LAGRANGE-LIKE SPECTRUM OF PERFECT ADDITIVE COMPLEMENTS
BALAZS BARANY!, JIN-HUI FANG2, AND CSABA SANDOR!:*

ABSTRACT. Two infinite sets A and B of non-negative integers are called perfect additive comple-
ments of non-negative integers, if every non-negative integer can be uniquely expressed as the sum
of elements from A and B. In this paper, we define a Lagrange-like spectrum of the perfect additive
complements (LSPAC for short). As a main result, we obtain the smallest accumulation point of
the set LSPAC and prove that the set LSPAC is closed. Other related results and problems are also
contained.

1. Introduction

Let Z be the set of integers. For nonempty sets A, B of integers and an integer n, let 74 p(n)
be the number of representations of n as a + b, where a € A and b € B. Two infinite sets A
and B of non-negative integers are called perfect additive complements of non-negative integers,
if 74 p(n) = 1 for every non-negative integer n. For a non-negative integer m, denote by Z,, the
set of non-negative integers no less than m. For simplicity, we also denote Z~1 by Z™.

In [5], Fang and Sandor characterized the perfect additive complements A, B of non-negative
integers.

Theorem A. [5, Theorem 1.1] The infinite sets A, B of the non-negative integers form perfect
additive complements if and only if

A= {e+eamimo+ -+ €gp_omy ... Moo+ -+~ 1€ =0,1,...,m941 — 1} and

(1.1

B = {61m1 + €31111M2113 + -+ €2k—1M7 .. . M3ok_1 —+ e €21 = O, 17 ey, Moy — 1}
(or A, B interchanged), where m; € Z~ for every i € 7.*.

Let S be a set of non-negative integers. Its counting function is defined by S(z) = |S n [0, z]|
for every x € Zsq. It is easy to see that if A, B < Z-, form perfect additive complements then
A(x)B(x) = z + 1 for every non-negative integer x. In particular, Fang and Sdndor showed that
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A(x)B A(x)B
lim inf M = 1, see [5, Theorem 1.5]. Recently, Ma [12] determined the lim sup M
T—00 T Tr—>00 xr
for the sets A and B with the form (1.1).
Theorem B. [12, Lemma 2.1] Let my, ms, ... be arbitrary integers no less than two. Then the

sets A and B with the form (1.1) are perfect additive complements of non-negative integers such
that

A(z)B(z)
lim sup —>——= = limsu ,
‘THOOp T k—>ocp + Dk
where
1 1 1 1
(1.2) Dy=—— + — e (=1)R .
Mg MEpMg—1 MEM—1Mk—2 MEMp—1 - .. M

In this paper, we consider the properties of the set called Lagrange spectrum of perfect additive
components

L= {lizn_)solsp 15D, t(my) e ZQ} :
where Dy, is defined in (1.2). In 2011, Chen and Fang [1, Theorem 1] obtained that

2a + 2
a+2
In 2016, Liu and Fang [10, Theorem 1.1] extended this result by showing that

e £ for any integer a with a > 2.

— e £ for any integers a,b with 2 < a < b.

ab—1 +

Recently, Ma [12, Theorem 1.1 and Theorem 1.2] proved that

2 e £and <(1§6,2) \Q) NnL#J,

where (Q denotes the set of rationals. Fang and Sandor [5, Theorem 1.5] showed that

3
—. 2.
Sng,]

The main theorem of this paper can be summarized as follows:

Theorem 1.1.

(1) The set £ is closed.
(2) The set [%, ~0) N £ is countably infinite, and can be given explicitly, where ~y is the smallest
accumulation point of £.
3) [1,2] = Lbur [2 —6,2] & £ forany § > 0.
3 17

(4) The Lebesgue-measure of |5, 5] N £ is zero.
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We may write [2,79) N £ = {71,752, ...}, where v, is a monotone increasing sequence converg-

ing to 7y, in particular,
3 8 13 109
=—<Mp==-<yy=—<yy=— <<~ 1.62688284...
gt 5 V2 5 3 3 V4 67 Yo

All values of the sequence 7, can be determined explicitly, see Section 2.

It follows from Theorem 1.1 that the set £ has some similar properties to the so-called Lagrange
spectrum LS. Let a be a positive irrational number. Define k() = lim sup ——————. Hurwitz

nm—o |2 — nm|

[7] proved that k() > +/5 for every positive irrational number o. The Lagrange spectrum

LS := {k(«) : « is a positive irrational number}.

For results related to Lagrange spectrum, one may refer to [2], [3], [6], [11], [13] and [14].
It is well known that the Lagrange spectrum is closed, see [2, Theorem 3.2], furthermore, the

least accumulation point of the Lagrange spectrumis 3and/ e L,] < 3ifand only if [ = , /9 — ;%,

where z,,’s are the Markov integers, see [11]. The corresponding phenomena for the Lagrange-like

spectrum of perfect additive complement follows by Theorem 1.1(1) and Theorem 1.1(2).

