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Abstract. We consider one-parameter families of smooth uniformly contractive iterated function
systems {fλj } on the real line. Given a family of parameter dependent measures {µλ} on the symbolic
space, we study geometric and dimensional properties of their images under the natural projection
maps Πλ. The main novelty of our work is that the measures µλ depend on the parameter, whereas
up till now it has been usually assumed that the measure on the symbolic space is fixed and the
parameter dependence comes only from the natural projection. This is especially the case in the
question of absolute continuity of the projected measure (Πλ)∗µλ, where we had to develop a new
approach in place of earlier attempt which contains an error. Our main result states that if µλ are
Gibbs measures for a family of Hölder continuous potentials φλ, with Hölder continuous dependence
on λ and {Πλ} satisfy the transversality condition, then the projected measure (Πλ)∗µλ is absolutely
continuous for Lebesgue a.e. λ, such that the ratio of entropy over the Lyapunov exponent is strictly
greater than 1. We deduce it from a more general almost sure lower bound on the Sobolev dimension
for families of measures with regular enough dependence on the parameter. Under less restrictive
assumptions, we also obtain an almost sure formula for the Hausdorff dimension. As applications
of our results, we study stationary measures for iterated function systems with place-dependent
probabilities (place-dependent Bernoulli convolutions and the Blackwell measure for binary channel)
and equilibrium measures for hyperbolic IFS with overlaps (in particular: natural measures for non-
homogeneous self-similar IFS and certain systems corresponding to random continued fractions).
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1. Introduction

Let A = {1, . . . ,m} and let Ψ = {fj}j∈A be a set of contracting smooth functions on a compact
interval I ⊂ R mapping I into itself. We call the set Ψ an iterated function system (IFS) on I.
It is well known that there exists a unique non-empty compact set Λ ⊆ I such that it is invariant
with respect to the IFS, that is Λ =

⋃
j∈A fj (Λ). We call the set Λ the attractor of the IFS, see

Hutchinson [17] or Falconer [11].
Moreover, let Ω = AN be the symbolic space and σ the left shift transformation on Ω. There is a

natural projection Π: Ω 7→ Λ defined as

Π(ω) := lim
n→∞

fω1 ◦ · · · ◦ fωn(x), for ω = (ω1, ω2, . . .) ∈ Ω,

where x ∈ I is any point (the limit does not depend on the choice of x). If µ is a probability measure
on Ω then we call the measure Π∗µ = µ ◦ Π−1 on Λ the push-forward measure of µ. Usually, we
assume that µ is σ-invariant and ergodic. Let us denote the entropy of µ by hµ and the Lyapunov
exponent by χµ. The ratio hµ/χµ is called the Lyapunov dimension of µ.

Considerable attention has been paid to the dimension theory and measure theoretic properties of
attractors and push-forward measures of iterated function systems. A natural upper bound for the
Hausdorff and box counting dimension of the attractor is the unique root s of the pressure function
s 7→ P (−s log |f ′ω1

(Π(σω))|) = 0, see the next section for definitions. Ruelle [36] showed that in case
of separation, e.g., the Open Set Condition (OSC), the Hausdorff dimension of the attractor equals
to the root of the pressure function, see also Falconer [10]. Similarly, the Hausdorff dimension of the
push-forward measures is bounded above by the Lyapunov dimension of µ; moreover, if the OSC
holds, then the dimension equals to the Lyapunov dimension of µ, see Feng and Hu [13].

The situation becomes more complicated if there are overlaps between the maps. To handle this
case, Pollicott and Simon [34] introduced the transversality method for parametrized families of
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iterated function systems. Later, this method was widely applied and generalised, see for example,
Solomyak [45, 46], Peres and Solomyak [30, 31], Simon and Solomyak [42], Neunhäuserer [26], Ngai
and Wang [27], and Peres and Schlag [29].

We have a deeper understanding in the special case, when the maps of the IFS are similarities
and the measure µ is Bernoulli, thanks to recent results. In his seminal paper, Hochman [15],
using methods of additive combinatorics, determined the value of the Hausdorff dimension of the
attractor (self-similar set) and the push-forward measure (self-similar measure) under the exponential
separation condition. Relying on this result and the Fourier decay of the push-forward measure,
Shmerkin [39] proved that the exceptional set of parameters for absolute continuity of Bernoulli
convolution measures has zero Hausdorff dimension. These results were extended by Shmerkin and
Solomyak [40] and Saglietti, Shmerkin and Solomyak [37] to more general IFS of similarities and
Bernoulli measures. Further progress on absolute continuity of Bernoulli convolutions was obtained
by Varjú [48]. Jordan and Rapaport [19] showed that the dimension of the push-forward measure of
any ergodic shift-invariant measure equals to the entropy over Lyapunov exponent ratio under the
exponential separation condition. However, such strong results are unknown in the case when the
IFS consists of general conformal maps.

Simon, Solomyak and Urbański [43, 44] showed that if a smoothly parametrized (hyperbolic or
parabolic) family of conformal IFS’s {fλi }i∈A satisfies the transversality condition over a bounded
open domain U of parameters, then for Lebesgue almost every parameter λ ∈ U the dimension of
the attractor equals to min{1, sλ}, where sλ is the root of the pressure function, which depends on
the parameter. Moreover, it has positive Lebesgue measure for almost every parameter, such that
sλ > 1. Similarly, the dimension of the push-forward measure of any fixed ergodic shift-invariant
measure µ is equal to the Lyapunov dimension of µ, and the measure is absolutely continuous for
almost every parameter where hµ/χµ > 1. Peres and Schlag [29] obtained upper bounds on the
Hausdorff dimension of the set of exceptional parameters using a version of transversality, in the
framework of a “generalized projection”. All these results required a fixed ergodic shift-invariant
measure on Ω. However, there are important cases when the measure on Ω depends also on the
parameter λ. There are two natural occurrences of such situation.

One is the so-called place-dependent measures, which were studied by Fan and Lau [12], Hu, Lau
and Wang [16], Jaroszewska [18], Jaroszewska and Rams [19], Kwiecińska and W. Słomczyński [22],
Czudek [8] and others. Let {pi}i∈A be a family of Hölder continuous maps pi : I 7→ [0, 1] such that∑

i∈A pi ≡ 1. Fan and Lau [12] showed that there exists a unique measure ν on I such that
ˆ
ϕ(x)dν(x) =

ˆ ∑
i∈A

pi(x)ϕ(fi(x))dν(x) for any continuous test function ϕ.

In view of a result by Bowen [6], it is clear that ν is the push-forward of the equilibrium measure µ
(on the symbolic space AN) of the pressure corresponding to the potential ω 7→ log pω1(Π(σω)). It
is shown in [12] that if the open set condition holds, then the dimension of ν equals hµ

χµ
. In the case

of parametrized family {fλi }i∈A the equilibrium measure depends on the parameter.
Bárány [1] studied such parametrized place-dependent families and claimed to generalise the result

of [44] for this case. However, the proof contains a crucial error, which cannot be fixed easily. In
the present paper we have managed to overcome the obstacles and correct the error, using a delicate
modification of the Peres-Schlag [29] method. In fact, our results are much more general. Here we
state the main result in the most important situation, in non-technical terms; complete statements
may be found in Section 3.
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Theorem 1.1. Let {fλj }j∈A be a C2+δ smooth family of hyperbolic IFS on a compact interval,
smoothly depending on a real parameter λ ∈ U , and let Πλ : Ω → R be the corresponding natural
projection map. We assume that the (classical) transversality condition holds on U . Let {µλ}λ∈U
be a family of Gibbs measures, corresponding to a family of Hölder-continuous potentials, with a
Hölder-continuous dependence on parameter. Then the push-forward measure (Πλ)∗µλ is absolutely
continuous for Lebesgue-a.e. λ ∈ U such that hµλ/χµλ > 1.

We also showed, under slightly less restrictive assumptions, that the push-forward measure (Πλ)∗µλ
has Hausdorff dimension equal to min{1, hµλ/χµλ} almost everywhere in U . The proof of this result
is not as difficult, similar to Bárány-Rams [7], and is included for completeness.

Place-dependent measures play an important role, for example, in the theory of hidden Markov
chains. Blackwell [5] expressed the entropy of hidden Markov chains over finite state space as
an integral with respect to a place-dependent measure, which is nowadays called the Blackwell
measure. The singularity of the Blackwell measure was studied by Bárány, Pollicott and Simon
[3]. Later, Bárány and Kolossváry [2] showed that the transversality condition holds on a certain
region of parameters and applied the main theorem of Bárány [1] to claim absolute continuity almost
everywhere in this region. Since the Blackwell measure satisfies the assumptions of the main result
of the present paper, we recover this result of Bárány and Kolossváry [2].

Another important case, when the parameter dependence of the measure occurs, is the natural
measure of the parametrized IFS {fλi }i∈A, which is the equilibrium measure νλ with respect to
the potential ω 7→ sλ log |(fλω1

)′(Πλ(σω))|. See [35] for more on the subject. In case of overlaps,
neither the dimension nor the absolute continuity was known. Our result applies in this situation
as well. In particular, it follows that a natural measure for non-homogeneous self-similar IFS is
absolutely continuous for almost every parameter with similarity dimension strictly larger than 1, in
the transversality region (such regions were found e.g. for non-homogeneous Bernoulli convolutions,
see [26, 27]). A similar conclusion is obtained for a (non-linear) system corresponding to certain
random continued fractions.

1.1. About the proof. In order to prove “almost-sure” results for push-forwards of measures µλ
depending on parameter, we need to impose “correct” continuity assumptions on the measure, which
are, on one hand, sufficiently strong to apply the techniques, but on the other hand, can be verified
in practice. These continuity assumptions are imposed on measures of cylinder sets and involve
estimates of the ratios µλ([w])/µλ0([w]) for λ close to λ0. For the result on Hausdorff dimension
of the push-forward measure, the condition is less restrictive, see (M0) below, and we could apply
more or less “classical” transversality techniques, since roughly speaking, we can “afford” to lose ε in
dimension estimates.

The results on absolute continuity are much more delicate. The idea is to adapt the method of
Peres-Schlag [29] and to show that almost everywhere in the super-critical parameter interval, the
Sobolev dimension of the push-forward measure is greater than one. This implies not just absolute
continuity, but also L2-density and even existence of L2-fractional derivatives of some positive order.
This adaptation is not straightforward. First, [29] uses the notion of transversality of degree β, which
has to be verified in our situation. Second, we cannot apply the result of [29] as a “black box”, but
rather have to work at a certain “discretized” level, in order to utilize the continuity assumptions
on the measure dependence, see (M) below. It should be mentioned that Peres-Schlag [29] used
their theorem on Sobolev dimension to estimate the Hausdorff dimension of the set of exceptional
parameters for absolute continuity. We do not deal with this issue and only concern ourselves with
almost sure absolute continuity. We should also point out that [29] contains two kinds of results: the
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infinite regularity case and the limited regularity case. It is the latter one (in fact, with the lowest
possible regularity) that we adapt.

Another issue that comes up is that absolute continuity by the Peres-Schlag method is originally
shown under the assumption that the correlation dimension of the measure µλ is greater than one
(in the metric corresponding to λ), which is a stronger condition, in general, than hµλ/χµλ > 1. The
usual approach to overcome this is to restrict the measure to a “Egorov set”, where the convergence
in the definitions of the entropy and the Lyapunov exponent is uniform. This works fine when we
consider the push-forward of a fixed measure, but in our case this is more delicate, since we have
to guarantee that (M) is preserved under the restriction. Here we manage to overcome the obstacle
with the help of large deviations estimates for Gibbs measures (see [49, 9, 28]).

1.2. Organization of the paper. In the next section we collect all the main assumptions, defini-
tions and notation. In Section 3 we state our main results. In fact, we state two results on almost
sure absolute continuity: in the first one we don’t make the assumption that µλ is a family of Gibbs
measure and only assume what is needed to prove almost sure absolute continuity in the parameter
interval where the correlation dimension is greater than one. The second one is the sharp result for
Gibbs measures. Section 4 is devoted to preliminaries, mainly the regularity properties of the IFS
and the parameter dependence. Shorter proofs are included in this section, but longer and more
technical calculations are postponed to the Appendices. In Section 5 we prove the theorem on the
Hausdorff dimension of the push-forward measures. In Section 6 we verify that the transversality
of degree β condition of Peres-Schlag holds under our “standard” transversality assumptions, given
sufficient regularity. The “heart” of the proof, namely, the adaptation of a discretized Peres-Schlag
method, where transversality condition is used, is contained in Section 7. Section 8 is devoted to the
case of Gibbs measures: first we show that under the continuity assumptions on the potential, the
Gibbs measures satisfy (M), and then use large deviation estimates to extract “large submeasures”
still satisfying (M), but with correlation dimension arbitrary close to hµλ/χµλ . After that, it only
remains to collect the pieces to complete the proof of the main results; this is done in Section 9.
Section 10 is devoted to applications. There we also present a sufficient condition for transversality
to hold for "vertical" translation families of the form fλj (x) = fj(x) + aj(λ). Last, but not least,
Section 11 contains some open questions and possible directions for further research.

1.3. Acknowledgements. Balázs Bárány and Károly Simon acknowledge support from grants
OTKA K123782 and OTKA FK134251. Boris Solomyak and Adam Śpiewak acknowledge support
from the Israel Science Foundation, grant 911/19.

2. Assumptions, notation and definitions

LetA = {1, . . . ,m} and suppose we have an IFS {fλj }j∈A on a compact intervalX ⊂ R, depending
on a parameter λ ∈ U ⊂ R with U being an open and bounded interval. Let diam(X) = 1 for
simplicity. We assume that there exists δ ∈ (0, 1] such that

(A1) the maps fλj are C2+δ-smooth on X with M1 = sup
λ∈U

sup
j∈A

{∥∥∥ d2

dx2
fλj

∥∥∥
∞

}
< ∞ and there exist

constants C1, C2 > 0 such that∣∣∣∣ d2

dx2
fλj (x)− d2

dx2
fλj (y)

∣∣∣∣ ≤ C1|x− y|δ and
∣∣∣∣ d2

dx2
fλ1j (x)− d2

dx2
fλ2j (x)

∣∣∣∣ ≤ C2|λ1 − λ2|δ

hold for all x, y ∈ X, j ∈ A, λ, λ1, λ2 ∈ U .
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(A2) the maps λ 7→ fλj (x) are C1+δ-smooth on U and there exists a constant C3 > 0 such that∣∣∣∣ ddλfλ1j (x)− d

dλ
fλ2j (x)

∣∣∣∣ ≤ C3|λ1 − λ2|δ

holds for all x ∈ X, j ∈ A, λ1, λ2 ∈ U .

(A3) the second partial derivatives d2

dxdλf
λ
j (x), d2

dλdxf
λ
j (x) exist and are continuous on U×X (hence

equal) with M2 = sup
j∈A

sup
λ∈U

∥∥∥ d2

dλdxf
λ
j (x)

∥∥∥
∞
< ∞ and there exist constants C4, C5 > 0 such

that∣∣∣∣ d2

dxdλ
fλj (x)− d2

dxdλ
fλj (y)

∣∣∣∣ ≤ C4|x− y|δ and
∣∣∣∣ d2

dxdλ
fλ1j (x)− d2

dxdλ
fλ2j (x)

∣∣∣∣ ≤ C5|λ1 − λ2|δ

hold for all x, y ∈ X, j ∈ A, λ, λ1, λ2 ∈ U .

(A4) the system {fλj }j∈A is uniformly hyperbolic and contractive: there exists γ1, γ2 > 0 such
that

0 < γ1 ≤ |( d
dxf

λ
j )(x)| ≤ γ2 < 1 holds for all j ∈ A, x ∈ X, λ ∈ U.

Let Ω = AN and let σ denote the left shift on Ω. Let Ω∗ =
⋃
n≥0
An be the set of finite words over A

and let |u| be the length of u. For u = (u1, . . . un) ∈ Ω∗ denote

fλu = fλu1...un := fλu1 ◦ . . . ◦ f
λ
un

(with fu = id if u is an empty word) and let Πλ : Ω→ X, λ ∈ U

Πλ(u) = lim
n→∞

fλu1...un(x0) for u ∈ Ω

be the natural projection (it does not depend on the choice of x0 ∈ X). For u ∈ Ω∗ ∪ Ω let
u|n = (u1, . . . , un) denote the restriction of u to the first n coordinates. For u = (u1, . . . , un) ∈ Ω∗

and 0 ≤ k ≤ |u| let σku = (uk+1, . . . , un). For u, v ∈ Ω let u ∧ v = (u1, . . . , un), where n = sup{k ≥
1 : uk = vk}, i.e. u ∧ v is the common prefix of u and v. For u ∈ Ω∗ let [u] = {ω ∈ Ω : ω||u| = u} be
the cylinder corresponding to u.

We will assume that the following transversality condition is satisfied for λ ∈ U :

(T) ∃ η > 0 : ∀u, v ∈ Ω, u1 6= v1,
∣∣Πλ(u)−Πλ(v)

∣∣ < η =⇒
∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ η.
In our setting, transversality condition (T) is equivalent to other transversality conditions appear-

ing in the literature - see Section 10.6 and Lemma 10.7 for details.
Let {µλ}λ∈U be a collection of finite Borel measures on Ω. We will consider two continuity

assumptions on µλ:

(M0) for every λ0 and every ε > 0 there exist C, ξ > 0 such that

C−1e−ε|ω|µλ0([ω]) ≤ µλ([ω]) ≤ Ceε|ω|µλ0([ω])

holds for every ω ∈ Ω∗, |ω| ≥ 1 and λ ∈ U with |λ− λ0| < ξ;

(M) there exists c > 0 and θ ∈ (0, 1] such that for all ω ∈ Ω∗, |ω| ≥ 1, and all λ, λ′ ∈ U ,

e−c|λ−λ
′|θ|ω|µλ′([ω]) ≤ µλ([ω]) ≤ ec|λ−λ′|θ|ω|µλ′([ω]).
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Note that (M) implies (M0).
For a compact metric space (X, d), let M(X) denote the set of finite Borel measures on X and

P(X) the set of Borel probability measures on X. For µ ∈M(X) and α > 0, define the α-energy as

(2.1) Eα(µ, d) =

ˆ ˆ
d(x, y)−αdµ(x)dµ(y).

Define the correlation dimension of µ with respect to the metric d as

dimcor(µ, d) = sup{α > 0 : Eα(µ, d) <∞}.

For a Borel measure ν on R, the Fourier transform of ν is given by ν̂(ξ) =
´
eiξxdν(x). For a finite

Borel measure ν and γ ∈ R, we define the homogenous Sobolev norm as

‖ν‖22,γ =

ˆ

R

|ν̂(ξ)|2|ξ|2γdξ

and the Sobolev dimension

dimS(ν) = sup

α ∈ R :

ˆ

R

|ν̂(ξ)|2(1 + |ξ|)α−1dξ <∞

 .

Note that 0 ≤ dimS(ν) ≤ ∞ andˆ

R

|ν̂(ξ)|2(1 + |ξ|)α−1dξ <∞ ⇐⇒
ˆ

R

|ν̂(ξ)|2|ξ|α−1dξ = ‖ν‖2
2,α−1

2

<∞

for α > 0 (see [24, Section 5.2]). If 0 < dimS(ν) < 1, then dimS(ν) = dimcor(ν), where the
correlation dimension is taken with respect to the standard metric on R. If dimS(ν) > 1, then ν

is absolutely continuous with a density (Radon-Nikodym derivative) in L2(R), and moreover ν has
fractional derivatives in L2 of some positive order – see [24, Theorem 5.4]

For an IFS {fλj }j∈A and a family of shift-invariant and ergodic probability measure µλ on Ω, let
hµλ be the entropy of µλ defined as

hµλ = − lim
n→∞

1

n

∑
ω∈An

µλ([ω]) logµλ([ω])

and let χµλ be the Lyapunov exponent of µλ given by

χµλ = −
ˆ

Ω

log

∣∣∣∣(fλω1

)′
(Πλ(σω))

∣∣∣∣ dµλ(ω).

