
LAGRANGE-LIKE SPECTRUM OF PERFECT ADDITIVE COMPLEMENTS

BALÁZS BÁRÁNY1, JIN-HUI FANG2, AND CSABA SÁNDOR1,˚

ABSTRACT. Two infinite sets A and B of non-negative integers are called perfect additive comple-
ments of non-negative integers, if every non-negative integer can be uniquely expressed as the sum
of elements from A and B. In this paper, we define a Lagrange-like spectrum of the perfect additive
complements (LSPAC for short). As a main result, we obtain the smallest accumulation point of
the set LSPAC and prove that the set LSPAC is closed. Other related results and problems are also
contained.

1. Introduction

Let Z be the set of integers. For nonempty sets A,B of integers and an integer n, let rA,Bpnq

be the number of representations of n as a ` b, where a P A and b P B. Two infinite sets A
and B of non-negative integers are called perfect additive complements of non-negative integers,
if rA,Bpnq “ 1 for every non-negative integer n. For a non-negative integer m, denote by Zěm the
set of non-negative integers no less than m. For simplicity, we also denote Zě1 by Z`.

In [5], Fang and Sándor characterized the perfect additive complements A,B of non-negative
integers.

Theorem A. [5, Theorem 1.1] The infinite sets A,B of the non-negative integers form perfect
additive complements if and only if

A “ tϵ0 ` ϵ2m1m2 ` ¨ ¨ ¨ ` ϵ2k´2m1 . . .m2k´2 ` ¨ ¨ ¨ : ϵ2i “ 0, 1, . . . ,m2i`1 ´ 1u and

B “ tϵ1m1 ` ϵ3m1m2m3 ` ¨ ¨ ¨ ` ϵ2k´1m1 . . .m2k´1 ` ¨ ¨ ¨ : ϵ2i´1 “ 0, 1, . . . ,m2i ´ 1u
(1.1)

(or A,B interchanged), where mi P Zě2 for every i P Z`.

Let S be a set of non-negative integers. Its counting function is defined by Spxq “ |S X r0, xs|

for every x P Zě0. It is easy to see that if A,B Ď Zě0 form perfect additive complements then
ApxqBpxq ě x ` 1 for every non-negative integer x. In particular, Fang and Sándor showed that
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lim inf
xÑ8

ApxqBpxq

x
“ 1, see [5, Theorem 1.5]. Recently, Ma [12] determined the lim sup

xÑ8

ApxqBpxq

x
for the sets A and B with the form (1.1).

Theorem B. [12, Lemma 2.1] Let m1,m2, . . . be arbitrary integers no less than two. Then the
sets A and B with the form (1.1) are perfect additive complements of non-negative integers such
that

lim sup
xÑ8

ApxqBpxq

x
“ lim sup

kÑ8

2

1 ` Dk

,

where

(1.2) Dk “
1

mk

´
1

mkmk´1

`
1

mkmk´1mk´2

´ ¨ ¨ ¨ ` p´1q
k´1 1

mkmk´1 . . .m1

.

In this paper, we consider the properties of the set called Lagrange spectrum of perfect additive
components

L :“

"

lim sup
kÑ8

2

1 ` Dk

: pmiq P ZZ`

ě2

*

,

where Dk is defined in (1.2). In 2011, Chen and Fang [1, Theorem 1] obtained that

2a ` 2

a ` 2
P L for any integer a with a ě 2.

In 2016, Liu and Fang [10, Theorem 1.1] extended this result by showing that

2
a´1
ab´1

` 1
P L for any integers a, b with 2 ď a ď b.

Recently, Ma [12, Theorem 1.1 and Theorem 1.2] proved that

2 P L and
ˆˆ

16

9
, 2

˙

zQ
˙

X L ‰ H,

where Q denotes the set of rationals. Fang and Sándor [5, Theorem 1.5] showed that

L Ď

„

3

2
, 2

ȷ

.

The main theorem of this paper can be summarized as follows:

Theorem 1.1.
(1) The set L is closed.
(2) The set r3

2
, γ0qXL is countably infinite, and can be given explicitly, where γ0 is the smallest

accumulation point of L.
(3)

“

7
4
, 2

‰

Ď L but
“

12
7

´ δ, 2
‰

Ę L for any δ ą 0.
(4) The Lebesgue-measure of r3

2
, 17
10

s X L is zero.
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We may write r3
2
, γ0q XL “ tγ1, γ2, . . .u, where γn is a monotone increasing sequence converg-

ing to γ0, in particular,

γ1 “
3

2
ă γ2 “

8

5
ă γ3 “

13

8
ă γ4 “

109

67
ă ¨ ¨ ¨ ă γ0 « 1.62688284...

All values of the sequence γn can be determined explicitly, see Section 2.
It follows from Theorem 1.1 that the set L has some similar properties to the so-called Lagrange

spectrum LS. Let α be a positive irrational number. Define kpαq “ lim sup
n,mÑ8

1

|n2α ´ nm|
. Hurwitz

[7] proved that kpαq ě
?
5 for every positive irrational number α. The Lagrange spectrum

LS :“ tkpαq : α is a positive irrational numberu.

For results related to Lagrange spectrum, one may refer to [2], [3], [6], [11], [13] and [14].
It is well known that the Lagrange spectrum is closed, see [2, Theorem 3.2], furthermore, the

least accumulation point of the Lagrange spectrum is 3 and l P L, l ă 3 if and only if l “

b

9 ´ 4
z2n

,
where zn’s are the Markov integers, see [11]. The corresponding phenomena for the Lagrange-like
spectrum of perfect additive complement follows by Theorem 1.1(1) and Theorem 1.1(2).

Furthermore, Freiman’s constant F “ 2221564096`283748
?
463

491993569
“ 4.527 . . . is the name of the

supremum of the set RzLS, that is rF,8q Ă LS, but for any δ ą 0, rF ´ δ,8q Ć LS, see [6].
In point of view of Theorem 1.1(3), the L has also a Freiman-like constant, namely, there exists
12
7

ď c0 ď 7
4

such that
c0 “ inftc P R : rc, 2s Ă Lu.

Problem 1.2. Determine the exact value of c0. Is it true that c0 “ 7{4?

There is another important similarity between the sets LS and L, namely, both can be rep-
resented by using infinite iterated function systems (IFS). It is well known that every α can be
written as a simple infinite continued fraction

α “ m0 `
1

m1 ` 1
m2`...

