; U A)". For any
i = ((i0, ko) (i1, K1) - - - (in, kn)) € X* we use the notation

Pi = Pig,ko © Pirkr © O Pinrn AN Vi = Vig,ro * Vi i
For an i € ¥ we write i(k) as the first k& elements of i. In particular, i(k) =
((i0,k0) - - (ig—1, kk—1)) and i(0) = (. For j =1,2 and i = 0,...,p or ¢, we define
# ;i(k) as the number of (i,j) in i(k). Moreover, for j = 1,2 we define §;i(k)
as the number of symbols from A; in i(k). Clearly, $1i(k) = Y7 4 1i(k) and
respectively foi(k) = > 7 #;2i(k). Using this notations and the definition of the
natural projection (2.1),

0 q p
. 1, i i(k B(i,1)i(k) fi,2)1(k)
Te(i) = Z <Z 5&3@)(1 - 71,2)) 7811( )78,22( ) Ci,(ll) 2(2 2 . (3.1

i=1 =1

5 — 1 ifj=k
J 0 otherwise -

The set of k’s satisfying (ix, ki) € A gives us non-zero elements in the infinite
sum above. Hence it is useful to define 8! as the number of (,2) in i and 8 the
number of symbols from Ajg in i. Clearly, 8! = limy o0 f(5,2)i(k) and gl = >0 Bli.
Moreover, let mk be the position of the kth symbol from Ay in i. Applying the
notation fai(ml) =k — 1 and

p q
1,2) ﬁ yi( i(mi)
i = 3 (S0 o T g
k=1 =1 =1
(3.2)

For every i = 1,...,p we write (3.2) as the power series of ¢; 1. So we collect all
the different exponents of ¢; 1 into the set Pii. It is easy to see that if ' = 0 then
= (), otherwise

Pii = {m >0:3dk> 1,ﬁ(i71)i(m}€) = m} fori=1,...,p.

Then we can write the natural projection in the following form

= D Ay (3.3)

mEPii
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For every m € P} the coefficient h{"(i) of ¢} is the sum of those elements of (3.2)
divided by ]} which’s indexes k satisfy jj(m)i(m}g) = m. Precisely,

5 .

2@ (& o fritmi) T fani0md) T f.2yi0md)
HOEEDY (Z‘S({i,ni)(l—%z))%]le’YI DTS " T as™ ™.
k=si (i) \i=0 & "k =1 =1
1#i

(3.4)

where
§fﬂ(i) = sup{k: : ﬁ(i’l)i(m}c) = m} and s’ (i) = mf{k B0 i(m ) = m}.
Lemma 3.1. Letie€ X then for every i =1,...,p and every m € Pii

)

. i(mi p
i (q)—1 hilmy ) fa,nitm!; )

R(i) < 73,"5 Y1 1
i
Moreover, if 0 € P then

L1 tai(md)
W) > g TV a

~%,2)-

=1

1£i
Proof. Let i € ¥ and for m € P! let i, = ((im, o B (1)) o (U ) Foms (i))).
By the definition of 3¢ (i) and s¢,(i), i

coefficient h!"(i). By (3.4)
timl; ) e tanilmt, 5
h?’l()_,YSZ() 17011 s () H (1,1) s () H (1,2)

12
By the definition Fmg o = 2 which implies that

1 =72 <¢; (0) <1,

m 1s the segment of i corresponds to the

i(m!

i)
s (0).

for every m € Pii.

If 0 € P/ then before the first (i,1) there have to be at least one symbol from
As. Therefore §2) = 1. Moreover, before the place of the first symbol from A, the
number of symbols from A; is m‘1 — 1. This proves the assertion of the Lemma. [

3.2. Proof of the transversality condition. For every i,j € AY (k = 1,2)
me(i) = m.(j) as the functions of ¢. This implies the IFS F does not satlsfy the
transversality condition. The goal of this section is to introduce a sequence of iter-
ated function system which satisfy the transversality and suitable to approximate
the Hausdorff dimension of the attractor of F.

Since iy k0 Piy k= Piy .10 Piy.r holds for every (ig, k), (i1, k) € A, which is in the
way of transversality. To eliminate this problem we choose a sequence of subsets
of ¥* such that we order the symbols in each word by the first coordinate.

Define

Po ={(0,1);(0,2)} and

Pr= {(1L2)0.1). .1 (20,1 (LD0.2:...: (. 10,2 )
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and by induction for k£ > 2

U U woi| U U U {G2ir]. 36

J=1 iePp_4 1€PK—1
ko7#1Vj<io Ko7#2Vj<ig

and
k
U, = JP. (3.7)

Denote ¥j = U}f and the sequence of IFS’s

W= {01, (33)

Proposition 3.2. Let £ > 0 be arbitrary small, then the system Wy satisfies the
transversality condition on ¢ € (&,1 — £)PT4 for every k > 1.