Furthermore, Freiman’s constant F' = 222156425?%322548”63 = 4.527 ... is the name of the

supremum of the set R\ LS, that is [F,c0) < LS, but for any § > 0, [F' — §,0) ¢ LS, see [6].
In point of view of Theorem 1.1(3), the £ has also a Freiman-like constant, namely, there exists
% < ¢y < ;Z such that

co =inf{ceR: [¢,2] < £}.
Problem 1.2. Determine the exact value of cy. Is it true that co = 7/4?

There is another important similarity between the sets LS and £, namely, both can be rep-
resented by using infinite iterated function systems (IFS). It is well known that every o can be
written as a simple infinite continued fraction

1
a=m0+—1 =: [mo;ml,mg,...],
m1+

ma+...
where m; € Z". On the other hand if m; € Z", then the above continued fraction defines a positive
irrational number. Let us define a map G,,(z) = m+rx for every integer m € Z". Then

[mo;my, ma,...] =mg —|—klim Gmy 00 Gy, (0).
—00

If ——— > 2, then there exists a k such that =P = mg;my, ..., my], see for example [9,

|n2a—nm]| qr

Theorem 19]. Hence k(«) = limsup,,_,, Wa; In 1921, Perron [15] proved
k

—Prqi|
1
o = [0y mp, My, .., M F [Mpg1; Mig2, - - - .
[pRa — Pl

In particular,

LS = {limsup <Gmk, 0+ 0Gm, (0) + my41 + Zlim Gl @5°° 0 Gme(0)> |(m;) € Zg} :
—00

k—00
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Now, let us define the maps Gy () = (mi’;)‘; —. By Theorem B, we will show later that
(1.3) L= {liinsup@mk o0 G (2)|(m:) EZi;}.
—00

Moreira [13] showed that the map a — dimy ([v/5,a] n LS) = dimp ([v/5,a] n LS) is
monotone increasing and continuous on [ﬁ, o), where dimy denotes the Hausdorff dimension
and dim 5 denotes the upper box-counting dimension. For the definition and basic properties of the
Hausdorff- and box-counting dimension we refer to [4].

Problem 1.3. Is dimy ([2,a] n £) = dimp ([2,a] N £)? Is the map a — dimy ([2,0] N £)
continuous?

2. Preliminaries

In this section, we summarize some basic facts in the theory of iterated function systems relevant
for our later calculations. We say that a map f: R — R is contracting if there exists a constant
0 < ¢ < 1suchthat |f(x) — f(y)| < ¢|]r — y|. By Banach’s fixed point theorem, every contractive
map f has a unique fixed point x = f(x). For a contractive map f, let us denote its unique fixed
point by Fix(f).

Let U = {fi,..., f,} be a finite collection of contractions, which we call iterated function
system (IFS). Hutchinson [8] showed that there exists a unique non-empty compact set A such that

@1 A= fi).

i=1
The set A is called the attractor of the IFS V. In particular, if B < R is a compact set such that
fi(B) < Bforeveryi =1,...,n then

2.2) A=) g fao--ofi(B)cB.

Using (2.2), one can prove the following simple observation.

Lemma 2.1. Let V = {fi, ..., f,} be a finite collection of contractions such that the contracting
ratio of fi is ¢;. If Y7, ¢; < 1 then A\(A) = 0, where X denotes the Lebesgue measure on the real
line.

Proof. Since |fi(z) — fi(y)| < ¢z —y| then A(fi, o+~ o [, (B)) < ¢, -~ ¢, A(B) and so, by
(2.2),

n

A< Y Afao-ofi(B) = (Zq> A(B) — Oas k — o.

i=1
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Let us denote the distance between sets by dist, that is, for A, B < R, let
dist(A, B) = inf{|z — y||z € A, y € B}. With a slight abuse of notation, we write dist(z, A) =
dist({x}, A) for the distance of a point € R and a set A < R.

Lemma 2.2. Let V = {f, ..., f.} be a finite collection of contractions such that the contracting
ratio of every f; is at most ¢ € (0,1). For every sequence (iy,iy,...) € {1,...,n}*" and every
x e R liminfy_,o, fi, oo fi,(z) € A, where A is the attractor of V. In particular, for every open
set U o A, for every x € R and for every sufficiently large k, f;, o---o f; (z) e U.

Proof. By (2.1)
diSt(fik ©rr0 f11($)>A> = diSt(fik O 0 fll(x>7f1k ©r -0 fll(A)) S deiSt(x>A> —0ask — oo,

where 0 < ¢ < 1is chosen such that | f;(z) — fi(y)| < c|Jr —y| foreveryi =1,...,nand z,y € R.
The claim then follows by the compactness of A. U
For every point z € A, there exists an infinite sequence i = (i1,4,...) € {1,... ,n}Z+ such that

z = lim f;, o---0o f; (0).
k—o0

Observe that the limit on the right-hand side exists since the maps f; are contractions. One can
defineamap I1: {1,...,n}?" — A by

TI(i) := lim f;, 0+ f;,(0)

called the natural projection. Let o: {1,... . n}?" — {1,...,n}*" be the left-shift operator, that
is,

U(il,ig, o0 ) =5 (ig,ig, 5o )

Hence, by using the definition of the natural projection II it is easy to see that

(i) = f;, (I(ci)).
Now, let us define a specific family of contractive maps on R as 7},,(z) = 1_7“*’ for m € Z-.