“: rm0;m1,m2, . . . s,

where mi P Z`. On the other hand if mi P Z`, then the above continued fraction defines a positive
irrational number. Let us define a map Gmpxq “ 1

m`x
for every integer m P Z`. Then

rm0;m1,m2, . . . s “ m0 ` lim
kÑ8

Gm1 ˝ ¨ ¨ ¨ ˝ Gmk
p0q.

If 1
|n2α´nm|

ą 2, then there exists a k such that m
n

“
pk
qk

“ rm0;m1, . . . ,mks, see for example [9,
Theorem 19]. Hence kpαq “ lim supkÑ8

1
|p2kα´pkqk|

. In 1921, Perron [15] proved

1

|p2kα ´ pkqk|
“ r0;mk,mk´1, . . . ,m1s ` rmk`1;mk`2, . . . s.

In particular,

LS “

"

lim sup
kÑ8

´

Gmk
˝ ¨ ¨ ¨ ˝ Gm1p0q ` mk`1 ` lim

ℓÑ8
Gmk`2

˝ ¨ ¨ ¨ ˝ Gmℓ
p0q

¯

|pmiq P ZZ`

ě1

*

.
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Now, let us define the maps pGmpxq “ 2mx
pm`2qx´2

. By Theorem B, we will show later that

(1.3) L “

"

lim sup
kÑ8

pGmk
˝ ¨ ¨ ¨ ˝ pGm1p2q|pmiq P ZZ`

ě2

*

.

Moreira [13] showed that the map α ÞÑ dimH

`

r
?
5, αs X LS

˘

“ dimB

`

r
?
5, αs X LS

˘

is
monotone increasing and continuous on r

?
5,8q, where dimH denotes the Hausdorff dimension

and dimB denotes the upper box-counting dimension. For the definition and basic properties of the
Hausdorff- and box-counting dimension we refer to [4].

Problem 1.3. Is dimH

`

r3
2
, αs X L

˘

“ dimB

`

r3
2
, αs X L

˘

? Is the map α ÞÑ dimH

`

r3
2
, αs X L

˘

continuous?

2. Preliminaries

In this section, we summarize some basic facts in the theory of iterated function systems relevant
for our later calculations. We say that a map f : R ÞÑ R is contracting if there exists a constant
0 ă c ă 1 such that |fpxq ´ fpyq| ď c|x ´ y|. By Banach’s fixed point theorem, every contractive
map f has a unique fixed point x “ fpxq. For a contractive map f , let us denote its unique fixed
point by Fixpfq.

Let Ψ “ tf1, . . . , fnu be a finite collection of contractions, which we call iterated function
system (IFS). Hutchinson [8] showed that there exists a unique non-empty compact set Λ such that

(2.1) Λ “

n
ď

i“1

fipΛq.

The set Λ is called the attractor of the IFS Ψ. In particular, if B Ă R is a compact set such that
fipBq Ď B for every i “ 1, . . . , n then

(2.2) Λ “

8
č

k“1

ď

pi1,...,ikqPt1,...,nuk

fi1 ˝ ¨ ¨ ¨ ˝ fikpBq Ă B.

Using (2.2), one can prove the following simple observation.

Lemma 2.1. Let Ψ “ tf1, . . . , fnu be a finite collection of contractions such that the contracting
ratio of fi is ci. If

řn
i“1 ci ă 1 then λpΛq “ 0, where λ denotes the Lebesgue measure on the real

line.

Proof. Since |fipxq ´ fipyq| ď ci|x ´ y| then λpfi1 ˝ ¨ ¨ ¨ ˝ fikpBqq ď ci1 ¨ ¨ ¨ cikλpBq and so, by
(2.2),

λpΛq ď
ÿ

pi1,...,ikqPt1,...,nuk

λpfi1 ˝ ¨ ¨ ¨ ˝ fikpBqq “

˜

n
ÿ

i“1

ci

¸k

λpBq Ñ 0 as k Ñ 8.

□



LAGRANGE-LIKE SPECTRUM OF PERFECT ADDITIVE COMPLEMENTS 5

Let us denote the distance between sets by dist, that is, for A,B Ď R, let
distpA,Bq “ inft|x ´ y|

ˇ

ˇx P A, y P Bu. With a slight abuse of notation, we write distpx,Aq “

distptxu, Aq for the distance of a point x P R and a set A Ď R.

Lemma 2.2. Let Ψ “ tf1, . . . , fnu be a finite collection of contractions such that the contracting
ratio of every fi is at most c P p0, 1q. For every sequence pi1, i2, . . .q P t1, . . . , nuZ

`

and every
x P R, lim infkÑ8 fik ˝ ¨ ¨ ¨ ˝fi1pxq P Λ, where Λ is the attractor of Ψ. In particular, for every open
set U Ą Λ, for every x P R and for every sufficiently large k, fik ˝ ¨ ¨ ¨ ˝ fi1pxq P U .

Proof. By (2.1)

distpfik ˝ ¨ ¨ ¨ ˝ fi1pxq,Λq ď distpfik ˝ ¨ ¨ ¨ ˝ fi1pxq, fik ˝ ¨ ¨ ¨ ˝ fi1pΛqq ď ckdistpx,Λq Ñ 0 as k Ñ 8,

where 0 ă c ă 1 is chosen such that |fipxq ´fipyq| ď c|x´y| for every i “ 1, . . . , n and x, y P R.
The claim then follows by the compactness of Λ. □

For every point x P Λ, there exists an infinite sequence i “ pi1, i2, . . .q P t1, . . . , nuZ
` such that

x “ lim
kÑ8

fi1 ˝ ¨ ¨ ¨ ˝ fikp0q.

Observe that the limit on the right-hand side exists since the maps fi are contractions. One can
define a map Π: t1, . . . , nuZ

`

ÞÑ Λ by

Πpiq :“ lim
kÑ8

fi1 ˝ ¨ ¨ ¨ ˝ fikp0q

called the natural projection. Let σ : t1, . . . , nuZ
`

ÞÑ t1, . . . , nuZ
` be the left-shift operator, that

is,
σpi1, i2, . . .q “ pi2, i3, . . .q.

Hence, by using the definition of the natural projection Π it is easy to see that

Πpiq “ fi1pΠpσiqq.

Now, let us define a specific family of contractive maps on R as Tmpxq “ 1´x
m

for m P Zě2.
Then clearly for every pmiq P ZZ`

ě2

Tmk
˝ Tmk´1

˝ ¨ ¨ ¨ ˝ Tm1p0q “
1

mk

´
1

mkmk´1

`
1

mkmk´1mk´2

´ ¨ ¨ ¨ ` p´1q
k´1 1

mkmk´1 . . .m1

,

which corresponds to (1.2). Let

L “

!

lim inf
kÑ8

Tmk
˝ ¨ ¨ ¨ ˝ Tm1p0q|pmiq P ZZ`

ě2

)

.