Proof. Suppose that ¢ € (£/2,1 — £/2)P*9 and let V,j’ € S = UL such that
ig # j, € Uy. Denote i’ (and j') as the element of ¥ by i (and j respectively). To
prove transversality by Lemma 2.3 it is enough to show that

(i) = m.(j) = grad, (Wg(i) — WQ(J)) =+ 0. (3.9)

Suppose that 7. (i) = 7.(j). Since vp,1 + 0,2 < 1, the first element of i, (ig, ko),
and the first element of j, (jo,70), have to satisfy that kg = 79. Then i,j can be
written in the form

70 T1 Ts

i=(0,k)---(0,r)(Lk)--- (LK) - (s,6) - (s,k)(l1,3 — K) - -

to t1 ts
=(0,K)---(0,r) (1,K) - (1,K) - (s,6) - (s,6) (2,3 — k) -+ -,

where r;,t; > 0fori=1,...,s, s=pif Kk =1 and s = ¢ otherwise.

If r; <t; for every i = 0,...,s and there exists an 1 < i < s such that r; < t;
then by v0.1 + 70,2 < 1, m(i) # 7TC( ), which is a contradiction. Therefore there are
two possibilities, there exist ¢ # j such that r; > ¢; and r; < t; or r; = t; for every
1=0,...,s. In the last case

0= me(i) — me(J) =5, ,; o HC ( 2izoTi) — Wg(azfzorij» .

Since ¢;,, > £/2 for every k = 1,2 and ¢ = 1,...,p or ¢ and moreover i, # Jo
without loss of generality we can assume the first case.
Firstly, let us suppose that x = 1 then i and j are in the form

to ty tp
J:(071)"'(071)(171)"'(171)"'(571)"'(571)(l272)"'7

and there exists 1 < j < p such that r; < ¢;. There exists also an 0 <7 < p such
that r; > ¢; and i # j, but we prove transversality derivation in ¢; .
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Let
T Tj—1 Tj+1

=010 0111 G-L,D)0E+ L1 G+ 1,1 (11,2)-

and

to tj—rj

j*:(0,1)"'(0,1)"'(j,1)"'(j,l)"'(l2,2)"'

Then
(i) = me(§) = i (me(i) — me(i")) -
Let a(c) = m(i*) — me(j*). Since ¢;1 > £/2 to prove transversality it is enough
to show that

%9 () £0

ci1
for every ¢ € (£/2,1 —£/2)PT4. But instead of showing that we prove
da
863'71
for every c € (£/2,1 — £/2)PT4. By (3.3) we have
ale) =hJ) + Y RPN = D RPG)C

me P \{0} meP,

alc) =0 =

(¢)=0 = alc) >0 (3.10)

Let c € (£/2,1 — £/2)P*™? such that %(g) =0 then

da 0/ hy () hGY) .
0= Cj7lac—j71(g) = h;(i") Z th(i*) mclh — Z hJQ(i*) mejy | <
mePL\{0} 7 mepPl 7
R (i) i (i) R (")
0 /ex J J m J m
mePL\{0} mePL\{o} meP, J
It is enough to prove that
h;”(i*)

> hoG (M D <1

mEPij;\{O} J
By Lemma 3.1 we have

hi () n
2 RO T Ve S

mEPij* \{0} J

ﬁli*(mi*j ) ﬁ(z,l)i*(mi*j L)
Sm st (i%) sm (%)
70,2 0.1 Z:él' €1
J m
— — = m—1)cy. (3.11

Z my —Lyp fenitmi) g ( Jeja (3:11)
mePi\0} ol i1 L (1=70,2)

J

Since i* does not contain (j,1) before the first element from As, §6(i*) =1 and

ﬁ1i*(mi§*$ﬁn(i*)) > mi" +m — 1 for every m € PL\{0}.
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Let ¢; = min Pl]*\ {0} and g2 = min Plj*\ {0,¢1}. We define the minimum of the
empty set as infinity. Then s}, (i*) > 2 and s7,(i*) > 3. This implies that the right
hand side of (3.11) is less than or equal to

q1 a2 .2 3
70,170,2 70,170,2 70,2
, — 1)t 222 gy — 1) 4 —22— o (m—1)cf}.
1— 02 (@1 —1) 1T 0.2 (g2—1) G Y02 Z 70,1( ) 3,1
mePlj* \{0#]17(]2}
(3.12)
Using that (n — 1)yg; < e?:f;;)ll for every n € N, we get that (3.12) is less than or

equal to

oo

—01(302 +782) | e S (m—g = —70,1(Y02+192) , W2 12— 101)
(I =r02)elny1 1 =902 017 (1 —m2)elnyor  1—702 (1—71)2%

m=3

Using the assumption 1 + 70,2 < 1 by some algebraic manipulation we get that

—70,1(70,2 + 75 2) Yo .12 —70.1)
(I —=7z2)elny1  1—2 (1—7,.)
which implies (3.10).
To prove transversality in the second case when x = 2 we introduce the function
n(z) = —x + 1. Let us observe that non(z) = x. Let

<1,

Pin(x) =mnopiion(x) =z + (1 —y,) fori=0,....p

Pi2(@) :=nopizon(x)="pxfori=0,....q.
The IFS F = {@in}_ o U{@i2}l , and F are equivalent. More precisely, let 7, be
the natural projection of F then 7. (i) = —m.(i) + 1 for every i € ¥. Using this fact

one can prove transversality in the case k =2 as in k = 1.
The proof can be finished applying Lemma 2.3. U

3.3. Hausdorff dimension. In the first part of the section we calculate the Haus-
dorff dimension of the attractor of Uy, (see 3.8) and in the second part we will prove
that the limit will correspond with the dimension of the attractor of F.