Then clearly for every (m;) € Z%,

1 1 1 _
kaonk—lo”'onxO):_* =+ *"'+(*1)k1 ,
my MEMg—1 MEME—1Mkg—2 mEMmg—1...1MY

which corresponds to (1.2). Let
L= {hgngmk 00Ty (0)|(ms) zg} .

Hence,
(2.3) £=g(L),
where g(z) = 3. Furthermore, Gn(z) = go Ty o0 g !, thus, (1.3) follows. Hence, our main

theorem will follow from the following theorems.

Theorem 2.1. The set L is closed.
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Theorem 2.2. [0,1] c L.

Theorem 2.3.
/1 111 11
L -+ —— -+ —— | =
mn![)(6+934”’6+844"> 9

Let S R be a Lebesgue-measurable set. The Lebesgue-measure of S will be denoted by A(.S).
Theorem 2.4. \ (L n [2,1]) =0.

1703
We introduce the following notations. Let i = (i1, ...,%,) € ZZ, be a finite word, then denote
by 7; the map
Ti=Tyo---oT,.
Let u,v be positive integers and m = (m;) € Z%. If u < v then let
Tnpey(@) = (Toe © Ty © - o Tp)(x), and if w > v then let
Tngyy(@) = (Tn, © Tiny © -+ © Ty, ) (). Finally, let us introduce the notation that for any

"
sequence m € ZZ,

. | & (-
(2.4) (m) = lim Ty, 0 -+ T, (0) = lim Ty, (0) = > ———

k—o0 k—o0 = my - My ’

Let us define the sequences M ™ recursively. Let M) = 2, M?) = 3 and let M/ be the con-
catenation M ™ = M= (=2 pf(=2) for p > 3, thatis M®) = (3,2,2), MW = (3,2,2,3,3)
and so on. By the definition of M (™, it is easy to see that the length of the finite sequence M (™)
isl, = w, and M™ starts with M ™~1_ Thus, it is possible to define the limiting infinite
sequence M = lim,,_,,, M™ as

M=(3,2,2,3,33223,223,2,...) = (M, M, ...)
such that (My, My, ..., M) = (M®™) for every positive integer n > 2. Let

MM, ... M,
MiM,.. M, +1’

)\TL = FiX(TM(n)) = TM(n) (O)
and

0
1
=) (-1 1—8o  —0.2203....
0 ;< ) M, M, ... M,

We will prove that )\, is a strictly increasing sequence, \,, > Ag.
Theorem 2.5.
Ae L, N> )y ifandonlyif A=\, for somen > 1.
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Proof of Theorem 1.1. The first claim follows by (2.3), the fact the map g(z) = H% is continuous
on R* and Theorem 2.1. The second claim follows by Theorem 2.5 with the choices v, = g(\,)
for n > 0. The third claim follows by the combination of Theorem 2.2 and Theorem 2.3 together
with (2.3). Finally, the last claim follows by Theorem 2.4 and by using the continuity of the map
g. 0]

3. Closedness of the spectrum

Proof of Theorem 2.1. Let o, € L be a sequence such that lim «,, = «. Hence, for every n > 1
n—00

there exists m™ e ZZ,, m™ = (m{™, m{",...) such that 11m 1nfT EZ)](O) = a,. Lete, =

|a — | Without loss of generality we may assume that &, \ 0

Let /; = 0 and let us choose &, such that [T’ ) (0) — ay| < &.
1]
Forn > 2,1let 0 < [, < k, be such that |T o (0) —an| < &n [T, o (0) — an| < ep,
1

Fna]
T w (0) > a, — &, forevery [ > [, and 55: L < 2k In, Let
(1,11 "

1 1 2 2 3 3
(() 1 (2 2 ) 3) )

M= (M e e T T s T I e ) = (M, Mg, ).

We will show that

(3.1 o= h;?iioglf Tngsg (0).

Letay = 32N (kn — I,,). To verify (3.1), it is enough to prove that
(3.2) | Tong 1y (0) — | < 2ep forevery N > 1
and
(3.3) g g (0) > ay — 3ey forevery ay <l < anyi.

Indeed, in this case
lim T, (0) = aand liminf 7;,, ,(0) > lim (ay —3en) = a.

