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Introduction

In this thesis we investigate some properties of self-similar sets and self-
affine sets. Especially, we focus on the dimension theory of fractals generated
by iterated function systems (IFS).

More precisely, let Φ = {f1, . . . , fn} be a set of contracting functions (that
is, ‖Dxf‖ < 1) of Rd mapping an open bounded set U into itself. Then it is
well known (see [H]), that there exists a unique, non-empty, compact subset
Λ of Rd such that

Λ =

∞⋂

k=1

n⋃

i1,...,ik=1

fi1 ◦ · · · fik(U) and Λ =

n⋃

i=1

fi(Λ).

We call the set Λ as the attractor of the iterated function system Φ.
One of the important properties of these sets is the dimension. In this

thesis we mainly focus on the so-called Minkowski dimension (or box dimen-
sion) and Hausdorff dimension. We denote the Hausdorff dimension (and
respectively the box dimension) of the set Λ by dimH Λ (dimB Λ). Moreover,
let us denote the s-dimensional Hausdorff measure by Hs. For the definition
and basic properties of the Hausdorff and box dimension and the Hausdorff
measure we refer to [Fa1, Fa2].

The simplest case is when the functions are contracting similarities

Φ = {fi(x) = λix + ti}ni=1

on the real line. In that case we call the attractor of Φ self-similar set. Then
the non-trivial upper on the Hausdorff and box dimension of the attractor is
the similarity dimension which is defined as the unique solution of

n∑

i=1

λsi = 1.

The dimension theory of self-similar sets is quite well understood in the
cases when some separation conditions hold. Hutchinson proved that when-
ever the cylinders {fi(Λ)}ni=1 are well separated, more precisely, the open set
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condition (OSC) holds (there exists an open, bounded subset U of R such
that fi(U) ⊂ U for every i and fi(U)∩ fj(U) = ∅ if i 6= j) then the similarity
dimension is equal to the Hausdorff dimension, see [H]. The box dimension
is equal to the Hausdorff dimension independently of separation conditions,
see [Fa5].

However, in case of heavy overlaps in between the cylinders we know very
little about the structure of attractor Λ. To study such kind of Iterated
Function Systems there are two known methods:

• Instead of an individual IFS we consider a one-parameter family of IFS
and we use the so-called transversality condition introduced by Pollicott
Simon [PoSi] (see Section 1.2). See [PeSo1], [PeSo2] for the most general
treatment of this method. In this thesis we use this approach.

• In some very particular cases we can apply the so-called Weak Sepa-
ration Condition [Ze], [LNR], [NW1] or some variants of it. With this
method we can handle IFS like

{
fi(x) = 1

N
x+ ti

}m
i=1

, where N, ti ∈ Z.

In particular, when some of the maps of the IFS have common fixed points
then non of the known methods can be applied directly. One of the most
important novelties of this thesis is to handle the cases of non-distinct fixed
points.

The simplest situation when two maps share the same fixed point was con-
sidered in [B3]. More precisely, in [B3] we considered the IFS {γx, λx, λx + 1}
and its attractor Λ on the real line, where γ < λ. Let I = [0, 1

1−λ
] be the con-

vex hull of the attractor Λ. See Figure 1 for the image of I by the functions
of this IFS. The problem of calculating the dimension was raised by Pablo
Shmerkin at the conference in Greifswald in 2008. The novelty of the result
obtained in [B3] about the dimension of Λ was to tackle the difficulty which
comes from the fact that the first two maps have the same fixed point.

In Chapter 1 we study two types of self-similar iterated function systems
with non-distinct fixed points. In both of the cases we assume that the images

of the convex hull of the attractor are overlapping only for the functions which

share the same fixed point. In the first case we suppose that every fixed point
belongs to at most two functions. For an example of such type of IFS see
Figure 2. Our assumption in the second case is that there are exactly two
different fixed points but a fixed point belongs to arbitrary many functions.
For an example see Figure 3.

For both of the cases we calculate the Hausdorff and box dimension for
almost every contracting parameters. Moreover, for the case in Figure 2 we
calculate that the proper dimensional Hausdorff measure of the attractor is
zero. For precise details see Section 1.1. Chapter 1 is based on [B1] and [B2].
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Λ Λ
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0 1

Figure 1: The simplest example of IFS with some of the functions share the
same fixed point, considered in [B3].

I

f0HI L f1HI L f2HI L f3HI L
g0HI L g2HI L g3HI L

a0 a1 a2 a3

Figure 2: Images of the convex hull of the attractor of
IFS {f0, g0, f1, f2, g2, f3, g3}, where a0 = Fix(f0) = Fix(g0), a1 = Fix(f1),
a2 = Fix(f2) = Fix(g2) and a3 = Fix(f3) = Fix(g3)

0 1

8 <p + 1
q + 1

j0H0, 1L

jpH0, 1L

Ψ0H0, 1L

ΨqH0, 1L

Figure 3: Images of the convex hull of the attractor of IFS {φi}pi=0 ∪ {ψj}qj=0

where Fix(φi) = 0 and Fix(ψj) = 1 for every i, j.
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In the last two decades considerable attention has been paid to the di-
mension theory of non-conformal sets. We call a set Λ conformal if it is an
attractor of an IFS containing C1+α conformal homeomorphisms, where we
call a function conformal if its derivative is a similarity transformation at
every point. The dimension theory of conformal attractors is very closely
related to the dimension theory of self-similar sets.

The dimension theory of non-conformal IFS is very difficult and there
are only very few results. The most important tool of this field is the sub-
additive pressure, which was defined by K. Falconer [Fa4] and L. Barreira
[Barr]. (For the precise definition of sub-additive pressure, see Section 2.1.)
Unfortunately, we know very little about sub-additive pressure itself.

The simplest non-conformal situation is the case of self-affine sets. A set
Λ ⊂ Rd is called self-affine if it is an attractor of an IFS containing contracting
affine maps {fi(x) = Aix + ai}mi=1, where Ai are d × d real matrices. The
dimension theory of self-affine sets is far from well understood even in the
diagonal case. That is, when all Ai are diagonal matrices.

To study the dimension of a self-affine attractor we consider the k-th
approximation of the attractor with the so called k-th cylinders which are
naturally defined by the k fold application of the functions of the IFS. To
measure the contribution of such a k cylinder to the covering sum which
appears in the definition of the Hausdorff measure for each of these k-th
cylinders we consider the singular value function. These are non-negative
valued functions defined in a neighborhood of the attractor. The dimension of
the attractor is related to the exponential growth rate of the sum of the values
of these exponentially many singular value functions in the self affine case.
Precisely, the Falconer Theorem (see [Fa6]) states that the Hausdorff- and
box dimension of a self-affine attractor coincide for almost every translation
parameters and equal to the singularity dimension, whenever the norm of all
the affine maps of IFS is smaller than 1/3. This bound was improved to 1/2
by Solomyak in [So1]. To verify this it was essential that the exponential
growth rate is the same wherever we evaluate these singular value functions,
since the singular value functions are constant in the self-affine case.

Falconer [Fa4] and Barreira [Barr] considered the situation when the IFS is
no longer self-affine. They introduced a technical condition named 1-bunched
property, which implies that the cylinder sets in each iteration are convex.
In this case, it turns out that the exponential growth rate of the sum of
the value of the singular value functions does not depend on wherever they
are evaluated. We express this phenomenon as the ”insensitivity property
holds”. This is a very important property of the sub-additive pressure and
in general we do not know if it holds or not.

The main goal of Chapter 2 is to verify this property in a special case when
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the 1-bunched property does not hold but the IFS consists of maps with lower
triangular derivative matrices. This result is a generalization of the result of
K. Simon and A. Manning [MS2]. They proved the same assertion on the
real plane.

Even if the 1-bunched condition is not satisfied, Zhang [Zh] found that
the zero of the sub-additive pressure is an upper bound for the Hausdorff
dimension. As an application, we supply two examples of such IFS for which
we are able to calculate the Hausdorff dimension using that the insensibility
property holds.

The main theorem of the chapter can be also considered as a generalization
of a recent paper by K. Falconer and J. Miao [FM]. They gave a formula to
estimate the Hausdorff dimension of self-affine fractals generated by upper-
triangular matrices. We will show a formula to estimate the sub-additive
pressure in the non-conformal case and we will prove that the sub-additive
pressure depends only on the diagonal elements of the derivative matrices in
the case when the derivative matrices are triangular. Chapter 2 is based on
[B4] and take a part of the author’s Master Thesis.

In Chapter 3 we focus on a special family of self-affine sets which is called
the generalized four corner set Λ(α, β) on the real plane. The generalized
4-corner set is the attractor of the self-affine iterated function system (IFS)
of Figure 4. (The precise definition will be given in Section 3.1.) The pa-
rameters α = (α0, α1, α2, α3) and β = (β0, β1, β2, β3) are chosen such that the
rectangles R0, R1, R2, R3 on Figure 4 are disjoint. One of the main goals of
the chapter is to determine the box dimension of this set for Lebesgue typical
parameters.

We will prove that for Lebesgue-typical parameters α, β the Hausdorff
dimension and even the box dimension of the generalized 4-corner set is
strictly smaller than the singularity dimension. The reason of this phenomena
is the very special relative geometric position of the rectangles which generate
the generalized 4-corner set. The speciality of the maps is that the fixed
points are the corners of the unit square, so they do not move when we change
the parameters α, β. Therefore the orthogonal projection to the x-axis (and
to the y-axis respectively) is an attractor of a special iterated function system
of four similarities where the similarities derived from the maps having fixed
points with same coordinate y (and with same coordinate x) have common
fixed points. Applying the results of Chapter 1 we are able to handle this
difficulty. Chapter 3 is based on [B1].