Let for k >0
di(s) = Y ;-
€Uy,

By the definition of U, (see 3.7) for k > 1

k k
di(s) =71+ Y2+ 7.1 Z D+ 752 Z T

=1 =1
where
v
Pp = Z s
= 70,1
(ix,h1)=(0,1)
and

= Y &

—.
iem, 102
(ix,hx)=(0,2)
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Lemma 3.3. Let us denote the attractor of Vi by Ax. Then
dimpg Ay = min {1, s} for Lebesgue-a.e. ¢ € (0,1)PH1
where sy is the unique solution of di(s) = 1.

Proof. By Proposition 3.2, ¥}, satisfies the transversality condition on ¢ € (£,1 — £)PT9
for every arbitrary small £ > 0. Since di(s) is the sum of the contraction ratios of
the functions in the IFS ¥y to the power s, Theorem 2.2 implies that the Hausdorff
dimension of Ay is equal to min {1, sx} where s, is the unique solution of

di(s) =1 (3.13)

for Lebesgue almost every ¢ € (&,1 — £)P*?. Since £ > 0 was arbitrary the Lemma
is proved. O

Lemma 3.4. Let sy be the unique solution of di(s) = 1. Then the limit limg_, o s =
s ewists and s is the unique solution of

[Ta-»0+ ][0 - =1 (3.14)

=0 =0

The proof of Formula (3.14) is a sequence of tedious algebraic manipulations
carried out in the following pages.

Proof of Lemma 3.4. Without loss of generality we can assume that p < ¢q. Let

s s
(I)i,/{ o 71 Ti,n - Pyi
k z : ,ys ’ k z : ,ys )
ieP, 0,1 icy 0,2

(igorrige)=(0,1) (igo ) =(0,2)
(i1,/1)=(,%) (i1,k1)=(i,k)

then &, = Y7 | @21—1—2321 @2’2 and T, = >0 | T;‘C’I—I—Zgzl TZ’Q. By the definition

of Py (see (3.5), (3.6)) we have

P =0fori=1,...,p,

<I>il’2:’yf72 fori=1,...,q,

i1 (3.15)
YTy =7 fori=1,...,p,
Ti’2:0fori:1,...,q,
moreover for k > 2
i—1
'7 l7
@Z” — ’Y’i"« <<I>k._1 — Z @knl>
=1
i (3.16)
47 l7
T =90 (T“ -> Tk“1> .
=1
Denote
ag,1 = Z 7]8'0,1"'7;'k_1,1 fori=1,...,p,
1<jo<-<jr—1<p | (3‘17)
a2 = Z Vip2 Vg2 fori=1,...,q.

1<jo<<Jr-1<gq
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Applying (3.16) we have for k > 2
P q
D= O+ > 0 =
i=1 i=1
p i—1 q i—1
L1 1,2
> i <‘I)k—1 - Z@k_1> +) 5 <<I>k_1 - Z@k_l) -
i=1 =1 i=1
p—1 p L1
a11Pp—1 + a12Pp—1 — Z Z Y19 Z Z ’ylg@k 5 (3.18)

=1 i=l+1 =1 i=l+1

and similarly

Ty = a11Tp-1 + a12Tp-1 — Z Z VaTil, - Z Z V2Tl (3.19)

=1 i=l+1 I=11i=l+1

Applying (3.16) for (3.18) and (3.19) n times, where 1 <n <p—1and k > n+1,
we get

n

=Y (D an @+ (D" Y APt

=1 1<jo<<jn<p
n
Z(—l)l_lal,Q(I)k—l + (=" Z Vi 2P (3.20)
=1 1<jo<<jn<q
and
n
Te =Y (D) lan T+ (1" Y AT
=1 1<jo<-<jn<p
n
Z(—l)lilal,Zkal +(=1)" Z Vi Vi, ZTJO 2 (3.21)
=1 1<jo<<jn<gq