For λ ∈ U we define a metric dλ on Ω by

(2.2) dλ(u, v) =
∣∣∣fλu∧v(X)

∣∣∣ for u, v ∈ Ω.

Let φ : Ω → R be a continuous function on the symbolic space Ω. A shift-invariant ergodic
probability measure µ on Ω is called a Gibbs measure of the potential φ if there exists P ∈ R and
CG ≥ 1 such that for every ω ∈ Ω and n ∈ N, holds the inequality

C−1
G ≤ µ([ω|n])

exp(−Pn+
n−1∑
k=0

φ(σkω))

≤ CG.

It is known that if φ is Hölder continuous, then there exists a unique Gibbs measure of φ (see [6]).
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3. Main results

Theorem 3.1. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) - (A4)
and the transversality condition (T) on U . Let {µλ}λ∈U be a collection of finite ergodic shift-invariant
Borel measures on Ω satisfying (M0), such that hµλ and χµλ are continuous in λ. Then equality

dimH((Πλ)∗µλ) = min

{
1,
hµλ
χµλ

}
holds for Lebesgue almost every λ ∈ U .

The most general version of our main result is the following:

Theorem 3.2. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) - (A4)
and the transversality condition (T) on U . Let {µλ}λ∈U be a collection of finite Borel measures on
Ω satisfying (M). Then

dimS((Πλ)∗µλ) ≥ min {dimcor(µλ, dλ), 1 + min{δ, θ}}

holds for Lebesgue almost every λ ∈ U , where dλ is the metric on Ω defined in (2.2) and δ, θ are
from assumptions (A1)-(A4) and (M) respectively. Consequently, (Πλ)∗µλ is absolutely continuous
with a density in L2 for Lebesgue almost every λ in the set {λ ∈ U : dimcor(µλ, dλ) > 1}.

In the special case of Gibbs measures for potentials with Hölder continuous dependence on the
parameter, we get the following:

Theorem 3.3. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) - (A4)
and the transversality condition (T) on U . Let {µλ}λ∈U be a family of Gibbs measures on Ω corre-
sponding to a family of continuous potentials φλ : Ω 7→ R such that there exists 0 < α < 1 and b > 0

with

(3.1) sup
λ∈U

vark(φ
λ) ≤ bαk,

where vark(φ) = sup{|φ(ω1)− φ(ω2)| : |ω1 ∧ ω2| = k}. Moreover, suppose that there exist constants
c0 > 0 and θ > 0 such that

(3.2) |φλ(ω)− φλ′(ω)| ≤ c0|λ− λ′|θ for every ω ∈ Ω and λ, λ′ ∈ U .

Then {µλ}λ∈U satisfies (M), hence conclusions of Theorem 3.2 hold (with θ as in (3.2)). Further-
more, (Πλ)∗µλ is absolutely continuous for Lebesgue almost every λ in the set {λ ∈ U :

hµλ
χµλ

> 1}.

4. Preliminaries

Throughout this section we assume that we are given an IFS {fλj }j∈A satisfying (A1) - (A4)
for some δ ∈ (0, 1]. We state several auxiliary results concerning regularity properties of the IFS
{fλj }j∈A and the natural projection Πλ, which will be used in subsequent sections. As some of the
proofs are lengthy, yet standard in techniques, we postpone them partially to the Appendix.

Lemma 4.1. There exist constants C51 > 0 and C52 > 0 such that

(4.1)
∣∣∣∣ d2

dx2
fλu (x)

∣∣∣∣ ≤ C51

∣∣∣∣ ddxfλu (x)

∣∣∣∣
and

(4.2)
∣∣∣∣ d2

dλdx
fλu (x)

∣∣∣∣ ≤ C52|u|
∣∣∣∣ ddxfλu (x)

∣∣∣∣
8



hold for all λ ∈ U, x ∈ X, u ∈ Ω∗.

Proof. See Appendix A. �

Lemma 4.2 (Parametric bounded distortion property). There exist constants c62 > 0, C62 > 1

such that inequality

(4.3)
1

C62
e−c62|λ1−λ2||u| ≤

∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ ddxfλ2u (y)
∣∣∣ ≤ C62e

c62|λ1−λ2||u|

holds for all λ1, λ2 ∈ U, x, y ∈ X, u ∈ Ω∗.

Proof. First, let us prove the inequality with λ1 = λ2. For u = (u1, . . . , un) ∈ Ω∗, applying (A1)
and (A4), together with inequality log x

y ≤
|x−y|

min{x,y} for x, y > 0 yields

log

∣∣ d
dxf

λ
u (x)

∣∣∣∣ d
dxf

λ
u (y)

∣∣ =

n∑
k=1

log

∣∣∣∣∣
(
d
dxf

λ
uk

)
(fλ
σku

x)(
d
dxf

λ
uk

)
(fλ
σku

y)

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣ ∣∣( ddxfλuk) (fλ
σku

x)
∣∣− ∣∣( ddxfλuk) (fλ

σku
y)
∣∣ ∣∣∣

min
{∣∣( d

dxf
λ
uk

)
(fλ
σku

x)
∣∣ , ∣∣( ddxfλuk) (fλ

σku
y)
∣∣}

≤ 1

γ1

n∑
k=1

∣∣∣∣( d

dx
fλuk

)
(fλσkux)−

(
d

dx
fλuk

)
(fλσkuy)

∣∣∣∣ ≤ M1

γ1

n∑
k=1

∣∣∣fλσkux− fλσkuy∣∣∣
≤ M1

γ1

n∑
k=1

γn−k2 |x− y| ≤ M1diam(X)

γ1(1− γ2)
<∞.(4.4)

Therefore, (4.3) holds for λ1 = λ2 with some constant C62 > 1. Fix now λ1, λ2 ∈ U . By the mean
value theorem we have

log

∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ ddxfλ2u (x)
∣∣∣ ≤

∣∣∣∣log

∣∣∣∣ ddxfλ1u (x)

∣∣∣∣− log

∣∣∣∣ ddxfλ2u (x)

∣∣∣∣∣∣∣∣ =

∣∣∣ d2

dλdxf
ξ
u(x)

∣∣∣∣∣∣ ddxf ξu(x)
∣∣∣ |λ1 − λ2|

for some ξ between λ1 and λ2. Applying (4.2) we obtain

(4.5) log

∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ ddxfλ2u (x)
∣∣∣ ≤ C62|u||λ1 − λ2|.

Combining (4.4) with (4.5) finishes the proof. �

The following proposition implies that, in the language of [29, Section 4.2], the natural projection
Πλ belongs to the class C1,δ(U).

Proposition 4.3. There exists a constant Cδ > 0 such that∣∣∣∣ ddλΠλ1(u)− d

dλ
Πλ2(u)

∣∣∣∣ ≤ Cδ|λ1 − λ2|δ

holds for all λ1, λ2 ∈ U and u ∈ Ω.

Proof. Fix u = (u1, u2, . . .) ∈ Ω, y ∈ X and let Fn(λ) = fλu1 ◦ · · · ◦ f
λ
un(y) for λ ∈ U . It is clear from

(A4) that Fn(λ) converge to Πλ uniformly on U . Therefore, by Lemma B.1, it is enough to show
that d

dλFn is uniformly convergent. It is sufficient to show

(4.6)
∞∑
n=1

∥∥∥∥ ddλFn+1 −
d

dλ
Fn

∥∥∥∥
∞
<∞.

9



We have
d

dλ
Fn+1(λ) =

(
d

dx
fλu1...un(fλun+1

(y))

)
·
(
d

dλ
fλun+1

(y)

)
+

(
d

dλ
fλu1...un

)(
fλun+1

(y)
)
.

Consequently, by (A4) and (4.2)∣∣∣∣ ddλFn+1 −
d

dλ
Fn

∣∣∣∣ ≤ ∣∣∣∣( d

dx
fλu1...un(fλun+1

(y))

)
·
(
d

dλ
fλun+1

(y)

)∣∣∣∣+∣∣∣∣( d

dλ
fλu1...un

)(
fλun+1

(y)
)
−
(
d

dλ
fλu1...un

)
(y)

∣∣∣∣
≤ γn2 sup

λ∈U

∣∣∣∣ ddλfλun+1
(y)

∣∣∣∣+ sup
λ∈U

∥∥∥∥ d2

dxdλ
fλu1...un

∥∥∥∥
∞
|fλun+1

(y)− y|

≤ γn2 sup
λ∈U

∣∣∣∣ ddλfλun+1
(y)

∣∣∣∣+ 2C52n sup
λ∈U

∥∥∥∥ ddxfλu1...un
∥∥∥∥
∞

≤
(

sup
λ∈U

∣∣∣∣ ddλfλun+1
(y)

∣∣∣∣+ 2C52

)
nγn2 .

As sup
λ∈U

∣∣∣ ddλfλun+1
(y)
∣∣∣ <∞ by (A2), we have proved (4.6). �

Lemma 4.4. For every β > 0 and λ0 there exist constants ξ > 0 and 0 < c1 < 1 such that

c1dλ0(u, v)1+β/4 ≤
∣∣∣∣ ddxfλu∧v(x)

∣∣∣∣ ≤ 1

c1
dλ0(u, v)1−β/4

holds for all x ∈ X,u, v ∈ Ω and λ ∈ U with |λ− λ0| < ξ.

Proof. Let n = |u∧v|. Note that by the mean value theorem dλ0(u, v) = | ddxf
λ0
u∧v(y)| for some y ∈ X

(recall that we assume diam(X) = 1). Therefore, Lemma 4.2 implies

(4.7)
1

C62
e−c62|λ−λ0|n ≤

∣∣∣∣∣ ddxfλu∧v(x)

dλ0(u, v)

∣∣∣∣∣ ≤ C62e
c62|λ−λ0|n.

On the other hand, by (A4),
dλ0(u, v) ≤ γn2 ,

hence
c1dλ0(u, v)β/4 ≤ c1γ

nβ/4
2 ≤ 1

C62
e−c62|λ−λ0|n,

where the second inequality holds for all n ∈ N provided that c1 and |λ − λ0| are small enough.
Combining this with (4.7) finishes the proof. �

The following proposition implies that the natural projection Πλ is 1, δ-regular, as defined in [29,
Section 4.2]

Proposition 4.5. For every β > 0 and λ0 there exist constants Cβ,1, Cβ,1,δ > 0 such that inequalities

(4.8)
∣∣∣∣ ddλ (Πλ(u)−Πλ(v)

)∣∣∣∣ ≤ Cβ,1dλ0(u, v)1−β

and

(4.9)
∣∣∣∣ ddλ (Πλ1(u)−Πλ1(v)

)
− d

dλ

(
Πλ2(u)−Πλ2(v)

)∣∣∣∣ ≤ Cβ,1,δ|λ1 − λ2|δdλ0(u, v)1−β

hold for all u, v ∈ Ω and λ, λ1, λ2 ∈ U close enough to λ0.

Proof. See Appendix C. �
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5. Proof of Theorem 3.1

The argument follows closely the proof of [7, Theorem 4.2] (note that we do not assume measures
µλ to be quasi-Bernoulli), extending the method of [44] to the case of parameter dependent measures.

The key step in the proof of Theorem 3.1 is the following proposition.

Proposition 5.1. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) -
(A4) and the transversality condition (T) on U . Let {µλ}λ∈U be a collection of finite ergodic shift-
invariant Borel measures on Ω satisfying (M0), such that hµλ and χµλ are continuous in λ. Then
for every λ0 ∈ U and every ε > 0 there exists an open neighbourhood U ′ of λ0 such that

dimH((Πλ)∗µλ) ≥ min

{
1,
hµλ0
χµλ0

}
− ε

holds for Lebesgue almost every λ ∈ U ′.

Proof. Fix λ0 ∈ U, ε > 0 and ε′ > 0. By the Shannon-McMillan-Breiman theorem and Birkhoff’s
ergodic theorem applied to the function Ω 3 ω 7→ − log

∣∣f ′ω1
(Πλ(σω))

∣∣, we have that

1

n
logµλ([ω|n])→ −hµλ for µλ-a.e. ω ∈ Ω

and
1

n
log

∣∣∣∣(fλω|n)′ (Πλ(σnω))

∣∣∣∣→ −χµλ for µλ-a.e. ω ∈ Ω,

hold for every λ ∈ U . By Egorov’s theorem, for every λ ∈ U there exists Cλ > 0 and a Borel set
Aλ ⊂ Ω with µλ(Aλ) > 1− ε′, such that

(5.1) C−1
λ e−n(hµλ+ε) ≤ µλ([ω|n]) ≤ Cλe−n(hµλ−ε)

and

(5.2) C−1
λ e−n(χµλ+ε) ≤

∣∣∣∣(fλω|n)′ (Πλ(σnω))

∣∣∣∣ ≤ Cλe−n(χµλ−ε)

hold for every ω ∈ Aλ and n ≥ 1. Let ξ > 0 be such that (M0) holds and |hµλ − hµλ0 | < ε,
|χµλ − χµλ0 | < ε, c62|λ − λ0| < ε for |λ − λ0| < ξ (c62 is the constant from Lemma 4.2), and set
U ′ = B(λ0, ξ) ∩ U . By Lusin’s theorem, there exists C̃ > 0 and a Borel set Uε′ ⊂ U ′ containing λ0

such that
Leb(U ′ \ Uε′) < ε′ and Cλ ≤ C̃ for λ ∈ Uε′ .

Now let

A =

{
ω ∈ Ω : ∀

n≥1
C−1C̃−1e

−n(hµλ0
+2ε) ≤ µλ0([ω|n]) ≤ CC̃e−n(hµλ0

−2ε) and

C−1
62 C̃

−1e
−n(χµλ0

+2ε) ≤
∣∣∣∣(fλ0ω|n)′ (Πλ0(σnω))

∣∣∣∣ ≤ C62C̃e
−n(χµλ0

−2ε)

}
.

It follows from (5.1), (5.2), the choice of ξ and Lemma 4.2 that for each λ ∈ Uε′ we have Aλ ⊂ A,
hence µλ(A) > 1− ε′. Let µ̃λ = µλ|A. Note that the set A does not depend on λ. Define

An = {u ∈ An : there exists ω ∈ A with u = ω|n}.

Note that if u /∈ An, then [u] ∩A = ∅, hence µ̃λ([u]) = 0. If u ∈ An, then

(5.3) C−1C̃−1e
−n(hµλ0

+2ε) ≤ µλ0([u]) ≤ CC̃e−n(hµλ0
−2ε)

11



and

(5.4) C̃−1C−2
62 e

−n(χµλ0
+3ε) ≤

∣∣∣∣(fλu)′ (x)

∣∣∣∣ ≤ C̃C2
62e
−n(χµλ0

−3ε)

hold for any x ∈ X by Lemma 4.2. Fix 0 < s < 1 and consider the integral

I =

ˆ

Uε′

ˆ

Ω

ˆ

Ω

∣∣∣Πλ(ω1)−Πλ(ω2)
∣∣∣−s dµ̃λ(ω1) dµ̃λ(ω2) dλ.

If I <∞, then by Frostman’s lemma [11, Theorem 4.13] we have dimH((Πλ)∗µλ) ≥ dimH((Πλ)∗µ̃λ) ≥
s for Lebesgue almost every λ ∈ Uε′ . By (5.4),

I =

ˆ

Uε′

∞∑
n=0

∑
u∈An

∑
a,b∈A
a6=b

¨

[ua]×[ub]

∣∣∣fλu (Πλ(σnω1)
)
− fλu

(
Πλ(σnω2)

)∣∣∣−s dµ̃λ(ω1) dµ̃λ(ω2) dλ

≤ C̃sC2s
62

ˆ

Uε′

∞∑
n=0

e
ns(χµλ0

+3ε)
∑
u∈An

∑
a,b∈A
a6=b

¨

[ua]×[ub]

∣∣∣Πλ(σnω1)−Πλ(σnω2)
∣∣∣−s dµ̃λ(ω1) dµ̃λ(ω2) dλ.

For m ≥ 0 set

Bλ
m = {(ω1, ω2) ∈ Ω× Ω :

∣∣∣Πλ(ω1)−Πλ(ω2)
∣∣∣ ≤ 2−m}

and note that

(5.5)
∣∣∣Πλ(ω1)−Πλ(ω2)

∣∣∣−s ≤ ∞∑
m=0

2s(m+1)1Bλm(ω1, ω2).

Indeed, if Πλ(ω1) = Πλ(ω2), then the right-hand side is divergent. Otherwise, there exists m ≥ 0

such that 2−(m+1) <
∣∣Πλ(ω1)−Πλ(ω2)

∣∣ ≤ 2−m, hence
∣∣Πλ(ω1)−Πλ(ω2)

∣∣−s ≤ 2s(m+1)1Bλm(ω1, ω2).
For m ≥ 0 let k = k(m) be minimal such that γk2 ≤ 2−(m+1), so k ≤ Q(m + 1) for a constant
Q = d log 2

− log γ2
e. Let

Dλ
m = {(ω1, ω2) ∈ Ω× Ω :

∣∣∣Πλ(ω1|k1∞)−Πλ(ω2|k1∞)
∣∣∣ ≤ 2−(m−1)},

where 1∞ denotes the infinite sequence in Ω formed by the symbol 1 ∈ A. Note that by (A4) and
the choice of k, we have Bλ

m ⊂ Dλ
m. Moreover, Dλ

m is a union of cylinders of length k. Applying this
12



together with (5.5) and (M0) for λ ∈ Uε′ yields¨

[ua]×[ub]

∣∣∣Πλ(σnω1)−Πλ(σnω2)
∣∣∣−s dµ̃λ(ω1) dµ̃λ(ω2)

≤
∞∑
m=0

2(m+1)s

¨

[ua]×[ub]

1Bλm(σnω1, σ
nω2) dµ̃λ(ω1) dµ̃λ(ω2)

≤ 2s
∞∑
m=0

2ms
¨

[ua]×[ub]

1Dλm(σnω1, σ
nω2) dµ̃λ(ω1) dµ̃λ(ω2)

= 2s
∞∑
m=0

2ms
∑

l,p∈Ak−1

µ̃λ ([ual]) µ̃λ ([ubp])1Dλm(al1∞, bp1∞)

≤ C22s
∞∑
m=0

2mse2ε(n+Q(m+1))
∑

l,p∈Ak−1

µλ0 ([ual])µλ0 ([ubp])1Dλm(al1∞, bp1∞)

= C22se2εQ
∞∑
m=0

2mse2ε(n+Qm)

¨

[ua]×[ub]

1Dλm(σnω1, σ
nω2) dµλ0(ω1) dµλ0(ω2).

Moreover, transversality condition (T) implies that for (ω1, ω2) ∈ [ua]× [ub] with a 6= b we have (we
use here an equivalent condition (10.8), see Lemma 10.7)

ˆ

Uε′

1Dλm(σnω1, σ
nω2) dλ ≤ L1

{
λ ∈ U : |Πλ(σnω1)−Πλ(σnω2)| ≤ 2−(m−1)

}
≤ CT 2−(m−1)

for some constant CT (depending only on the IFS). Applying both of the above calculations to I,
changing the order of integration, and applying (5.3), we obtain, setting C70 = C̃sC2s

62C
2CT 2s+1 and

C71 = C̃CC70,

I ≤ C70e
2εQ

∞∑
n=0

e
n
(
s(χµλ0

+3ε)+2ε
) ∑
u∈An

∑
a,b∈A
a6=b

∞∑
m=0

2m(s−1)e2εQmµλ0 ([ua])µλ0 ([ub])

≤ C70e
2εQ

∞∑
n=0

e
n
(
s(χµλ0

+3ε)+2ε
) ∑
u∈An

µλ0 ([u])2
∞∑
m=0

2m(s−1)e2εQm

≤ C71e
2εQ

∞∑
n=0

e
n
(
s(χµλ0

+3ε)−hµλ0 +4ε
) ∑
u∈An

µλ0 ([u])
∞∑
m=0

2m(s+Q′ε−1)

≤ C71e
2εQ

∞∑
n=0

e
n
(
s(χµλ0

+3ε)−hµλ0 +4ε
) ∞∑
m=0

2m(s+Q′ε−1),

where Q′ = 2Q log2 e. Therefore, I <∞ provided s+Q′ε < 1 and s <
hµλ0

−4ε

χµλ0
+3ε . Consequently,

dimH((Πλ)∗µλ) ≥ dimH((Πλ)∗µ̃λ) ≥ min

{
1−Q′ε,

hµλ0 − 4ε

χµλ0 + 3ε

}
for Leb -a.e. λ ∈ Uε′ .