In Chapter 4 we study the dimension theory of the slices of the Sierpiński
gasket. In particular, we describe the multifractal analysis of the size of the
slices which correspond to a countable dense set of angles. We recall that the
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Figure 4: Maps of the generalized 4-corner set.

Sierpiński gasket is the attractor of the IFS
{

1
2
x, 1

2
x + (1

2
, 0), 1

2
x + (1

4
,
√
3
4

)
}

on

the real plane. Liu, Xi and Zhao showed a formula for the box and Hausdorff
dimension of the intersections of the Sierpiński carpet with Lebesgue-typical
planar lines of rational slopes and conjectured that this value is strictly less
than the dimension of the Sierpiński carpet minus one (for precise details
see [LXZ]). Manning and Simon verified the conjecture in [MS1] and proved
a dimension conservation phenomena for the carpet (see [MS1, Theorem 9]
and [MS1, Proposition 4]).

One of the main goals of this chapter is to prove that both of the theo-
rems are valid for the Sierpiński gasket (for precise details see Section 4.1).
Moreover, respectively to the natural self-similar measure, we prove that
the dimension of the typical slices is strictly greater than log 3

log 2
− 1 for ra-

tional slopes, were log 3
log 2

is the Hausdorff dimension of the Sierpiński gasket.

We recall the definition of the self-similar measure. Let {f1, . . . , fn} be an
IFS (not necessarily self-similar) and let (p1, . . . , pn) be a probability vector.
Then there exists a unique Borel regular probability measure µ such that

µ =
n∑

i=1

piµ ◦ f−1
i ,

see [H]. We call the measure µ self-similar if the corresponding IFS is self-
similar. If the self-similar IFS satisfies the OSC then the proper dimensional
Hausdorff measure restricted and normalized to the attractor is also a self-
similar measure and we call it as the natural self-similar measure.
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In [Fur], Furstenberg introduced and proved a dimension conservation
formula for homogeneous fractals (for example homotheticly self-similar sets).
Denote projθ the θ-angle projection from the real plane into the y-axis, then
for any self-similar set Λ there exists a δ ≥ 0 such that

δ + dimH

{
x ∈ projθΛ : dimH proj−1

θ (x) ∩ Λ ≥ δ
}

= dimH Λ.

We describe the multifractal analysis of the slices, we will give a formula
for the function

Γ : δ 7→ dimH

{
x ∈ projθΛ : dimH proj−1

θ (x) ∩ Λ ≥ δ
}

in the case when Λ is the Sierpiński gasket and tan θ is rational.
Chapter 4 is based on [BFS] which is a joint work with Andrew Ferguson

and Károly Simon.

Finally, in Chapter 5 we investigate some properties of the invariant mea-
sure of iterated function systems with random perturbations.

For an IFS {fi}ni=1 the natural coding of the elements of its attractor Λ by

the elements of Σ = {1, . . . , n}N is called the natural projection π and then
π : Σ 7→ Λ. Let µ = (p1, . . . , pn)N be a Bernoulli measure on the space Σ. Let
h = −∑n

i=1 pi log pi be the entropy of the left-shift operator with respect to
the Bernoulli measure µ. Denote by ν the push-down measure of µ, that is
ν = µ ◦ π−1. It was proved in [BNS], for non-linear, contracting on average,
iterated function systems (and later extended in [FST]) that

dimH(ν) ≤ h

|χ| ,

where dimH(ν) is the Hausdorff dimension of the measure ν and χ is the
Lyapunov exponent of the IFS associated to the Bernoulli measure µ.

One can expect that, at least ”typically”, the measure ν is absolutely
continuous when h/|χ| > 1. Essentially the only known approach to this
is transversality. For example, in the linear case with uniform contraction
ratios, see [PeSc] and [PeSo2]. In the linear case for non-uniform contraction
ratios, see [N] and [NW2]. In the non-linear case, see for example [SSU2].
We note that there is another direction in the study of iterated function
systems with overlaps, which is concerned with concrete, but not-typical
systems, often of arithmetic nature, for which there is a dimension drop, see
for example [LNR].

In the last chapter, we are interested in studying absolute continuity with
L2 density. We will study a modification of the problem, namely we consider
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a random perturbation of the functions. The linear case was studied by Peres,
Simon and Solomyak in [PSS1]. They proved absolute continuity for random
linear IFS, with non-uniform contraction ratios and also L2 and continuous
density in the uniform case. We would like to extend this result by proving
L2 density with non-uniform contraction ratios and in non-linear case.

Let Yε be uniformly distributed in [1 − ε, 1 + ε] and let fi ∈ C1+α be
contractions with fixed points ai. We consider the iterated function system
{Yεfi + ai(1 − Yε)}ni=1, were each of the maps are chosen with probability pi.
We will prove that the invariant density is in L2 and the L2-norm does not
grow faster than 1/

√
ε, as ε vanishes.

Throughout the chapter we will use the method of [Per]. The proof re-
lies on defining a piecewise hyperbolic dynamical system on the cube, with
an SRB-measure with the property that its projection is the density of the
iterated function system. Chapter 5 is based on [BP] which is a joint work
with Tomas Persson.
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Chapter 1

Hausdorff dimension of

self-similar sets with heavy

overlaps

1.1 Definitions and Statements

Throughout the chapter we study two families of self-similar iterated func-
tion systems. Firstly, we assume that exactly two different fixed points belong
to the functions of the examined IFS. Precisely,

Principal Assumptions of Case A:

A1. Let R be a finite set of linear, real functions such that for every ϕ ∈ R,
Fix(ϕ) ∈ {0, 1} and ϕ([0, 1]) ⊆ [0, 1].

A2. For arbitrary ϕi, ϕj ∈ R suppose either ϕi([0, 1]) ∩ ϕj([0, 1]) = ∅ or
Fix(ϕi) = Fix(ϕj).

Theorem 1.1.1. LetR = {φi,1(x) = γi,1x}pi=0∪{φi,2(x) = γi,2x + (1 − γi,2)}qi=0

such that 0 < γi,1 < γ0,1 < 1 for i = 1, . . . , p and 0 < γj,2 < γ0,2 < 1 for
j = 1, . . . , q (see Figure 3 page 3), then

dimB Λ = dimH Λ = min {1, s} , (1.1.1)

where s is the unique solution of

p∏

i=0

(1 − γsi,1) +

q∏

i=0

(1 − γsi,2) = 1 (1.1.2)
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for Lebesgue almost every (γ
1
, γ

2
) ∈ (0, γ0,1)

p×(0, γ0,2)
q, where γ

1
= (γ1,1, . . . , γp,1)

and respectively γ
2

= (γ1,2, . . . , γq,2).
Moreover L (Λ) > 0 for Lebesgue almost every (γ

1
, γ

2
) if s > 1.

Note that whenever γ0,1 + γ0,2 ≥ 1 the attractor of R is an interval which
implies immediately Theorem 1.1.1. In this way without loss of generality we
may assume that γ0,1+γ0,2 < 1, which is equivalent to ϕ0,1([0, 1]) ∩ ϕ0,2([0, 1]) = ∅.
Then the IFS R satisfies obviously the assumptions (A1) and (A2). The proof
of Theorem 1.1.1 is based on [B1].

On the other hand, we study the case when every fixed point belongs to
at most two functions (see Figure 2, page 3). Precisely,

Principal Assumptions of Case B:

B1. S = F ∪ G

B2. F = {fi(x) = λix+ ai(1 − λi)}N−1
i=0 where 0 < λi < 1 and the fixed

points satisfy: a0 < a1 < · · · < aN−1.

B3. Let I = [a0, aN−1] (the convex hull of the attractor). We require that
fi−1(I) < fi(I) that is

fi−1(aN−1) < fi(a0) for every i = 1, . . . , N − 1. (1.1.3)

B4. G = {gi(x) = βix+ ai(1 − βi)}i∈J , where J ⊆ {0, . . . , N − 1} and
0 < βi < λi for every i ∈ J .

Observe that for every i ∈ J , Fix(fi) = Fix(gi) = ai.
Denote β ∈ (0, 1)♯J the vector of contraction ratios of G and λ ∈ (0, 1)N

the vector of contraction ratios of F . Moreover, let a ∈ RN be the vector of
fixed points and denote the attractor of S by Ω. For the simplicity we write
I = {0, . . . , N − 1}.

Theorem 1.1.2. Let S be as in (B1)-(B4) then the attractor Ω of S satisfies
that

dimB Ω = dimH Ω = min {1, s} , (1.1.4)

where s is the unique solution of

N−1∑

i=0

λsi +
∑

i∈J
βs
i −

∑

i∈J
λsiβ

s
i = 1, (1.1.5)

for Lebesgue almost every β in
{
β : 0 < βi < min

{
λi,

2

(1 +
√

2)(α2
iλmax + 2)

}}
, (1.1.6)
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where λmax = maxi {λi} and

αi =
max {aN−1 − ai, ai − a0}

min {fi+1 (a0) − ai, ai − fi−1 (an−1)}
for every i ∈ I.

Moreover L (Ω) > 0 for Lebesgue almost every β such that β satisfies (1.1.6)
and s > 1.