N—oo N l—00 ’ N—o0

To prove (3.2) we argue by induction. Clearly,
T, 1 (0) — cn| = |Tmﬁ) ](O) — | <& < 2e1.
A

Suppose that (3.2) holds for N — 1. Then
|Tm[aN,1](O> —ay| < |Tm[aN,1] (0) — Tm(N) 0)| + |Tm(N) (0) — ay|
[kn1] [kn1]

= s O = T O+ gy (0 =
1

< g (Tt ®) — sl + a1 = ol o =l + [Ty (0) =)+
1

< ka—flzv(%]\“l +en-1+eEnten)ten < kav—le5EN*1 +en < 2en.
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To prove (3.3) we write

T = Toga 1 © T = Ty 0T, 4 (0)
= TmEz]\i) o Tm[aN,l](O) T @) oT @) (0) T Tm(]\i) o Tm(zv) (0)),
@4l ol Al Mi—an+iy,In+1] CL ) [N e P lin>1]
where
T () OTm[a 1 0)—T (V) OT w (0)
Mi—an+In.In+1] N> M—an+in.In+1] 1]
L T 0)—1T 0
™) ™ | Loy (0) = mi) 1]( )
ml an+In * mlN+1
1 1
< —2l_aN (|Tm[aN71] (0) = OéN| oty |aN = TmElNN),l] (O)D < 5(261\[ T 5N) < 2en
and
T v oT (n (O) T m (O) > 0N —EN.
M—an+in,ly+1] LTINS M —apn+iy,1]
Hence,
Tm[m](O) > QN —EN — 26]\[ = QN — 36]\[,
which completes the proof. U

4. Estimates on the Freiman-like constant

Let us consider the finite IFS W, = {15, T3, Ty}. Let [ = [ ] Form > 2, T,,(I) = [%, %],
and

4.1 I= O T
m=2

Thus, by the uniqueness the attractor of W, is [ = [%, %] By (4.1) and direct calculation, we obtain
the following statements.

T

Lemma 4.1. For every z € [1,2] and K € {2,3,4}, we have - — -z € [, 2].
Lemma 4.2. For every y € %, 2], there exist K € {2,3,4} and z € [%, 2] such that y = & — +=.

In particular, it follows from Lemma 4.2 that for every y € [7 , 7] there exists an infinite sequence
(K1, Ks,...) € {2,3,4}%" such that

H(Kl, KQ, 50 ) =1,
where 11 is defined in (2.4).

Proof of Theorem 2.2. It infers from == < -y for m > 6 that

7(

4.2) 6 Ty (I) = (0, ;] .

m=6
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< 1. By (4.2), we know that the real  can be written as © = +~ — Ly,

%] It follows that there exist sequences K7y, Ko, ..., Ky, -+ € {2,3,4}
2] such that

Suppose that 0 < z
where m > 6and y € [

1
7
and z1, 29, ..., 2k, -+ € [,

\1I>—N

0o}
y = (K, Ky,...)= )]

Now, let
m = (my,ma,...) = (3,K1,m,3, Ks, Ki,m,3, K3, Ko, K1,m, 3, Ky, K3, Ko, K1, m, ...).
We will prove that

z = liminf Ty, (O)

n—0o0
First, observe that T, (0) € [0, 3] for every n > 1. Indeed, T,,,([0, 5]) < [0, 3] for every

> 2. On the other hand since T3 ([0, 3]) < [4, 4] = [2, 2], we have that T, ,(0) € [£,2]

for every n > 1 with m,, = 3. Hence, it follows from Lemma 4.1 and (4.1) that 1f mn # m, then
Ty (0) € [, 2] 2

Simple calculations show that m; = m if and only if k = % for some n € Z*. Furthermore,
it is easy to see that

1 1 /1 1 —1)nt —-1)"
m 0 = ———\(——- =k 00 4F Ch + =) T o (0)
[(2=$3n 1 m K, K1K2 KiKy...K, K; K, (=050,
1 1 1
= —— —y+0 = O(=).
=~ Ly 0(z) =5+ 0(z5)
This completes the proof of Theorem 2.2. U

Before we continue, we state a lemma on the position of the possible smallest accumulation
points depending on the defining sequence.

Lemma 4.3.
(1) Let (m;) € ZZ, be such that m; € {2,3, ..., K} except at most finitely many i. Then
1 ) K-1
5K 1 117rlri)1£fT 4(0) < hlslfololp Ting, 1y (0) < 5K 1

(2) Let K € Zso and (m;) € Zg such that m; > K for infinitely many integer i. Then
h;?iglf Ting(0) <

K+1
Proof. To prove the first claim, it is enough to show that
1 K-1 1 K-1
. C < < K.
(4.3) Tm<l2K—1’2K—1])_lQK—l’QK—l] forevery2 <m < K

Indeed,

T ({2}(1— 1 2[;(_—11]) - [m(QII((— 1)’ m?fK_—Zl)} ’
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where 2K 7 < m(211§—1) if and only if m < K and ?5[(__21) < 2K 1 if and only if m > 2.