Hence,

(2.3) L “ gpLq,

where gpxq “ 2
1`x

. Furthermore, pGmpxq “ g ˝ Tm ˝ g´1, thus, (1.3) follows. Hence, our main
theorem will follow from the following theorems.

Theorem 2.1. The set L is closed.
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Theorem 2.2. r0, 1
7
s Ă L.

Theorem 2.3.

L X

8
ď

n“0

ˆ

1

6
`

1

93

1

4n
,
1

6
`

1

84

1

4n

˙

“ H.

Let S Ă R be a Lebesgue-measurable set. The Lebesgue-measure of S will be denoted by λpSq.

Theorem 2.4. λ
`

L X r 3
17
, 1
3
s
˘

“ 0.

We introduce the following notations. Let i “ pi1, . . . , inq P Zn
ě2 be a finite word, then denote

by Ti the map
Ti “ Ti1 ˝ ¨ ¨ ¨ ˝ Tin .

Let u, v be positive integers and m “ pmiq P ZZ`

ě2 . If u ď v then let
Tmru,vs

pxq “ pTmu ˝ Tmu`1 ˝ ¨ ¨ ¨ ˝ Tmvqpxq, and if u ą v then let
Tmru,vs

pxq “ pTmu ˝ Tmu´1 ˝ ¨ ¨ ¨ ˝ Tmvqpxq. Finally, let us introduce the notation that for any
sequence m P ZZ`

ě2

(2.4) Πpmq “ lim
kÑ8

Tm1 ˝ ¨ ¨ ¨Tmk
p0q “ lim

kÑ8
Tmr1,ks

p0q “

8
ÿ

k“1

p´1qk´1

m1 ¨ ¨ ¨mk

.

Let us define the sequences M pnq recursively. Let M p1q “ 2, M p2q “ 3 and let M pnq be the con-
catenation M pnq “ M pn´1qM pn´2qM pn´2q for n ě 3, that is M p3q “ p3, 2, 2q, M p4q “ p3, 2, 2, 3, 3q

and so on. By the definition of M pnq, it is easy to see that the length of the finite sequence M pnq

is ln “
2n´p´1qn

3
, and M pnq starts with M pn´1q. Thus, it is possible to define the limiting infinite

sequence M “ limnÑ8 M pnq as

M “ p3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, . . .q “: pM1,M2, . . .q

such that pM1,M2, . . . ,Mlnq “ pM pnqq for every positive integer n ě 2. Let

λn “ FixpTMpnqq “ TMpnqp0q
M1M2 . . .Mln

M1M2 . . .Mln ` 1
,

and

λ0 “

8
ÿ

l“1

p´1q
l´1 1

M1M2 . . .Ml

“ 0.2293 . . . .

We will prove that λn is a strictly increasing sequence, λn ą λ0.

Theorem 2.5.

λ P L, λ ą λ0 if and only if λ “ λn for some n ě 1.
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Proof of Theorem 1.1. The first claim follows by (2.3), the fact the map gpxq “ 2
1`x

is continuous
on R` and Theorem 2.1. The second claim follows by Theorem 2.5 with the choices γn “ gpλnq

for n ě 0. The third claim follows by the combination of Theorem 2.2 and Theorem 2.3 together
with (2.3). Finally, the last claim follows by Theorem 2.4 and by using the continuity of the map
g. □

3. Closedness of the spectrum

Proof of Theorem 2.1. Let αn P L be a sequence such that lim
nÑ8

αn “ α. Hence, for every n ě 1

there exists mpnq P ZZ`

ě2 , mpnq “ pm
pnq

1 ,m
pnq

2 , . . . q such that lim inf
kÑ8

T
m

pnq

rk,1s

p0q “ αn. Let εn “

|α ´ αn|. Without loss of generality we may assume that εn Œ 0.
Let l1 “ 0 and let us choose k1 such that |T

m
p1q

rk1,1s

p0q ´ α1| ă ε1.

For n ě 2, let 0 ă ln ă kn be such that |T
m

pnq

rln,1s

p0q ´ αn| ă εn, |T
m

pnq

rkn,1s

p0q ´ αn| ă εn,

T
m

pnq

rl,1s

p0q ą αn ´ εn for every l ě ln and 5εn´1

εn
ă 2kn´ln . Let

m “ pm
p1q

l1`1, . . . ,m
p1q

k1
,m

p2q

l2`1, . . . ,m
p2q

k2
,m

p3q

l3`1, . . . ,m
p3q

k3
, . . . q “ pm1,m2, . . . q.

We will show that

(3.1) α “ lim inf
kÑ8

Tmrk,1s
p0q.

Let aN “
řN

n“1pkn ´ lnq. To verify (3.1), it is enough to prove that

(3.2) |TmraN ,1s
p0q ´ αN | ă 2εN for every N ě 1

and

(3.3) Tmrl,1s
p0q ą αN ´ 3εN for every aN ă l ď aN`1.

Indeed, in this case

lim
NÑ8

TmraN ,1s
p0q “ α and lim inf

lÑ8
Tmrl,1s

p0q ě lim
NÑ8

pαN ´ 3εNq “ α.

To prove (3.2) we argue by induction. Clearly,

|Tmra1,1s
p0q ´ α1| “ |T

m
p1q

rk1,1s

p0q ´ α1| ă ε1 ă 2ε1.

Suppose that (3.2) holds for N ´ 1. Then

|TmraN ,1s
p0q ´ αN | ď |TmraN ,1s

p0q ´ T
m

pNq

rkN ,1s

p0q| ` |T
m

pNq

rkN ,1s

p0q ´ αN |

“
1

m
pNq

kN
. . .m

pNq

lN`1

|TmraN´1,1s
p0q ´ T

m
pNq

rlN ,1s

p0q| ` |T
m

pNq

rkN ,1s

p0q ´ αN |

ď
1

2kN´lN

ˆ

|TmraN´1,1s
p0q ´ αN´1| ` |αN´1 ´ α| ` |α ´ αN | ` |T

m
pNq

rlN ,1s

p0q ´ αN |

˙

` εN

ă
1

2kN´lN
p2εN´1 ` εN´1 ` εN ` εNq ` εN ă

1

2kN´lN
5εN´1 ` εN ă 2εN .
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To prove (3.3) we write