In the proof of Theorem 1.1.2 we are going to show that s is always an
upper bound for the Hausdorff and Box dimension. Moreover we will prove
that the s dimensional Hausdorff measure of the attractor is zero.

Theorem 1.1.3. Assume that S satisfies (B1)-(B4) and let s be the unique
solution of (1.1.5) then

Hs(Ω) = 0.

To prove Theorem 1.1.1 and Theorem 1.1.2, we are going to use the so-
called transversality method. Note, that our original system does not satisfy
the transversality condition (see later the precise arguments), but some well-
chosen subsystems of the sufficiently high iterations do so. To verify this we
use two methods of checking the transversality condition. One of them was
introduced by Simon, Solomyak and Urbański [SSU1], [SSU2] and the other
one is due to [PeSo1], [PeSo2]. For the convenience of the reader in Section
1.2 we summarize these methods.

There is a big difference between the structure of the two families of IFS,
the chosen subsystems and the proofs of the transversality conditions are
significantly different. Therefore we study them in two different sections.
In Section 1.3 we prove Theorem 1.1.1 and in Section 1.4, Theorem 1.1.2.
In both of the cases we construct the appropriate natural projections, the
subsystems.

In Section 1.5 we prove Theorem 1.1.3. The method of the proof is similar
to that of [PSS2, Theorem 1.1] obtained by a modification of the Brandt, Graf
method [BG].

The results of the chapter are based on [B1] and [B2].

1.2 Transversality methods

First let us introduce the transversality condition for self-similar IFS on the
real line with d dimensional parameter-space. The definition corresponds to
the definition in [SSU1],[SSU2] which was introduced for much more general
IFS.
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Let U be an open, bounded subset of Rd with smooth boundary and
I a finite set of symbols. Let Ψt =

{
ψt
i(x) = λi(t)x+ di(t)

}
i∈I , where

λi, di ∈ C1(U) and 0 < α ≤ λi(t) ≤ β < 1 for every i ∈ I and t ∈ U
and for some α, β ∈ (0, 1). Let Λt be the attractor of Ψt and πt is the nat-
ural projection from the symbolic space Σ = IN to Λt. More precisely, for
i = (i0i1 . . . ) ∈ Σ we write

πt(i) = lim
n→∞

ψt
i0
◦ ψt

i1
◦ · · · ◦ ψt

in
(0). (1.2.1)

It is well-known that the limit exists and independent of the base point 0.
Moreover, πt is a continuous, surjective function from Σ onto Λt. Denote σ
the left-shift operator on Σ. That is σ : (i0i1 . . . ) 7→ (i1i2 . . . ). It is easy to
see that

πt(i) = ψt
i0

(πt(σi)).

Definition 1.2.1. We say that Ψt satisfies the transversality condition

on an open, bounded set U ⊂ Rd, if for any i, j ∈ Σ with i0 6= j0 there exists
a constant C = C(i0, j0) such that

Ld(t ∈ U : |πt(i) − πt(j)| ≤ r) ≤ Cr for every r > 0,

where Ld is the d dimensional Lebesgue measure.

In short, we say that there is transversality if the transversality condition
holds. This definition is equivalent to the ones given in e.g. [SSU1], [SSU2].
As a special case of [SSU1, Theorem 3.1] we obtain:

Theorem 1.2.1 (Simon, Solomyak, Urbański). Suppose that Ψt satisfies the
transversality condition on an open, bounded set U ⊂ Rd. Then

1. dimH Λt = min {s(t), 1} for Lebesgue-a.e. t ∈ U ,

2. L1(Λ
t) > 0 for Lebesgue-a.e. t ∈ U such that s(t) > 1,

where s(t) is the similarity dimension of Ψt. More precisely, s(t) satisfies
the equation ∑

i∈I
λi(t)

s(t) = 1. (1.2.2)

We can use the following Lemma to prove transversality which follows
from [SSU1, Lemma 7.3].

12



Lemma 1.2.2. Let U ⊂ Rd be an open, bounded set with smooth boundary
and fi,j(t) = πt(i) − πt(j). If for every i, j ∈ Σ with i0 6= j0 and for every
t0 ∈ U

fi,j(t0) = 0 ⇒ ‖gradtfi,j
∣∣
t=t0

‖ > 0 (1.2.3)

then there is transversality on any open subset V whose closure is contained
in U .

There is another Lemma which is useful to prove transversality by con-
trolling the double roots of infinite series. The proof of the Lemma below
depends on the so-called (∗)-functions which were introduced by Solomyak
[So2] and further developed by Peres and Solomyak [PeSo1] and [PeSo2]. Al-
though, the following Lemma was not proved explicitly in [PeSo2] but one
can easily see that a simple modification of the proofs [PeSo2, Lemma 5.1],
[PeSo2, Corollary 5.2] yields:

Lemma 1.2.3. Let the function g : [0, 1) 7→ R be given in the following form:

g(x) = 1 +

∞∑

k=1

akx
k.

Let us suppose that a1 ∈ (−d, d) and for every k ≥ 2, ak ∈ (−b, b), where
d, b > 0. Then

g(x0) = 0 ⇒ g′(x0) < 0 for every x0 ∈
(

0,
1

1 +
√
b

)
.

1.3 Proof of Theorem 1.1.1

1.3.1 Natural projection

Let p, q be positive integers and let

ϕi,1(x) = γi,1x for i = 0, . . . , p

ϕi,2(x) = γi,2x + (1 − γi,2) for i = 0, . . . , q.

Then our main assumptions (A1), (A2) are equivalent to 0 < γi,1 < γ0,1 < 1
for every i = 1, . . . , p and 0 < γi,2 < γ0,2 < 1 for every i = 1, . . . , q, moreover,

γ0,1 + γ0,2 < 1.

13



Therefore, without loss of generality we can assume that

γi,1 = ci,1γ0,1

γi,2 = ci,2γ0,2,

where 0 < ci,1, cj,2 < 1 for i = 1, . . . , p and j = 1, . . . , q. Then R can be
written in the form

R = {γ0,1x, γ0,2x+ (1 − γ0,2)}
⋃

{ci,1γ0,1x}pi=1

⋃
{ci,2γ0,2x+ (1 − ci,2γ0,2)}qi=1 .

Let us introduce the vectors of parameters, namely, c1 = (c1,1, . . . , cp,1) ∈ (0, 1)p

and c2 = (c1,2, . . . , cq,2) ∈ (0, 1)q, moreover c = (c1, c2).
Denote the set of symbols of the functions with fixed point 0 by A1, and

similarly, denote the set of symbols of the functions with fixed point 1 by A2.
So

A1 = {(0, 1), . . . , (p, 1)} and A2 = {(0, 2), . . . , (q, 2)} .
Let Σ be the symbolic space generated by A1 ∪ A2 and Σ∗ the set of fi-
nite words. That is, Σ = (A1 ∪ A2)

N and Σ∗ =
⋃∞

n=0 (A1 ∪A2)
n. For any

i = ((i0, κ0)(i1, κ1) · · · (in, κn)) ∈ Σ∗ we use the notation

ϕi = ϕi0,κ0 ◦ ϕi1,κ1 ◦ · · · ◦ ϕin,κn and γi = γi0,κ0 · · · γin,κn.

For an i ∈ Σ we write i(k) as the first k elements of i. In partic-
ular, i(k) = ((i0, κ0) · · · (ik−1, κk−1)) and i(0) = ∅. For j = 1, 2 and
i = 0, . . . , p or q, we define ♯i,ji(k) as the number of (i, j) in i(k). More-
over, for j = 1, 2 we define ♯ji(k) as the number of symbols from Aj in i(k).
Clearly, ♯1i(k) =

∑p
i=0 ♯i,1i(k) and respectively ♯2i(k) =

∑q
i=0 ♯i,2i(k). Using

the notations above and the definition of the natural projection (1.2.1),

πc(i) =

∞∑

k=0

(
q∑

l=0

δ
(l,2)
(ik ,κk)

(1 − γl,2)

)
γ
♯1i(k)
0,1 γ

♯2i(k)
0,2

p∏

i=1

c
♯(i,1)i(k)

i,1

q∏

i=1

c
♯(i,2)i(k)

i,2 ,

(1.3.1)

where

δkj =

{
1 if j = k
0 otherwise

.

The set of k’s satisfying (ik, κk) ∈ A2 gives us non-zero elements in the infinite
sum above. Hence it is useful to define βi

i as the number of (i, 2) in i and
βi the number of symbols from A2 in i. Clearly, βi

i = limk→∞ ♯(i,2)i(k) and
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βi =
∑q

l=0 β
i
l . Moreover, let mi

k be the position of the kth symbol from A2

in i. Applying the notation, ♯2i(m
i
k) = k − 1 and

πc(i) =

βi∑

k=1

(
q∑

l=0

δ
(l,2)
(i

mi
k
,κ

mi
k
)(1 − γl,2)

)
γk−1
0,2 γ

♯1i(mi
k)

0,1

p∏

l=1

c
♯(l,1)i(m

i
k)

l,1

q∏

l=1

c
♯(l,2)i(m

i
k)

l,2 .

(1.3.2)

For every i = 1, . . . , p we write (1.3.2) as the power series of ci,1. So we
collect all the different exponents of ci,1 into the set P i

i . It is easy to see that
if βi = 0 then P i

i = ∅, otherwise

P i
i =

{
m ≥ 0 : ∃k ≥ 1, ♯(i,1)i(m

i
k) = m

}
for i = 1, . . . , p.