Then by (2.2), (4.3) and Lemma 2.2, we get that lim inf,, o, Ty, (0) € [ .~ ]

2K—17 2K—1
To show the last claim, let us argue by contradiction. If lim inf,_, ., 7,

i (0) >

k1]

exists a0 > O such that 7}, 0) > =7 +1 + 0 for every sufficiently large n. Then
1 1 1 1 1

T 1(0) = — — — T 1 (0) < — — —
[n,l]( ) Mo my, [n—l,l]( )< Mo, mn(K+ 1

Hence for every sufficiently large n we have that 5 + 0 < -1 — ——(34 + 9), equivalently
= +0 <

B +1 ; for sufficiently large n. Thus, m,, < K — 1 for every sufficiently large n, which
isa COIltI‘adICUOIl U

e +1 , then there

+0).

Finally, let us state a technical lemma.

Lemma 4.4. Let (m;) € {2,3,4}”" such that if (m;,m;_1) = (4,2) then m;_, = 2. Then

: 13
lim sup,,_,, Tn, ,,(0) < 35

Proof. Observe that

1 1
minT, 0T, 0T ([?é]) > max U T; 0T 0Ty (l7 ?]) ,

i,9,ke{2,3,4}3
(17.0)%(2,4,2)
where we recall that [7, 7] is the attractor of the IFS {75, T3, T }. Thus, if (m;, m;_1, m;_o, m;_3) =
(2,4,2,2) only for finitely many ¢ then
, 1\ 23 13
limsup Loy, |, (0) <ThoTyoTp0Ty (—) =6 < a1

On the other hand, if (m;, m;_1,m; o, m;_3) = (2,4, 2,2) for infinitely many 4 then

limsup Ty, (0)<ThoTyoTyoTy <1im sup Ty, (O)> ,

n—0o0 n—00

0) < £. O

which implies after some algebraic manipulations that lim sup,, ., 7, i

Mn,1]

Proof of Theorem 2.3. It follows from Lemma 4.3(2) that if m,, > 5 for infinitely many 7, then
1

hgg}lfT oy (0) < 5

So we may assume without loss of generality that m,, € {2, 3,4} for every n € Z*.
Direct computations show that

11 1 13
(ea+m)r U men(|z3]) -2

k,)e{2,3,4}2
(k,0)#(4,2)
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Thus, by Lemma 2.2 and the fact that [7, 7] is the attractor of the IFS {715, T3, T, } we get that if

11 1
lim inf T,,, Sy
min Ueg“((& 6+84>

with the sequence (1m;) € {2,3,4}*" then (m;, m;_,) = (4,2) for infinitely many i € Z*, and in
particular,

4.4) hm mf T,

mMig,1]

(0) = ll?lnme[k 5(0),

where k; = min{i > 2 : (m;, m;—1) = (4,2)} and ky = min{i > k1 : (my,mi—1) = (4,2)} for
all ¢ > 2
If (g, My, —1, Mi,—2) = (4,2, b) for some b € {3, 4} for infinitely many i then > Ty sy (0) =

Tingy,, 11 (0). So we may assume that if
4.5) (m;,m;—1) = (4,2) then m;_o = 2 for every .

Furthermore, if for every NV there exist infinitely many k£ > 2N + 2 such that

(mk,mk,l, PN ,mk,QN,l) = (4, 2, 2, 500 2)
2N +1-times

f_/%
then since the map 7 o T, o - - - o T}, is monotone increasing

2N +1-times
lim inf li o omly _ 1
iminf Ty, ,,(0) < lim TyoTho---0Th(3) = o

Hence, we may assume that there exists a non-negative integer /Vy such that
2Np + 1-times
oy . .
(Mikeyy Mpy—1y - -y Mi,—any—1) = (4,2,2,...,2) for infinitely many ¢ but
(46) 2Np + 3-times
(M, Mpy—15 - - -, Miy—any—3) = (4,2,2,...,2) only for a finite number of /.
Let us suppose that (4.6) holds. For short, let py, = (my,, mg,—1, ..., Mk,—an,—1). Then by
Lemma 4.4 and the fact that the maps 7;,, are orientation reversing we get

hfniglme[ke,l] <O) < TPN (]HanUPT [k—2Np—2,1] <0))

4.7) 11— 4NO+1+ 1l 1B 1 11
~ 8 1—— 8-4No 31 6 934No’

If (my,, Mig,—1, - -, Mi,—ang—2) = (4,2,2,...,2,a), where a € {3,4} then

1
S Tm[k[,k272NO—2] (0) = TPNO © Ta(o) < TPNO (§> = 6
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Hence, we may suppose that (1my,_on,—2, Mk,—2n,—3) € {(2,3),(2,4)}. Thus, by Lemma 4.3(1)
and the fact that the maps 7}, are orientation reversing we get

ligrgioglf Tm[kz’”(O) = Tyy, 0To0 Ta(hiiglf Tm[kizNOfg,l](O))
@9 > Ty, 0 T2 0 Ta(%) = Tpy, © Tg(g) = é + iﬁ.
Finally, (4.8) with (4.4) and (4.7) implies that
é + iﬁ. < h;?iio?me[k ;(0) < é + 9_134]1\70’
and so lim infy_, 4 Téll[)k}l] O ¢Ur oG+ sm i+ 45). O