Tmrl,1s
p0q “ Tmrl,aN `1s

˝ TmraN ,1s
p0q “ T

m
pNq

rl´aN `lN ,lN `1s

˝ TmraN ,1s
p0q

“ T
m

pNq

rl´aN `lN ,lN `1s

˝ TmraN ,1s
p0q ´ T

m
pNq

rl´aN `lN ,lN `1s

˝ T
m

pNq

rlN ,1s

p0q ` T
m

pNq

rl´aN `lN ,lN `1s

˝ T
m

pNq

rlN ,1s

p0qq,

where
ˇ

ˇ

ˇ

ˇ

T
m

pNq

rl´aN `lN ,lN `1s

˝ TmraN ,1s
p0q ´ T

m
pNq

rl´aN `lN ,lN `1s

˝ T
m

pNq

rlN ,1s

p0q

ˇ

ˇ

ˇ

ˇ

“
1

m
pNq

l´aN`lN
. . .m

pNq

lN`1

ˇ

ˇ

ˇ

ˇ

TmraN ,1s
p0q ´ T

m
pNq

rlN ,1s

p0q

ˇ

ˇ

ˇ

ˇ

ď
1

2l´aN
p|TmraN ,1s

p0q ´ αN | ` |αN ´ T
m

pNq

rlN ,1s

p0q|q ă
1

2
p2εN ` εNq ă 2εN

and
T
m

pNq

rl´aN `lN ,lN `1s

˝ T
m

pNq

rlN ,1s

p0q “ T
m

pNq

rl´aN `lN ,1s

p0q ą αN ´ εN .

Hence,
Tmrl,1s

p0q ą αN ´ εN ´ 2εN “ αN ´ 3εN ,

which completes the proof. □

4. Estimates on the Freiman-like constant

Let us consider the finite IFS Ψ4 “ tT2, T3, T4u. Let I “
“

1
7
, 3
7

‰

. For m ě 2, TmpIq “ r 4
7m

, 6
7m

s,
and

I “

4
ď

m“2

TmpIq.(4.1)

Thus, by the uniqueness the attractor of Ψ4 is I “
“

1
7
, 3
7

‰

. By (4.1) and direct calculation, we obtain
the following statements.

Lemma 4.1. For every z P r1
7
, 3
7
s and K P t2, 3, 4u, we have 1

K
´ 1

K
z P r1

7
, 3
7
s.

Lemma 4.2. For every y P r1
7
, 3
7
s, there exist K P t2, 3, 4u and z P r1

7
, 3
7
s such that y “ 1

K
´ 1

K
z.

In particular, it follows from Lemma 4.2 that for every y P r1
7
, 3
7
s, there exists an infinite sequence

pK1, K2, . . .q P t2, 3, 4uZ
` such that

ΠpK1, K2, . . .q “ y,

where Π is defined in (2.4).

Proof of Theorem 2.2. It infers from 4
7m

ď 6
7pm`1q

for m ě 6 that
8
ď

m“6

TmpIq “

ˆ

0,
1

7

ȷ

.(4.2)
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Suppose that 0 ă x ă 1
7
. By (4.2), we know that the real x can be written as x “ 1

m
´ 1

m
y,

where m ě 6 and y P r1
7
, 3
7
s. It follows that there exist sequences K1, K2, . . . , Kk, ¨ ¨ ¨ P t2, 3, 4u

and z1, z2, . . . , zk, ¨ ¨ ¨ P r1
7
, 3
7
s such that

y “ ΠpK1, K2, . . .q “

8
ÿ

k“1

p´1qk´1

K1K2 . . . Kk

.

Now, let

m “ pm1,m2, . . . q “ p3, K1,m, 3, K2, K1,m, 3, K3, K2, K1,m, 3, K4, K3, K2, K1,m, . . . q.

We will prove that

x “ lim inf
nÑ8

Tmrn,1s
p0q.

First, observe that Tmrn,1s
p0q P

“

0, 1
2

‰

for every n ě 1. Indeed, Tmp
“

0, 1
2

‰

q Ă
“

0, 1
2

‰

for every
m ě 2. On the other hand, since T3

`“

0, 1
2

‰˘

Ă
“

1
6
, 1
3

‰

Ă
“

1
7
, 3
7

‰

, we have that Tmrn,1s
p0q P

“

1
7
, 3
7

‰

for every n ě 1 with mn “ 3. Hence, it follows from Lemma 4.1 and (4.1) that if mn ‰ m, then
Tmrn,1s

p0q P r1
7
, 3
7
s.

Simple calculations show that mk “ m if and only if k “ n2`5n
2

for some n P Z`. Furthermore,
it is easy to see that

Tm
r
n2`5n

2 ,1s

p0q “
1

m
´

1

m

ˆ

1

K1

´
1

K1K2

` ¨ ¨ ¨ `
p´1qn´1

K1K2 . . . Kn

`
p´1qn

K1 ¨ ¨ ¨Kn

Tm
r

pn´1q2`5pn´1q
2 `1,1s

p0q

˙

“
1

m
´

1

m
y ` Op

1

2n
q “ x ` Op

1

2n
q.

This completes the proof of Theorem 2.2. □

Before we continue, we state a lemma on the position of the possible smallest accumulation
points depending on the defining sequence.

Lemma 4.3.
(1) Let pmiq P ZZ`

ě2 be such that mi P t2, 3, . . . , Ku except at most finitely many i. Then
1

2K ´ 1
ď lim inf

nÑ8
Tmrn,1s

p0q ď lim sup
nÑ8

Tmrn,1s
p0q ď

K ´ 1

2K ´ 1
.

(2) Let K P Zě2 and pmiq P ZZ`

ě2 such that mi ě K for infinitely many integer i. Then

lim inf
kÑ8

Tmrk,1s
p0q ď

1

K ` 1
.

Proof. To prove the first claim, it is enough to show that

(4.3) Tm

ˆ„

1

2K ´ 1
,
K ´ 1

2K ´ 1

ȷ˙

Ď

„

1

2K ´ 1
,
K ´ 1

2K ´ 1

ȷ

for every 2 ď m ď K.

Indeed,

Tm

ˆ„

1

2K ´ 1
,
K ´ 1

2K ´ 1

ȷ˙

“

„

K

mp2K ´ 1q
,

2K ´ 2

mp2K ´ 1q

ȷ

,
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where 1
2K´1

ď K
mp2K´1q

if and only if m ď K and 2K´2
mp2K´1q

ď K´1
2K´1

if and only if m ě 2.
Then by (2.2), (4.3) and Lemma 2.2, we get that lim infnÑ8 Tmrn,1s

p0q P
“

1
2K´1

, K´1
2K´1

‰

.