As ε′ can be taken arbitrary small, the proof is finished. �
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We can now finish the proof of Theorem 3.1. As dimH((Πλ)∗µλ) ≤ min
{

1,
hµλ
χµλ

}
(see [47, Theorem

3.1 and Remark 3.2]), it is enough to prove that dimH((Πλ)∗µλ) ≥ min
{

1,
hµλ
χµλ

}
holds almost surely.

Assume that this is not the case. Then, there exists ε > 0 such that the set

A =

{
λ ∈ U : dimH((Πλ)∗µλ) < min

{
1,
hµλ
χµλ

}
− ε
}

has positive Lebesuge measure. Let λ0 be a density point of A. By the continuity of λ 7→ hµλ , λ 7→
χµλ and χµλ > 0 (following from (A4)), we obtain that λ 7→ min

{
1,

hµλ
χµλ

}
is continuous as well.

Therefore, there exists an open neighbourhood U ′ of λ0 such that

min

{
1,
hµλ
χµλ

}
≤ min

{
1,
hµλ0
χµλ0

}
+
ε

2
for λ ∈ U ′.

By Proposition 5.1 we can also assume that

dimH((Πλ)∗µλ) ≥ min

{
1,
hµλ0
χµλ0

}
− ε

2
for Leb -a.e. λ ∈ U ′,

hence

dimH((Πλ)∗µλ) ≥ min

{
1,
hµλ
χµλ

}
− ε for Leb -a.e. λ ∈ U ′.

This however means that λ0 cannot be a density point of A, a contradiction. Theorem 3.1 is proved.

6. Transversality of degree β

In this section we prove that an IFS satisfying the transversality condition (T), satisfies also the
transversality of degree β, as defined in [29], with arbitrary small β > 0. This will be useful later, as
the proof of 3.2 follows the approach of Peres and Schlag [29], where the transversality of degree β
is a key concept. In fact, [29] uses the term “transversality of order β”, but the term “transversality
of degree β,” as in Mattila, seems more appropriate.

Proposition 6.1. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) -
(A4) and the transversality condition (T) on U . For every λ0 ∈ U and β > 0 there exists cβ > 0

and an open neighbourhood J of λ0 such that

(6.1)
∣∣∣Πλ(u)−Πλ(v)

∣∣∣ < cβ · dλ0(u, v)1+β =⇒
∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ cβ · dλ0(u, v)1+β.

holds for all u, v ∈ Ω and λ ∈ J .
14



Proof. For short, let us denote the metric dλ0 by d. Let n = |u ∧ v|, so that u ∧ v = u1 . . . un. We
have
d
dλ(Πλ(u)−Πλ(v)) = d

dλ

[
fλu1...un(Πλ(σnu))− fλu1...un(Πλ(σnv))

]
=

(
d
dλf

λ
u1...un

)
(Πλ(σnu))−

(
d
dλf

λ
u1...un

)
(Πλ(σnv)) +(

d
dxf

λ
u1...un

)
(Πλ(σnu)) · ddλΠλ(σnu)−

(
d
dxf

λ
u1...un

)
(Πλ(σnv)) · ddλΠλ(σnv)

=
(
d
dλf

λ
u1...un

)
(Πλ(σnu))−

(
d
dλf

λ
u1...un

)
(Πλ(σnv)) +(

d
dxf

λ
u1...un

)
(Πλ(σnu)) ·

[
d
dλ

(
Πλ(σnu)−Πλ(σnv)

)]
+[(

d
dxf

λ
u1...un

)
(Πλ(σnu))−

(
d
dxf

λ
u1...un

)
(Πλ(σnv))

]
· ddλΠλ(σnv)

=: A1 +A2 +A3.(6.2)

On the other hand,∣∣∣Πλ(u)−Πλ(v)
∣∣∣ =

∣∣ d
dx f

λ
u1,...un(y)

∣∣ · ∣∣∣Πλ(σnu)−Πλ(σnv)
∣∣∣

≥ c1 · d(u, v)1+β/4 ·
∣∣∣Πλ(σnu)−Πλ(σnv)

∣∣∣ ,(6.3)

for some y ∈ X, c1 > 0, and λ sufficiently close to λ0, by Lemma 4.4. Similarly,

(6.4) |A2| ≥ c1 · d(u, v)1+β/4 ·
∣∣ d
dλ(Πλ(σnu)−Πλ(σnv))

∣∣ .
Further, by Lemmas 4.1, 4.4 and Proposition 4.3 (which implies that d

dλΠλ is bounded) we have

(6.5) |A1| ≤
∣∣∣Πλ(σnu)−Πλ(σnv)

∣∣∣C ′2n · d(u, v)1−β/4

and

(6.6) |A3| ≤
∣∣∣Πλ(σnu)−Πλ(σnv)

∣∣∣C ′2 · d(u, v)1−β/4

for some constant C ′2 large enough. Assuming∣∣∣Πλ(u)−Πλ(v)
∣∣∣ < cβ · d(u, v)1+β,

we obtain from (6.3):

(6.7)
∣∣∣Πλ(σnu)−Πλ(σnv)

∣∣∣ ≤ cβ
c1
· d(u, v)3β/4,

and then, from (6.2), (6.4), (6.5), (6.6):∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ |A2| − |A1| − |A3|

≥ c1 · d(u, v)1+β/4 ·
∣∣ d
dλ(Πλ(σnu)−Πλ(σnv))

∣∣
−C ′2(n+ 1) · d(u, v)1−β/4 ·

∣∣∣Πλ(σnu)−Πλ(σnv)
∣∣∣

≥ c1 · d(u, v)1+β/4 ·
∣∣ d
dλ(Πλ(σnu)−Πλ(σnv))

∣∣
−
C ′2cβ
c1
· (n+ 1) · d(u, v)1+β/2.
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Assuming cβ < c1η, so that we can use transversality assumption (T) for the pair σnu, σnv by (6.7),
keeping in mind that d(u, v) ≤ 1, we obtain∣∣ d

dλ(Πλ(σnu)−Πλ(σnv))
∣∣ ≥ η,

hence ∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ c1 · d(u, v)1+β/4 ·
[
η −

C ′2cβ
c2

1

· (n+ 1) · d(u, v)β/4
]
.

Note that d(u, v) ≤ γn2 , where γ2 < 1 is from (A4), and let

C ′3 := max{(n+ 1)γ
nβ/4
2 , n ≥ 0}.

Choose

cβ <
ηc2

1

2C ′2C
′
3

,

then ∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ c1η

2
· d(u, v)1+β/4 ≥ cβ · d(u, v)1+β,

if we also make sure that cβ < c1η/2, completing the proof of (6.1). �

7. Energy estimates

The following theorem is the main result of this section and the main ingredient of the proof of
Theorem 3.2. It is modelled after [29, Theorem 4.9].

Theorem 7.1. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) - (A4)
and the transversality condition (T) on U . Let {µλ}λ∈U be a collection of finite Borel measures on Ω

satisfying (M). Fix λ0 ∈ U , β > 0, γ > 0, ε > 0 and q > 1 such that 1 + 2γ+ ε < q < 1 + min{δ, θ}.
Then, there exists a (small enough) open interval J ⊂ U containing λ0 such that for every smooth
function ρ on R with 0 ≤ ρ ≤ 1 and supp(ρ) ⊂ J there exist constants C̃1 > 0, C̃2 > 0 such thatˆ

J
‖νλ‖22,γρ(λ) dλ ≤ C̃1Eq(1+a0β)(µλ0 , dλ0) + C̃2,

where a0 = 8+4δ
1+min{δ,θ} .

The rest of this section is devoted to the proof of the above theorem and we assume throughout that
all the assumptions of Theorem 7.1 hold. We follow the approach of [29], with suitable modifications
coming from the fact that measures µλ depend on the parameter.

Throughout the section x . y will mean x ≤ Ay +B, while x � y will mean x
A ≤ y ≤ A · x, with

positive constants A,B being possibly dependent on all the parameters on which constants C̃1, C̃2

depend in Theorem 7.1.
Let ψ be a Littlewood-Paley function on R from [29, Lemma 4.1], that is, ψ is of Schwarz class,

ψ̂ ≥ 0,
supp(ψ̂) ⊂ {ξ : 1 ≤ |ξ| ≤ 4},

∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ 6= 0.

It is known that such a function exists. We will need that ψ decays faster than any power, that is,
for any q > 0 there is Cq such that

(7.1) |ψ(ξ)| ≤ Cq(1 + |ξ|)−q.

We will also use that

(7.2)
ˆ
R
ψ(ξ) dξ = ψ̂(0) = 0.
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In fact, all higher moments of ψ also vanish, but this will not be needed for our purposes. As ψ has
bounded derivative on R, there exists L > 0 such that

(7.3) |ψ(x)− ψ(y)| ≤ L|x− y| for all x, y ∈ R.

We have (see [29, Lemma 4.1]):

(7.4)
ˆ
R
‖νλ‖22,γρ(λ)dλ �

ˆ
R

∞∑
j=−∞

22jγ

ˆ
R

(ψ2−j ∗ νλ)(x)dνλ(x)ρ(λ)dλ,

where ψ2−j (x) = 2jψ(2jx). Let κ = − log2 γ1, Q = log2 e and choose ξ > 0 small enough to have
2(4 +Qc)ξ < ε and

(7.5) 0 <
4 + 2γ

κ−Qξ
<

ε

2(4 +Qc)ξ
.

Choose an open interval J containing λ0 so small that 2c|J |θ ≤ ξ (with c, θ as in (M)) and (6.1) hold.
In order to prove Theorem 7.1, it is enough to consider in (7.4) the sum over j ≥ 0, as (ψ2−j ∗νλ)(x)

is bounded by 2j‖ψ‖∞, hence the sum over j < 0 converges to a bounded function. We now calculate
for λ ∈ B(λ0, ξ), j ≥ 0 and n ∈ N (we will set later n = n(j) = c̃j for suitable c̃):ˆ

R
(ψ2−j ∗ νλ)(x) dνλ(x)

= 2j
ˆ
R

ˆ
R
ψ(2j(x− y)) dνλ(y) dνλ(x)

= 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
dµλ(ω1) dµλ(ω2)

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1|n1∞)−Πλ(ω2|n1∞))

)
dµλ(ω1) dµλ(ω2) +

+ 2j
ˆ

Ω

ˆ

Ω

∣∣ψ(2j(Πλ(ω1)−Πλ(ω2))
)
− ψ

(
2j(Πλ(ω1|n1∞)−Πλ(ω2|n1∞))

)∣∣ dµλ(ω1) dµλ(ω2) ≤

Using (7.3) we get that the last expression is

≤ 2j
∑
i∈An

∑
k∈An

ψ
(
2j(Πλ(i1∞)−Πλ(k1∞))

)
µλ([i])µλ([k]) +

+ 2j
ˆ

Ω

ˆ

Ω

L2j
(
|Πλ(ω1)−Πλ(ω1|n1∞)|+ |Πλ(ω2)−Πλ(ω2|n1∞)|

)
dµλ(ω1) dµλ(ω2) ≤

Applying (A4) to the integral, we obtain (recall that we assume diam(X) = 1):

≤ 2j
∑
i∈An

∑
k∈An

ψ
(
2j(Πλ(i1∞)−Πλ(k1∞))

)
µλ([i])µλ([k]) + 2L22j−κn = (∗)

Choose c̃ ≥ 1 such that

(7.6)
4 + 2γ

κ−Qξ
≤ c̃ ≤ ε

2Q(2 + c)ξ

(it exists due to (7.5)) and set n = c̃j. Let us define a map ej : Ω× Ω× J 7→ R by

(7.7) ej(ω1, ω2, λ) :=

{
µλ([ω1|n])µλ([ω2|n])
µλ0 ([ω1|n])µλ0 ([ω2|n]) , if µλ0([ω1|n])µλ0([ω2|n]) 6= 0,

1, otherwise.
17



By (7.6), (M) and the choice of J ,

(7.8) ej(ω1, ω2, λ) ≤ e2c|λ−λ0|θn ≤ eξc̃j = 2Qξc̃j for all ω1, ω2 and λ ∈ B(λ0, ξ).

Note also that by (M), if i ∈ Ω∗ is a fixed finite word, then µλ0([i]) = 0 if and only if µλ([i]) = 0

for all λ ∈ U (in other words: supp(µλ0) = supp(µλ)). Denote Ãn := {i ∈ An : µλ0([i]) 6= 0}. We
have, therefore, (note that now the integral is with respect to µλ0),

(∗) = 2j
∑
i∈Ãn

∑
k∈Ãn

ψ
(
2j(Πλ(i1∞)−Πλ(k1∞))

) µλ([i])µλ([k])

µλ0([i])µλ0([k])
µλ0([i])µλ0([k]) + 2L22j−κc̃j

= 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1|n1∞)−Πλ(ω2|n1∞))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) + 2L22j−κc̃j

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2)

+ 2j
ˆ

Ω

ˆ

Ω

∣∣ψ(2j(Πλ(ω1)−Πλ(ω2))
)
− ψ

(
2j(Πλ(ω1|n1∞)−Πλ(ω2|n1∞))

)∣∣ ×
× ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) + 2L22j−κc̃j = (∗∗)

Estimating the second integral, similarly as before, by 2L2j−κc̃j2Qξc̃j we get

(∗∗) ≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2)+2L22j−κc̃j(1 + 2Qξc̃j).

Finally,

ˆ
R

(ψ2−j ∗ νλ)(x) dνλ(x) ≤

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) + 4L2(2+Qc̃ξ−c̃κ)j .

(7.9)

For j large enough, we have, in view of (7.6),

(7.10)
22jγ4L22j+(Qξ−κ)c̃j = 4L2j(2+2γ+c̃(Qξ−κ)) ≤ 2j(3+2γ+c̃(Qξ−κ))

= 2−j2j(4+2γ+c̃(Qξ−κ)) ≤ 2−j .
18



Combining (7.9), and (7.10) we obtain, recalling that the sum over j < 0 in (7.4) converges:

ˆ
J
‖νλ‖22,γρ(λ) dλ .

ˆ

R

∞∑
j=0

22jγ

ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x) ρ(λ) dλ

≤
ˆ

R

∞∑
j=0

22jγ
(

2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2)

+ 4L2(2+Qc̃ξ−c̃κ)j
)
ρ(λ) dλ

≤
ˆ

R

∞∑
j=0

22jγ2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) ρ(λ) dλ

+

ˆ
R

∞∑
j=0

4L2−jρ(λ) dλ

.
∞∑
j=0

2j(2γ+1)

ˆ

Ω

ˆ

Ω

ˆ

R

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ dµλ0(ω1) dµλ0(ω2).

To finish the proof of Theorem 7.1, it is enough to show the following proposition (with notation as
in Theorem 7.1). Recall that ξ is chosen by requiring (7.5) and J is an open interval containing λ0

so small that 2c|J |θ ≤ ξ (with c, θ as in (M)) and (6.1) hold.

Proposition 7.2. There exists C7 > 0 such that for any distinct ω1, ω2 ∈ Ω, any j ∈ N we have
(7.11)ˆ

R

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ ≤ C7 · c̃j2Q(2+c)ξc̃j

(
1 + 2jd(ω1, ω2)1+a0β

)−q
,

where C7 depends only on q, ρ, and β, and a0 = 8+4δ
1+min{δ,θ} , and d(ω1, ω2) = dλ0(ω1, ω2) is the metric

defined in (2.2).

Indeed, if (7.11) holds, then, recalling the definition of energy (2.1), in view of (7.6),
ˆ
J
‖νλ‖22,γ ρ(λ) dλ

.
∞∑
j=0

2j(2γ+1)

ˆ

Ω

ˆ

Ω

ˆ

R

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ dµλ0(ω1) dµλ0(ω2)

≤ C7 · c̃
∞∑
j=0

2j(2γ+1)j2Q(2+c)ξc̃j

ˆ
Ω

ˆ
Ω

(
1 + 2jd(ω1, ω2)1+a0β

)−q
dµλ0(ω1) dµλ0(ω2)

≤ C7 · c̃
∞∑
j=0

j2j(2γ+Q(2+c)ξc̃+1−q)Eq(1+a0β)(µλ0 , dλ0)

≤ C7 · c̃
∞∑
j=0

j2j(1+2γ+ ε
2
−q)Eq(1+a0β)(µλ0 , dλ0) ≤ C7 · c̃

∞∑
j=0

j2−
ε
2
jEq(1+a0β)(µλ0 , dλ0),

and Theorem 7.1 is proved.
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Proof of Proposition 7.2. The proof is similar to that of [29, Lemma 4.6] in the case of limited
regularity; however, some technical issues are treated here differently and in more detail, especially,
since [29] leaves much to the reader.

Fix distinct ω1, ω2 ∈ Ω and denote r = d(ω1, ω2). For short, let ej(λ) := ej(ω1, ω2, λ). Let
I = supp(ρ) ⊂ J . Since J is open, there exists K = K(ρ) ≥ 1 such that the (2K−1)-neighborhood
of I is contained in J .

We can assume without loss of generality that 2jr > 1, and later that 2jr1+a0β > 1 for a fixed a0,
which is stronger, since r ≤ 1. Indeed, the integral in (7.11) is bounded above by |J | · ‖ψ‖∞ · 2Qξc̃j ,
in view of (7.8), hence if 2jr1+a0β ≤ 1, then the inequality (7.11) holds with C7 = |J | · ‖ψ‖∞ · 2q.

Let
φ ∈ C∞(R), 0 ≤ φ ≤ 1, φ ≡ 1 on [−1/2, 1/2], supp(φ) ⊂ (−1, 1),

and denote

Φλ = Φλ(ω1, ω2) :=
Πλ(ω1)−Πλ(ω2)

d(ω1, ω2)
=

Πλ(ω1)−Πλ(ω2)

r
.

The idea, roughly speaking, is to separate the contribution of the zeros of Φλ, which are simple by
transversality. Outside of a neighborhood of these zeros, we get an estimate using the rapid decay
of ψ at infinity, and near the zeros we linearize and use the fact that ψ has zero mean. The details
are quite technical, however. We haveˆ

R
ρ(λ)ψ

(
2j [Πλ(ω1)−Πλ(ω2)]

)
ej(λ)dλ =

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)φ(Kc−1

β r−βΦλ) dλ

+

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)

[
1− φ(Kc−1

β r−βΦλ)
]
dλ

=: A1 +A2,

where cβ is the constant from (6.1). The integrand in A2 is constant zero when |Kc−1
β r−βΦλ| ≤ 1

2 ,
hence by the rapid decay of ψ (see (7.1)) and (7.8),

|A2| ≤ Cq
ˆ
|ρ(λ)||ej(λ)|

(
1 + 2jr · 1

2K
−1cβr

β)−q dλ ≤ const·2Qξc̃j
(
1 + 2jr1+β

)−q
,

for some constant depending on q, ρ and β, as desired. Thus it remains to estimate A1.
Next comes the classical “transversality lemma”. It is a variant of [29, Lemma 4.3] and similar to

[24, Lemma 18.12]. Let cβ be the constant from Proposition 6.1.

Lemma 7.3. Under the assumptions and notation above, let

J :=
{
λ ∈ J : |Φλ| < K−1cβr

β
}
,

which is a union of open disjoint intervals. Let I1, . . . , INβ be the intervals of J intersecting I =

supp(ρ), enumerated in the order of R. Then each Ik contains a unique zero λk of Φλ and

(7.12) [λk − dβr2β, λk + dβr
2β] ⊂ Ik, where dβ = K−1C−1

β,1 · cβ,

with Cβ,1 from (4.8). For all intervals,

(7.13) 2dβ · r2β ≤ |Ik| ≤ 2K−1,

hence

(7.14) Nβ ≤ 2 + 1
2d
−1
β |J | · r

−2β.
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Moreover,

(7.15) |Φλ| ≤ 1
2K
−1cβr

β for all λ ∈ [λk − 1
2dβr

2β, λk + 1
2dβr

2β].