5. Computation of the Markov-like constant

Throughout this section, we will consider the set £ n (3,1). By Lemma 4.3(2), for every

zeLn (3 3)ifz = liminf, o T, (0) then (m;) € {2,3}%". By (4.3),

() on () = [42)

and so by denoting the attractor of the IFS {75, T3} by A c [%, %], we get by Lemma 2.2 that

Furthermore, direct computations show that

(33 s (52

Hence, by choosing ¢ = dist (7% ([ 1, 2]), 75 ([, 2])) /3 > 0, we get

55 575
(5.3) To(J)nTs(J)=Fand Tr (J) v T3(J) € J,
where J = [ — 6,2 + §].
Lemma 5.1.
(1) Let (i1, ..., iox11) € ZZ, for some non-negative integer k, and let (m;) € Z%, be such that
(my,...,mj_ok) = (i1, ..., iok+1) for infinitely many j. Then

lim inf Ty, , (0) < Fix(Ty, 0 -~ 0 T, ).

(2) ;th € L (3,2)andlet (iy, ... i) € {2,3}** be such that v € Ty, o - o Ty, ([£,2]).
en

T = FiX(E1 Yeec OEQk)’
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Proof. Letus show the first claim. Let j, be the sequence such that (m;,, ..., mj,—ox) = (i1, .. ., 2%+1)-
Since the maps 7}, are orientation reversing,

lim inf T3y, ,,(0) < liéniio(rjlf Ty, (0)

= Til ©ooc@ T12k+1 (hm SUPT [ig—2k—1,1] (0))
{—0

<T o oT,, (liminf T, . (0)).
n—0o0 ’

Let us denote the fixed point of T}, o---oT;,, .| by x¢ and, for short, let = liminf,,_,., Ting g (0).

Since the maps 7,,, are linear and contracting, we get

—1
t—xg<T0---0T,  (z) =To-- Tz‘zkﬂ(%):m(w—%)a

thus the claim follows.

Now we turn to the second claim. Let x € £ n (
Suppose that z = lim inf,, o, T3, ,,(0). By (5.3)

,%) be suchthatz € Tj; 0 --- 0 T, ([%%])

(S

(5.4) dist | T;, o Tizk (‘]) J U le 00 szk (‘]) > 0.
(5150526 )E{2,3}>*
(J15e-5J2k) (815015028
By Lemma 2.2, for every sufficiently large n, T, (0) € J. Then by (5 3), for every sufficiently
large n, Trnp,, 1(0) € T, (J). Hence, by (5 4) Tonp,(0) €T30+ 0T, (J) if and only if

Mn,n—2k+1] 2k

(Muy+ oy Mp—ok41) = (i1, .., i2x), and so by our assurnptlon onze L nTy 0Ty, ([%, %])
llﬂlorolf Trng,, 1(0) = ligrr_l)iogf T, 1(0),
where n, is the sequence such that (mw, ooy Mpy—ok41) = (i1,...,49). Since T, is orientation
reversing
h?{blig)lfT 4(0) = hen_l}o(r)lfT 0 =Tyo- 0T, (llm inf Ty, o (0)>

>T,0---0T,, <hm1nme[ 1](O)>.

11
n—o0
Thus the statement follows similarly than the first claim. U

Let us recall the definition of the sequences M ™. Let M) = 2, M® = 3 and let M ™ be the
concatenation

(5.5) M®™ = ME=D =2 pr(=2) for > 3.

By definition, the length [,, of M (") satisfies the equatlon ln = lp—1 + 21,5 for every n > 3 with
[y = ls = 1, which implies a standard calculation that [,, 2r-()
We say for any two compact intervals [a, b] and [c, d] that [a,b] < [e,d]if b < c.
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For any two closed intervals [a, b] and [c, d] with [a, b] N [¢,d] = &, let mid([a, b], [¢,d]) be
the closure of the bounded component of R\ ([a, b] U [¢, d]).

Lemma 52. For every n > 3, Tyw(J) <  Tye-(J). Furthermore,
TM(n) (J) N TM(n—l)M(n—l) (J) = @, TM(n) (J) < TM(nq)M(nq) (J) and
A mid(Ty (J), Typn-vyapn-n (J)) = & for every n = 2. That is, there is no element of A
in-between Ty (J) and Typin-1) ppin—1) (J) for every n = 2.