Then we can write the natural projection in the following form

πc(i) =
∑

m∈P i
i

hmi (i)cm(i,1). (1.3.3)

For every m ∈ P i
i the coefficient hmi (i) of cmi,1 is the sum of those elements of

(1.3.2) divided by cmi,1 which’s indexes k satisfy ♯(i,1)i(m
i
k) = m. Precisely,

hmi (i) =

sim(i)∑

k=sim(i)

(
q∑

l=0

δ
(l,2)
(i

mi
k
,κ

mi
k
)(1 − γl,2)

)
γk−1
0,2 γ

♯1i(mi
k)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i
k)

l,1

q∏

l=1

c
♯(l,2)i(m

i
k)

l,2 .

(1.3.4)

where

sim(i) = sup
{
k : ♯(i,1)i(m

i
k) = m

}
and sim(i) = inf

{
k : ♯(i,1)i(m

i
k) = m

}
.

Lemma 1.3.1. Let i ∈ Σ then for every i = 1, . . . , p and every m ∈ P i
i

hmi (i) ≤ γ
sim(i)−1
0,2 γ

♯1i

(
mi

sim(i)

)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i

(
mi

sim(i)

)

l,1 .

Moreover, if 0 ∈ P i
i then

h0i (i) ≥ γ
mi

1−1
0,1

p∏

l=1
l 6=i

c
♯(l,1)i(m

i
1)

l,1 (1 − γ0,2).
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Proof. Let i ∈ Σ and form ∈ P i
i let im = ((im

sim(i)
, κm

sim(i)
) · · · (im

sim(i)
, κm

sim(i)
)).

By the definition of sim(i) and sim(i), the segment im of i corresponds to the
coefficient hmi (i). By (1.3.4)

hmi (i) = γ
sim(i)−1
0,2 γ

♯1i

(
mi

sim(i)

)

0,1

p∏

l=1
l 6=i

c
♯(l,1)i

(
mi

sim(i)

)

l,1

q∏

l=1

c
♯(l,2)i

(
mi

sim(i)

)

l,2 ϕim
(0).

By the definition, κm
sim(i)

= 2 which implies that

1 − γ0,2 ≤ ϕim
(0) ≤ 1,

for every m ∈ P i
i .

If 0 ∈ P i
i then before the first (i, 1) there has to be at least one symbol

from A2. Therefore si0 = 1. Moreover, before the place of the first symbol
from A2 the number of symbols from A1 is mi

1− 1. This proves the assertion
of the Lemma.

1.3.2 Proof of the transversality condition

For every i, j ∈ AN
κ (κ = 1, 2) πc(i) ≡ πc(j) as functions of c. This implies

the IFS R does not satisfy the transversality condition. The goal of this
section is to introduce a sequence of iterated function systems which satisfy
the transversality and are suitable to approximate the Hausdorff dimension
of the attractor of R.

Since ϕi0,κ ◦ϕi1,κ = ϕi1,κ ◦ϕi0,κ holds for every (i0, κ), (i1, κ) ∈ Aκ which is
in the way of transversality. To eliminate this problem we choose a sequence
of subsets of Σ∗ such that we order the symbols in each word by the first
coordinate.

Define

P0 = {(0, 1); (0, 2)} and

P1 = {(1, 2)(0, 1); . . . ; (q, 2)(0, 1); (1, 1)(0, 2); . . . ; (p, 1)(0, 2)} (1.3.5)

and by induction for k ≥ 2

Pk =




p⋃

j=1

⋃

i∈Pk−1
κ0 6=1∨j≤i0

{(j, 1)i}




⋃



q⋃

j=1

⋃

i∈Pk−1
κ0 6=2∨j≤i0

{(j, 2)i}


 . (1.3.6)
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and

Uk =

k⋃

l=0

Pl. (1.3.7)

Denote Σk = UN
k and the sequence of IFS’s

Ψk = {ϕi}i∈Uk
. (1.3.8)

Proposition 1.3.2. Let ξ > 0 be arbitrary small, then the system Ψk satisfies
the transversality condition on c ∈ (ξ, 1 − ξ)p+q for every k ≥ 1.

Proof. Suppose that c ∈ (ξ/2, 1 − ξ/2)p+q and let i′, j′ ∈ Σk = UN
k such that

i0 6= j
0
∈ Uk. Denote i′ (and j′) as the element of Σ by i (and j respectively).

To prove transversality by Lemma 1.2.2 it is enough to show that

πc(i) = πc(j) =⇒ gradc (πc(i) − πc(j)) 6= 0. (1.3.9)

Suppose that πc(i) = πc(j). Since γ0,1 + γ0,2 < 1, the first element of i,
(i0, κ0), and the first element of j, (j0, τ0), have to satisfy that κ0 = τ0. Then
i, j can be written in the form

i =

r0︷ ︸︸ ︷
(0, κ) · · · (0, κ)

r1︷ ︸︸ ︷
(1, κ) · · · (1, κ) · · ·

rs︷ ︸︸ ︷
(s, κ) · · · (s, κ)(l1, 3 − κ) · · ·

j =

t0︷ ︸︸ ︷
(0, κ) · · · (0, κ)

t1︷ ︸︸ ︷
(1, κ) · · · (1, κ) · · ·

ts︷ ︸︸ ︷
(s, κ) · · · (s, κ)(l2, 3 − κ) · · · ,

where ri, ti ≥ 0 for i = 1, . . . , s, s = p if κ = 1 and s = q otherwise.
If ri ≤ ti for every i = 0, . . . , s and there exists an 1 ≤ i ≤ s such

that ri < ti then by γ0,1 + γ0,2 < 1, πc(i) 6= πc(j), which is a contradiction.
Therefore there are two possibilities, there exist i 6= j such that ri > ti and
rj < tj or ri = ti for every i = 0, . . . , s. In the last case

0 = πc(i) − πc(j) = γ
∑s

i=0 ri
0,κ

s∏

i=1

crii,κ

(
πc(σ

∑s
i=0 rii) − πc(σ

∑s
i=0 rij)

)
.

Since ci,κ > ξ/2 for every κ = 1, 2 and i = 1, . . . , p or q and moreover i0 6= j
0

without loss of generality we can assume the first case.
Firstly, let us suppose that κ = 1 then i and j are in the form

i =

r0︷ ︸︸ ︷
(0, 1) · · · (0, 1)

r1︷ ︸︸ ︷
(1, 1) · · · (1, 1) · · ·

rp︷ ︸︸ ︷
(s, 1) · · · (s, 1)(l1, 2) · · ·

j =

t0︷ ︸︸ ︷
(0, 1) · · · (0, 1)

t1︷ ︸︸ ︷
(1, 1) · · · (1, 1) · · ·

tp︷ ︸︸ ︷
(s, 1) · · · (s, 1)(l2, 2) · · · ,
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and there exists 1 ≤ j ≤ p such that rj < tj . There exists also an 0 ≤ i ≤ p
such that ri > ti and i 6= j, but we prove transversality derivation in cj,1.

Let

i∗ =

r0︷ ︸︸ ︷
(0, 1) · · · (0, 1) · · ·

rj−1︷ ︸︸ ︷
(j − 1, 1) · · · (j − 1, 1)

rj+1︷ ︸︸ ︷
(j + 1, 1) · · · (j + 1, 1) · · · (l1, 2) · · ·

and

j∗ =

t0︷ ︸︸ ︷
(0, 1) · · · (0, 1) · · ·

tj−rj︷ ︸︸ ︷
(j, 1) · · · (j, 1) · · · (l2, 2) · · · .

Then
πc(i) − πc(j) = γ

rj
j,1c

rj
j,1 (πc(i

∗) − πc(j
∗)) .

Let a(c) = πc(i
∗) − πc(j

∗). Since cj,1 > ξ/2 to prove transversality it is
enough to show that

a(c) = 0 =⇒ ∂a

∂cj,1
(c) 6= 0

for every c ∈ (ξ/2, 1 − ξ/2)p+q. But instead of showing that we prove

∂a

∂cj,1
(c) = 0 =⇒ a(c) > 0 (1.3.10)

for every c ∈ (ξ/2, 1 − ξ/2)p+q. By (1.3.3) we have

a(c) = h0j(i
∗) +

∑

m∈P j

i∗
\{0}

hmj (i∗)cmj,1 −
∑

m∈P j

j∗

hmj (j∗)cmj,1.

Let c ∈ (ξ/2, 1 − ξ/2)p+q such that ∂a
∂cj,1

(c) = 0 then

0 = cj,1
∂a

∂cj,1
(c) = h0j (i

∗)




∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)
mcmj,1 −

∑

m∈P j

j∗

hmj (j∗)

h0j(i
∗)
mcmj,1


 ≤

h0j (i
∗)




∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)

(m− 1)cmj,1 +
∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)
cmj,1 −

∑

m∈P j

j∗

hmj (j∗)

h0j(i
∗)
cmj,1


 .

It is enough to prove that

∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j (i
∗)

(m− 1)cmj,1 < 1.
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By Lemma 1.3.1 we have

∑

m∈P j

i∗
\{0}

hmj (i∗)

h0j(i
∗)

(m− 1)cmj,1 ≤

∑

m∈P j

i∗
\{0}

γ
s
j
m(i∗)−1

0,2 γ
♯1i

∗

(
mi∗

s
j
m(i∗)

)

0,1

∏p
l=1
l 6=j

c
♯(l,1)i

∗

(
mi∗

s
j
m(i∗)

)

l,1

γ
mi∗

1 −1
0,1

∏p
l=1
l 6=j

c
♯(l,1)i(m

i∗

1 )

l,1 (1 − γ0,2)
(m− 1)cmj,1. (1.3.11)

Since i∗ does not contain (j, 1) before the first element from A2, s
j
0(i

∗) = 1

and ♯1i
∗
(
mi∗

s
j
m(i∗)

)
≥ mi∗

1 +m− 1 for every m ∈ P j
i∗\ {0}.