Proof Lemma 7.3. Since Φλ is continuous, the intervals Ik are well-defined. Since K ≥ 1, on each
of the intervals we have | ddλΦλ| ≥ cβrβ by the transversality condition (6.1) of degree β. Thus Φλ is
strictly monotonic on each of the intervals. Let λ ∈ Ik∩I, where I = supp(ρ). Then |Φλ| < K−1cβr

β ,
and using the lower bound on the derivative we obtain that there exists unique λk ∈ Ik, such that
Φλk

= 0, and it satisfies |λ−λk| ≤ K−1. The same argument then shows that Ik ⊆ [λk −K−1, λk +

K−1], since the K−1 change in λ results in at least K−1cβr
β change in Φλ. Note that even for k = 1

and k = Nβ we have this inclusion, because λ ∈ I and the 2K−1-neighborhood of I is contained in
J by construction. This proves the upper bound in (7.13).

On the other hand, for any λ ∈ J we have | ddλΦλ| ≤ Cβ,1r
−β by (4.8). Therefore, at least a

distance of C−1
β,1r

βt is required for the graph of Φλ to reach the level of t from zero. This implies
(7.12), (7.15) and the lower bound in (7.13). Then (7.14) is immediate. �

Now let χ ∈ C∞(R) be such that supp(χ) ⊂ (−1
2dβ,

1
2dβ), 0 ≤ χ ≤ 1, and χ ≡ 1 on [−1

4dβ,
1
4dβ].

We apply Lemma 7.3 and write

A1 =

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)φ(Kc−1

β r−βΦλ) dλ

=

Nβ∑
k=1

ˆ
ρ(λ)χ

(
r−2β(λ− λk)

)
ψ(2jrΦλ)ej(λ)φ(Kc−1

β r−βΦλ) dλ

+

ˆ
ρ(λ)

1−
Nβ∑
k=1

χ
(
r−2β(λ− λk)

) ej(λ)ψ(2jrΦλ)φ(Kc−1
β r−βΦλ) dλ

=

Nβ∑
k=1

A
(k)
1 +B.

Let us first estimate B. Notice that
∑Nβ

k=1 χ
(
r−2β(λ − λk)

)
≡ 1 on the 1

4dβ r
2β-neighborhood of

every λk, as by (7.12), functions χ
(
r−2β(λ−λk)

)
have disjoint supports for distinct k. On the other

hand, φ(Kc−1
β r−βΦλ) is supported on J , so by the transversality condition we have | ddλΦλ| ≥ cβr

β

on the support of the integrand. Combining these two claims, we obtain that |Φλ| ≥ 1
4dβcβr

3β on
the support of the integrand in B. It follows that on this support,

(7.16) |ψ(2jrΦλ)| ≤ Cq
(
1 + (dβcβ/4) · 2jr1+3β

)−q
,

by the rapid decay of ψ, and using (7.8) we obtain |B| ≤ const · 2Qξc̃j
(
1 + 2jr1+3β

)−q for some
constant depending on q and β.

Now we turn to estimating the integrals A(k)
1 . For simplicity, we assume k = 1 and let λ = λ1.

In view of the bound (7.14) on the number of intervals, the desired inequality will follow from this.
Observe that

(7.17) χ
(
r−2β(λ− λ)

)
= χ

(
r−2β(λ− λ)

)
φ(Kc−1

β r−βΦλ).

We are using here that φ ≡ 1 on [−1
2 ,

1
2 ], so

φ(Kc−1
β r−βΦλ) ≡ 1 on

{
λ ∈ J : |Φλ| ≤ 1

2K
−1cβr

β
}
,

which holds on the support of χ
(
r−2β(λ− λ)

)
by construction and (7.15).
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By (7.17) we have

A
(1)
1 =

ˆ
ρ(λ)χ

(
r−2β(λ− λ)

)
ej(λ)ψ(2jrΦλ) dλ.

It will be convenient to make a change of variable, so we define a function H via

(7.18) Φλ = u ⇐⇒ λ = λ+H(u), provided χ
(
r−2β(λ− λ)

)
6= 0.

Note that χ
(
r−2β(λ− λ)

)
6= 0 implies |λ− λ| < 1

2dβr
2β , so λ ∈ I1 by (7.12), and by transversality,

(7.19)
∣∣∣ d
dλ

Φλ

∣∣∣ ≥ cβrβ if χ
(
r−2β(λ− λ)

)
6= 0.

Therefore, H is well defined. We have

A
(1)
1 =

ˆ
ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))ψ(2jru)H ′(u) du

=

ˆ
F (u)ψ(2jru) du,

where

(7.20) F (u) = ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))H ′(u).

Observe that H ′(u) = [ ddλΦλ]−1, hence (7.19) gives |H ′(u)| ≤ c−1
β r−β on the domain of F . Since ρ

and χ are bounded by one, we obtain by (7.8)

(7.21) ‖F‖∞ ≤ c−1
β · r

−β2Qξc̃j .

Recall that Φλ = 0, so that H(0) = 0. Since
´
R ψ(ξ) dξ = 0 by (7.2), we can subtract F (0) from

F (u) under the integral sign; we then split the integral as follows:

A
(1)
1 =

ˆ
[F (u)− F (0)]ψ(2jru) du

=

ˆ
|u|<(2jr)−1+ε′

[F (u)− F (0)]ψ(2jru) du+

ˆ
|u|≥(2jr)−1+ε′

[F (u)− F (0)]ψ(2jru) du(7.22)

=: B1 +B2,

where ε′ ∈ (0, 1
2) is a small fixed number. Recall that our goal is to show

|A(1)
1 | ≤ C

′
7 · c̃j2Q(2+c)ξc̃j ·

(
1 + 2jr1+a0β

)−q
,

for some constants a0 ≥ 1 and C ′7 depending only on q, ρ, and β. We can assume that 2jr1+a0β ≥ 1,
otherwise, the estimate is trivial by increasing the constant. To estimate B2, note that for any
M > 0 we have by the rapid decay of ψ:

|ψ(2jru)| ≤ CM
(
1 + 2jr|u|

)−M
,

hence, by (7.21),

|B2| ≤ Cβ,M · r−β · 2Qξc̃j(2jr)−1

ˆ
|x|≥(2jr)ε′

(1 + |x|)−M dx

≤ C ′β,M · r−β · 2Qξc̃j(2jr)−1(2jr)−ε
′(M−1)

≤ C ′′β,M · 2Qξc̃j · (2jr1+2β)−q,

for M = M(q, ε′) sufficiently large, as desired. Here we used that 2jr ≥ 2jr1+2β ≥ 1.
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In order to estimate B1, we show that that the function F from (7.20) is δ-Hölder by our assump-
tions; we also need to estimate the constant in the Hölder bound. We write

F (u) = ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))H ′(u) =: F1(u)F2(u)F3(u)H ′(u),

and then

F (u)− F (0) =
(
F1(u)− F1(0)

)
F2(u)F3(u)H ′(u) + F1(0)

(
F2(u)− F2(0)

)
F3(u)H ′(u)

+ F1(0)F2(0)
(
F3(u)− F3(0)

)
H ′(u) + F1(0)F2(0)F3(0)

(
H ′(u)−H ′(0)

)
.

We have

|F1(u)− F1(0)| = |ρ
(
λ+H(u)

)
− ρ
(
λ+H(0)

)
| ≤ ‖ρ′‖∞ · |H(u)−H(0)|.

Observe that

(7.23) |H(u)−H(0)| = |H(u)| = |λ− λ| ≤ c−1
β r−β|Φλ − Φλ| = c−1

β r−β|Φλ| = c−1
β r−β|u|,

by transversality, which applies since supp(F ) ⊂ I1. Then, of course,

(7.24) |F2(u)− F2(0)| ≤ ‖χ′‖∞ · r−2β|H(u)−H(0)| ≤ C−1
β ‖χ

′‖∞ · r−3β|u|.

For F3 it is enough to assume that µλ0([ω1|c̃j ])µλ0([ω2|c̃j ]) 6= 0 (hence the same is true for µλ by
(M)), as otherwise ej ≡ 1 and then (7.25), which is the goal of the calculation below, holds trivially.
In this case we have

|F3(u)− F3(0)| =
µλ([ω1|c̃j ])µλ([ω2|c̃j ])

∣∣∣∣µλ+H(u)([ω1|c̃j ])µλ+H(u)([ω2|c̃j ])
µλ([ω1|c̃j ])µλ([ω2|c̃j ]) − 1

∣∣∣∣
µλ0([ω1|c̃j ])µλ0([ω2|c̃j ])

≤ 2Qξc̃j

∣∣∣∣∣µλ+H(u)([ω1|c̃j ])µλ+H(u)([ω2|c̃j ])
µλ([ω1|c̃j ])µλ([ω2|c̃j ])

− 1

∣∣∣∣∣
≤ 2Qξc̃j

µλ+H(u)([ω1|c̃j ])
µλ([ω1|c̃j ])

∣∣∣∣∣µλ+H(u)([ω2|c̃j ])
µλ([ω2|c̃j ])

− 1

∣∣∣∣∣+ 2Qξc̃j

∣∣∣∣∣µλ+H(u)([ω1|c̃j ])
µλ([ω1|c̃j ])

− 1

∣∣∣∣∣
≤ 22Qξc̃j

∣∣∣∣∣µλ+H(u)([ω2|c̃j ])
µλ([ω2|c̃j ])

− 1

∣∣∣∣∣+ 2Qξc̃j

∣∣∣∣∣µλ+H(u)([ω1|c̃j ])
µλ([ω1|c̃j ])

− 1

∣∣∣∣∣
But for both ω1|c̃j and ω2|c̃j , setting c3 = Qcc̃, we obtain∣∣∣∣∣µλ+H(u)([ω|c̃j ])

µλ([ω|c̃j ])
− 1

∣∣∣∣∣ ≤ max{2c3j|H(u)|θ − 1, 1− 2−c3j|H(u)|θ}

= max{c3j2
c3jy1 , c3j2

−c3jy2}|H(u)|θ,
with y1 ∈ (0, |H(u)|), y2 ∈ (−|H(u)|, 0)

≤ c3j2
c3jξ|H(u)−H(0)|θ.

Thus, for c4 = Q(2 + c)c̃ξ

(7.25) |F3(u)− F3(0)| ≤ 2c3j2
c4jc−θβ r−θβ |u|θ.
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Finally, we need to estimate the term |H ′(u)−H ′(0)|. We have H ′(u) = [ ddλΦλ]−1, hence

|H ′(u)−H ′(0)| =

∣∣∣∣∣ 1
d
dλΦλ

− 1
d
dλΦλ

∣∣∣∣∣
≤
| ddλΦλ − d

dλΦλ|
(cβrβ)2

by β-transversality (6.1)

≤
Cβ,1|λ− λ|δr−β(1+δ)

(cβrβ)2
by (4.9)

≤ c̃βr
−β(3+2δ)|u|δ by (7.23).

Below, writing “const” means constants depending on q, ρ, and β, which may be different from line
to line. Using all of the above and ‖H ′‖∞ ≤ c−1

β · r
−β yields

|F (u)− F (0)| ≤ const · c3j2
c4j ·

(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
,

hence by (7.22) and recalling that (2jr) ≥ 1 and r ≤ 1,

|B1| ≤ const · c3j2
c4j

ˆ
|u|<(2jr)−1+ε′

(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
du

≤ const · c3j2
c4j
(
r−β(3+2δ)(2jr)−(1−ε′)(1+δ) + (2jr)−2(1−ε′)r−4β + (2jr)−(1−ε′)(1+θ)r−β(1+θ)

)
≤ const · c3j2

c4jr−β(4+2δ)
(

(2jr)−(1−ε′)(1+δ) + (2jr)−2(1−ε′) + (2jr)−(1−ε′)(1+θ)
)

≤ const · c3j2
c4jr−β(4+2δ)(2jr)−(1−ε′)(1+min{δ,θ}),

as min{δ, θ} ≤ 1. We therefore obtain

|B1| ≤ const · c3j2
c4j
(

2jr1+a0β
)−(1−ε′)(1+min{δ,θ})

,

for appropriate a0 = 8+4δ
1+min{δ,θ} ≥

4+2δ
(1−ε′)(1+min{δ,θ}) .

Since ε′ > 0 can be chosen arbitrarily small, we obtain

|B1| ≤ const · c3j2
c4j
(

1 + 2jr1+a0β
)−q

for any q < 1 + min{δ, θ},

since as already mentioned, we can assume 2jr1+a0β ≥ 1 without loss of generality. �

8. The case of Gibbs measures

In this section we deal with case of Gibbs measures and develop tools for the derivation of Theorem
3.3 from Theorem 3.2. Throughout this section, we assume that {µλ}λ∈U is a family of shift-invariant
Gibbs measures on Ω corresponding to a family of continuous potentials φλ : Ω 7→ R satisfying (3.1)
and (3.2); α, b, c0 and θ denote constants from (3.1) and (3.2).

8.1. Proving (M) for Gibbs measures. Let Lλ be the Perron operator on the Banach space
C(Ω) of continuous functions on Ω, defined as

(Lλh)(ω) =
∑
i∈A

eφ
λ(iω)h(iω).

Let Cr be the set of functions which are constant over cylinder sets of length r, that is,

Cr(Ω) = {f ∈ C(Ω) : varr(f) = 0}.
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Let ω ∈ Ω be arbitrary but fixed and denote the pressure by

Pλ = lim
n→∞

1

n
log

∑
|i|=n

exp
(
Snφ

λ(iω)
)
,

where Snφ(ω) = φ(ω) + φ(σω) + · · · + φ(σn−1ω). Note that the value of Pλ is independent of the
choice of ω ∈ Ω.

Theorem 8.1. There exists c2 > 0 such that for every λ ∈ U there is a unique hλ ∈ C(Ω) with
hλ > c2 > 0 and νλ ∈ P(Ω) such that

Lλhλ = γλhλ, (Lλ)∗νλ = γλνλ, and
ˆ
hλdνλ = 1,

where γλ = exp(Pλ). Moreover, for every ω1, ω2 ∈ Ω and λ ∈ U ,

hλ(ω1) ≤ Bω1∧ω2hλ(ω2),

where Bm = exp
(∑∞

k=m+1 2bαk
)
.

Furthermore, there exist A > 0 and 0 < β < 1 such that for every f ∈ Cr(Ω),∥∥∥γ−n−rλ Ln+r
λ f −

ˆ
fdνλ · hλ

∥∥∥ ≤ Aβn ˆ fdνλ for every λ ∈ U and n ≥ 1.

Proof. See [6, Theorem 1.7, Lemmas 1.8 and 1.12] and their proofs. �

The measure dµλ = hλdνλ is a left-shift invariant ergodic Gibbs measure with respect to the
potential φλ, see [6, Theorem 1.16, Proposition 1.14].

We will show that γλ, hλ and νλ depend uniformly continuously on the parameters in the following
sense:

Lemma 8.2. For every 0 < θ′ < θ, there exists cθ′ > 0 such that for every λ, τ ∈ U ,

γλ
γτ
,
hλ(ω)

hτ (ω)
≤ ecθ′ |λ−τ |θ

′
for every ω ∈ Ω.

For every i ∈ Ω∗,
νλ([i])

ντ ([i])
≤ ecθ′ |λ−τ |θ

′ |i|.

Moreover, the constant CG in the definition of the Gibbs measure can be chosen uniformly for λ ∈ U .

Proof. Simple calculations show that |Pλ − Pτ | ≤ c0|λ − τ |θ by (3.2), hence the claim on γλ. Now
let us turn to the claim on the eigenfunctions hλ. Denote by 1Ω the constant 1 map over Ω.

If λ = τ , then there is nothing to prove. Suppose that λ 6= τ . Then by Theorem 8.1,

(8.1)
∥∥∥∥γ−nλ Lnλ1Ω

hλ
− 1

∥∥∥∥ ≤ c−1
2

∥∥γ−nλ Lnλ1Ω − hλ
∥∥ ≤ c−1

2 Aβn =: A′βn.

Note that Lnλ1Ω(ω) =
∑

i1,...,in∈A
eφ

λ(i1...inω), hence (3.2) gives

Lnλ1Ω(ω)

Lnτ1Ω(ω)
≤ ec0|λ−τ |θ .
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Combining this with (8.1) gives for every n ≥ 1,

hλ(ω)

hτ (ω)
=

hλ(ω)

γ−nλ (Lnλ1Ω)(ω)
· γ
−n
τ (Lnτ1Ω)(ω)

hτ (ω)
·
γ−nλ (Lnλ1Ω)(ω)

γ−nτ (Lnτ1Ω)(ω)

≤ 1 +A′βn

1−A′βn
· γ

n
τ

γnλ
·

(Lnλ1Ω)(ω)

(Lnτ1Ω)(ω)

≤ 1 +A′βn

1−A′βn
e2c0|λ−τ |θn.

Let n be minimal such that 1+A′βn

1−A′βn ≤ e
2c0|λ−τ |θ , that is, let

(8.2) n =


log
(

1− 2(e2c0|λ−τ |θ + 1)−1
)
− logA′

log β

 .
It is easy to see that for any 0 < θ′ < θ,

(8.3) lim
x→0+

xθ−θ
′
log
(

1− 2

e2c0xθ + 1

)
= 0,

thus, there exists cθ′ > 0 such that

2c0|λ− τ |θ
 log

(
1− 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β
+ 2

 ≤ cθ′ |λ− τ |θ′
for every λ, τ ∈ U . Hence,

hλ(ω)

hτ (ω)
≤ 1 +A′βn

1−A′βn
e2c0|λ−τ |θn

≤ exp
(

2c0|λ− τ |θ(n+ 1)
)

≤ exp

2c0|λ− τ |θ
 log

(
1− 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β
+ 2


≤ exp

(
cθ′ |λ− τ |θ

′
)
.

The proof for the measure is similar. In fact, suppose that λ 6= τ . Using Theorem 8.1, we get for
every n ≥ 1 and every ω ∈ Ω,

νλ([i])

ντ ([i])
=

νλ([i])hλ(ω)

γ
−(n+|i|)
λ (L

n+|i|
λ 1[i])(ω)

·
γ
−(n+|i|)
λ (L

n+|i|
λ 1[i])(ω)

γ
−(n+|i|)
τ (L

n+|i|
τ 1[i])(ω)

·
γ
−(n+|i|)
τ (L

n+|i|
τ 1[i])(ω)

ντ ([i])hτ (ω)
· hτ (ω)

hλ(ω)

≤ 1 +A′βn

1−A′βn
· exp

(
2c0|λ− τ |θ(n+ |i|) + cθ′ |λ− τ |θ

′
)
.

Now, choose again n ≥ 1 as in (8.2). Then

νλ([i])

ντ ([i])
≤ exp

2c0|λ− τ |θ|i|+ cθ′ |λ− τ |θ
′
+ 2c|λ− τ |

 log
(

1− 2(e2c0|λ−τ |θ + 1)−1
)
− logA′

log β
+ 2


≤ exp

(
2c0|λ− τ |θ|i|+ 2cθ′ |λ− τ |θ

′
)
≤ exp

(
m̃(2c+ 2cθ′)|λ− τ |θ

′ |i|
)

for some constant m̃ = m̃(θ, θ′).
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The claim on the Gibbs constant CG follows from the proof of [6, Theorem 1.16], combined with
uniform bounds on hλ and γλ. �

The following proposition concludes the proof of the property (M) for Gibbs measures satisfying
assumptions of Theorem 3.3.

Proposition 8.3. For every 0 < θ′ < θ there exists c > 0 such that for every λ, τ ∈ U and for every
i ∈ Ω∗,

µλ([i])

µτ ([i])
≤ ec|λ−τ |θ

′ |i|.

Proof. Fix θ′′ ∈ (θ′, θ). By the definition of µλ, Theorem 8.1 and Lemma 8.2,

µλ([i])

µτ ([i])
=

´
[i] hλ(ω)dνλ(ω)´
[i] hτ (ω)dντ (ω)

≤ B2
n+|i|

∑
j:|j|=n hλ(ijω)νλ([ij])∑
j:|j|=n hτ (ijω)ντ ([ij])

≤ B2
n+|i| exp

(
cθ′′ |λ− τ |θ

′′
+ cθ′′(n+ |i|)|λ− τ |θ′′

)
.