Then by (3.15) and the choosing n = k — 1 we get

k-1 k—1
by = (—1) al 1P + Z( 1)l_lal,2q>k._l + (—1)k_1ak72

=1 =1

k—1 k—1 (322)
Te=> (D) tan Yoo+ (=D apaTro+ (1) ag,

N
Il
—
o~
Il
—

for 2 <k <p. If p < q we can apply (3.16) for (3.18) and (3.19) n times, where
p<n<g—1and k >n+1, and we have

n
= (D" @i+ (D) ar ot
=1

(D" Y e he®i (3.23)
1<jo<-+<jn<q
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and

p

n
Te=> (D a T+ (=D ao Yot
=1 1=1

-
(=1)" Z V5o e T (3.24)
1§]0<<]ngq

By (3.15) and k = n + 1 we have

p k-1
O => (D' aa @+ Y () e ®r + (1) agg
=1 =1
P k-1 (3.25)
Te=) (D"t Ter+ Y (1) tara T
=1 =1
for p+ 1 < k < g. By similar methods we get for £ > ¢ + 1 that
p q
O = Z(_l)l_lal,lq’kd + Z(—l)l_lal,2@k4
Y o (3.26)

p

q
T = Z(_l)l_lal,lkal + Z(—l)l_lal,szfz-
I=1 =1

The convergence of the infinite series > ;°; ®; and ) ;°; T; depends on the roots
of the characteristic polynomial of (3.26). More precisely, /2, ®; and Y 2, T;
are convergent if and only if the roots of the characteristic polynomial are strictly
less than 1. The characteristic polynomial is

p

q
2 = Z(—l)l_lauxq_l + Z(—l)l_lal,gxq_l.
=1

=1

Since the roots of a polynomial depend continuously on the coefficients of the
polynomial. Except the coefficient of z¢ the coefficients tend to zero as s tends
to infinity. Therefore the roots tend to zero as s tends to infinity. So there exists
a 0 > 0 such that > 2, ®; and ) ;2 T; are convergent for s € (4,00). Let ¢ the
infinum of s such that 2, ® and > ;°; T; are convergent. Let

[ee] [ee]
d(s) =51 +Y,2 + 701 Z P+ 70, Z T, for s € (4, 00). (3.27)
1=1 1=1

Then there exists a unique s* € (0, 00) such that d(s*) = 1. The sequence sj (see
(3.13)) is monotone increasing and bounded by s*, therefore it is convergent. It is
easy to see that limg_, o, S = supy, s = s*.

Let

[6)) :i@k and T :iTk.
k=1 k=1
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Then by (3.26)

q q
(—1)l_lal71q>k,l + Z(—l)l_lau@kl) + Z P, =

k=1

S DRSS AT MRS S

=1 k=q+1-1 k=q+1—1

p - q q— q

S0 ( S ) S (o z@k) Fm

=1 k=1 =1 k=1 k=1
Therefore

—1 -1
d = f:l(_l)lal 1 Zz 1 (I)k + Z? 1( )lal 2 Zq 1 (I)k + ZZ:l (I)k

, 3.28
T ST (s 50 (- Dhars 525
and similarly
—1 -1
T — Z€:1(_1)lal 1 ZZ 1 Tk + Z? 1( )lal 2 Zq 1 Ti + ZZ:1 T (3.29)
1+Zl 1( )az1+zl 1( )lal,Q
Applying (3.15), (3.22) and (3.25) we get
q P q
SIS SR oS
k=1 k=2 k=p+1
P k—1 —1
a2+ Z (D) a1 @pr+ Y (=) o ®p + (1) ay 2) +
k=2 \i=1 =1
q k—1
> (Z(—l)l a1 @i+ ) (1) tae®r+ (1) ey 2) =
k=p+1 \i=1 =1
q p q—l q gl
DD apo + 0D (D) T e ®r 4+ ) (1) @, (3.30)
k=1 I=1 k=1 I=1 k=1
and by similar arguments
q P p q—l q q-l
Z T = Z ak 1+ Z (—1)l71a171T1€ + Z (—1)l71a172T;€. (331)
k=1 k=1 =1 k=1 =1 k=1

Hence the numerator of (3.28) is >°¢_,(—1)*~!ay o and the numerator of (3.29) is
Zzl(—l)kflak,l, which implies that

hey (= D" Lag o
1+Z ( )az1+zl 1( )lal,Q
k 1( 1)k 1akl

1+Z ( )all+21 1( )lal,2'

and

(3.32)

T =
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Then d(s) =1 (see (3.27)) is equivalent to
P

q
Wit w2t Y (=D an+) (1) a4, > (D a5 Y (D' = 1.
=1 =1 =1

=1

iS]
S

Let us observe that

D P
p+1 m s s p—m
T - Z (—1) Z Yiol " Vim, 1T H T — ’Yk 1 and
m=0 0<jo<+<jm<p
q q
q+1 _1\m s L AS o
T > (—1) Y e Ve H T =)
m=0 0<jo<<jm<q

Then by x = 1 we get that d(s) = 1 is equivalent to
p q

Q_H(l—’Yli,l)_H(l_ViQ) =1

k=0 k=0
which is (3.14).
The proof will be complete if we show that (3.14) has unique solution. We have
that the left hand side is equal to 2 if s = 0 and the derivative is

Z%ﬂog’ﬂln 1=%1) +Z%210g7l2H 1—975)

k;él k;él
which is negative for s > 0. This completes the proof. O

Now we show that the unique solution of (3.14) is an upper bound for the
Hausdorff dimension. To give a good cover of the attractor, we need to introduce
another sequence of subsets of ¥*. Let

and by induction let

a=U U viy Y U U {628 (3.34)

i€Cp_q = i€Cl_q
ro#1Vji<ig I{()#QV]<Z()

Lemma 3.5. Let 55 the unique solution of

d=1

1€C

and let s = supy, s then
dimpg A <min{1,5s}.