To show the last claim, let us argue by contradiction. If lim infkÑ8 Tmrk,1s
p0q ą 1

K`1
, then there

exists a δ ą 0 such that Tmrn,1s
p0q ą 1

K`1
` δ for every sufficiently large n. Then

Tmrn,1s
p0q “

1

mn

´
1

mn

Tmrn´1,1s
p0q ă

1

mn

´
1

mn

p
1

K ` 1
` δq.

Hence, for every sufficiently large n we have that 1
K`1

` δ ă 1
mn

´ 1
mn

p 1
K`1

` δq, equivalently
1

K`1
` δ ă 1

mn`1
for sufficiently large n. Thus, mn ď K ´ 1 for every sufficiently large n, which

is a contradiction. □

Finally, let us state a technical lemma.

Lemma 4.4. Let pmiq P t2, 3, 4uZ
`

such that if pmi,mi´1q “ p4, 2q then mi´2 “ 2. Then
lim supnÑ8 Tmrn,1s

p0q ď 13
31

.

Proof. Observe that

minT2 ˝ T4 ˝ T2

ˆ„

1

7
,
3

7

ȷ˙

ě max

¨

˚

˚

˝

ď

i,j,kPt2,3,4u3

pi,j,kq‰p2,4,2q

Ti ˝ Tj ˝ Tk

ˆ„

1

7
,
3

7

ȷ˙

˛

‹

‹

‚

,

where we recall that r1
7
, 3
7
s is the attractor of the IFS tT2, T3, T4u. Thus, if pmi,mi´1,mi´2,mi´3q “

p2, 4, 2, 2q only for finitely many i then

lim sup
nÑ8

Tmrn,1s
p0q ď T2 ˝ T4 ˝ T2 ˝ T2

ˆ

1

7

˙

“
23

56
ă

13

31
.

On the other hand, if pmi,mi´1,mi´2,mi´3q “ p2, 4, 2, 2q for infinitely many i then

lim sup
nÑ8

Tmrn,1s
p0q ď T2 ˝ T4 ˝ T2 ˝ T2

ˆ

lim sup
nÑ8

Tmrn,1s
p0q

˙

,

which implies after some algebraic manipulations that lim supnÑ8 Tmrn,1s
p0q ď 13

31
. □

Proof of Theorem 2.3. It follows from Lemma 4.3(2) that if mn ě 5 for infinitely many n, then

lim inf
kÑ8

Tmrk,1s
p0q ď

1

6
.

So we may assume without loss of generality that mn P t2, 3, 4u for every n P Z`.
Direct computations show that

ˆ

1

6
,
1

6
`

1

84

˙

X
ď

pk,lqPt2,3,4u2

pk,lq‰p4,2q

Tk ˝ Tl

ˆ„

1

7
,
3

7

ȷ˙

“ H.
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Thus, by Lemma 2.2 and the fact that
“

1
7
, 3
7

‰

is the attractor of the IFS tT2, T3, T4u we get that if

lim inf
kÑ8

Tmrk,1s
p0q P L X

ˆ

1

6
,
1

6
`

1

84

˙

with the sequence pmiq P t2, 3, 4uZ
` then pmi,mi´1q “ p4, 2q for infinitely many i P Z`, and in

particular,

(4.4) lim inf
kÑ8

Tmrk,1s
p0q “ lim inf

ℓÑ8
Tmrkℓ,1s

p0q,

where k1 “ minti ě 2 : pmi,mi´1q “ p4, 2qu and kℓ “ minti ą kℓ´1 : pmi,mi´1q “ p4, 2qu for
all ℓ ě 2

If pmkℓ ,mkℓ´1,mkℓ´2q “ p4, 2, bq for some b P t3, 4u for infinitely many i then 1
6

ě Tmrkℓ,kℓ´2s
p0q ě

Tmrkℓ,1s
p0q. So we may assume that if

(4.5) pmi,mi´1q “ p4, 2q then mi´2 “ 2 for every i.

Furthermore, if for every N there exist infinitely many k ě 2N ` 2 such that

pmk,mk´1, . . . ,mk´2N´1q “ p4, 2, 2, . . . , 2q

then since the map T4 ˝

2N`1-times
hkkkkkikkkkkj

T2 ˝ ¨ ¨ ¨ ˝ T2 is monotone increasing

lim inf
kÑ8

Tmrk,1s
p0q ď lim

NÑ8
T4 ˝

2N`1-times
hkkkkkikkkkkj

T2 ˝ ¨ ¨ ¨ ˝ T2p
1

2
q “

1

6
.

Hence, we may assume that there exists a non-negative integer N0 such that

pmkℓ ,mkℓ´1, . . . ,mkℓ´2N0´1q “ p4,

2N0 ` 1-times
hkkkkikkkkj

2, 2, . . . , 2q for infinitely many ℓ but

pmkℓ ,mkℓ´1, . . . ,mkℓ´2N0´3q “ p4,

2N0 ` 3-times
hkkkkikkkkj

2, 2, . . . , 2q only for a finite number of ℓ.

(4.6)

Let us suppose that (4.6) holds. For short, let pN0 “ pmkℓ ,mkℓ´1, . . . ,mkℓ´2N0´1q. Then by
Lemma 4.4 and the fact that the maps Tm are orientation reversing we get

lim inf
ℓÑ8

Tmrkℓ,1s
p0q ď TpN0

plim sup
kÑ8

Tmrk´2N0´2,1s
p0qq

“
1

8

1 ´ 1
4N0`1

1 ´ 1
4

`
1

8 ¨ 4N0
¨
13

31
“

1

6
`

1

93

1

4N0
.

(4.7)

If pmkℓ ,mkℓ´1, . . . ,mkℓ´2N0´2q “ p4, 2, 2, . . . , 2, aq, where a P t3, 4u then

Tmrkℓ,1s
p0q ď Tmrkℓ,kℓ´2N0´2s

p0q “ TpN0
˝ Tap0q ď TpN0

p
1

3
q “

1

6
.
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Hence, we may suppose that pmkℓ´2N0´2,mkℓ´2N0´3q P tp2, 3q, p2, 4qu. Thus, by Lemma 4.3(1)
and the fact that the maps Tm are orientation reversing we get

lim inf
ℓÑ8

Tmrkℓ,1s
p0q ě TpN0

˝ T2 ˝ Taplim inf
kÑ8

Tmrk´2N0´3,1s
p0qq

ě TpN0
˝ T2 ˝ Tap

1

7
q ě TpN0

˝ T2p
2

7
q “

1

6
`

1

84

1

4N0`1
.