Choose n ≥ 1 minimal such that

B2
n+|i| ≤ B

2
n ≤ ecθ′′ |λ−τ |

θ′′
,

that is,

n =

⌈
θ′′

log |λ− τ |
logα

+
(1− α)cθ′′(4b)

−1

logα

⌉
.

Then

µλ([i])

µτ ([i])
≤ exp

(
2cθ′′ |λ− τ |θ

′′
+ cθ′′(θ

′′ log |λ− τ |
logα

+
(1− α)cθ′′(4b)

−1

logα
+ |i|+ 1)|λ− τ |θ′′

)
.

Since for every θ′ < θ′′ < 1 the map (λ, τ) 7→ |λ−τ |θ′′−θ′ log |λ−τ | is bounded, the claim follows. �

8.2. Large submeasures. The goal of this subsection is to prove the following proposition, required
to deduce Theorem 3.3 from Theorem 3.2.

Proposition 8.4. Let {fλj }j∈A be a parametrized IFS satisfying the smoothness assumptions (A1)
- (A4). Let {µλ}λ∈U be a family of shift-invariant Gibbs measures on Ω corresponding to a family of
continuous potentials φλ : Ω 7→ R satisfying (3.1) and (3.2). Then for every λ0 ∈ U, ε > 0, ε′ > 0

and θ′ ∈ (0, θ) there exist ξ > 0, c > 0, and a set A ⊂ Ω such that for every λ ∈ Bξ(λ0) we have
µλ(A) ≥ 1− ε′ and the measures µ̃λ = µλ|A satisfy

(8.4) dimcor(µ̃λ, dλ) ≥ hµλ
χµλ
− ε

and

(8.5) e−c|λ−λ0|
θ′ |ω|µ̃λ([ω]) ≤ µ̃λ0([ω]) ≤ ec|λ−λ0|θ

′ |ω|µ̃λ([ω])

for all ω ∈ Ω∗.
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A standard approach for proving (8.4) is applying Egorov’s theorem, similarly as in the proof of
Proposition 5.1. In our case the difficulty is to obtain (8.5) simultaneously. This requires a more
quantitative approach in constructing “Egorov-like” set. For this purpose we need certain large
deviations results, uniform with respect to the parameter, which we state in a slightly more general
setting.

We assume now that {µλ}λ∈U is a family of measures satisfying assumptions of Proposition 8.4
and {gλ` : Ω 7→ R}λ∈U , ` = 1, . . . , p, is a finite collection of families of potentials, each of them
satisfying properties (3.1) and (3.2).

Proposition 8.5. Let λ0 ∈ U be arbitrary but fixed. Then for every ε > 0 there exists ξD > 0,
CD > 0 and s > 0 such that for every λ ∈ BξD(λ0) and every n ≥ 1, ` = 1, . . . , p,

µλ

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ` (ω)−
ˆ
gλ` dµλ

∣∣∣∣ > ε

})
≤ CDe−sn.

The proof is based on two lemmas.

Lemma 8.6. For every θ′ ∈ (0, θ) and λ0 ∈ U there exist ξ21 > 0 and Cg = Cg(g1, . . . , gl, θ
′) > 0

such that ∣∣∣∣ˆ gλ` dµλ −
ˆ
gτ` dµτ

∣∣∣∣ ≤ Cg|λ− τ |θ′ .
holds for every ` = 1, . . . , p and λ ∈ Bξ21(λ0).

Proof. Fix θ′′ ∈ (θ′, θ) and let c be the constant from Proposition 8.3 corresponding to θ′′. Let λ ∈ U
be arbitrary, and let τ ∈ Bξ21(λ) where ξ21 is chosen such that αecξθ

′′
21 < 1. Choose n ≥ 1 minimal

such that (αec|λ−τ |
θ′′

)n ≤ |λ− τ |. Thenˆ
gλ` dµλ ≤ bαn +

∑
|i|=n

gλ` (iω)µλ([i])

≤ bαn + c0|λ− τ |θ +
∑
|i|=n

gτ` (iω)µλ([i])

≤ bαn + c0|λ− τ |θ + ecn|λ−τ |
θ′′ ∑
|i|=n

gτ` (iω)µτ ([i])

≤ bαn + c0|λ− τ |θ + ecn|λ−τ |
θ′′
(ˆ

gτ` dµτ + bαn
)
.

Thus, ∣∣∣∣ˆ gλ` dµλ −
ˆ
gτ` dµτ

∣∣∣∣ ≤ (ecn|λ−τ |θ′′ − 1
)
M + bαn

(
ecn|λ−τ |

θ′′
+ 1
)

+ c0|λ− τ |θ.

where M = maxλ∈U,ω∈Ω |gλ` (ω)|. Hence, by the choice of n,∣∣∣∣ˆ gλ` dµλ −
ˆ
gτ` dµτ

∣∣∣∣ ≤ (exp
(
c|λ− τ |θ′′ log |λ− τ |/(logα+ c|λ− τ |θ′′)

)
− 1
)
M +(c0 +2)|λ− τ |θ.

The map x 7→ xθ
′′−θ′ log x

logα+cxθ′′
is continuous, hence bounded, on [0, ξ21], say, by B. Further, there exists

a constant C̃1 > 0 such that |ex − 1| ≤ C̃1|x| for every |x| ≤ Bξθ
′

21. Hence,∣∣∣∣ˆ gλ` dµλ −
ˆ
gτ` dµτ

∣∣∣∣ ≤ (C̃1M + c0 + 2)|λ− τ |θ′ ,

as desired. �
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Lemma 8.7. Fix λ0 ∈ U and θ′ ∈ (0, θ). For every ε > 0 there exist ξ22 > 0 and C22 > 0 such that
for every λ ∈ Bξ22(λ0) and every n ≥ 1, ` = 1, . . . , p,

µλ

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ` (ω)−
ˆ
gλ` dµλ

∣∣∣∣ > ε

})
≤ C22e

cn|λ−λ0|θ
′
µλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ0` (ω)−
ˆ
gλ0` dµλ0

∣∣∣∣ > ε

5

})
,

with c = c(θ′) as in Lemma 8.6.

Proof. Fix λ0 ∈ U and ε > 0. Fix k ∈ N large enough to have bαk ≤ ε
5 . For a given n ∈ N, let

ϕλ` (ω) = gλ` (ω|n+k1
∞). Note that by (3.1) for gλ` we have

∥∥ 1
nSng

λ
` −

1
nSnϕ

λ
`

∥∥
∞ ≤

ε
5 , whereas (3.2)

for gλ` yields
∥∥∥ 1
nSnϕ

λ
` −

1
nSnϕ

λ0
`

∥∥∥
∞
≤ ε

5 if λ is close enough to λ0. Moreover, functions ω 7→ Snϕ
λ
` (ω)

are constant on cylinders of length n+ k. Therefore, applying Proposition 8.3 and Lemma 8.6 gives
for λ ∈ B(λ0, ξ22) with ξ22 small enough:

µλ

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ` (ω)−
ˆ
gλ` dµλ

∣∣∣∣ > ε

})
≤ µλ

({
ω ∈ Ω :

∣∣∣∣ 1nSnϕλ` (ω)−
ˆ
gλ` dµλ

∣∣∣∣ > 4ε

5

})
=

∑
|i|=n+k

µλ ([i])1{| 1nSnϕλ` (i1∞)−
´
gλ` dµλ|> 4ε

5 }(i)

≤ ec(n+k)|λ−λ0|θ
′ ∑
|i|=n+k

µλ0 ([i])1{| 1nSnϕλ` (i1∞)−
´
gλ` dµλ|> 4ε

5 }(i)

≤ C22e
cn|λ−λ0|θ

′ ∑
|i|=n+k

µλ0 ([i])1{∣∣∣ 1nSnϕλ0` (i1∞)−
´
g
λ0
` dµλ0

∣∣∣> 2ε
5

}(i)

≤ C22e
cn|λ−λ0|θ

′
µλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ0` (ω)−
ˆ
gλ0` dµλ0

∣∣∣∣ > ε

5

})
,

where C22 = exp(ckξθ
′

22). �

Proof of Proposition 8.5. Fix λ0 ∈ U and ε > 0. By [49, Theorem 6], there exist CD > 0 and s > 0

such that

µλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSngλ0` (ω)−
ˆ
gλ0` dµλ0

∣∣∣∣ > ε

5

})
≤ CDe−2sn

for every n ∈ N. Combining this with Lemma 8.7 finishes the proof. �

Fix θ′ ∈ (0, θ), λ0 ∈ U and ε > 0. For every n ≥ log(B0)/ε let

Ωc
n :=

{
i ∈ An : there exist ω ∈ [i] and ` ∈ [1, p] such that

∣∣∣∣ 1nSngλ0` (ω)−
ˆ
gλ0` dµλ0

∣∣∣∣ > 4ε

}
.

We define Ωn := An \ Ωc
n. Choose

ξ ≤ min{ξD, ξ21}

such that c0|λ− λ0|θ < ε and Cg|λ− λ0|θ
′
< ε for λ ∈ Bξ21(λ0). Then, for such λ, Lemma 8.6 gives

that for every i ∈ Ωc
n, ω ∈ [i], ` = 1, . . . , p

(8.6)
∣∣∣∣ 1nSngλ` (ω)−

ˆ
gλ` dµλ

∣∣∣∣ > ε.
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Let us define two sequences nk = b(1 +ε)kc and mk = b1 +(1 +ε) + · · ·+ (1+ε)kc. For every K ≥ 1

with mK ≥ log(B0)/ε we let

(8.7) ΞK := ΩmK × ΩnK+1 × ΩnK+2 × · · · ⊂ Ω.

For k ≥ K, denote Γmk := ΩmK × ΩnK+1 × · · · × Ωnk . By Proposition 8.5,

µλ(ΞcK) =
∑

j∈ΩcmK

µλ([j]) +

∞∑
k=1

∑
i0∈ΩmK

∑
i1∈ΩnK+1

· · ·
∑

ik−1∈ΩnK+k−1

∑
j∈ΩcnK+k

µλ([i0i1 . . . ik−1j])

≤ CDpe−smK +
∞∑
k=1

CDpe
−snK+k → 0 as K →∞.

(8.8)

Proposition 8.8. For every K with nK ≥ log(B0)/ε there exists c′ = c′(ε,K) > 0 such that the
inequality

(8.9) µλ([i] ∩ ΞK) ≤ ec′|λ−τ |θ
′ |i|µτ ([i] ∩ ΞK)

holds for every i ∈ Ω∗ and every λ, τ ∈ Bξ(λ0) (with ξ defined above).

Proof. First, we shall prove (8.9) for i ∈ Ω∗ with |i| = mL for L ≥ K. Note that if i /∈ ΓmL , then
[i] ∩ ΞK = ∅, hence it suffices to prove the inequality for i ∈ ΓmL . By definition,

µλ([i] ∩ ΞK) = µλ([i])−
∑

j∈ΩcnL+1

µλ([ij])−
∞∑
k=1

∑
i1∈ΩnL+1

· · ·
∑

ik∈ΩnL+k

∑
j∈ΩcnL+k+1

µλ([ii1 . . . ikj]).

For short, denote

bL+1(λ) :=
1

µλ([i])

∑
j∈ΩcnL+1

µλ([ij]);

bL+k+1(λ) :=
1

µλ([i])

∑
i1∈ΩnL+1

· · ·
∑

ik∈ΩnL+k

∑
j∈ΩcnL+k+1

µλ([ii1 . . . ikj]), k ≥ 1.

Hence, by Proposition 8.3,

(8.10)
µλ([i] ∩ ΞK)

µτ ([i] ∩ ΞK)
≤ µλ([i])

µτ ([i])
·

1−
∑∞

k=1 e
−c|λ−τ |θ′ (mL+k+|i|)bL+k(τ)

1−
∑∞

k=1 bL+k(τ)
.

By the Mean Value Theorem, there exists ρ ∈ (e−c|λ−τ |
θ′
, 1) such that

log

(
1−

∞∑
k=1

e−c|λ−τ |
θ(mL+k+|i|)bL+k(τ)

)
− log

(
1−

∞∑
k=1

bL+k(τ)

)

=

∑∞
k=1(mL+k + |i|)ρmL+k+|i|−1bL+k(τ)

1−
∑∞

k=1 ρ
mL+k+|i|bL+k(τ)

(
1− ec|λ−τ |θ

′)
≤

∑∞
k=1(mL+k + |i|)bL+k(τ)

1−
∑∞

k=1 bL+k(τ)
c|λ− τ |θ′ .

By the Gibbs property of µτ we have

bL+k(τ) ≤ CGµτ

 ⋃
i∈ΩcnL+k

[j]

 ≤ CGµτ ({ ∃
1≤`≤p

∣∣∣∣ 1

nL+k
SnL+k

gτ` −
ˆ
gτ` dµτ

∣∣∣∣ > ε

})
≤ pCGCDe−snL+k ,
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where in the last two inequalities we used (8.6) and Proposition 8.5. Hence,∑∞
k=1(mL+k + |i|)bL+k(τ)

1−
∑∞

k=1 bL+k(τ)
≤

pCGCD
∑∞

k=1(mL+k + |i|)e−snL+k

1− pCGCD
∑∞

k=1 e
−snL+k

≤
2pCGCD

∑∞
k=1mL+ke

−snL+k

1− pCGCD
∑∞

k=1 e
−snL+k

,

which is a uniform constant. Combining this with (8.10) and Proposition 8.3, we get

µλ([i] ∩ ΞK)

µτ ([i] ∩ ΞK)
≤ ec|λ−τ |θ

′
(|i|+1).

Now let us extend (8.9) to all i ∈ Ω∗ with |i| ≥ mK . Let mL ≤ |i| < mL+1 for L ≥ K. Then

µλ([i] ∩ ΞK) =
∑

j∈AmL+1−|i|

µλ([ij] ∩ Ξk) ≤
∑

j∈AmL+1−|i|

ec|λ−τ |
θ′mL+1µτ ([ij] ∩ Ξk)

≤ ec|λ−τ |θ
′
mL+1µτ ([i] ∩ ΞK) ≤ ec|λ−τ |

θ′ |i|mL+1
mL µτ ([i] ∩ ΞK)

≤ e(3+ε)c|λ−τ |θ′ |i|µτ ([i] ∩ ΞK).

Finally, for i ∈ Ω∗ with |i| < mK , the same calculation as above shows

µλ([i] ∩ ΞK) ≤ ecmK |λ−τ |θ
′ |i|µτ ([i] ∩ ΞK).

�

Lemma 8.9. For every ` = 1, . . . p, K ≥ log(B0)/ε, n ≥ mK , and every i ∈ Ω∗ with |i| = n and
[i] ∩ ΞK 6= ∅, every ω ∈ [i] and every λ ∈ Bξ(λ0), the following holds:∣∣∣∣ 1nSngλ` (ω)−

ˆ
gλ` dµλ

∣∣∣∣ < (6 + 4M)ε,

where M = maxλ∈U,ω∈Ω,1≤`≤p |gλ` (ω)|.

Proof. Let L ≥ K be such that mL ≤ n < mL+1. Then∣∣∣∣ 1nSngλ` (ω)−
ˆ
gλ` dµλ

∣∣∣∣
≤ mL

n

∣∣∣∣ 1

mL
SmLg

λ
` (ω)−

ˆ
gλ` dµλ

∣∣∣∣+

∣∣∣∣ 1n(Sng
λ
` (ω)− SmLg

λ
` (ω))− n−mL

n

ˆ
gλ` dµλ

∣∣∣∣
≤ mL

n
6ε+

n−mL

n
2M ≤ 6ε+

nL+1

mL
· 2M ≤ 6ε+

(1 + ε)L+1

(1 + ε)L − 1
ε · 2M.

Since K is large, the claim follows. �

Now we are ready to prove Proposition 8.4.

Proof of Proposition 8.4. Let gλ1 (ω) = Pλ−φλ(ω) and gλ2 (ω) = − log
∣∣∣(fλω1

)′
(Πλ(σω))

∣∣∣. Then hµλ =´
gλ1dµλ and χµλ =

´
gλ2dµλ. Fix ε > 0, ε′ > 0, and θ′ ∈ [0, θ). Let ξ > 0 be small enough, so that

Proposition 8.8 and Lemma 8.9 hold. Let A = ΞK be defined as in (8.7) for fixed K ≥ log(B0)/ε,
large enough to have µλ(A) ≥ 1 − ε′ for λ ∈ Bξ(λ0) by (8.8). Then µ̃λ = µλ|A satisfies (8.5) by
Proposition 8.8. By the Gibbs property and Lemma 8.9, for u ∈ Ω∗ satisfying [u] ∩ A 6= ∅ with
|u| = n ≥ mK and any ω ∈ [u], we have

µ̃λ([u]) ≤ µλ([u]) ≤ CG exp(−Pλn+ Snφ
λ(ω)) = CG exp(−Sngλ1 (ω)) ≤ CGe−n(hµλ−(6+4M)ε)
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and ∣∣∣∣(fλu)′ (Πλ(σnω))

∣∣∣∣ ≥ e−n(χµλ+(6+4M)ε).

Therefore, setting An = {u ∈ An : [u] ∩A 6= ∅} and applying Lemma 4.2, we obtain for α > 0,

Eα(µ̃λ, dλ) =
∞∑
n=0

∑
u∈An

∑
i,j∈A
i 6=j

∣∣∣fλu (X)
∣∣∣−α µ̃λ([ui])µ̃λ([uj])

≤ Cα61CG

∞∑
n=0

∑
u∈An

∑
i,j∈A
i 6=j

e−n(hµλ−(6+4M)ε−α(χµλ+(6+4M)ε))µ̃λ([uj])

≤ Cα61CG#A
∞∑
n=0

e−n(hµλ−(6+4M)ε−α(χµλ+(6+4M)ε)) <∞,

provided α < hµλ−(6+4M)ε

χµλ+(6+4M)ε . This shows dimcor(µ̃λ, dλ) ≥ hµλ−(6+4M)ε

χµλ+(6+4M)ε . �

9. Proofs of Theorems 3.2 and 3.3

Lemma 9.1. Let {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1) - (A4).
Let {µλ}λ∈U be a collection of finite Borel measures on Ω satisfying (M). Then the map

U 3 λ 7→ dimcor(µλ, dλ)

is continuous.

Proof. Fix arbitrary α > 0, ε > 0. It is enough to prove that there exists a constant Ĉ > 0 such
that inequality

Eα(µλ, dλ) ≤ ĈEα+ε(µλ′ , dλ′)

holds provided λ and λ′ are close enough. By (M) and the parametric bounded distortion property
(Lemma 4.2),

Eα(µλ, dλ) =
∞∑
n=0

∑
u∈An

∑
i,j∈A
i 6=j

∣∣∣fλu (X)
∣∣∣−α µλ([ui])µλ([uj])

≤ C62

∞∑
n=0

∑
u∈An

∑
i,j∈A
i 6=j

e(c+c62)n|λ−λ′|θ
∣∣∣fλ′u (X)

∣∣∣−α µλ′([ui])µλ′([uj])
≤ C62

∞∑
n=0

∑
u∈An

∑
i,j∈A
i 6=j

∣∣∣fλ′u (X)
∣∣∣−(α+ε)

µλ′([ui])µλ′([uj])

= C62Eα+ε(µλ′ , dλ′),

where the last inequality holds provided |λ−λ′| is small enough, as
∣∣∣fλ′u (X)

∣∣∣−ε ≥ γ−εn2 by (A4). �
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9.1. Proof of Theorem 3.2. Fix λ0 ∈ U with dimcor(µλ0 , dλ0) > 1. Let ε > 0 be small enough to
have

γ :=
min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 4ε− 1

2
> 0.

Let q = 1 + 2γ + 2ε. Then

1 + 2γ + ε < q ≤ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 2ε.