Note that the sequence 3y, is bounded since Cj, C (A; U Ag)F ™,
Proof. Using that for every (i, k), (j, k) € Ay,
P(ik) © Pk) = Phk) © Plik)

and v ., Vix < Y0, Wwe have that the set of closed intervals

{‘Pi([o? 1])}1’6@
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gives a cover of A with diameter at most 7%, where Yy = max; . {7} Then

Hay (A<D o0 =32 < Dot =1

i€Cy, 1€Cy 1€Cy

This proves the Lemma. O

Proof of Theorem 1.1. By the definition of C; we have that for every £ > 1

k
. c | Jui. (3.35)
=1

More precisely, every i € Cp can be decomposed as a juxtaposition ¢ = Jyd
where each J, € Uy. By similar arguments as in the proof of Proposition 3.2,
one can show that the system \Tfk = {goi }Z cc, satisfies transversality condition on

(£,1 = &P, Since £ > 0 was arbitrary by Theorem 2.2 we have
dimpg A, = min {1,3,} for L-a.e. ¢ € (0,1)P1, (3.36)

where Kk denotes the attractor of {goz} Using (3.35) we have Kk; CALCA

1€Ck”
which implies
dimg Kk < dimg A < dimpg A.
Therefore by Lemma 3.3 and Lemma 3.5 we have
min {1, 5} <min {1, s} <min{1,5s}.

By Lemma 3.4, si is convergent and limy_,o, s = supy Sy = s. This implies that
min {1, s} = min {1, s}, moreover

dimy A = min {1, s}.

To complete the proof we have to prove the measure claim. If s > 1 then there
exists a k > 2 such that s > 1. Therefore, by Theorem 2.2 and Proposition 3.2,
L(A) > L(Ag) >0 for ae. c€ (0,1)PT7N{c:s> 1} O

4. BOX DIMENSION OF THE GENERALIZED 4-CORNER SET

In this section we show an application of the results for two dimensional, diag-
onally self-affine iterated function systems. Before we compute the box dimension
of the generalized 4-corner set (see Figure 1), we state a general theorem on the
box dimension of diagonally self-affine sets.

Let
fi(z,y) = (cix +t, Biy + wi) (4.1)
for i = 0,...,m such that
0<a;pBi <1
£:([0,1]?) € [0,1]* for i = 0,...,m (4.2)

£:(0, 1)) () £:((0,1)%) = 0 for i # j.

Denote the attractor of ¥ = {f;(x,y)};Z, by A and define proj,A (and proj,A)
as the projection of A onto the x-axis (and y-axis, respectively).
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Theorem 4.1. Let f; be in form (4.1) for i = 0,...,m and let us suppose that
U = {fi(x,y)} ", satisfies (4.2). Then the attractor A of ¥ satisfies

dimp A = max {dq,dg}

where d, and dg are the unique solutions of
m m d
Zafaﬂidafs‘l =1 and Zﬂfﬁaiﬁ_sﬁ =1,
i=0 i=0

where sq = dimp proj, A and sg = dimp proj,A.

Using this and [12, Theorem 2.1] we can compute the box dimension of the
attractor at least for almost all translations such that (4.2) holds.

Corollary 4.2. Let f; be in form (4.1) fori = 0,...,m and let T C R?*™+2 pe
the set of translation vectors such that W = {f;(z,y)}i~, satisfies (4.2). Then the
attractor A of U satisfies

dimp A = max {dn,dg} for almost every translations in T with respect to

2m + 2-dimensional Lebesgue measure

where d, and dg are the unique solutions of
m m . .
Z a;nin{l,sa}l@ida—min{l,sa} —1 and Zlgfnn{l,sB}azlgfmm{l,sB} —1,
=0 1=0

and 5o, sg are the unique solutions of

m m
Zaf" =1 and Zﬂfﬁ =1.
i=0 i=0

In the proof of Theorem 4.1 we follow the proof of Feng, Wang [8, Theorem 1]
and Baranski [1, Theorem B| with slight manipulations. For the convenience of the
reader, we present here this lengthy calculation. The proof is broken into Lemma
4.3, Lemma 4.4 and Lemma 4.5.

Before we prove the theorem, let us introduce some notation. Let ¥ = {0,..., m}N
and X* = (J77,{0,...,m}". Denote the right cut on ¥* by §. More precisely, let
5(0) = 0 and

O(ig - -ip) = 1o ig—1.
For any ¢ € ¥* let f; = fi,0---o fi, and oy = o, -~ y,, Bi = Biy -+ Bi,- For
every 0 < r <1 let
A, = {1 exr: min{a&,ﬁ&-} > r,min {O‘iv ﬁz} < T‘}
and
Al={ieA :;>p} and AP ={ie A :a; <Bi}.
It is easy to see that A, is a partition of >.