Proof. By (5.5) and (5.3), clearly Ty, (J) < Thn-1)(J). We prove the second claim by induc-
tion. Clearly, by (5.3) T3(J) N To2(J) = &, furthermore, since

o (s el ) -2

12) (3 2hen3 2]) -mmcnrion

the claim holds for n = 2.
Let us suppose that the claim holds for n. Then

TM<n+1)(J) 8} TM(n)M(n)(J) =Ty (TM(nq)M(nﬂ)( ) N TM(n)( ))

moreover, since T is orientation reversing, Ty, (J) < Typomn-1) prn-1) (J) 1mphes that
TM(n+1)<J) = TM(n) (TM('IL—I)M(n—l) (J)) < TM(n) (TM(n)(J)) .

and

Observe that
mid(Tyses0 (J)s Tagon pgem (J) = Typon (mid(Tasn-1 ppen-n (J), Tagenr (I))) < Tagn (J)
and so by (5.3)
Armid(Tysei (I), Tyge pren (I) = Tagn (M) 0 Tapeny (mid(Tapen-1) pren-0 (), Taren (J))) = .
0

Let us recall the definition of the sequence \,, and A\g. For every n > 1, let \,, = Fix(Ty;m))-

Since Fix(Th;m)) € Tasem prmy (J) < Thymy (J), by Lemma 5.2 we get
Ans1 < Ap.

Thus, the sequence A, is convergent. Let us denote the limit lim,, ,, A, by Ag. Then by Ty (J) <
Ty (J), we get that

/\0 = H(M)u
where M = lim, ., M™ = (M, M,,...) is the limiting sequence defined such that
(My, My, ..., M, ) = M™ for every positive integer n > 2. So
- 1
M=) (-1)T1——— =02293....
0=2,(-1) MM, ... M,

=1
First, we show the following proposition:
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Proposition 5.3. {\, \s,...} € L N (%, %) In particular, \y € L.

Before we turn to its proof, we require the following technical lemmas.

Lemma 54. Let a = (ay,...,a;) and b = (by, ..., by,) be finite sequences formed by the integers
{2,3}. Suppose that there exist a prefix a’ = (ay,...,ar) of a with k' < k and a prefix b/ =
(b1,...,by) of bwithn' < n such that Ty(J) < Ty (J). Then T,(J) < Ty(J).

Proof. Observe that for every compact intervals A, B, if C' < A and D < B are compact intervals
then A < B implies C' < D. Thus, the claim follows by 7,(.J)  T,/(J) and T,(J) < Ty(J). O

For the finite sequence M ™ = (M™, ... Ml(n")) and1 < ¢ < [,—1,let o* M (™ be the [,,-length
word such that
oM™ = (M, ..., M, M, M),

L+10 " In

with the convention that o' M = M®™)  Thus, oM™ can be defined for every ¢ € Z* in a
natural, periodic way.

Lemma 5.5. Foreveryn >3 and 1 < { <1, — 1, Ty (J) < Toeppon (J).
Proof. Simple calculations show that
(56) T37272(J> < T37373(J) < T37372(J) < T272’3(J) < T273’3(J) < T27372(J>.

Clearly for M®) = (3,2,2), we have 0! M®) = (2,2,3) and 0?M® = (2,3,2), and for M) =
MOMAM = (3,2,2,3,3) we have

otM® = (2,2,3,3,3), a>MW = (2,3,3,3,2), > MW = (3,3,3,2,2), c* M@ = (3,3,2,2,3).

Thus, by Lemma 5.4 and (5.6), the claim follows for n = 3 and n = 4.
Let us prove the rest by induction. So suppose that the claim holds for n > 4.
First, assume that 1 < ¢ < [,,_;. Then by

(57) M(n+1) _ M(R_I)M(n_2)M(n_2)M(n_l)M(n_l)

and M® = ME-DN0=2 N [(=2) we get that M) = M"Y = M forevery 1 < k < I,_1,
and so o*M ™ is a prefix of o?M 1), Since M ™ is a prefix of M ™+ we get by the induction
condition Ty ;) (J) < Treppeny (J) that Thpesn (J) < Tpeppmsn (J) by Lemma 5.4.

Now, assume that/,, | < /¢ <[, but? # [, 1 + l,,_5. Then by

(58) M(n-‘rl) _ M(n—l)M(n—Z)M(n—Q)M(n—2)M(n—3)M(n—3)M(n—1)’

we get that o/~!—1 M ("= i5 a prefix of o M **1). Hence, again by the fact that M ("~2) is a prefix
of M) and the assumption that T);u-2)(J) < T, -2 (J) for every k ¢ {l,_o,2l,_o, ...}, the
claim follows by Lemma 5.4.

If ¢ = 1,1 + l,_» then by (5.8), we get that M =2 M ("=2) is a prefix of o/ M "+ meanwhile,
if ¢ = 1,1 + 2l,,_5 = I,, then by (5.7), we get that M =Y A"~V is a prefix of o?M "V, thus, the
claim follows by Lemma 5.2.
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Now, suppose that [, < ¢ < I, + l,_; then by (5.5) we get that "M (=1 is the prefix
of o!M®™*1) and since M ™~ is a prefix of M1, the claim follows by Lemma 5.4 and the
induction hypothesis.