Let β > 0 be small enough to have

q(1 + a0β) ≤ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − ε,

where a0 is as in Theorem 7.1. By Theorem 7.1, there exists an neighbourhood J of λ0 in U , interval
I containing λ0 and compactly supported in J and smooth function ρ with 0 ≤ ρ ≤ 1, supp(ρ) ⊂ J
and ρ ≡ 1 on I, such thatˆ

I
‖νλ‖22,γdλ ≤

ˆ
J
‖νλ‖22,γρ(λ)dλ ≤ C̃1Eq(1+a0β)(µλ0 , dλ0) + C̃2 <∞

as q(1+a0β) ≤ dimcor(µλ0 , dλ0)−ε. Therefore, ‖νλ‖22,γ <∞ for Lebesgue almost every λ ∈ I, hence

dimS((Πλ)∗µλ) ≥ 1 + 2γ ≥ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 4ε

holds almost surely on I. As ε can be taken arbitrary small and the function λ 7→ dimcor(µλ, dλ) is
continuous by Lemma 9.1, we can conclude the result in the same way as in the proof of Theorem
3.1 (see the last paragraph of Section 5).

9.2. Proof of Theorem 3.3. As Proposition 8.3 implies that measures {µλ}λ∈U satisfy (M) with θ′

arbitrarily close to θ, the first assertion of Theorem 3.3 follows from Theorem 3.2. For the absolute
continuity part, fix ε > 0 and ε′ > 0 and let µ̃λ be as in Proposition 8.4. By Theorem 3.2 we have
dimS((Πλ)∗µ̃λ) > 1 for Lebesgue almost every λ with hµλ

χµλ
> 1 + ε. As any measure on R with

Sobolev dimension greater than 1 is absolutely continuous (with L2 density), passing with ε′ and ε
to zero finishes the proof.

10. Applications

10.1. Place-dependent Bernoulli convolutions. Our first application is the place-dependent
Bernoulli convolution studied in [1]. Let 0 < ρ < 1

2 and 0.5 < λ < 1 and let us consider the following
dynamical system f : [−1, 1]× [0, 1] 7→ [−1, 1]× [0, 1], where

f(x, y) =


(
λx− (1− λ), 2y

1+2ρx

)
if 0 ≤ y < 1

2 + ρx(
λx+ (1− λ), 2y−2ρx−1

1−2ρx

)
if 1

2 + ρx ≤ y ≤ 1.

For the action of f on the rectangle [−1, 1]× [0, 1] see Figure 10.1.
Let νλ,ρ be the place-dependent invariant measure of the IFS on [−1, 1]

Ψλ =
{
ψλ0 (x) = λx− (1− λ), ψλ1 (x) = λx+ (1− λ)

}
with probabilities

{
p0(x) = 1

2 + ρx, p1(x) = 1
2 − ρx

}
. That is, νλ,ρ is the unique probability measure

of the dual operator L∗, where

Lg(x) =

(
1

2
+ ρx

)
g(λx− (1− λ)) +

(
1

2
− ρx

)
g(λx+ (1− λ)),
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Figure 10.1. The map f acting on the rectangle [−1, 1]× [0, 1].

for any continuous test function g : [0, 1] 7→ R. In fact, by [12, Theorem 1.1],

(10.1) lim
n→∞

Lng(x) =

ˆ
gdνλ,ρ uniformly on [0, 1].

Applying (10.1) and the bounded convergence theorem, simple calculations show that

1

n

n−1∑
k=0

L2 ◦ f−k → νλ,ρ × L1 weakly,

where L2 is the normalized Lebesgue measure on the rectangle. Hence, by the results of Schmeling
and Troubetzkoy [38, Section 2, 3], the measure νλ,ρ × L1 is the unique SBR-measure of the map
f . Therefore, the property νSBR � L2 is equivalent to νλ,ρ � L1 and moreover dimH νSBR =

1 + dimH νλ,ρ.
Clearly, the IFS Ψλ satisfies the conditions (A1)-(A4) for λ in an arbitrary compact subinterval

of (0, 1). Moreover, it is easy to see that νλ,ρ is a push-forward measure of a parameter-dependent
Gibbs measure µλ,ρ. More precisely, let Ω = {−1, 1}N and

Πλ(ω) =

∞∑
k=1

ωkλ
k−1,

and let φλ(ω) = log
(
pω1(Πλ(σω))

)
. It is easy to see that φλ satisfies (3.1) and (3.2) for every fixed

ρ ∈ [0, 1/2). Moreover,

χµλ,ρ = − log λ;

hµλ,ρ = −
´
R
(

1
2 + ρx

)
log
(

1
2 + ρx

)
+
(

1
2 − ρx

)
log
(

1
2 − ρx

)
dνλ,ρ(x).

Shmerkin and Solomyak [41, Theorem 2.6] showed that Ψλ satisfies the transversality condition
(T) on the interval λ ∈ (0, 0.6684755). Hence we can apply Theorem 3.3 and verify the claim [1,
Theorem 4.1].

Theorem 10.1. For every 0 ≤ ρ < 0.5 and Lebesgue almost every λ ∈ (0.5, 0.6684755),

dimH νλ,ρ = min
{

1,
hµλ,ρ
− log λ

}
Moreover, νλ,ρ is absolutely continuous for Lebesgue almost every

λ ∈
{
λ ∈ (0.5, 0.6684755) : hµλ,ρ > − log λ

}
.
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Figure 10.2. The singularity and absolute continuity region of the measure µλ,ρ.

In particular, the region contains the quadrilateral formed by the points (0, 0.5), (0.45, 0.55), (0.45, 0.668),
(0, 0.668).

It follows from the calculations in [1], that for every N ≥ 1,

(10.2)

log 2 −
N∑
n=1

(2ρ)2n

2n(2n− 1)
Fn −

(2ρ)N+1

(2N + 2)(2N + 1)(1− (2ρ)2)
≤ hµλ,ρ ≤ log 2 −

N∑
n=1

(2ρ)2n

2n(2n− 1)
Fn.

where Fn =
´
x2ndµλ,ρ(x). The quantities Fn can be expressed inductively by

Fn =
(1− λ)2n

1 + λ2n−1(4nρ(1− λ)− λ)
+

n−1∑
m=1

2m(1− λ)2n−2mλ2m−1

1 + λ2n−1(4nρ(1− λ)− λ)

(
2n

2m

)(
λ

2m
− 2ρ(1− λ)

2n− 2m+ 1

)
Fm.

Using the estimates (10.2), we can approximate the region in Theorem 10.1, see Figure 10.2.

10.2. Blackwell measure for binary channel. Our second application is the absolute continuity
of the Blackwell measure for a binary symmetric channel with a noise. Let us first introduce the
basic notations, following Bárány, Pollicott and Simon [3] and Bárány and Kolossváry [2]. Let
X := {Xi}∞i=−∞ be a binary, symmetric, stationary, ergodic Markov chain source Xi ∈ {0, 1}, with
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a probability transition matrix

Π :=

[
p 1− p

1− p p

]
.

By adding to X a binary independent and identically distributed (i.i.d.) noise E = {Ei}∞i=−∞
independent of X with

P(Ei = 0) = 1− ε, P(Ei = 1) = ε,

we get a Markov chain Y := {Yi}∞i=−∞, Yi = (Xi, Ei) with states {(0, 0), (0, 1), (1, 0),

(1, 1)} and transition probabilities:

M :=


p(1− ε) pε (1− p)(1− ε) (1− p)ε
p(1− ε) pε (1− p)(1− ε) (1− p)ε

(1− p)(1− ε) (1− p)ε p(1− ε) pε

(1− p)(1− ε) (1− p)ε p(1− ε) pε

 .
Let Ψ : {(0, 0), (0, 1), (1, 0), (1, 1)} 7→ {0, 1} be a surjective map such that

Ψ(0, 0) = Ψ(1, 1) = 0 and Ψ(0, 1) = Ψ(1, 0) = 1.

We consider the ergodic stationary process Z = {Zi = Ψ(Yi)}∞i=−∞, which is the corrupted output
of the channel. Equivalently, Z is the stationary stochastic process Zi = Xi

⊕
Ei, where

⊕
denotes

the binary addition.
According to [14, Example 4.1] and [3, Example 1], the entropy of Z can be expressed as follows.

Consider the 3-dimensional simplex

W :=
{
w ∈ R4 : wi ≥ 0,

∑
1≤i≤4

wi = 1
}

and define W0,W1 ⊂W by

W0 := {w ∈W : w2 = w3 = 0} , W1 := {w ∈W : w1 = w4 = 0} .

Consider two matrices

M0 :=


p(1− ε) 0 0 (1− p)ε
p(1− ε) 0 0 (1− p)ε

(1− p)(1− ε) 0 0 pε

(1− p)(1− ε) 0 0 pε

 and M1 :=


0 pε (1− p)(1− ε) 0

0 pε (1− p)(1− ε) 0

0 (1− p)ε p(1− ε) 0

0 (1− p)ε p(1− ε) 0

 ,
and let (r0(w), r1(w)) be the place-dependent probability vector of the form

ri(w) = ‖wTMi‖1,

where ‖.‖1 denotes the l1 norm and w ∈W . Introduce two functions f0 : W 7→W0 and f1 : W 7→W1

such that

fi(w) =
wTMi

‖wTMi‖1
.

Then the entropy of Z can be expressed as follows:

H(Z) = −
ˆ
W0∪W1

[
r0(w) log r0(w) + r1(w) log r1(w)

]
dQ(w),

where the Blackwell measure Q is the unique measure with supp(Q) ⊆W0∪W1, such that for every
continuous function h : W0 ∪W1 7→ R,ˆ

h(w)dQ(w) =

ˆ
r0(w)h(f0(w)) + r1(w)h(f1(w))dQ(w).
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It was shown in [3, Section 3.1, 3.2] that for the binary symmetric channel, the measure Q on
W0 ∪W1 is conjugated to the place-dependent invariant probability measure νε,p on [0, 1] for the
IFS Ψε,p = {Sε,p0 , Sε,p1 }:

Sε,p0 (x) :=
x · p · (1− ε) + (1− x) · (1− p) · (1− ε)

x · [p(1− ε) + (1− p) · ε] + (1− x) · [(1− p)(1− ε) + p · ε]
,

Sε,p1 (x) :=
x · p · ε+ (1− x) · (1− p) · ε

x · [pε+ (1− p) · (1− ε)] + (1− x) · [(1− p)ε+ p · (1− ε)]
.

and the place-dependent probability vector (pε,p0 (x), pε,p1 (x)):

pε,p0 (x) := x · [p(1− ε) + (1− p) · ε] + (1− x) · [(1− p)(1− ε) + p · ε] ,
pε,p1 (x) := x · [pε+ (1− p) · (1− ε)] + (1− x) · [(1− p)ε+ p · (1− ε)] .

In particular, Q� L1|W0∪W1 if and only if νε,p � L1.
Observe that for ε = 1/2, Sε,p0 (x) = Sε,p1 (x) = (2p− 1)x+ 1− p and so νε,p is the Dirac mass on

the point 1/2. Hence, we may assume that ε 6= 1/2.
For every fixed ε ∈ (0, 1) \ {1/2}, the IFS Ψε,p satisfies the conditions (A1)-(A4) for p in an

arbitrary compact subinterval of (0, 1); and νε,p is a push-forward measure of the Gibbs measure
µε,p with respect to the potential φε,p(ω) = log (pε,pω1 (Πε,p(σω))) satisfying (3.1) and (3.2), where Πε,p

is the natural projection of the IFS Ψε,p.
Bárány and Kolossváry [2] showed that for every fixed ε 6= 1/2 the IFS Ψε,p satisfies the transver-

sality condition (T) with respect to the parameter p and has hµε,p
χµε,p

> 1 on every interval I for which
{ε} × I is contained in the red region in Figure 10.3. Thus, the main theorem of the present paper
applies and [2, Theorem 1.1] remains correct:

Theorem 10.2. For every fixed ε ∈ (0, 1)\{1/2} and for Lebesgue-almost every p such that (ε, p) ∈ R
is in the red region of Figure 10.3, the measure νε,p is absolutely continuous. For instance, the red
region contains two quadrilaterals formed by (0.5, 0.75), (0.37, 0.775), (0.5, 0.795), (0.63, 0.775) and
(0.5, 0.25), (0.37, 0.225), (0.5, 0.205), (0.63, 0.225).

It was shown by Bárány, Pollicott and Simon [3] that µε,p is singular in the blue region of Fig-
ure 10.3.

10.3. Absolute continuity of equilibrium measures for hyperbolic IFS with overlaps.
First we recall briefly the notion of equilibrium measure in the setting of IFS. Let A = {1, . . . ,m}
and suppose we have an IFS Ψ = {fj}j∈A of the class C1+θ on a compact interval X ⊂ R. We
assume that that the system {fj}j∈A is uniformly hyperbolic and contractive:

(10.3) 0 < γ1 ≤ |f ′j(x)| ≤ γ2 < 1 for all j ∈ A, x ∈ X.

As before, Ω = AN and σ denotes the left shift on Ω. We write Π : Ω→ R for the natural projection
map associated with the IFS. Consider the pressure function, defined by

(10.4) PA(t) = PΨ(t) = lim
n→∞

n−1 log
∑
u∈An

‖f ′u‖t.

It is well-known that this limit exists, t 7→ PA(t) is continuous and strictly decreasing. According to
the general theory of thermodynamical formalism (see e.g., [35]),

PΨ(t) = P (σ, tφ),



Figure 10.3. The singularity (blue) and transversality region with hµε,p
χµε,p

> 1 (red)
of the measure νε,p, [2, Figure 1].

where φ(ω) = log |f ′ω1
(Π(σω))| is the potential associated with the IFS and P (σ, ·) is the topological

pressure. The equilibrium state for the potential tφ is a Borel probability measure µ on Ω satisfying

PΨ(t) = hµ + t

ˆ
φdµ,

where hµ = hµ(σ), see [35, 3.5]. Observe that
´
φdµ = −χµ by the definition of the Lyapunov

exponent. Denote by s = s(Ψ) the solution of the Bowen’s equation:

(10.5) s = s(Ψ) : PΨ(s) = 0.

It is well-known that s(Ψ) is the upper bound for the Hausdorff dimension of the attractor. We say
that µ is an equilibrium measure for the IFS Ψ if it is the equilibrium state for the potential s(Ψ) ·φ.
Thus, by definition,

µ is an equilibrium measure =⇒ s(Ψ) =
hµ
χµ

.

The equilibrium measure is the dimension-maximizing measure for the IFS in the symbolic space.
Under our assumptions, the equilibrium measure µ is the unique Gibbs measure for the potential
sφ = s(Ψ) · φ, which implies that

µ([u]) � diam([u])s,
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for any cylinder set [u] in Ω. Here diam([u]) is the diameter in the metric associated with the IFS:
d(ω, τ) = |Xω∧τ |. It follows that µ has local dimension s at every point in Ω; in particular, the
correlation dimension dimcor(µ) = s.

Given a family of hyperbolic IFS Ψλ (with overlaps) depending on a parameter λ ∈ U , with equi-
librium measure µλ, we expect that typically, in the sense of almost every parameter, the projection of
the equilibrium measure (Πλ)∗µλ has Hausdorff dimension min{1, s(Ψλ)}, and is absolutely contin-
uous when s(Ψλ) > 1. This is what we prove under the assumptions of regularity and transversality.
It is a simple consequence of Theorem 3.3, but we state it as a theorem because of its importance.

Theorem 10.3. Let Ψλ = {fλj }j∈A be a parametrized IFS satisfying smoothness assumptions (A1)
- (A4) and the transversality condition (T) on U . Let µλ be the equilibrium measure for Ψλ and
s(Ψλ) the solution of the Bowen’s equation (10.5). Then dimH((Πλ)∗µλ) = min{1, s(Ψλ)} for a.e.
λ ∈ U and (Πλ)∗µλ is absolutely continuous with a density in L2 for Lebesgue almost every λ in the
set {λ ∈ U : s(Ψλ) > 1}.

Proof. As noted above, the equilibrium measure µλ satisfies dimcor(µλ) = s(Ψλ). By Theorem 3.1
and Theorem 3.2, it is enough to show that the equillibrium measure µλ satisfies (M). By Proposi-
tion 8.3, it is enough to show that potential φλ(ω) = s(Ψλ) log

∣∣(fλω1
)′(Πλ(σω))

∣∣ satisfies (3.1) and
(3.2).

The condition (3.1) is straightforward, since by assumption γ1 <
∣∣(fλω1

)′(Πλ(σω))
∣∣ < γ2 on U and

trivially s(Ψλ) ≤ logm
− log γ2

. On the other hand,

|φλ(ω)− φτ (ω)| =
∣∣∣s(Ψλ) log

∣∣∣(fλω1
)′(Πλ(σω))

∣∣∣ log
∣∣∣(fλω1

)′(Πλ(σω))
∣∣∣− s(Ψτ ) log

∣∣(f τω1
)′(Πτ (σω))

∣∣ ∣∣∣
≤ − log γ1|s(Ψλ)− s(Ψτ )|+ logm

− log γ2

∣∣∣ log |(fλω1
)′(Πλ(σω))| − log

∣∣(f τω1
)′(Πτ (σω))

∣∣ ∣∣∣
≤ − log γ1|s(Ψλ)− s(Ψτ )|+ logm

−γ1 log γ2

∣∣∣(fλω1
)′(Πλ(σω))− (f τω1

)′(Πτ (σω))
∣∣∣.

By the assumptions (A1) - (A4), simple manipulation shows that λ 7→ (fλω1
)′(Πλ(σω)) is a Lipschitz

map with Lipschitz constant independent of ω. Hence, it is enough to show that λ 7→ s(Ψλ) is
Lipschitz. But clearly,

− log γ2|s− t| ≤ |PΦλ(t)− PΦλ(s)| ≤ − log γ1|s− t|,

and so
|s(Ψλ)− s(Ψτ )| ≤ (− log γ2)−1|PΦλ(s(Ψλ))− PΦλ(s(Ψτ ))|

= (− log γ2)−1|PΦλ(s(Ψτ ))− PΦτ (s(Ψτ ))|

≤ (− log γ2)−1c|λ− τ |,

where the last inequality follows by Lemma 8.2 since λ 7→ s(Ψτ ) log
∣∣(fλω1

)′(Πλ(σω))
∣∣ satisfies (3.2).

�

10.4. Natural measures for non-homogeneous self-similar IFS. Consider a self-similar IFS
on the line F = {fj(x) = rjx + aj}j∈A, where rj ∈ (0, 1) and aj ∈ R. Recall that the similarity
dimension is the number s = s(F), such that

∑
j∈A r

s
j = 1. Assume that the IFS is non-degenerate,

in the sense that the fixed points of fj are all distinct. In this case the equilibrium measure is the
Bernoulli product measure (pN) on Ω, where p = (rs1, . . . , r

s
m) is the vector of probability weights

associated with the similarity dimension. We focus on the question of absolute continuity for the
natural self-similar measure νF = Π∗(p

N). (For the Hausdorff dimension dimH(νF ) Hochman [15]
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obtained results that are much sharper than what we get with our method, so we don’t discuss
the latter.) For non-homogeneous self-similar measures results on absolute continuity for a typical
parameter in a “transversality region” were obtained by Neunhäuserer [26] and Ngai and Wang [27]
independently. However, in their results the probabilities in the definition of self-similar measure
are fixed, and so nothing can be claimed for the natural measure for a.e. parameter. More recently,
Saglietti, Shmerkin, and Solomyak [37] proved absolute continuity for a.e. parameter in the entire
“super-critical region” (i.e., where hµ/χµ > 1), however, there also, probabilities are fixed, and an
application of Fubini’s Theorem doesn’t yield anything for the natural measure. The following is an
immediate consequence of Theorem 10.3.

Corollary 10.4. Let Fλ = {rj(λ)x + aj(λ)}j∈A be a family of non-degenerate self-similar IFS
satisfying smoothness assumptions (A1) - (A4) and the transversality condition (T) on U . Then the
natural self-similar measure νλ is absolutely continuous with a density in L2 for a.e. λ ∈ U such that
the similarity dimension is strictly greater than 1.

Specific regions where the transversality condition holds were found in [26, 27]. In particular, we
have the following for the family of the IFS {λ1x, λ2 +x}, where the 1-parameter family is obtained
by assuming λ = λ1, λ2 = cλ for a fixed c > 0.