Let q1 = minP j
i∗\ {0} and q2 = minP j

i∗\ {0, q1}. We define the minimum
of the empty set as infinity. Then sjq1(i

∗) ≥ 2 and sjq2(i
∗) ≥ 3. This implies

that the right hand side of (1.3.11) is less than or equal to

γq10,1γ0,2

1 − γ0,2
(q1−1)cq1j,1+

γq20,1γ
2
0,2

1 − γ0,2
(q2−1)cq2j,1+

γ30,2
1 − γ0,2

∑

m∈P j

i∗
\{0,q1,q2}

γm0,1(m−1)cmj,1.

(1.3.12)

Using that (n − 1)γn0,1 ≤ −γ0,1
e lnγ0,1

for every n ∈ N, we get that (1.3.12) is less

than or equal to

−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

∞∑

m=3

(m− 1)γm0,1 =

−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

γ30,1(2 − γ0,1)

(1 − γ0,1)2
.

Using the assumption γ0,1 + γ0,2 < 1 by some algebraic manipulation we get
that

−γ0,1(γ0,2 + γ20,2)

(1 − γ0,2)e ln γ0,1
+

γ30,2
1 − γ0,2

γ30,1(2 − γ0,1)

(1 − γ0,1)2
< 1,

which implies (1.3.10).
To prove transversality in the second case when κ = 2 we introduce the

function η(x) = −x + 1. Let us observe that η ◦ η(x) = x. Let

ϕ̃i,1(x) := η ◦ ϕi,1 ◦ η(x) = γi,1x + (1 − γi,1) for i = 0, . . . , p, and

ϕ̃i,2(x) := η ◦ ϕi,2 ◦ η(x) = γi,2x for i = 0, . . . , q.
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The IFS R̃ = {ϕ̃i,1}pi=0 ∪ {ϕ̃i,2}qi=0 and R are equivalent. More precisely, let

π̃c be the natural projection of R̃ then π̃c(i) = −πc(i) + 1 for every i ∈ Σ.
Using this fact one can prove transversality in the case κ = 2 as in κ = 1.

The proof can be finished applying Lemma 1.2.2.

1.3.3 Hausdorff dimension

In the first part of the section we calculate the Hausdorff dimension of the
attractor of Ψk (see (1.3.8)) and in the second part we will prove that the
limit will correspond with the dimension of the attractor of R.

Let for k ≥ 0
dk(s) =

∑

i∈Uk

γsi .

By the definition of Uk (see (1.3.7)) for k ≥ 1

dk(s) = γs0,1 + γs0,2 + γs0,1

k∑

l=1

Φl + γs0,2

k∑

l=1

Υl

where

Φk =
∑

i∈Pk
(ik ,hk)=(0,1)

γsi
γs0,1

and

Υk =
∑

i∈Pk
(ik ,hk)=(0,2)

γsi
γs0,2

.

Lemma 1.3.3. Let us denote the attractor of Ψk by Λk. Then

dimH Λk = min {1, sk} for Lebesgue-a.e. c ∈ (0, 1)p+q

where sk is the unique solution of dk(s) = 1.

Proof. By Proposition 1.3.2, Ψk satisfies the transversality condition on
c ∈ (ξ, 1 − ξ)p+q for every arbitrary small ξ > 0. Since dk(s) is the sum
of the contraction ratios of the functions in the IFS Ψk to the power s, The-
orem 1.2.1 implies that the Hausdorff dimension of Λk is equal to min {1, sk}
where sk is the unique solution of

dk(s) = 1 (1.3.13)

for Lebesgue almost every c ∈ (ξ, 1 − ξ)p+q. Since ξ > 0 was arbitrary the
lemma is proved.
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Lemma 1.3.4. Let sk be the unique solution of dk(s) = 1. Then the limit
limk→∞ sk = s exists and s is the unique solution of

p∏

i=0

(1 − γsi,1) +

q∏

i=0

(1 − γsi,2) = 1. (1.3.14)

The proof of Formula (1.3.14) is a sequence of tedious algebraic manipu-
lations carried out in the following pages.

Proof of Lemma 1.3.4. Without loss of generality we can assume that p ≤ q.
Let

Φi,κ
k =

∑

i∈Pk
(ik,κk)=(0,1)

(i1,κ1)=(i,κ)

γsi
γs0,1

, Υi,κ
k =

∑

i∈Pk
(ik,κk)=(0,2)

(i1,κ1)=(i,κ)

γsi
γs0,2

,

then Φk =
∑p

i=1 Φi,1
k +

∑q

i=1 Φi,2
k and Υk =

∑p

i=1 Υi,1
k +

∑q

i=1 Υi,2
k . By the

definition of Pk (see (1.3.5), (1.3.6)) we have

Φi,1
1 = 0 for i = 1, . . . , p,

Φi,2
1 = γsi,2 for i = 1, . . . , q,

Υi,1
1 = γsi,1 for i = 1, . . . , p,

Υi,2
1 = 0 for i = 1, . . . , q,

(1.3.15)

moreover for k ≥ 2

Φi,κ
k = γsi,κ

(
Φk−1 −

i−1∑

l=1

Φl,κ
k−1

)

Υi,κ
k = γsi,κ

(
Υk−1 −

i−1∑

l=1

Υl,κ
k−1

)
.

(1.3.16)

Denote

ak,1 =
∑

1≤j0<···<jk−1≤p

γsj0,1 · · · γsjk−1,1
for i = 1, . . . , p,

ak,2 =
∑

1≤j0<···<jk−1≤q

γsj0,2 · · · γsjk−1,2
for i = 1, . . . , q.

(1.3.17)
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Applying (1.3.16) we have for k ≥ 2

Φk =

p∑

i=1

Φi,1
k +

q∑

i=1

Φi,2
k =

p∑

i=1

γsi,1

(
Φk−1 −

i−1∑

l=1

Φl,1
k−1

)
+

q∑

i=1

γsi,2

(
Φk−1 −

i−1∑

l=1

Φl,2
k−1

)
=

a1,1Φk−1 + a1,2Φk−1 −
p−1∑

l=1

p∑

i=l+1

γsi,1Φ
l,1
k−1 −

q−1∑

l=1

q∑

i=l+1

γsi,2Φ
l,2
k−1, (1.3.18)

and similarly

Υk = a1,1Υk−1 + a1,2Υk−1 −
p−1∑

l=1

p∑

i=l+1

γsi,1Υ
l,1
k−1 −

q−1∑

l=1

q∑

i=l+1

γsi,2Υ
l,2
k−1. (1.3.19)

Applying (1.3.16) for (1.3.18) and (1.3.19) n times, where 1 ≤ n ≤ p− 1
and k ≥ n+ 1, we get

Φk =
n∑

l=1

(−1)l−1al,1Φk−l + (−1)n
∑

1≤j0<···<jn≤p

γsjn,1 · · · γsj1,1Φ
j0,1
k−n+

n∑

l=1

(−1)l−1al,2Φk−l + (−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · ·γsj1,2Φ
j0,2
k−n (1.3.20)

and

Υk =
n∑

l=1

(−1)l−1al,1Υk−l + (−1)n
∑

1≤j0<···<jn≤p

γsjn,1 · · · γsj1,1Υ
j0,1
k−n+

n∑

l=1

(−1)l−1al,2Υk−l + (−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γsj1,2Υ
j0,2
k−n. (1.3.21)

Then by (1.3.15) and the choice n = k − 1 we get

Φk =

k−1∑

l=1

(−1)l−1al,1Φk−l +

k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

Υk =
k−1∑

l=1

(−1)l−1al,1Υk−l +
k−1∑

l=1

(−1)l−1al,2Υk−l + (−1)k−1ak,1

(1.3.22)
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for 2 ≤ k ≤ p. If p < q we can apply (1.3.16) for (1.3.18) and (1.3.19)
n times, where p ≤ n ≤ q − 1 and k ≥ n+ 1, and we have

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +

n∑

l=1

(−1)l−1al,2Φk−l+

(−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · ·γsj1,2Φ
j0,2
k−n (1.3.23)

and

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +

n∑

l=1

(−1)l−1al,2Υk−l+

(−1)n
∑

1≤j0<···<jn≤q

γsjn,2 · · · γsj1,2Υ
j0,2
k−n. (1.3.24)

By (1.3.15) and k = n+ 1 we have

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +
k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +

k−1∑

l=1

(−1)l−1al,2Υk−l

(1.3.25)

for p + 1 ≤ k ≤ q. By similar methods we get for k ≥ q + 1 that

Φk =

p∑

l=1

(−1)l−1al,1Φk−l +

q∑

l=1

(−1)l−1al,2Φk−l

Υk =

p∑

l=1

(−1)l−1al,1Υk−l +

q∑

l=1

(−1)l−1al,2Υk−l.

(1.3.26)

The convergence of the infinite series
∑∞

l=1 Φl and
∑∞

l=1 Υl depends on the
roots of the characteristic polynomial of (1.3.26). More precisely,

∑∞
l=1 Φl

and
∑∞

l=1 Υl are convergent if and only if the roots of the characteristic
polynomial are strictly less than 1. The characteristic polynomial is

xq =

p∑

l=1

(−1)l−1al,1x
q−l +

q∑

l=1

(−1)l−1al,2x
q−l.