For every i € AY we set wy (i) = [%} and similarly, for every i € Af we set

ws(i) = [%] For any i € AY we divide f;([0,1]?) into wq (i) equal rectangles
with height §; and width a;/wa(i), denote the kth rectangle by Ry (i) for k =

1,...,wq(2). Similarly, for i € AP we divide £i([0,1]?) into ws(i) equal rectangles
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with width a; and height f3;/ws(i) and denote the kth rectangle by Rf () for k =

L...,wa(4).
Let

Cr = {Ri(@) i € AL, 1 <k <wy(i), RY (1) N fu(A) # 0}
Cf = { Rl 1i € A7 1<k < wsi), RYD N fi(A) # 0},
moreover
(@) = §{RE(0) 1 1 <
ne (@) =4 {B(0) 1 <
Lemma 4.3. Let f; be as in form (4.1) for i =0,...,m and let us suppose that
U = {fi(z,y)}i~, satisfies (4.2). Moreover, let N, = j:t(Cﬁ‘UCf). Then the
attractor A of ¥ satisfies

< wa(i), Ry (i) N fi(A) # 0} for i € AY and
< wp(i), Ry(0) N fy(A) # 0} for i € AL,

— log NV log NV
dimpA = limsup 8" and dimpA = liminf 08T
r—0+ —logr r—0+ —logr

Proof. Let N, be the minimal number of squares with side length r cover the
attractor A.
By definition C,?‘UC? covers A and since for every ¢ > 1 real number %c <l <e

we have that every rectangle in C* U C? has side length at most 2r. Therefore
N2r < Nr-

Let amin = minj—q,_.m ¢ and Bmin = min—g ., 5, moreover let p = min {amin, Bmin }-
Then every rectangle in C* U C’,’? have side length at least pr. Therefore, by
condition (4.2), every square with side length §7 can intersect at most 4 rectangles

in C2 U CF, which implies that
ANg, > N,.

One can finish the proof using the definition of the lower and upper box dimension.
O

For ¢ € AY by some simple manipulation we get that
my (1) = {0 : 1 < k < wa(d), RE(0) N fi(A) # 0} =

ﬁ{[k_.l . ]X[0>1]:1<k<wa(i)7[k_.l, k.}x[O,l]mA;é@}:

Wa (1) wali) Wa (i) wa()

ﬁ{[g L.]:lgkgwa(z),[k_.l i ]ﬂproij#@}. (4.3)

wa(t) walt) a(1) wal(i)

€

and by similar arguments for ¢ € A,@

ny (i) = { [iﬁ_(s ﬁ} 11 <k <wg(i), [% ﬁ} N proj,A # @} . (44)

Let us divide the unit interval into n € N equal parts and denote N1 (proj,A)

(and Ni(proj,A)) the number of intervals with length % intersect the set proj,A
(and proj, A, respectively). Since proj,A and proj,A are self-similar sets, the box
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dimensions exist, therefore for every € > 0 exists a ¢ = ¢(¢) > 0 such that for every
integer n > 1

¢ In*e¢ < Ni(proj,A) < en®* and
—1, sg—¢ ! : sgte (45)
¢ n* 7 < Ni(proj,A) < en®TF,

where s, = dimp proj, A and sg = dimp proj,A. Using (4.3) and (4.4) we have

Nr = Z ny(3) + Z nrﬂ(l) <c Z Wa(i)sa+6 +e Z Wﬂ(i)sﬂ—i—e <

iEAY N €AY ieAP
Sa+€ sgte
. B
¢y <?> +te ) <—> (4.6)
. o
1EAY L icA? L

and similarly

~ a;\ Se ¢ 5 sg—¢€
N, > ¢ t2m(ame) 37 (F) +etamlerme) (-) : (4.7)

. Q
1EAY NS [ N-

Let dq(t) and dg(t) be the unique solutions for ¢ > —min {s, sz} of

m Sa+t m sg+t
Qi dalt) _ 1 and <&> a2e® — 1.

=0
We remark that dq(0) = d, and dg(0) = dg.

Lemma 4.4. Let f; be in form (4.1) for i = 0,...,m and let us suppose that
U = {fi(x,y)}]~, satisfies (4.2), then the attractor A of U satisfies that dimgA <
max {dq, dg}.

Proof. Let € > 0 be arbitrary small. Then by (4.6)

log (3 <a1>8“+5+2 (51)83+5
log Ny _ logc N 08 \ Ziear \ B iy \a; o loge

—logr = —logr —logr — —logr

log p

) - <EQEA?"‘ (%)Sa+€ CA 2ienl (%)SHE ajﬁ(€)>
+ .

max {dq(€),dg(e)} <1 +

log r —logr

Si ' iti a; \ %t sdale) _
ince A, is a partition, Eg'eAr 5 B; =1 and

N\ Sgte€
ZzeAr (ﬁl) ’ oflﬁ(s) = 1 which implies that

(673 (2

\ Sate \ Spte
S (%) a0 () s
i - o -

IEAY icA?
Therefore
log NT logc log p log 2
< da(€),d 1 .
—logr — —logr+max{ (©) B(E)}< +log?” +—log7“

Taking limit superior as r tends to 0 and by Lemma 4.3
dimpA < max {d,(€),ds(e)}
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for every € > 0. Finally, since € > 0 was arbitrary, we proved the lemma. ]

Lemma 4.5. Let f; be in form (4.1) for i = 0,...,m and let us suppose that
U = {fi(x,y)} ", satisfies (4.2), then
dimpA > max {dn,ds} .