(4.8)

Finally, (4.8) with (4.4) and (4.7) implies that

1

6
`

1

84

1

4N0`1
. ď lim inf

kÑ8
Tmrk,1s

p0q ď
1

6
`

1

93

1

4N0
,

and so lim infkÑ8 T
p1q
mrk,1s

p0q R
Ť8

n“0

`

1
6

` 1
93

1
4n
, 1
6

` 1
84

1
4n

˘

. □

5. Computation of the Markov-like constant

Throughout this section, we will consider the set L X
`

1
5
, 1
2

˘

. By Lemma 4.3(2), for every
x P L X

`

1
5
, 1
2

˘

if x “ lim infnÑ8 Tmrn,1s
p0q then pmiq P t2, 3uZ

` . By (4.3),

T2

ˆ„

1

5
,
2

5

ȷ˙

Y T3

ˆ„

1

5
,
2

5

ȷ˙

Ď

„

1

5
,
2

5

ȷ

,

and so by denoting the attractor of the IFS tT2, T3u by Λ Ă
“

1
5
, 2
5

‰

, we get by Lemma 2.2 that

(5.1) L X

„

1

5
,
2

5

ȷ

Ă Λ.

Furthermore, direct computations show that

(5.2) T2

ˆ„

1

5
,
2

5

ȷ˙

X T3

ˆ„

1

5
,
2

5

ȷ˙

“ H.

Hence, by choosing δ “ dist
`

T2

`“

1
5
, 2
5

‰˘

, T3

`“

1
5
, 2
5

‰˘˘

{3 ą 0, we get

(5.3) T2 pJq X T3 pJq “ H and T2 pJq Y T3 pJq Ď J,

where J “
“

1
5

´ δ, 2
5

` δ
‰

.

Lemma 5.1.
(1) Let pi1, . . . , i2k`1q P ZZ`

ě2 for some non-negative integer k, and let pmiq P ZZ`

ě2 be such that
pmj, . . . ,mj´2kq “ pi1, . . . , i2k`1q for infinitely many j. Then

lim inf
nÑ8

Tmrn,1s
p0q ď FixpTi1 ˝ ¨ ¨ ¨ ˝ Ti2k`1

q.

(2) Let x P L X
`

1
5
, 2
5

˘

and let pi1, . . . , i2kq P t2, 3u2k be such that x P Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k

`“

1
5
, 2
5

‰˘

.
Then

x ě FixpTi1 ˝ ¨ ¨ ¨ ˝ Ti2kq.



LAGRANGE-LIKE SPECTRUM OF PERFECT ADDITIVE COMPLEMENTS 13

Proof. Let us show the first claim. Let jℓ be the sequence such that pmjℓ , . . . ,mjℓ´2kq “ pi1, . . . , i2k`1q.
Since the maps Tm are orientation reversing,

lim inf
nÑ8

Tmrn,1s
p0q ď lim inf

ℓÑ8
Tmrjℓ,1s

p0q

“ Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k`1
plim sup

ℓÑ8

Tmrjℓ´2k´1,1s
p0qq

ď Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k`1
plim inf

nÑ8
Tmrn,1s

p0qq.

Let us denote the fixed point of Ti1 ˝ ¨ ¨ ¨ ˝Ti2k`1
by x0 and, for short, let x “ lim infnÑ8 Tmrn,1s

p0q.
Since the maps Tm are linear and contracting, we get

x ´ x0 ď Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k`1
pxq ´ Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k`1

px0q “
´1

i1 ¨ ¨ ¨ i2k`1

px ´ x0q,

thus the claim follows.

Now we turn to the second claim. Let x P L X
`

1
5
, 2
5

˘

be such that x P Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k

`“

1
5
, 2
5

‰˘

.
Suppose that x “ lim infnÑ8 Tmrn,1s

p0q. By (5.3)

(5.4) dist

¨

˚

˚

˝

Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k pJq ,
ď

pj1,...,j2kqPt2,3u2k

pj1,...,j2kq‰pi1,...,i2kq

Tj1 ˝ ¨ ¨ ¨ ˝ Tj2k pJq

˛

‹

‹

‚

ą 0.

By Lemma 2.2, for every sufficiently large n, Tmrn,1s
p0q P J . Then by (5.3), for every sufficiently

large n, Tmrn,1s
p0q P Tmrn,n´2k`1s

pJq. Hence, by (5.4), Tmrn,1s
p0q P Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k pJq if and only if

pmn, . . . ,mn´2k`1q “ pi1, . . . , i2kq, and so by our assumption on x P L X Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k

`“

1
5
, 2
5

‰˘

lim inf
nÑ8

Tmrn,1s
p0q “ lim inf

ℓÑ8
Tmrnℓ,1s

p0q,

where nℓ is the sequence such that pmnℓ
, . . . ,mnℓ´2k`1q “ pi1, . . . , i2kq. Since Tm is orientation

reversing

lim inf
nÑ8

Tmrn,1s
p0q “ lim inf

ℓÑ8
Tmrnℓ,1s

p0q “ Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k

´

lim inf
ℓÑ8

Tmrnℓ´2k,1s
p0q

¯

ě Ti1 ˝ ¨ ¨ ¨ ˝ Ti2k

´

lim inf
nÑ8

Tmrn,1s
p0q

¯

.

Thus the statement follows similarly than the first claim. □

Let us recall the definition of the sequences M pnq. Let M p1q “ 2, M p2q “ 3 and let M pnq be the
concatenation

(5.5) M pnq
“ M pn´1qM pn´2qM pn´2q for n ě 3.

By definition, the length ln of M pnq satisfies the equation ln “ ln´1 ` 2ln´2 for every n ě 3 with
l1 “ l2 “ 1, which implies a standard calculation that ln “

2n´p´1qn

3
.

We say for any two compact intervals ra, bs and rc, ds that ra, bs ă rc, ds if b ă c.
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For any two closed intervals ra, bs and rc, ds with ra, bs X rc, ds “ H, let midpra, bs, rc, dsq be
the closure of the bounded component of Rz pra, bs Y rc, dsq.

Lemma 5.2. For every n ě 3, TMpnqpJq Ă TMpn´1qpJq. Furthermore,
TMpnqpJq X TMpn´1qMpn´1qpJq “ H, TMpnqpJq ă TMpn´1qMpn´1qpJq and
Λ X midpTMpnqpJq, TMpn´1qMpn´1qpJqq “ H for every n ě 2. That is, there is no element of Λ
in-between TMpnqpJq and TMpn´1qMpn´1qpJq for every n ě 2.