Since the roots of a polynomial depend continuously on the coefficients of the
polynomial. Except the coefficient of xq the coefficients tend to zero as s tends
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to infinity. Therefore the roots tend to zero as s tends to infinity. So there
exists a δ > 0 such that

∑∞
l=1 Φl and

∑∞
l=1 Υl are convergent for s ∈ (δ,∞).

Let δ the infinum of s such that
∑∞

l=1 Φl and
∑∞

l=1 Υl are convergent. Let

d(s) = γs0,1 + γs0,2 + γs0,1

∞∑

l=1

Φl + γs0,2

∞∑

l=1

Υl for s ∈ (δ,∞). (1.3.27)

Then there exists a unique s∗ ∈ (δ,∞) such that d(s∗) = 1. The sequence
sk (see (1.3.13)) is monotone increasing and bounded by s∗, therefore it is
convergent. It is easy to see that limk→∞ sk = supk sk = s∗.

Let

Φ =
∞∑

k=1

Φk and Υ =
∞∑

k=1

Υk.

Then by (1.3.26)

Φ =

∞∑

k=q+1

Φk +

q∑

k=1

Φk =

∞∑

k=q+1

(
p∑

l=1

(−1)l−1al,1Φk−l +

q∑

l=1

(−1)l−1al,2Φk−l

)
+

q∑

k=1

Φk =

p∑

l=1

(−1)l−1al,1

∞∑

k=q+1−l

Φk +

q∑

l=1

(−1)l−1al,2

∞∑

k=q+1−l

Φk +

q∑

k=1

Φk =

p∑

l=1

(−1)l−1al,1

(
Φ −

q−l∑

k=1

Φk

)
+

q∑

l=1

(−1)l−1al,2

(
Φ −

q−l∑

k=1

Φk

)
+

q∑

k=1

Φk.

Therefore

Φ =

∑p

l=1(−1)lal,1
∑q−l

k=1 Φk +
∑q

l=1(−1)lal,2
∑q−l

k=1 Φk +
∑q

k=1 Φk

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
, (1.3.28)

and similarly

Υ =

∑p
l=1(−1)lal,1

∑q−l
k=1 Υk +

∑q
l=1(−1)lal,2

∑q−l
k=1 Υk +

∑q
k=1 Υk

1 +
∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
. (1.3.29)
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Applying (1.3.15), (1.3.22) and (1.3.25) we get

q∑

k=1

Φk = Φ1 +

p∑

k=2

Φk +

q∑

k=p+1

Φk =

a1,2 +

p∑

k=2

(
k−1∑

l=1

(−1)l−1al,1Φk−l +
k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

)
+

q∑

k=p+1

(
p∑

l=1

(−1)l−1al,1Φk−l +

k−1∑

l=1

(−1)l−1al,2Φk−l + (−1)k−1ak,2

)
=

q∑

k=1

(−1)k−1ak,2 +

p∑

l=1

q−l∑

k=1

(−1)l−1al,1Φk +

q∑

l=1

q−l∑

k=1

(−1)l−1al,2Φk, (1.3.30)

and by similar arguments

q∑

k=1

Υk =

p∑

k=1

(−1)k−1ak,1 +

p∑

l=1

q−l∑

k=1

(−1)l−1al,1Υk +

q∑

l=1

q−l∑

k=1

(−1)l−1al,2Υk.

(1.3.31)
Hence the numerator of (1.3.28) is

∑q
k=1(−1)k−1ak,2 and the numerator of

(1.3.29) is
∑p

k=1(−1)k−1ak,1, which implies that

Φ =

∑q

k=1(−1)k−1ak,2
1 +

∑p
l=1(−1)lal,1 +

∑q
l=1(−1)lal,2

and

Υ =

∑p

k=1(−1)k−1ak,1
1 +

∑p

l=1(−1)lal,1 +
∑q

l=1(−1)lal,2
.

(1.3.32)

Then d(s) = 1 (see (1.3.27)) is equivalent to

γs0,1+γ
s
0,2+

p∑

l=1

(−1)l−1al,1+

q∑

l=1

(−1)l−1al,2+γ
s
0,1

p∑

l=1

(−1)lal,1+γ
s
0,2

q∑

l=1

(−1)lal,2 = 1.

Let us observe that

xp+1 −
p∑

m=0

(−1)m
∑

0≤j0<···<jm≤p

γsj0,1 · · · γsjm,1x
p−m =

p∏

k=0

(
x− γsk,1

)
and

xq+1 −
q∑

m=0

(−1)m
∑

0≤j0<···<jm≤q

γsj0,2 · · · γsjm,2x
q−m =

q∏

k=0

(
x− γsk,2

)
.

Then by x = 1 we get that d(s) = 1 is equivalent to

2 −
p∏

k=0

(
1 − γsk,1

)
−

q∏

k=0

(
1 − γsk,2

)
= 1
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which is (1.3.14).
The proof will be complete if we show that (1.3.14) has unique solution.

We have that the left hand side is equal to 2 if s = 0 and the derivative is

p∑

l=0

γsl,1 log γl,1

p∏

k=0
k 6=l

(
1 − γsk,1

)
+

q∑

l=0

γsl,2 log γl,2

q∏

k=0
k 6=l

(
1 − γsk,2

)

which is negative for s > 0. This completes the proof.

Now we show that the unique solution of (1.3.14) is an upper bound for
the Hausdorff dimension. To give a good cover of the attractor, we need to
introduce another sequence of subsets of Σ∗. Let

C0 = {(0, 1), (0, 2)} (1.3.33)

and by induction let

Ck =

p⋃

j=0

⋃

i∈Ck−1
κ0 6=1∨j≤i0

{(j, 1)i}
⋃ q⋃

j=0

⋃

i∈Ck−1
κ0 6=2∨j≤i0

{(j, 2)i} . (1.3.34)

Lemma 1.3.5. Let s̃k the unique solution of
∑

i∈Ck
γsi = 1,

and let s̃ = supk s̃k then

dimH Λ ≤ min {1, s̃} .

Note that the sequence s̃k is bounded since Ck ⊆ (A1 ∪ A2)
k+1.

Proof. Using that for every (i, κ), (j, κ) ∈ Aκ,

ϕ(i,κ) ◦ ϕ(j,κ) ≡ ϕ(j,κ) ◦ ϕ(i,κ),

and γj,κ, γi,κ ≤ γ0,κ we have that the set of closed intervals

{ϕi([0, 1])}
i∈Ck

gives a cover of Λ with diameter at most γkmax, where γmax = maxi,κ {γi,κ}.
Then

Hs̃
γk
max

(Λ) ≤
∑

i∈Ck
|ϕi([0, 1])|s̃ =

∑

i∈Ck
γ s̃i ≤

∑

i∈Ck
γ s̃ki = 1.

This proves the Lemma.
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Proof of Theorem 1.1.1. By the definition of Ck we have that for every k ≥ 1

Ck ⊂
k⋃

l=1

U l
k. (1.3.35)

More precisely, every i ∈ Ck can be decomposed as a juxtaposition i = j
1
· · · j

r
,

where each j
l
∈ Uk. By similar arguments as in the proof of Proposition 1.3.2,

one can show that the system Ψ̃k = {ϕi}i∈Ck satisfies transversality condition

on (ξ, 1 − ξ)p+q. Since ξ > 0 was arbitrary by Theorem 1.2.1 we have

dimH Λ̃k = min {1, s̃k} for L-a.e. c ∈ (0, 1)p+q, (1.3.36)

where Λ̃k denotes the attractor of {ϕi}i∈Ck . Using (1.3.35) we have Λ̃k ⊆ Λk ⊆ Λ
which implies

dimH Λ̃k ≤ dimH Λk ≤ dimH Λ.

Therefore by Lemma 1.3.3 and Lemma 1.3.5 we have

min {1, s̃k} ≤ min {1, sk} ≤ min {1, s̃} .

By Lemma 1.3.4, sk is convergent and limk→∞ sk = supk sk = s. This implies
that min {1, s} = min {1, s̃}, moreover

dimH Λ = min {1, s} .

To complete the proof we have to prove the measure claim. If s > 1 then
there exists a k ≥ 2 such that sk > 1. Therefore, by Theorem 1.2.1 and
Proposition 1.3.2, L (Λ) ≥ L (Λk) > 0 for a.e. c ∈ (0, 1)p+q ∩ {c : s > 1}.

1.4 Proof of Theorem 1.1.2

1.4.1 Natural Projection

Because of the special nature of the IFS S = F ∪ G under consideration,
it is reasonable to modify the way as the elements of S are labeled. Namely,
we label the functions of S by pairs of integers like (i, κ), where κ = 1 if the
function is from F and κ = 2 when the function is from G. In both cases
i ∈ {0, . . . , N − 1}, where we recall that N was defined in our Principal
Assumptions as the cardinality of F . From now on we write in the rest of
the chapter, I = {(0, 1), (1, 1), . . . , (N − 1, 1)} for N ≥ 2. According to this
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new notation the contraction ratio and the fixed point of the functions from
F are 0 < λ(i,1) < 1, and a(i,1) ∈ R, (i, 1) ∈ I. That is

f(i,1)(x) = λ(i,1)x + a(i,1)(1 − λ(i,1)), (i, 1) ∈ I. (1.4.1)

Let J ⊆ {(0, 2), . . . , (N − 1, 2)} and denote N = {i : (i, 2) ∈ J }. Like
above, the contraction ratio and the fixed point of the functions from G
are 0 < λ(i,2) < 1 and a(i,2) ∈ R, (i, 2) ∈ J . That is

f(i,2)(x) = λ(i,2)x + a(i,2)(1 − λ(i,2)) for i ∈ N . (1.4.2)

So
F =

{
f(i,1)

}N−1

i=0
and G =

{
f(i,2)

}
i∈N .