If ¢ = I, + l,_; then by (5.5) M DA™= is a prefix of oM™V, thus, the claim again
follows by Lemma 5.2.

Finally, if [,, + I,y < £ < l, + 2l,_1 = l,41 then by (5.5), o*"l»=ln—1 M=V is a prefix of
o’ M™*+D 5o the claim follows again by the induction condition and Lemma 5.4. U

Proof of Proposition 5.3. Forn = 1 and n = 2, let
m® =(2,2,...)and m® = (3,3,...).
Since the maps 7, are contractions, we get

Hminf T @y (0) = lim T @ (0) = A,
k—oo  Mk1] k—oo  Mk1]

and so, {\, A2} < L.
For every integer n > 3, let us define the following sequence:
m®™ = (M, M&, MD, ML,

Then by Lemma 2.2, T ) (0) € U;":Bl T, epre (J) for every sufficiently large k. Since the maps
[k,1]

g e ey

T,, are contractions, we get

lim T (n) (O) = )\n € TM(n)(J),

k—o0  Mkin,1]

furthermore, by Lemma 5.5, Ty ;) (J) < T eppm (J) forevery 1 < ¢ <[, — 1 and so
A < T wm (0) forevery k ¢ {l,,, 2y, .. .}.
[k.1]

Hence, lim infy, . T ) (0) = A,
k,1

The last claim follows by Theorem 2.1 and the fact that \,, converges to \g as n — 0. 0
Proposition 5.6. (\y,0) n L = &, and for everyn = 1, (A\yi1, \n) N L = &.

Proof. First, observe that max £ = ). Indeed, this follows by Lemma 4.3(2) with K = 2, which
implies the first claim.

Let us show that (\,41, \,) N £ = ¢F. Contrary, let us assume that there exists an integer n > 1
and z € (A\yi1, \n) N L.

Since A, is the fixed point of T);m), we have A\, € Ty (J)  Thye (J). Since £ < A,
where A is the attractor of {75, 73}, and mid (71 (J), Taronpron (J)) < (Ang1, An), We get
by Lemma 5.2 that either x € Ty ppm (J) or © € Thpmin(J). But by Lemma 5.1(2), if z €
Thropeom (J) then z = A, while if x € Tyyni1)(J) then z < A1 by Lemma 5.1(1), which is a
contradiction. ]

Proof of Theorem 2.5. The statement follows by combining Proposition 5.3 and Proposition 5.6.
0
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6. Proof of Theorem 2.4

Proof. Tt follows from Lemma 4.3(2) that if m,, > 5 for infinitely many n, then lim infy, o Ty, (0)

< ¢, thus we may assume without loss of generality that (m;) € {2, 3, 435
If (my, mg—1) = (4,2) for infinitely many &, then (mg, my_1,mx_2) = (4,2,a) for an a €
{2, 3,4} and for infinitely many k. By Lemma 5.1(1)

lim inf T (0) < max{Fix(Tyo Ty o T,) s a € {2,3,4}} = e
so we may assume that (my, my_1) # (4, 2) for every k. Thus,
LA (137 ;] {(lminf T, (0) s € (2,3, 4}, (i, miy) # (4,2)} = 5.
Ifml € {2,3,4} and (m;, m;_1) # (4,2), then there are 55 possibilities for (m;, m;_1,m;_2,m;_3):
={(2,2,2,2), (2,2,2,3), (2,2,2,4), (2,2,3,2), (2,2,3,3), (2,2,3,4), (2,2,4,3), (2,2,4,4),
2,3,2,2), (2,3,2,3), (2,3,2,4), (2,3,3,2), (2,3,3,3), (2,3,3,4), (2 3,4 3), (2,3,4,4),
2,4,3,2), (2,4,3,3), (2,4,3,4), (2,4,4,3), (2,4,4,4), (3,2,2,2), (3,2,2,3), (3,2,2,4),
12), (3,2,3,3),(3,2,3,4), (3,2,4,3), (3,2,4,4), (3,3,2,2), (3,3,2,3), (3,3,2,4),
3, 3 3 2), (3,3,3,3), (3,3,3,4), (3,3,4,3) (3,3,4,4), (3,4,3,2), (3,4,3,3), (3,4,3,4),
3,4,4,3), (3,4,4,4), (4,3,2,2), (4,3,2,3), (4,3,2,4), (4,3,3,2), (4,3,3,3), (4,3,3,4),
4,3,4,3), (4,3,4,4), (4,4,3,2), (4,4,3,3), (4,4,3,4), (4,4,4,3), (4,4,4,4)}.
Let us consider the IFS & = {T, 0T, o T.0Ty|(a,b,c,d) € A} and let A’ be the attractor of ®. Then

by Lemma 2.2, S < A’. Moreover, it is easy to check that the sum of the 55 contractions strictly
less than 1, therefore by Lemma 2.1, \(A’) = 0, and so A\(£ n [, 3]) = 0. O

(2,
(
(2,
(3,
(
(
(4,
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