Before we prove the lower bound of the lower box dimension, we have to state
another lemma about the dimension of the projections. To state this lemma we
need a sublemma about the partitions of 3. First let us introduce some notation.
Let G be a partition of ¥ containing only cylinder sets, and denote [G] the length
of the longest and denote |G| the length of the shortest cylinder set of G. h

Sublemma 4.6. Let G be a partition of ¥ = {0, ... ,m}N containing only cylinder
sets and let v;, i =0,...,m be positive real numbers such that Y " ~v; > 1. Then

m 9]
T (z %) |
i€G =0

Proof. We prove the statement of the sublemma by induction for the length of the
longest cylinder set of G.

For [G] = 1 the statement holds trivially. Let us suppose that for every partitions
with length of the longest cylinder set equal to n the statement is true. Let G be
a partition containing only cylinder sets with [G| = n + 1.

If [G] = |G| then the statement is true since

m 9]
i€g 1=0

Therefore without loss of generality we may assume that |G| < [G]. Let [ig - -i,] €
G be one of the longest cylinder sets of G. Since G is a partition of 3, [ig - - ip—1]] €
G for every j = 0,...,m. Using this fact we can define a partition G, such that for
every 1 € G with length strictly less than n + 1, ¢ € G and for every ¢ € G with
length n + 1, i[,, € Go. Then

m 1G]
Z%Z sz (Z%) :
1€G 1€G2 i=0

In the last inequality we used the inductional assumption and |G| = |Ga] by the
definition of Gs. O

Lemma 4.7. Let f; be in form (4.1) for i = 0,...,m and let us suppose that
U = {fi(z,y)} ", satisfies (4.2), then

m
D agep <1 (4.8)
=0

Proof. We begin the proof of the lemma by dividing the [0, 1] interval on the x and
y axis into intervals with length r. Let € > 0 be arbitrary small but fixed. Let us
take the intervals which intersect proj,A on the x axis and proj,A on the y axis,
moreover take the left and the right neighbor interval of those intervals. Then for
every sufficiently small r the number of intervals on the x axis (and y axis) is at

most 3 (%)S‘ﬁs (and 3 (%)56 +E). Let us take the direct product of these intervals.
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It is easy to see that the cover constructed in this way covers the approximate
squares C* U CF and this implies that the area of CcruU CF is less than or equal to
the area of the squares constructed above. That is

1\ %t r1\%te . o . Bi
— — > o Lz \Sa—¢& - . - \Sp—¢€
9 <r> (r) r° >c g @wa(z)wa(g) +c g o ~wg(1)

€AY ieA? wp (i)
>t Y Bwa(i) e et Y afws(i)
€AY icAl

where ¢ is a constant depending only on ¢ as in (4.5). By simple algebraic manip-
ulations and using the definitions of wq(2), ws(i) and A, A? we have

D Bwali) e oro ot o2 > e 37 aje )", and

€AY iEAY
2 (-)35—5 Satsg—2 > 5 salBSﬁ
ajwg(z r >cr a; b,

ieA; €A}

where ¢; depends only on €. Then there exists a constant ¢ depending only on ¢
such that for every sufficiently small r

~.—3€ Sa 358
cr > g aiaﬁz.

€A,
Since € was arbitrary we have that
log . ase 5: s
0 < liminf 2iea, O4"0i (4.9)
r—0+ log r

Now let us suppose indirectly that > 7" a® ﬁf # > 1. Then by using Sublemma
4.6 we have

m [Ar]
S o > (z a:aﬂ:ﬁ) |
0

It is easy to see that |A,| = Hgg ;], where p = min; {c;, 3;}. This implies that

lo - ase Bt m  Sa 338
lim sup 8 ZZGAT : 53 < 08 2.iz0 %" fi <0
r—0+ log r log p

)

which contradicts to (4.9). O

Proof of Lemma 4.5. By Lemma 4.7 we divide the proof into two parts. First let
us assume that

> e B =1 (4.10)
=0
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Let us observe that in this case do, = dg = so + sg. Then by inequality (4.5) we
have

o Sa—¢€ Bi Sg—€
log N, > oz | 2ieag (’8_:) - ZieAf (a_;)

>
—logr — —logr -
a; \527E sats Bi 3P sats
log (Zz‘eAg (5?) LA DI (af) & B>
>
Sa + 85+ “logr >
[A,]log max; {%, g—:} log (ZEAT agaﬁjﬁ)
Sat+83—¢€ + .
—logr —logr
It is easy to see that [A,] = lognwlf(%. Applying this fact and our assumption
(4.10) we get for every € > 0 that
.. . log Nfr 1
1 f > — ,
e logr — Sat 5 —ET log max; {a, 5}
and this completes the proof in the first case.
In the second case let us assume that
m
D afep <1, (4.11)
i=0
Without loss of generality we assume that d, > dg.
Then there exists a £* > 0 by (4.11) such that for every 0 < & < &*,
m
af‘rsﬁfﬁ_a <1
i=0
This implies that
dg(—¢),da(—€) < 50 + 55 — 2¢. (4.12)