According to our principal assumptions (B1)-(B4) we have the following re-
lations:

ai := a(i,1) = a(i,2) and 0 < λ(i,2) < λ(i,1) < 1 for every i ∈ N .

Moreover, by definition a0 < a1 < · · · < aN−1 and

f(i−1,1)(aN−1) < f(i,1)(a0), (1.4.3)

see (1.1.3). For simplicity denote λ1 the vector of contraction ratios of F and
similarly λ2 the vector of contraction ratios of G. We denote the attractor of
S by Ω(λ, a), where λ = λ1 × λ2 and the vector of the distinct fixed points
of the functions of S is a = (a0, . . . , aN−1). As usual we write

γk :=
m∏

i=1

γkii , k = (k1, . . . , km) ∈ Nm, γ ∈ Rm. (1.4.4)

The symbolic space is
Σ := (I ∪ J )N .

The natural projection πλ,a from the symbolic space Σ to the attractor Ω is
defined exactly as in (1.2.1).

We remind that for an i = ((i0, κ0)(i1, κ1)(i2, κ2) · · · ) ∈ Σ we write i(k)
for the sequence of the first k elements of i and we denote the number of
(i, κ) ∈ I ∪J in i(k) by ♯(i,κ)i(k). We form the vector ♯i(k) ∈ {0, . . . , k}♯I+♯J

as

♯i(k) :=
(
♯(0,1)i(k), ♯(1,1)i(k), . . . , ♯(N−1,1)i(k), ♯(minJ ,2)i(k), . . . , ♯(maxJ ,2)i(k)

)
.

Using the notation introduced in (1.4.4), clearly,

πλ,a(i) =
∞∑

k=0

aik(1 − λ(ik,κk))λ
♯i(k). (1.4.5)
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Equivalently,

πλ,a(i) = ai0 +

∞∑

k=0

(
aik+1

− aik
)
λ♯i(k+1). (1.4.6)

In this way only those elements of the sum above have non-zero contribu-
tion for which aik+1

6= aik . Now we partition the elements of i into blocks
to rewrite the natural projection. Let pil be the l + 1-th element of the set
{k : ik−1 6= ik} where i = ((i0, κ0)(i1, κ1) . . . ). For l = 0, let the 0-th block

of i be bi0 =
(

(i0, κ0) . . . (ipi0−1, κpi0−1)
)

, and for l ≥ 1 the l-th block of i

is bil =
(

(ipi
l−1
, κpi

l−1
) . . . (ipi

l
−1, κpi

l
−1)
)

. Therefore all functions which corre-

spond to any symbols in a block share the same fixed point.
We write kil for the length of the l-th block bil. Obviously, the length of

the first l blocks is pil =
∑l

j=0 k
i
j.

In this way the decomposition of i into blocks is as follows:

i = ((i0, κ0) · · · (iki0−1, κki0−1)︸ ︷︷ ︸
bi0

· · · (ipil, κpil) · · · (ipil+kil+1−1, κpil+kil+1−1)︸ ︷︷ ︸
bi
l+1

· · · )

or simply i = bi0b
i
1b

i
2 . . . . Let abi

l
be the common fixed point of all the

functions f(i,κ), where (i, κ) ∈ bil. That is

abil := ai
pi
l−1

= ai
pi
l−1

+1
= · · · = ai

pi
l−1

+ki
l
−1
.

For a block b = ((iu, κu), . . . , (iv, κv)) we define

fb := f(iu,κu) ◦ · · · ◦ f(iv ,κv). (1.4.7)

By the two notations above we have

πλ,a(i) = lim
l→∞

fbi0 ◦ · · · ◦ fbil(0) = abi0 +
∑

l

(abil+1
− abil)λ

♯i(pil). (1.4.8)

We define both the empty sum, and for every 0 < α < 1, α∞ as 0. Let
us assume about the first element (i0, κ0) of i that i0 ∈ N . To find the
exponent of λi0,2 we introduce a set Qi as follows: First for every l ≥ 0 we
assign an integer m(l) which is the total number of the appearances of (i0, 2)
in the union of the first l blocks. Observe we always assign the same m(l) to
more than one consecutive l. Among these, the smallest one is called rim and
the biggest one is oim ≥ 1 + rim The collection of the distinct integers m(l)
assigned in this way to some l ≥ 0 is the set Qi. That is

Qi =
{
m ≥ 0 : ∃l ≥ 0, m = ♯(i0,2)i(p

i
l)
}
. (1.4.9)
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and

oim = sup
{
l : ♯(i0,2)i(p

i
l) = m

}
, rim = inf

{
l : ♯(i0,2)i(p

i
l) = m

}
. (1.4.10)

It is possible that oim = ∞. Now we partition the sum in (1.4.8) according
to the exponent of (i0, 2):

πλ,a(i) = abi0 +

∞∑

l=0

(abi
l+1

− abi
l
)λ♯i(p

i
l)

= abi0 +
∑

m∈Qi

oim∑

l=rim

(abi
l+1

− abi
l
)λ♯i(p

i
l)

= abi0 +
∑

m∈Qi

dmi λ
m
(i0,2)

, (1.4.11)

where

dmi =

oim∑

l=rim

(abi
l+1

− abi
l
)

λ♯i(p
i
l)

λ
♯(i0,2)i(p

i
l
)

(i0,2)

=

oim∑

l=rim

(abi
l+1

− abi
l
)
λ♯i(p

i
l)

λm(i0,2)
. (1.4.12)

Note that for l = rim, . . . , o
i
m the ratio λ

♯i(pi
l
)

λm
(i0,2)

is independent of λ(i0,2), by the

definition of m.

Lemma 1.4.1. Let i = ((i0, κ0)(i1, κ1) · · · ) ∈ Σ such that i0 ∈ N . Then for
every m ∈ Qi we have

|dmi | ≤
λ
♯i(pi

rim
)

λm(i0,2)
max {aN−1 − ai0 , ai0 − a0} . (1.4.13)

Moreover if 0 ∈ Qi then

|d0i | ≥ λ
ki0
(i0,1)

min
{
f(i0+1,1)(a0) − ai0 , ai0 − f(i0−1,1)(aN−1)

}
. (1.4.14)

Proof. The statement of the lemma follows easily from the following obser-
vation:

dmi =
λ
♯i(pi

rim
)

λm(i0,2)
(fi(ai0) − ai0) , (1.4.15)

where i := (bi
rim+1 · · · bioim) and using the notation of (1.4.7) we define

fi = fbi
rim+1

◦ · · · ◦ fbi
oim

.
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To verify (1.4.15) we fix an i = ((i0, κ0)(i1, κ1) · · · ) ∈ Σ and m ∈ Qi. Using
that abi

oim+1

= abi
rim

= ai0 by definition we have

fi(ai0) = abi
rim+1

+

oim−1∑

l=rim+1

(abi
l+1

−abi
l
)λ

♯i(pil)−♯i(pi
rim

)
+(abi

oim+1

−abi
oim

)λ
♯i(pi

oim
)−♯i(pi

rim
)

and

dmi =

oim∑

l=rim

(abi
l+1

− abi
l
)
λ♯i(p

i
l)

λm(i0,2)
=
λ
♯i(pi

rim
)

λm(i0,2)

(
fi(ai0) − abi

rim

)
.

Which completes the proof of (1.4.15). Therefore

|dmi | ≤
λ
♯i(pi

rim
)

λm(i0,2)
max {aN−1 − ai0 , ai0 − a0} .

Now let us suppose that 0 ∈ Qi then ri0 = 0. Moreover bi0 contains only
(i0, 1). Then by |bi0| = ki0 we have

dmi = λ
ki0
(i0,1)

(
fi′(ai0) − ai0

)
,

where i′ = (bi1 · · · bioi0). By definition, bi1 does not contain elements from

{(i0, 1), (i0, 2)}. Then by (1.4.3) and λ(i,2) < λ(i,1) we have

|fi′(ai0) − ai0 | ≥ min
{
f(i0+1,1)(a0) − ai0 , ai0 − f(i0−1,1)(aN−1)

}

which completes the proof.

1.4.2 Proof of the transversality condition

Similarly to the case of IFS R, the IFS S does not satisfy either the
transversality condition, because for every i ∈ N and every i, j ∈ {(i, 1), (i, 2)}N
with (i, κ0) 6= (i, τ0) we have πλ,a(i) ≡ πλ,a(j) ≡ ai. In this section we prove
transversality for a series of suitable subsystems, but with substantially dif-
ferent method compare to Section 1.3.2. For k ≥ 2 let

Uk = I
⋃



k−2⋃

l=0

⋃

i∈J l

⋃

u∈N

N−1⋃

v=0,u 6=v

{i(u, 2)(v, 1)}


 . (1.4.16)

For a k ≥ 2 we define
Ψk = {fi}i∈Uk

. (1.4.17)
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We prove in Lemma 1.4.2 below that for every k ≥ 2 the IFS Ψk satisfies
transversality on a certain parameter domain Rε. Using this, in Proposi-
tion 1.4.4, we verify that the transversality holds on a domain which ap-
proximates the parameter domain that appears in Theorem 1.1.2. First we
introduce the corresponding notation. Let us denote the attractor of Ψk by
Ωλ

k and the natural projection from Σk := UN
k onto Ωλ

k by πλ
k . Denote the

elements of Σk by i′ = (i0i1 · · · ).