Proof. By (5.5) and (5.3), clearly TMpnqpJq Ă TMpn´1qpJq. We prove the second claim by induc-
tion. Clearly, by (5.3) T3pJq X T2,2pJq “ H, furthermore, since

Λ X

ˆ„

1

5
,
2

5

ȷ

z

ˆ

T2p

„

1

5
,
2

5

ȷ

q Y T3p

„

1

5
,
2

5

ȷ

q

˙˙

“ H

and
„

1

5
,
2

5

ȷ

z

ˆ

T2p

„

1

5
,
2

5

ȷ

q Y T3p

„

1

5
,
2

5

ȷ

q

˙

Ą midpT2,2pJq, T3pJqq

the claim holds for n “ 2.
Let us suppose that the claim holds for n. Then

TMpn`1qpJq X TMpnqMpnqpJq “ TMpnq pTMpn´1qMpn´1qpJq X TMpnqpJqq “ H,

moreover, since TMpnq is orientation reversing, TMpnqpJq ă TMpn´1qMpn´1qpJq implies that

TMpn`1qpJq “ TMpnq pTMpn´1qMpn´1qpJqq ă TMpnq pTMpnqpJqq .

Observe that

midpTMpn`1qpJq, TMpnqMpnqpJqq “ TMpnq pmidpTMpn´1qMpn´1qpJq, TMpnqpJqqq Ă TMpnqpJq

and so by (5.3)

ΛXmidpTMpn`1qpJq, TMpnqMpnqpJqq “ TMpnqpΛqXTMpnq pmidpTMpn´1qMpn´1qpJq, TMpnqpJqqq “ H.

□

Let us recall the definition of the sequence λn and λ0. For every n ě 1, let λn “ FixpTMpnqq.
Since FixpTMpnqq P TMpnqMpnqpJq Ă TMpnqpJq, by Lemma 5.2 we get

λn`1 ă λn.

Thus, the sequence λn is convergent. Let us denote the limit limnÑ8 λn by λ0. Then by TMpnqpJq Ă

TMpn´1qpJq, we get that
λ0 “ ΠpMq,

where M “ limnÑ8 M pnq “ pM1,M2, . . .q is the limiting sequence defined such that
pM1,M2, . . . ,Mlnq “ M pnq for every positive integer n ě 2. So

λ0 “

8
ÿ

l“1

p´1q
l´1 1

M1M2 . . .Ml

“ 0.2293 . . . .

First, we show the following proposition:
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Proposition 5.3. tλ1, λ2, . . .u Ă L X
`

1
5
, 2
5

˘

. In particular, λ0 P L.

Before we turn to its proof, we require the following technical lemmas.

Lemma 5.4. Let a “ pa1, . . . , akq and b “ pb1, . . . , bnq be finite sequences formed by the integers
t2, 3u. Suppose that there exist a prefix a1 “ pa1, . . . , ak1q of a with k1 ď k and a prefix b1

“

pb1, . . . , bn1q of b with n1 ď n such that Ta1pJq ă Tb1pJq. Then TapJq ă TbpJq.

Proof. Observe that for every compact intervals A,B, if C Ă A and D Ă B are compact intervals
then A ă B implies C ă D. Thus, the claim follows by TapJq Ă Ta1pJq and TbpJq Ă Tb1pJq. □

For the finite sequence M pnq “ pM
pnq

1 , . . . ,M
pnq

ln
q and 1 ď ℓ ď ln´1, let σℓM pnq be the ln-length

word such that
σℓM pnq

“ pM
pnq

ℓ`1, . . . ,M
pnq

ln
,M

pnq

1 , . . . ,M
pnq

ℓ q,

with the convention that σlnM pnq “ M pnq. Thus, σℓM pnq can be defined for every ℓ P Z` in a
natural, periodic way.

Lemma 5.5. For every n ě 3 and 1 ď ℓ ď ln ´ 1, TMpnqpJq ă TσℓMpnqpJq.

Proof. Simple calculations show that

(5.6) T3,2,2pJq ă T3,3,3pJq ă T3,3,2pJq ă T2,2,3pJq ă T2,3,3pJq ă T2,3,2pJq.

Clearly for M p3q “ p3, 2, 2q, we have σ1M p3q “ p2, 2, 3q and σ2M p3q “ p2, 3, 2q, and for M p4q “

M p3qM p2qM p2q “ p3, 2, 2, 3, 3q we have

σ1M p4q
“ p2, 2, 3, 3, 3q, σ2M p4q

“ p2, 3, 3, 3, 2q, σ3M p4q
“ p3, 3, 3, 2, 2q, σ4M p4q

“ p3, 3, 2, 2, 3q.

Thus, by Lemma 5.4 and (5.6), the claim follows for n “ 3 and n “ 4.
Let us prove the rest by induction. So suppose that the claim holds for n ě 4.
First, assume that 1 ď ℓ ď ln´1. Then by

(5.7) M pn`1q
“ M pn´1qM pn´2qM pn´2qM pn´1qM pn´1q

and M pnq “ M pn´1qM pn´2qM pn´2q, we get that M pn`1q

k “ M
pn´1q

k “ M
pnq

k for every 1 ď k ď ln´1,
and so σℓM pnq is a prefix of σℓM pn`1q. Since M pnq is a prefix of M pn`1q, we get by the induction
condition TMpnqpJq ă TσℓMpnqpJq that TMpn`1qpJq ă TσℓMpn`1qpJq by Lemma 5.4.

Now, assume that ln´1 ă ℓ ă ln but ℓ ‰ ln´1 ` ln´2. Then by

(5.8) M pn`1q
“ M pn´1qM pn´2qM pn´2qM pn´2qM pn´3qM pn´3qM pn´1q,

we get that σℓ´ln´1M pn´2q is a prefix of σℓM pn`1q. Hence, again by the fact that M pn´2q is a prefix
of M pn`1q and the assumption that TMpn´2qpJq ă TσkMpn´2qpJq for every k R tln´2, 2ln´2, . . .u, the
claim follows by Lemma 5.4.

If ℓ “ ln´1 ` ln´2 then by (5.8), we get that M pn´2qM pn´2q is a prefix of σℓM pn`1q, meanwhile,
if ℓ “ ln´1 ` 2ln´2 “ ln then by (5.7), we get that M pn´1qM pn´1q is a prefix of σℓM pn`1q, thus, the
claim follows by Lemma 5.2.
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Now, suppose that ln ă ℓ ă ln ` ln´1 then by (5.5) we get that σℓ´lnM pn´1q is the prefix
of σℓM pn`1q, and since M pn´1q is a prefix of M pn`1q, the claim follows by Lemma 5.4 and the
induction hypothesis.