Then for every i € AP

Sa—€ pda(—€)—sa+te e d(—
o B (—&)—sa+ - <ai>sa+85 2e—do(—¢) ada(fs)fdg(fs) <ada(*5)*dﬁ(*5)

,B-Sﬁ_ea;iﬁ(_a)_sﬁ—’—a B E z — L
- (4.13)
and for every i € A%
sg—e _dg(—e)—sg+e
Oé“-qo‘isﬁ. a(—e)—sate 2

(3 (3

Now we prove the Lemma in the case when d, > dg. Then there exists a e > 0
such that for every 0 < e < &**, dy(—¢) > dg(—¢). Then by (4.13)

Z aiafsﬁida(*s)*swrs < % Z B;g—aazlg(—e)—sﬁ.;_g < %
Ay ieAl
holds for sufficiently small » > 0. Therefore
> afrreg e

iene

. (4.15)

N —
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Using (4.7)
—19—(sa—¢ o\ e —1o—(sg—e B\ B¢
log N, log <c 2 ( )deA,ﬁl (5—_) + ¢ 197 (sp )ZiGAf (a__) )
> >
—logr — —logr 2
—do(— a; \ 578 Ldo(—¢
log(c*12_(max{3msﬁ}_€)) log 7~ de(=) Z;‘eAg (5_:> By ()
—logr + —logr '
and by (4.15)
1 ]\N/'r 1 —12—(max{sa,35}—a) log 2
8Ny (e + 08l ) 4 log

—logr —logr logr’

Taking limit inferior r to 0 and Lemma 4.3 we get
dl_mBA Z da(_é—).

Since € > 0 was arbitrary small we proved the Lemma in the case d, > dg.
Now let us consider the case d, = dg. The fact (4.12) and (4.13), (4.14) imply
for every sufficiently small € > 0 that

a—¢ pda(—€)—sa+e sg—e dg(—e)—sp+e
> ajrep <D BT o

icAl icAl
sp—e _dg(—¢€)—sgte Sa—e pda(—€)—sa+e
> 5y < YA :
ieAy ieAx
Therefore

O@ Sa—E da(—a) 52 Sp—¢€ d (75)
> (E) B; + > <a—) o > 1 (4.16)

1

EAY N7 ieal
Using (4.7)
log N, log(c_12_(max{savsﬁ}_5)) )
> _ _
—logr — —logr +mln{da( E)vdﬁ( E)}+
;i\ 7 oda(- Bi\*F7C dg(—e
log <Zi€A? (5_;) 53 (=) + ZQGAE (oi) Oéiﬁ( ))

—logr
and by (4.16)

logﬁr - log(c*12_(max{savsﬁ}_5))
—logr — —logr

+ min {d(—¢),dg(—¢)} .
Taking limit inferior r to 0 and Lemma 4.3 we have
dimpA > min {d,(—¢),dz(—¢)}.

Since ¢ > 0 was arbitrary small and d, = dg this completes the proof of the
lemma. ]

Proof of Theorem 4.1. The proof is the combination of Lemma 4.4 and Lemma
4.5. O
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Now we consider the generalized 4-corner set. Let ¥ = { fo(z), fi(x), f2(x), f3(x)}
an iterated function system on the real plane such that

o =( 9 4 )e

nw= (% 4 )z (1% )
(5 1)ee(3%)
ro= (% 2 )z (105

Assume that U satisfies (4.2), see Figure 1. This condition is equivalent to
(4.18)-(4.23)

(4.17)

1=

ag+ag <1 (4.18)
ar+az <1 (4.19)
Bo+ B <1 (4.20)
B2+ B3 <1 (4.21)
ag+az < lorfy+P3<1 (4.22)
a1 +ag < lor B+ B < 1. (4.23)

Let R be the set of possible parameters, that is
R = {(a,B) € (0,1)* : (a, B) satisfies (4.18)-(4.23) } .

Theorem 4.8. Let VU as in (4.17) and suppose that satisfies (4.2). Let A the
attractor of V. Then
dimp A = max {dy,dg} for L-a.e.(o, ) € R,

where
: {Lsa} {1,50}  gmin{Lss} ds—min{Lss}
min{l,sq¢} pdo—min{l,sa} minq 1,s3 p—minyLisg ¢
E a; B; =1 and E B; a, =1
=0 =0

where sq s the unique solution of

ay +af + a5 + a3 — aga] —asas =1, (4.24)
and similarly sg is the unique solution of

Bo+ B + B3 + B3 — BoBs — Bibs = 1. (4.25)
Proof. The proof is an easy consequence of Theorem 1.1 and Theorem 4.1. O
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FIGURE 3. Generalized 4-corner sets with box dimension ~ 1.39444
and = 1.40819 for sufficiently small perturbation.
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