Corollary 10.5. Let νλ1,λ2 be the natural self-similar measure for the IFS {λ1x, λ2x + 1}. Then
νλ1,λ2 is absolutely continuous with a density in L2 for a.e. (λ1, λ2) such that λ1 + λ2 > 1 and
max{λ1, λ2} ≤ 0.668.

10.5. Some random continued fractions. Consider the IFS Fα,β = {f1, f2} =: { x+α
x+α+1 ,

x+β
x+β+1}

on the real line, for 0 ≤ α < β. Applying the maps randomly (not necessarily independently), we
obtain a random continued fraction [1, Y1, 1, Y2, 1, Y3, . . .] where Yi ∈ {α, β} and we are using the
notation

[a1, a2, a3, . . .] :=
1

a1 +
1

a2 +
1

a3 + . . .

In the case α = 0 the IFS is parabolic; it was first studied by Lyons [23], motivated by a problem
from the theory of Galton-Watson trees. In [44] it was shown that the invariant measure for the
IFS corresponding to Yi applied i.i.d., with probabilities (1

2 ,
1
2) is absolutely continuous for a.e.

β ∈ (0.215, βc), where βc ∈ (0.2688, 0.2689) is the “critical value”, such that
log 2

χβc
= 1,

where χβc is the Lyapunov exponent of the measure (1
2 ,

1
2)N. Note that the IFS F0,β is overlapping,

i.e., its two cylinder intervals have non-trivial intersection, for β ∈ (0, 0.5).

In this paper we restrict ourselves to smooth hyperbolic IFS, so we need to take α > 0. However,
we can take a very small positive α and expect somewhat similar behavior. The convex hull of the
attractor for Fα,β is the closed interval having the attracting fixed points of f1, f2 as its endpoints; it

isXα,β =
[√

α2+4α−α
2 ,

√
β2+4β−β

2

]
. It is easy to check that the condition for the IFS to be overlapping,

i.e., L1
(
f1(Xα,β) ∩ f2(Xα,β)

)
> 0 is

β + α+ 4 > 3
(√

β2 + 4β +
√
α2 + 4α

)
.

It is satisfied, e.g., when α ∈ (0, 10−4] and β ∈ (α, 0.485).
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Example 10.6. Denote by Πα,β the natural projection from Ω = {1, 2}N to the attractor and
consider the equilibrium Gibbs measure µα,β for the IFS. Fix α ∈ (0, 10−4] and β =

√
2 − 1 =

0.41421 . . . Denote ηα,β := Πα,β
∗ µα,β . Then ηα,β+λ is absolutely continuous with a density in L2 for

a.e. λ ∈ U = (0, 0.485− β) ≈ (0, 0.077). �

In order to derive this claim from Theorem 10.3 we need to check transversality and that
hµα,β/χµα,β > 1 holds. (The regularity assumptions are obviously satisfied.) It is well-known that
as soon as there is an overlap, the condition s(Ψα,β) = hµα,β/χµα,β > 1 is satisfied, but for the
reader’s convenience we provide a short proof in Appendix D, see Corollary D.3. Checking transver-
sality is non-trivial; we indicate it in the next subsection. (In fact, we could get a larger interval of
transversality (≈ 0.215, 0.485) for α ∈ (0, 10−4] with the method of [44, Section 6], which is more
delicate.)

10.6. Checking transversality. Sometimes slightly different forms of the transversality conditions
are used. Here they are:

∃ η > 0 : ∀u, v ∈ Ω, u1 6= v1, λ ∈ U∣∣∣Πλ(u)−Πλ(v)
∣∣∣ ≤ η =⇒

∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ η;
(10.6)

∃ η > 0 : ∀u, v ∈ Ω, u1 6= v1, λ ∈ U

Πλ(u) = Πλ(v) =⇒
∣∣ d
dλ(Πλ(u)−Πλ(v))

∣∣ ≥ η;
(10.7)

∃CT > 0 : ∀u, v ∈ Ω, u1 6= v1, r > 0

L1
{
λ ∈ U : |Πλ(u)−Πλ(v)| ≤ r

}
≤ CT · r.

(10.8)

Lemma 10.7. Under regularity assumptions (A1) - (A4), all three conditions (10.6) - (10.8) are
equivalent.

Proof. The implication (10.6) =⇒ (10.7) is trivial.
The implication (10.6) =⇒ (10.8) is the usual transversality argument, see [43, Lemma 7.3].
Let us prove (10.8) =⇒ (10.7). We argue by contradiction. If (10.7) does not hold, we can use

compactness of Ω and U and find u, v ∈ Ω with u1 6= v1, and λ0 ∈ U such that F (λ) = Πλ(u)−Πλ(v)

satisfies
F (λ0) =

d

dλ
F (λ0) = 0.

Using that Πλ ∈ C1,δ (Proposition 4.3), we can write

|F (λ0 + t)| = |F (λ0 + t)− F (λ0)− F ′(λ0)t|
= |F ′(λ0 + τ)t− F ′(λ0)t| for some τ ∈ (0, t) by the Lagrange Theorem

= |t| · |F ′(λ0 + τ)− F ′(λ0)| ≤ |t| · Cδ|τ |δ < Cδ|t|1+δ,

which clearly contradicts (10.8) for r sufficiently small.
It remains to show (10.7) =⇒ (10.6), but this again follows by compactness of Ω and U and

continuity of λ 7→ Πλ and λ 7→ d
dλΠλ. �

Next we consider two 1-parameter families of IFS for which it is possible to verify the transversality
condition, under appropriate assumptions. They are variants and modifications of the parametrized
families of IFS from [43, 44].
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Proof of transversality in Example 10.6. Let f(x) = x
x+1 , so that Fλ = {f(x + α), f(x + β + λ)},

and let Πλ be the corresponding natural projection map. We can consider this IFS on X = [0, 0.5]

for all these parameters. Here it is more convenient to verify the transversality condition in the form
(10.7). Let u, v ∈ Ω with u1 6= v1. Without loss of generality we can assume that u1 = 2 and v1 = 1.
Then we have by the Lagrange Theorem,

Πλ(u)−Πλ(v) = f
(
β + λ+ Πλ(σu)

)
− f

(
α+ Πλ(σv)

)
= f ′(c) ·

[
β − α+ λ+ Πλ(σu)−Πλ(σv)

]
=: f ′(c) ·Ψλ(u, v).

Since f ′(c) ≥ γ1 > 0, we obtain that{
λ ∈ U : |Πλ(u)−Πλ(v)| ≤ r

}
⊂
{
λ ∈ U : |Ψλ(u, v)| ≤ r/γ1

}
.

In order to verify (10.8), it suffices to show that d
dλΨλ(u, v) ≥ δ > 0. We have

(10.9) d
dλΨλ(u, v) = 1 + d

dλΠλ(σu)− d
dλΠλ(σv) ≥ 1− d

dλΠλ(σv),

using monotonicity. We can write

Πλ(σv) = f i01 f
λ
2 f

i1
1 f

λ
2 f

i2
1 f

λ
2 . . .

for some in ≥ 0, where we write f1 ≡ fλ1 = f(x+ α) and fλ2 = f(x+ β + λ), so that

Πλ(σv) = f i01 f
(
β + λ+ f i11 f(β + λ+ f i21 . . .)

)
.

Then simply using that ‖f ′1‖∞ < 1 and the maximum of the derivative is attained at the left endpoint
by concavity, yields

d
dλΠλ(σv) < f ′(β + λ)

(
1 + f ′(β + λ)

(
1 + f ′(β + λ)(1 + · · · )

))
=

f ′(β + λ)

1− f ′(β + λ)
.

It remains to note that f ′(β + λ) < f ′(β) = 1/2, hence d
dλΠλ(σv) < 1, which implies the desired

claim, in view of (10.9). �

10.7. “Vertical” translation family. Next we consider a class of 1-parameter families of IFS for
which it is possible to verify the transversality condition, under appropriate assumptions. This is
also a modification of the parametrized families of IFS from [43, 44].

Let {fj}j∈A be a C1+δ IFS on X and consider a “translation perturbation” {fλj }j∈A, satisfying
(A4), of the following form: assume that

{fλj (x) = fj(x) + aj(λ)}j∈A,

and assume that it is well-defined on X for λ ∈ U . We call it “vertical” because the graphs are
translated vertically. Sometimes it is useful to consider IFS consisting of “horizontal” shifts of the
same function, that is, IFS of the form {f(x + cj)}mj=1, like Example 10.6. Such families may be
treated in a way similar to the “vertical” translation families with a few modifications, see [43, Section
7] and [44, Section 6]. Instead of treating this case in full generality, we focused on a specific example
of random continued fractions above.

Denote for i 6= j in A:

(10.10) Xij :=
{
x ∈ X : ∃λ ∈ U, ∃ y ∈ X such that fλi (x) = fλj (y)

}
.
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Note that Xij is empty if the corresponding 1st order cylinders never overlap. We further define, for
i 6= j in A such that Xij 6= ∅:

(10.11) ‖f ′i‖Xij := ‖f ′i |Xij‖∞, ηij := min
∣∣∣ ddλ[ai(λ)− aj(λ)

]∣∣∣.
Let

(10.12) Dmax := max
i

( ‖ ddλai‖∞
1− ‖f ′i‖∞

)
.

Proposition 10.8. (i) If

(10.13) ηij −
(
‖f ′i‖Xij + ‖f ′j‖Xji

)
·Dmax > 0 for all i 6= j such that Xij 6= ∅,

then the transversality condition holds on U .
(ii) Assume, in addition, that f ′j(x) > 0 and d

dλaj ≥ 0 for all j ∈ A. If

(10.14) ηij − ‖f ′j‖Xji ·Dmax > 0 for all i 6= j such that Xij 6= ∅,

then the transversality condition holds on U .

Before the proof we present a more familiar special case. Let {fλj }j∈A be a C1+δ IFS on X,
satisfying (A4). Consider the translation family

{fλ1 (x) = f1(x) + λ, fλj (x) = fj(x), j > 1},

and assume that it is well-defined on X for λ ∈ U . Note that only fλ1 changes with λ. Moreover,
we assume that only the cylinder fλ1 (X) can intersect other 1-st order cylinders, that is

i 6= j, fi(X) ∩ fj(X) 6= ∅ =⇒ 1 ∈ {i, j}.

Corollary 10.9. (i) If
2‖f ′1‖∞ + ‖f ′j‖Xj1 < 1 for all 1 < j ≤ m,

then the transversality condition holds on U .
(ii) Assume, in addition, that f ′j(x) > 0 for all j ∈ A. If

‖f ′1‖∞ + ‖f ′j‖Xj1 < 1 for all 1 < j ≤ m,

then the transversality condition holds on U .

The derivation of the corollary from the proposition is immediate, since in this case we have
η1j = 1 for j > 1 and Dmax = (1− ‖f ′1‖∞)−1.

Proof of Proposition 10.8. Consider the symbolic cylinder sets [i] ⊂ Ω and let

M∞ := max
u∈Ω

∥∥∥ d
dλΠλ(u)

∥∥∥
∞
, Mi := maxu∈[i]

∥∥∥ d
dλΠλ(u)

∥∥∥
∞
, i ∈ A.

We have
u ∈ [i] =⇒ Πλ(u) = ai(λ) + fi(Π

λ(σu)),

hence

(10.15)
d

dλ
Πλ(u) =

d

dλ
ai(λ) + f ′i(Π

λ(σu)) · d
dλ

Πλ(σu) for u ∈ [i].

It follows that
Mi ≤

∥∥∥ d
dλai(λ)

∥∥∥
∞

+ ‖f ′i‖∞ ·M∞,

and since M∞ = maxiMi, we obtain from (10.12) that

(10.16) M∞ ≤ Dmax.
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Now we verify the transversality condition in the form (10.7). If Πλ(u) = Πλ(v) and u1 6= v1,
then u ∈ [i] and v ∈ [j] for some i 6= j such that Xij 6= ∅. Without loss of generality we can assume
that d

dλ

[
ai(λ)− aj(λ)

]
> 0 in the definition of ηij , otherwise, exchange i and j. Then (10.15) yields

(10.17)
d

dλ

(
Πλ(u)−Πλ(v)

)
=

d

dλ

[
ai(λ)−aj(λ)

]
+f ′i(Π

λ(σu))· d
dλ

Πλ(σu)−f ′j(Πλ(σv))· d
dλ

Πλ(σv).

Note that
Πλ(u) = fi(Π

λ(σu)) = fj(Π
λ(σv)) = Πλ(v),

hence Πλ(σu) ∈ Xij and Πλ(σv) ∈ Xji. Therefore, (10.17) yields∣∣∣∣ ddλ (Πλ(u)−Πλ(v)
)∣∣∣∣ ≥ ηij − (‖f ′i‖Xij + ‖f ′j‖Xji

)
·Dmax > 0,

assuming (10.13). This proves part (i) of the proposition.
In order to verify part (ii), note that if all fj and λ 7→ aj(λ) are monotone increasing, we also get

that d
dλΠλ(u) ≥ 0 for all u ∈ Ω, hence (10.17) implies∣∣∣∣ ddλ (Πλ(u)−Πλ(v)

)∣∣∣∣ ≥ ηij − ‖f ′j‖Xji ·Dmax > 0,

which is bounded away from zero under the assumption (10.13). This concludes the proof of (10.7)
�

Example 10.10. Let Ψ := {fi}mi=1 be a C1+δ IFS on X. We assume that there exists a partition
A = I−1 ∪ I1 such that for very i, j ∈ Ik, we have

(10.18) fi(X) ∩ fj(X) = ∅, i 6= j, i, j ∈ Ik, k = −1, 1

Recall the definition of γ2 from (A4). Besides (10.18), our second assumption is as follows:

(10.19) γ2 <
1

2
.

We define κ(i) = k if i ∈ Ik, k = −1, 1. Then we introduce the family Ψλ =
{
fλi
}m
i=1

with a
parameter interval λ ∈ U , where

(10.20) fλi (x) := fi(x) + κ(i) · λ.

Together with (10.19), this yields

(10.21)
∣∣∣∣ ddλ(ai(λ)− aj(λ))

∣∣∣∣ ≡ { 2, if κ(i) 6= κ(j);
0, if κ(i) = κ(j).

and Dmax ≤
1

1− γ2
< 2.

The parameter interval U is an open interval centered at 0, and U is so small that

(10.22) fλi (X) ⊂ int(X), and fλi (X) ∩ fλj (X) = ∅, i 6= j, i, j ∈ Ik, k = −1, 1, λ ∈ U.

The (first level) cylinder intervals are Xλ
i := fλi (X), i ∈ A and λ ∈ U . Observe that

(10.23) Xij 6= ∅ ⇐⇒ ∃λ ∈ U, Xλ
i ∩Xλ

j 6= ∅.

Using this and (10.21) we obtain

(10.24) Xij 6= ∅ =⇒ either (i ∈ I−1 & j ∈ I1) or (j ∈ I−1 & i ∈ I1) =⇒ ηij = 2.

Putting together this and the second part of (10.21) we obtain that (10.13) holds and consequently
the transversality condition holds on U . �
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Remark 10.11. The partition A = I−1 ∪I1 satisfying (10.18) exists, for example, if every point in
X is covered by at most two level-1 cylinder intervals. That is

(10.25)
m∑
i=1

1fi(X) ≤ 2.

In fact, let [aj , bj ] := Xj := fj(X). Without loss of generality, we may assume that the cylinder
intervals Xj are ordered in such a way that the left endpoints are in increasing order. If two level-1
cylinder intervals share the same left endpoint, that is, aj = aj+1, then we set |Xj | ≥ |Xj+1|. Define
I1 inductively, as follows: 1 ∈ I1. If the set I1 already contains 1 = n1 < n2 < · · · < n`, then we let
n`+1 := min {j ∈ A : b` < aj}, if such aj exists; otherwise, we stop and set I−1 := A\ I1. It is easy
to see that (10.18) holds.

Remark 10.12. If we consider an IFS like in Example 10.10 but allow that every point is covered
by at most 2` + 1 cylinder intervals for ` ≥ 1 and assume that γ2 <

1
2`+1 , then we get that the

transversality condition holds in the same way. Namely, we can partition A into 2` + 1 families
I−`, . . . I` in such a way that there are no intersections between distinct cylinder intervals from the
same family. For all functions corresponding to the family Ik the translation is defined to be k · λ.
Then the minimal value of ηij is equal to 1 and Dmax ≤ `

1−γ2 . This implies that (10.13) holds if
γ2 <

1
2`+1 .

Definition 1. We say that A is a transversality-typical property of sufficiently smooth IFSs if the
following holds: Whenever

{
Ψλ
}
λ∈U is a one-parameter family of sufficiently smooth IFSs for which

the transversality condition holds then for L1 almost all λ ∈ U the IFS Ψλ has property A.

We use the notation of Example 10.10. In particular, we are given a compact interval X ⊂ R and
a C1+δ IFS {fi}mi=1 on X such that

(10.26) Xi := fi(X) ⊂ int(X) for all i ∈ A.

Below we consider a translation perturbation family of Ψ. That is,

(10.27) Ψt :=
{
f ti
}m
i=1

, f ti (x) := fi(x) + ti, t ∈ B(0, δ0),

where δ0 > 0 is so small that (10.26) holds if we replace fi with f ti and Xi with Xt
i := f ti (X) for all

i ∈ A.

Claim. Assume that

(a) all points of X are covered by at most two of the cylinder intervals Xk and
(b) γ2 < 1/2.

Let A be a transversality-typical property. Then there exists 0 < δ∗ ≤ δ0 such that for Lm-a.e.
t ∈ B(0, δ∗), the translated IFS

{
Ψt
}m
i=1

(defined in (10.27)) has property A.

Proof. Using Remark 10.11, we can find a partition A = I−1 ∪ I1 such that fi(X) ∩ fj(X) = ∅ for
distinct i, j ∈ Ik, k = −1, 1. Let δ1 > 0 be so small that 0 < 4δ1 < δ0 and

(10.28) Xi ∩Xj = ∅ =⇒ Xt
i ∩Xt

j = ∅ for all t ∈ B(0, 4δ1)

Hence

(10.29) Xi ∩Xt
j = ∅, i 6= j, i, j ∈ Ik, k = −1, 1, t ∈ B(0, 4δ1).
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Let U := (− 1√
m
δ1,

1√
m
δ1) and for a λ ∈ U we define ã(λ) := (κ(1)λ, . . . , κ(m)λ), where we recall

that κ(i) = k if i ∈ Ik. Finally, for a t ∈ B(0, δ1) let

at(λ) := t + ã(λ).

Then ‖at(λ)‖ < 2δ1, t ∈ B(0, δ1), λ ∈ U . Hence

(10.30) X
at(λ)
i ⊂ X and X

at(λ)
i ∩Xat(λ)

j = ∅, i 6= j, i, j ∈ Ik, k = −1, 1, λ ∈ U.

Example 10.10 shows that

(10.31) the transversality condition holds for the family
{

Ψat(λ)
}
λ∈U

for all t ∈ B(0, δ1).

Let
H :=

{
τττ ∈ B

(
0,

δ1

2
√
m

)
: Ψτττ does not have property A

}
.

We need to prove that Lm(H) = 0. To get a contradiction assume that Lm(H) > 0. Then
H has a Lebesque density point τ̂ττ ∈ B(0, δ1

2
√
m

). Let V be the intersection of B
(

0, δ1
2
√
m

)
with the (m − 1)-dimensional hyperplane which goes through the origin and is orthogonal to
the vector (κ(1), . . . , κ(m)). Then by the Fubini theorem there exists a point t ∈ V such that
L1 {λ ∈ U : at(λ) ∈ H} > 0. But this contradicts (10.31) and the fact that A is a transversality-
typical property. �

11. Open questions and further directions

As Theorem 3.2 guarantees more refined properties of (Πλ)∗µλ than mere absolute continuity,
it is natural to ask whether a weaker condition than (M) is sufficient for an almost sure absolute
continuity in the supercritical region

{
λ :

hµλ
χµλ

> 1
}
. In particular, is (M0) sufficient? In our case,

condition (M) is needed to guarantee regularity of the error term ej(ω1, ω2, λ) from (7.7), allowing
us to follow the approach of Peres and Schlag [29].