If ℓ “ ln ` ln´1 then by (5.5) M pn´1qM pn´1q is a prefix of σℓM pn`1q, thus, the claim again
follows by Lemma 5.2.

Finally, if ln ` ln´1 ă ℓ ă ln ` 2ln´1 “ ln`1 then by (5.5), σℓ´ln´ln´1M pn´1q is a prefix of
σℓM pn`1q, so the claim follows again by the induction condition and Lemma 5.4. □

Proof of Proposition 5.3. For n “ 1 and n “ 2, let

mp1q
“ p2, 2, . . .q and mp2q

“ p3, 3, . . .q.

Since the maps Tm are contractions, we get

lim inf
kÑ8

T
m

pnq

rk,1s

p0q “ lim
kÑ8

T
m

pnq

rk,1s

p0q “ λn,

and so, tλ1, λ2u Ă L.
For every integer n ě 3, let us define the following sequence:

mpnq
“ pM

pnq

ln
, . . . ,M

pnq

1 ,M
pnq

ln
, . . . ,M

pnq

1 , . . .q.

Then by Lemma 2.2, T
m

pnq

rk,1s

p0q P
Ťln´1

ℓ“0 TσℓMpnqpJq for every sufficiently large k. Since the maps

Tm are contractions, we get

lim
kÑ8

T
m

pnq

rkln,1s

p0q “ λn P TMpnqpJq,

furthermore, by Lemma 5.5, TMpnqpJq ă TσℓMpnqpJq for every 1 ď ℓ ď ln ´ 1 and so

λn ă T
m

pnq

rk,1s

p0q for every k R tln, 2ln, . . .u.

Hence, lim infkÑ8 T
m

pnq

rk,1s

p0q “ λn.

The last claim follows by Theorem 2.1 and the fact that λn converges to λ0 as n Ñ 8. □

Proposition 5.6. pλ1,8q X L “ H, and for every n ě 1, pλn`1, λnq X L “ H.

Proof. First, observe that maxL “ λ1. Indeed, this follows by Lemma 4.3(2) with K “ 2, which
implies the first claim.

Let us show that pλn`1, λnq XL “ H. Contrary, let us assume that there exists an integer n ě 1
and x P pλn`1, λnq X L.

Since λn is the fixed point of TMpnq , we have λn P TMpnqMpnqpJq Ă TMpnqpJq. Since L Ă Λ,
where Λ is the attractor of tT2, T3u, and midpTMpn`1qpJq, TMpnqMpnqpJqq Ă pλn`1, λnq, we get
by Lemma 5.2 that either x P TMpnqMpnqpJq or x P TMpn`1qpJq. But by Lemma 5.1(2), if x P

TMpnqMpnqpJq then x ě λn, while if x P TMpn`1qpJq then x ď λn`1 by Lemma 5.1(1), which is a
contradiction. □

Proof of Theorem 2.5. The statement follows by combining Proposition 5.3 and Proposition 5.6.
□
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6. Proof of Theorem 2.4

Proof. It follows from Lemma 4.3(2) that if mn ě 5 for infinitely many n, then lim infkÑ8 Tmrk,1s
p0q

ď 1
6
, thus we may assume without loss of generality that pmiq P t2, 3, 4uZ

` .
If pmk,mk´1q “ p4, 2q for infinitely many k, then pmk,mk´1,mk´2q “ p4, 2, aq for an a P

t2, 3, 4u and for infinitely many k. By Lemma 5.1(1)

lim inf
kÑ8

T p1q
mrk,1s

p0q ď maxtFixpT4 ˝ T2 ˝ Taq : a P t2, 3, 4uu “
3

17
,

so we may assume that pmk,mk´1q ‰ p4, 2q for every k. Thus,

L X

ˆ

3

17
,
1

3

ȷ

Ă tlim inf
nÑ8

Tmrn,1s
p0q : mi P t2, 3, 4u, pmi,mi´1q ‰ p4, 2qu “: S.

If mi P t2, 3, 4u and pmi,mi´1q ‰ p4, 2q, then there are 55 possibilities for pmi,mi´1,mi´2,mi´3q:

A “ tp2, 2, 2, 2q, p2, 2, 2, 3q, p2, 2, 2, 4q, p2, 2, 3, 2q, p2, 2, 3, 3q, p2, 2, 3, 4q, p2, 2, 4, 3q, p2, 2, 4, 4q,

p2, 3, 2, 2q, p2, 3, 2, 3q, p2, 3, 2, 4q, p2, 3, 3, 2q, p2, 3, 3, 3q, p2, 3, 3, 4q, p2, 3, 4, 3q, p2, 3, 4, 4q,

p2, 4, 3, 2q, p2, 4, 3, 3q, p2, 4, 3, 4q, p2, 4, 4, 3q, p2, 4, 4, 4q, p3, 2, 2, 2q, p3, 2, 2, 3q, p3, 2, 2, 4q,

p3, 2, 3, 2q, p3, 2, 3, 3q,p3, 2, 3, 4q, p3, 2, 4, 3q, p3, 2, 4, 4q, p3, 3, 2, 2q, p3, 3, 2, 3q, p3, 3, 2, 4q,

p3, 3, 3, 2q, p3, 3, 3, 3q, p3, 3, 3, 4q, p3, 3, 4, 3q p3, 3, 4, 4q, p3, 4, 3, 2q, p3, 4, 3, 3q, p3, 4, 3, 4q,

p3, 4, 4, 3q, p3, 4, 4, 4q, p4, 3, 2, 2q, p4, 3, 2, 3q, p4, 3, 2, 4q, p4, 3, 3, 2q, p4, 3, 3, 3q, p4, 3, 3, 4q,

p4, 3, 4, 3q, p4, 3, 4, 4q, p4, 4, 3, 2q, p4, 4, 3, 3q, p4, 4, 3, 4q, p4, 4, 4, 3q, p4, 4, 4, 4qu.

Let us consider the IFS Φ “ tTa ˝Tb ˝Tc ˝Td|pa, b, c, dq P Au and let Λ1 be the attractor of Φ. Then
by Lemma 2.2, S Ă Λ1. Moreover, it is easy to check that the sum of the 55 contractions strictly
less than 1, therefore by Lemma 2.1, λpΛ1q “ 0, and so λpL X r 3

17
, 1
3
sq “ 0. □
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