Another natural direction of further research is to generalise the main result for multivariable
parameters. Peres and Schlag in [29, Section 7] were handling this case for fixed (parameter inde-
pendent) measures. In the case of parameter-dependent measures with one-dimensional family of
parameters, we were using in the proof of Proposition 7.2 the Property (M) of the family of measures
to provide proper estimates of the energy. The main issue in the case of multiparameter-dependent
measures comes from the behaviour of the error term ej(ω1, ω2, λ). Namely, is it possible to follow
[29, Lemma 7.10] and use the Property (M) to deduce similar estimates for the energy or higher
regularity assumptions shall be made for the measures?

An application of the multiparameter case would be the natural equilibrium measure for self-
conformal systems with translation parameters. Furthermore, one could study the absolute continu-
ity of the Furstenberg measure induced by the Käenmäki measure (that is, the natural equilibrium
measure for self-affine IFS, see [21]). For self-affine systems whose linear parts are strictly positive
matrices the Käenmäki measure is a Gibbs measure which smoothly depends on the matrix elements,
see Bárány and Rams [7] and Jurga and Morris [20]. The absolute continuity and the dimension of
the Furstenberg measure induced by the Käenmäki measure plays a central role in the calculation
of the dimension of the Käenmäki measure, see [7].

Another possible direction of further research is to study the absolute continuity of the SBR-
measures of parametrized dynamical systems. Persson [32] considered a class of piecewise affine
hyperbolic maps on a set K ⊂ R2, with one contracting and one expanding direction, which contains
the class of the Belykh maps, as well as the fat baker’s transformations. The Belykh map, first
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introduced by Belykh [4] and later considered by Schmeling and Troubetzkoy [38] for a wider range
of parameters, which contains the fat baker’s transformations as a special case.

For a parametrized family of Belykh maps, to prove the absolute continuity of an SBR-measure,
one needs to show that the family of conditional measures over the stable foliation are absolutely
continuous almost surely. Unlike the system defined in Subsection 10.1, the SBR-measure does not
have a product structure, so the conditional measures of the stable directions depend not only on
the parameters but also on the foliation itself. Persson [32] studied such systems, however, according
to a personal communication [33], the proof contains a crucial error, similar to Bárány [1].

Extending our main results to the case of parabolic (and possibly infinite) iterated functions
systems (as in [43, 44, 25]) is yet another possible research direction. It seems well motivated in the
context of continued fractions expansion and would allow extending the results of Section 10.5 to
their natural generality.

Appendix A. Proof of Lemma 4.1

For u = (u1, . . . , un) ∈ Ω∗ we have

(A.1)
d

dx
fλu (x) =

n∏
k=1

(
d

dx
fλuk

)
(fλσkux),

hence

(A.2)
d2

dx2
fλu (x) =

(
d

dx
fλu (x)

) n∑
k=1

(
d2

dx2
fλuk

)
(fλ
σku

(x)) · ddxf
λ
σku

(x)(
d
dxf

λ
uk

)
(fλ
σku

(x))
.

Applying (A1) and (A4) we obtain

(A.3)

∣∣∣∣∣ d
2

dx2
fλu (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ M1

γ1

n∑
k=1

∣∣∣∣ ddxfλσku(x)

∣∣∣∣ ≤ M1

γ1

n∑
k=1

γn−k2 ≤ M1

γ1(1− γ2)
.

This proves (4.1). For the proof of (4.2), note first that differentiating (A.1) with respect to λ gives

d2

dλdx
fλu (x) =

(
d

dx
fλu (x)

) n∑
k=1

d
dλ

((
d
dxf

λ
uk

)
(fλ
σku

(x))
)(

d
dxf

λ
uk

)
(fλ
σku

(x))
.

Applying (A4) as before we get

(A.4)

∣∣∣∣∣ d2

dλdxf
λ
u (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ 1

γ1

n∑
k=1

∣∣∣∣ ddλ
((

d

dx
fλuk

)
(fλσku(x))

)∣∣∣∣ .
By (A1) and (A3) we have∣∣∣∣ ddλ

((
d

dx
fλuk

)
(fλσku(x))

)∣∣∣∣ ≤ ∣∣∣∣ d2

dλdx
fλuk(fλσku(x))

∣∣∣∣+

∣∣∣∣( d2

dx2
fλuk

)
(fλσku(x))

∣∣∣∣ · ∣∣∣∣( d

dλ
fλσku

)
(x)

∣∣∣∣
≤ M2 +M1|hk(λ)|,(A.5)
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where hk(λ) = d
dλf

λ
σku

(x). By (A2) we have L = sup
j∈A

sup
λ∈U

∥∥∥ d
dλf

λ
j

∥∥∥
∞
< ∞. Moreover, by (A4), we

have for 1 ≤ k ≤ n− 1

|hk(λ)| =

∣∣∣∣ ddλ (fλuk+1

(
fλσk+1u(x)

))∣∣∣∣
=

∣∣∣∣( d

dλ
fλuk+1

)(
fλσk+1u(x)

)
+

(
d

dx
fλuk+1

)(
fλσk+1u(x)

)
·
(
d

dλ
fλσk+1u(x)

)∣∣∣∣
≤ L+ γ2|hk+1(λ)|,(A.6)

with |hn(λ)| =
∣∣ d
dλ id(x)

∣∣ = 0. Therefore, iterating (A.6) yields

(A.7) |hk(λ)| ≤ L
n−1−k∑
j=0

γj2 ≤
L

1− γ2
.

Combining (A.4), (A.5), (A.6) and (A.7) gives∣∣∣∣∣ d2

dλdxf
λ
u (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ (M2 + M1L
1−γ2 )n

γ1
.

This concludes the proof of Lemma 4.1.

Appendix B. Some more regularity lemmas

Lemma B.1. There exists a constant C71 > 0 such that∣∣∣∣ ddλfλ1u (x)− d

dλ
fλ2u (x)

∣∣∣∣ ≤ C71|λ1 − λ2|δ

holds for all λ1, λ2 ∈ U, x ∈ X, u ∈ Ω∗.

Proof. We will prove the claim inductively with respect to n = |u|. More precisely, let us assume
that

(B.1)
∣∣∣∣ ddλfλ1u (x)− d

dλ
fλ2u (x)

∣∣∣∣ ≤ C72

n−1∑
k=0

kγk2 |λ1 − λ2|δ

holds for all u ∈ An, λ1, λ2 ∈ U and x ∈ X with some large enough constant C72 (its value will be
specified later). We shall prove that (B.1) holds also for n+ 1. Fix u = (u1, . . . , un+1) ∈ An+1 and
let v = (u1, . . . , un). We have∣∣∣∣ ddλfλ1u (x)− d

dλ
fλ2u (x)

∣∣∣∣ ≤ ∣∣∣∣( d

dλ
fλ1v

)(
fλ1un+1

(x)
)
−
(
d

dλ
fλ2v

)(
fλ2un+1

(x)
)∣∣∣∣+∣∣∣∣ (( d

dx
fλ1v

)(
fλ1un+1

(x)
))( d

dλ
fλ1un+1

(x)

)
−((

d

dx
fλ2v

)(
fλ2un+1

(x)
))( d

dλ
fλ2un+1

(x)

) ∣∣∣∣
=: A1 +A2.
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Let L = sup
j∈A

sup
λ∈U
‖ ddλf

λ
j ‖∞. Assumption (A2) implies that L is finite. By (B.1), (A2), (A3), (A4)

and (4.2) we obtain

A1 ≤
∣∣∣∣( d

dλ
fλ1v

)(
fλ1un+1

(x)
)
−
(
d

dλ
fλ2v

)(
fλ1un+1

(x)
)∣∣∣∣+∣∣∣∣( d

dλ
fλ2v

)(
fλ1un+1

(x)
)
−
(
d

dλ
fλ2v

)(
fλ2un+1

(x)
)∣∣∣∣

≤ C72

n−1∑
k=0

kγk2 |λ1 − λ2|δ +

∥∥∥∥ d2

dxdλ
fλ2v

∥∥∥∥
∞
|fλ1un+1

(x)− fλ2un+1
(x)|

≤ C72

n−1∑
k=0

kγk2 |λ1 − λ2|δ + LC52n

∥∥∥∥ ddxfλ2v
∥∥∥∥
∞
|λ1 − λ2|

≤ C72

n−1∑
k=0

kγk2 |λ1 − λ2|δ + LC52nγ
n
2 |λ1 − λ2|.(B.2)

Therefore, application of (A2) and (A4) gives

A2 ≤
∣∣∣∣( d

dx
fλ2v

)(
fλ2un+1

(x)
)∣∣∣∣ · ∣∣∣∣ ddλfλ1un+1
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d
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≤ γn2C3|λ1 − λ2|δ + L

∣∣∣∣( d

dx
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)(
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)
−
(
d
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=: γn2C3|λ1 − λ2|δ + LA3(B.3)

Furthermore, by Lemma 4.1, (A2) and (A4)

A3 ≤
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λ∈U
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Combining the above inequality with (B.2) and (B.3) yields∣∣∣∣ ddλfλ1u (x)− d

dλ
fλ1u (x)

∣∣∣∣ ≤ C72

n∑
k=0

kγk2 |λ1 − λ2|δ,

provided C72 is large enough. As (B.1) holds for n = 1 by (A2), this concludes the inductive proof

of (B.1) for n ≥ 1. As
∞∑
k=0

kγk2 <∞, the proof of the lemma is completed. �
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Lemma B.2. There exist constants C75 > 0, C76 > 0 such that

(B.4)
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and

(B.5)
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hold for all λ1, λ2 ∈ U, x ∈ X, u ∈ Ω∗.

Proof. We shall prove (B.4). The proof of (B.5) is similar and we omit it. Let n = |u|. By (A.2) we
have
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We will bound now the above terms. First, by (4.2) and the mean value theorem, we have
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where ξ ∈ U is a point lying between λ1 and λ2. By (A.3) (recall (A.2))
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By (A1), (A3), (4.1) we have
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Applying (A1), (A4), (4.2), Lemma B.1 gives
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Combining the above with (B.6), bound on hk and estimates on A1, . . . , A7 and recalling that
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kγk2 <∞ finishes the proof of (B.4). �
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Appendix C. Proof of Proposition 4.5

We will write d(u, v) for dλ0(u, v). Let n = |u ∧ v|, so that u ∧ v = u1 . . . un. Let us begin by
proving (4.8). We have
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Application of (4.2), Lemma 4.4 and (A4) yields
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provided Cβ,1 is chosen large enough. Using Lemma 4.4 together with the fact that d
dλΠλ is bounded

on U × Ω (following from Proposition 4.3), one obtains
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once again for Cβ,1 large enough. This finishes the proof of (4.8). For the proof of (4.9), let us write
a decomposition analogous to (C.1):
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fλ1u∧v(y)− d2

dxdλ
fλ2u∧v(y)

∣∣∣∣ dy +

ˆ

S1

∣∣∣∣ d2

dxdλ
fλ1u∧v(y)

∣∣∣∣ dy +

ˆ

S2

∣∣∣∣ d2

dxdλ
fλ2u∧v(y)

∣∣∣∣ dy,(C.2)
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where

S = [Πλ1(σnu),Πλ1(σnv)] ∩ [Πλ2(σnu),Πλ2(σnv)],

S1 = [Πλ1(σnu),Πλ1(σnv)] \ [Πλ2(σnu),Πλ2(σnv)],

S2 = [Πλ2(σnu),Πλ2(σnv)] \ [Πλ2(σnu),Πλ2(σnv)].

Set L = sup
λ∈U

sup
u∈Ω

∣∣ d
dλΠλ(u)

∣∣. We have then |Πλ1(σnu) − Πλ2(σnu)| ≤ L|λ1 − λ2| and |Πλ1(σnv) −

Πλ2(σnv)| ≤ L|λ1 − λ2|, hence

(C.3) |S1|, |S2| ≤ 2L|λ1 − λ2|.

Applying this together with (B.5) and (4.2) to (C.2), followed by Lemma 4.4 and (A4) as before,
yields

|Aλ11 −A
λ2
1 | ≤

(
C76n

2|λ1 − λ2|δ + 4LC52n|λ1 − λ2|
)

sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

≤
Cβ,1,δ

3
|λ1 − λ2|δd(u, v)1−β

if Cβ,1,δ is large enough. Furthermore, applying Proposition 4.3, (4.1), (4.2), Lemma 4.4 and (A4),
we obtain

|Aλ12 −A
λ2
2 | ≤

∣∣∣( d
dxf

λ1
u∧v

)
(Πλ1(σnu))−

(
d
dxf

λ2
u∧v

)
(Πλ2(σnu))

∣∣∣ · ∣∣ ddλ (Πλ1(σnu)−Πλ1(σnv)
)∣∣+∣∣∣( d

dxf
λ2
u∧v

)
(Πλ2(σnu))

∣∣∣ · ∣∣ ddλ (Πλ1(σnu)−Πλ1(σnv)
)
− d

dλ

(
Πλ2(σnu)−Πλ2(σnv)

)∣∣
≤ 2L

∣∣∣( d
dxf

λ1
u∧v

)
(Πλ1(σnu))−

(
d
dxf

λ2
u∧v

)
(Πλ1(σnu))

∣∣∣+

2L
∣∣∣( d

dxf
λ2
u∧v

)
(Πλ1(σnu))−

(
d
dxf

λ2
u∧v

)
(Πλ2(σnu))

∣∣∣+

sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

(∣∣ d
dλ

(
Πλ1(σnu)−Πλ2(σnu)

)∣∣+
∣∣ d
dλ

(
Πλ1(σnv)−Πλ2(σnv)

)∣∣)
≤ 2L

(
sup

λ∈[λ1,λ2]

∥∥∥∥ d2

dλdx
fλu∧v

∥∥∥∥
∞
|λ1 − λ2|+ sup

λ∈[λ1,λ2]

∥∥∥∥ d2

dx2
fλu∧v

∥∥∥∥
∞
|Πλ1(σnu)−Πλ2(σnu)|

)
+

2 sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞
Cδ|λ1 − λ2|δ

≤ 2L sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

(C52n|λ1 − λ2|+ C51L|λ1 − λ2|) +

2 sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞
Cδ|λ1 − λ2|δ ≤

Cβ,1,δ
3
|λ1 − λ2|δd(u, v)1−β
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for Cβ,1,δ large enough. By (4.2) and Proposition 4.3, we have

|Aλ13 −A
λ2
3 | ≤

∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2
fλ1u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2
fλ2u∧v(y)dy

∣∣∣∣∣∣∣ ·
∣∣ d
dλΠλ1(σnv)

∣∣+

 Πλ2 (σnu)ˆ

Πλ2 (σnv)

∣∣∣∣ d2

dx2
fλ2u∧v(y)

∣∣∣∣ dy
 · ∣∣ ddλΠλ1(σnv)− d

dλΠλ2(σnv)
∣∣

≤ L

∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2
fλ1u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2
fλ2u∧v(y)dy

∣∣∣∣∣∣∣+(C.4)

C52Cδn|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞
.

Let intervals S, S1, S2 be defined as before. Then by (B.4), (4.1) and (C.3)∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2
fλ1u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2
fλ2u∧v(y)dy

∣∣∣∣∣∣∣
≤
ˆ

S

∣∣∣∣ d2

dx2
fλ1u∧v(y)− d2

dx2
fλ2u∧v(y)

∣∣∣∣ dy +

ˆ

S1

∣∣∣∣ d2

dx2
fλ1u∧v(y)

∣∣∣∣ dy +

ˆ

S2

∣∣∣∣ d2

dx2
fλ2u∧v(y)

∣∣∣∣ dy
≤ C75n|λ1 − λ2|δ sup

λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

+ 4LC51|λ1 − λ2| sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

≤ C86n|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞

for some constant C86 > 0. Combining this with (C.4) and applying Lemma 4.4 and (A4) gives

|Aλ13 −A
λ2
3 | ≤ (C52Cδ + C86)n|λ1 − λ2|δ sup

λ∈[λ1,λ2]

∥∥∥∥ ddxfλu∧v
∥∥∥∥
∞
≤
Cβ,1,δ

3
|λ1 − λ2|δd(u, v)1−β

if Cβ,1,δ is large enough. Finally, putting together bounds on |Aλ1i −A
λ2
i | finishes the proof of (4.9).

Appendix D. Drop of the pressure

Let A = {1, . . . ,m} and suppose we have an IFS Ψ = {fj}j∈A of the class C1+δ on a compact
interval X ⊂ R. We assume that that the system {fj}j∈A is uniformly hyperbolic and contractive:

(D.1) 0 < γ1 ≤ |f ′j(x)| ≤ γ2 < 1 for all j ∈ A, x ∈ X.

Let Ω = AN and let σ denote the left shift on Ω. Let A∗ =
⋃
n≥0
An and let |u| = n for u ∈ An.

For u = (u1, . . . un) ∈ A∗ denote

fu = fu1...un := fu1 ◦ . . . ◦ fun

(with fu = id if u is an empty word).
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Consider the pressure function, defined by

(D.2) PA(t) = PΨ(t) = lim
n→∞

n−1 log
∑
u∈An

‖f ′u‖t.

It is well-known that this limit exists, t 7→ PA(t) is continuous and strictly decreasing (it is also
convex, but we will not need this).

Lemma D.1. Suppose that B = A \ {m}. Then PB(t) < PA(t) for all t ≥ 0. (The functions of the
IFS are assumed to be the same. The claim can be expressed in words by saying that if we drop one
of the functions of the IFS, then the pressure drops strictly.)

Proof. For t = 0 the claim is trivial, so let us fix t > 0. Observe that the pressure can be expressed
in the following alternative way:

(D.3) PA(t) = lim
n→∞

n−1 log
∑
u∈An

inf
x∈X
|f ′u(x)|t.

Indeed, by the Bounded Distortion Property, there exists K > 1 such that |f ′u(x)| ≤ K|f ′u(y)| for
all u ∈ A∗ and x, y ∈ X, and (D.3) follows. Denote

Zn(A, t) =
∑
u∈An

inf
x∈X
|f ′u(x)|t.

We claim that

(D.4) Zn(A, t) ≥ Zn(B, t) · (1 + δt)
n, where δt =

γt1
(m− 1)γt2

.

This will immediately imply that PB(t) < PA(t), as desired. We have

Z1(A, t) = Z1(B, t) + inf
x∈X
|f ′m(x)|t ≥ Z1(B, t) · (1 + δt),

by (A4). Since infx∈X |f ′ju(x)|t ≥ infx∈X |f ′j(x)|t · infx∈X |f ′u(x)|t, we have

Zn+1(A, t) ≥ Z1(A, t) · Zn(A, t),

and (D.4) follows by induction. �

Consequences. Under the assumptions and notation of Section 10.3, let s(Ψ) be the unique zero
of the pressure function PΨ(t):

PΨ(s(Ψ)) = 0.

Corollary D.2. Suppose that Φ is a proper subset of Ψ. Then s(Ψ) > s(Φ).

This is immediate from Lemma D.1.

Corollary D.3. Suppose that the attractor of Ψ is the entire interval X and the IFS is overlapping
in the sense that

(D.5)
∑
j∈A
|Xj | > |X|, where Xj = fj(X).

Then s(Ψ) > 1.



Proof. We have X =
⋃
j∈AXj by assumption. Then (D.5) implies that there exist i 6= j in X such

that Xi ∩Xj is a non-empty interval. We can find k ∈ N and w ∈ Ak such that Xw ⊂ Xi ∩Xj . It
follows easily that ⋃

u∈Ak\{w}

Xu = X.

Denote Ψk = {fu : u ∈ Ak}, the IFS of k-th iterates. It follows from the existence of the limit in
(D.2) that PΨk(t) = kPΨ(t), hence s(Ψk) = s(Ψ). By Corollary D.2, we have s(Ψk \ {fu}) < s(Ψk).
It suffices to show that for an IFS Φ whose attractor is an interval X we have s(Φ) ≥ 1. But this
follows from the inequality 1 = dimH(ΛΦ) ≤ s(Φ), where ΛΦ is the attractor of Φ. �
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