Lemma 1.4.2. Let 0 < εi < λ(i,1) for every i = 0, . . . , N−1. Then for every
k ≥ 2 and every i′ = (i0i1 · · · ), j′ = (j

0
j
1
· · · ) ∈ Σk such that i0 6= j

0
∈ Uk,

π
λ̃
k (i′) = π

λ̃
k (j′) =⇒

∣∣∣∣∣
∂

∂λ(i,2)

(
π
λ
k (i′) − π

λ
k (j′)

)∣∣∣∣
λ=λ̃

∣∣∣∣∣ > 0, (1.4.18)

for some i and for every

λ̃2 ∈ Rε =
∏

i∈N


εi,min




λ(i,1),

1

1 +

√
λmaxαi

(
1 + αi

εi

)






 , (1.4.19)

if it exists, where λmax = maxi=0,...,N−1

{
λ(i,1)

}
and

αi =
max {aN−1 − ai, ai − a0}

min
{
f(i+1,1)(a0) − ai, ai − f(i−1,1)(aN−1)

} .

To prove Lemma 1.4.2 we need the following Sublemma:

Sublemma 1.4.3. Let i, j finite length word of symbols such that

i =

k1︷ ︸︸ ︷
(i, 1) · · · (i, 1)(l1, κ1)

j =

k2︷ ︸︸ ︷
(i, 2) · · · (i, 2)(l2, κ2)

where l1, l2 6= i. If fi([a0, aN−1]) ∩ fj([a0, aN−1]) 6= ∅ then

λk2(i,2)

λk1(i,1)
≤ αi.
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Proof. Since for every (i, 2) ∈ J , λ(i,2) < λ(i,1), we have that
fi([a0, aN−1]) ∩ fj([a0, aN−1]) 6= ∅ implies

λk1(i,1)λ(l1,κ1)a0 + λk1(i,1)al1(1 − λ(l1,κ1)) + ai(1 − λk1(i,1)) ≤
λk2(i,2)λ(l2,κ2)aN−1 + λk2(i,2)al2(1 − λ(l2,κ2)) + ai(1 − λk2(i,2)),

λk2(i,2)λ(l2,κ2)a0 + λk2(i,2)al2(1 − λ(l2,κ2)) + ai(1 − λk2(i,2)) ≤
λk1(i,1)λ(l1,κ1)aN−1 + λk1(i,1)al1(1 − λ(l1,κ1)) + ai(1 − λk1(i,1)).

Using the fact that F satisfies (1.4.3), we have l1, l2 > i or l1, l2 < i. One
can finish the proof by some obvious algebraic manipulations.

Proof of Lemma 1.4.2. Let 0 < εi < λ(i,1) and suppose that εi < λ(i,2) for

every i ∈ N . Let i′, j′ ∈ Σk such that i0 6= j
0

and π
λ
k (i′) = π

λ
k (j′). Divide i0

and j
0

into blocks such that i0 = (b
i0
0 · · · bi0l ) and j

0
= (b

j
0
0 · · · bj0q ). By defi-

nition, a block consists of such pairs which share the same first component.

If u is the common first element in the case of the block b
i0
0 and v for b

j
0
0

then applying (1.4.3) we obtain that u = v. That is the first elements of all

of the pairs that are contained either in b
i0
0 or in b

j
0
0 are the same. First let

us assume that both of i0 and j
0

begin with (i, 2). Then by the definition of

Uk (see (1.4.16)), b
i0
0 , b

j
0
0 contain only (i, 2). Since S satisfies (1.4.3) we have

that |bi00 | = |bj00 | = n. This implies that

0 = πλ
k (i′) − πλ

k (j′) = λn(i,2)

(
πλ
k (i′∗) − πλ

k (j′∗)
)

where the first element of i′∗ is (b
i0
1 · · · bi0l ) ∈ Σk and the first element of j′∗ is

(b
j
0
1 · · · bj0q ) ∈ Σk. Since λ(i,2) > εi, without loss of generality we can assume

that i0 = (i, 1) and b
j
0
0 contains only (i, 2) for an i ∈ N . Let us write i, j

for the elements of Σ = (I ∪ J )N that correspond to i′, j′ respectively. Then
πλ
k (i′) ≡ πλ,a(i) and πλ

k (j′) ≡ πλ,a(j).

If ♯(i,2)i(k
i
0) ≥ ♯(i,2)j(k

j
0) then by (1.4.3), πλ,a(i) 6= πλ,a(j) therefore without

loss of generality we assume that ♯(i,2)i(k
i
0) < ♯(i,2)j(k

j
0). Then

πλ,a(i) − πλ,a(j) = λ
♯(i,2)i(k

i
0)

(i,2) (πλ,a(i
∗) − πλ,a(j

∗)) ,

where

i∗ = (

♯(i,1)i(k
i
0)︷ ︸︸ ︷

(i, 1) · · · (i, 1) bi1 · · · ) and j∗ = (

♯(i,2)j(k
j
0)−♯(i,2)i(k

i
0)︷ ︸︸ ︷

(i, 2) · · · (i, 2) bj1b
j
2 · · · ).
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Since λ(i,2) > εi > 0 it is enough to prove that

f(λ) = 0 =⇒ ‖gradf(λ)‖ > 0, (1.4.20)

where f(λ) = πλ,a(i
∗) − πλ,a(j

∗). Let m = minQj∗ then by (1.4.11) we have

f(λ) = d0i∗


1 +

∑

k∈Qi∗\{0}

dki∗

d0i∗
λk(i,2) −

∑

k∈Qj∗

dkj∗

d0i∗
λk(i,2)


 =

d0i∗


1 +

∑

k∈Qi∗\{0}

dki∗

d0i∗
λk(i,2) −

∑

k∈Qj∗

dkj∗λ
m
(i,2)

d0i∗λ(i,2)
λk−m+1
(i,2)


 .

Now we give upper bound for the absolute value of the coefficients. It is easy
to see by Lemma 1.4.1 and Sublemma 1.4.3 that

∣∣∣d
k
i∗

d0
i∗

∣∣∣ ≤ λmaxαi for every k ∈ Qi∗

i \ {0}∣∣∣d
m
j∗
λm
(i,2)

d0
i∗
λ(i,2)

∣∣∣ ≤ α2
i

εi
and∣∣∣∣

dk
j∗
λm
(i,2)

d0
i∗
λ(i,2)

∣∣∣∣ ≤ λmax
α2
i

εi
for every k ∈ Qj∗

i \ {m} .

Therefore absolute value of the coefficient of λ(i,2) is at most λmaxαi +
α2
i

εi

and the absolute value of the coefficient of λk(i,2) for k ≥ 2 is at most

λmaxαi + λmax
α2
i

εi
. If f(λ̃) = 0 then

∂f

∂λ(i,2)
(λ) = d0i∗


 ∑

k∈Qi∗\{0}

dki∗

d0i∗
kλk−1

(i,2) −
∑

k∈Qj∗

dkj∗λ
m
(i,2)

d0i∗λ(i,2)
(k −m + 1)λk−m

(i,2)

−
∑

k∈Qj∗

(m− 1)
dkj∗λ

m−2
(i,2)

d0i∗
λk−m+1
(i,2)


 ,

and by Lemma 1.2.3 we obtain that for λ(i,2) ∈


εi, 1

1+

√
λmaxαi

(
1+

αi
εi

)


 the

following inequality holds:

∑

k∈Qi∗\{0}

dki∗

d0i∗
kλk−1

(i,2) −
∑

k∈Qj∗

dkj∗λ
m
(i,2)

d0i∗λ(i,2)
(k −m+ 1)λk−m

(i,2) < 0. (1.4.21)
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On the other hand, (1.4.15) yields that for suitable i′, j′ we have

dmj∗

d0i∗
=

λ
♯j(p

j

r
j
m

)

λm
(i,2)

(
fj′(ai) − ai

)

λ
ki

∗

0

(i,1)

(
fi′(ai) − ai

) .

Let i′0 and j′0 be the first element of the first component of i′, j′. Then by

(1.4.3), i′0, j
′
0 > i or i′0, j

′
0 < i which implies that

dm
j∗

d0
i∗
> 0. Therefore by

Lemma 1.4.1 we have for λ(i,2) <
1

1+λmaxαi
that

∑

k∈Qj∗

(m−1)
dkj∗λ

m−2
(i,2)

d0i∗
λk−m+1
(i,2) = (m−1)

dmj∗

d0i∗
λm−1
(i,2)


1 +

∑

k∈Qj∗\{m}

dkj∗

dmj∗
λk−m
(i,2)


 ≥

(m− 1)
dmj∗

d0i∗
λm−1
(i,2)

(
1 −

∞∑

k=1

λmaxαiλ
k
(i,2)

)
≥ 0. (1.4.22)

Observe that 1

1+

√
λmaxαi

(
1+

αi
εi

) < 1
1+λmaxαi

holds for every 0 < εi < 1. Using

this (1.4.21) and (1.4.22) we have

f(λ̃) = 0 =⇒ ∂f

∂λ(i,2)
(λ̃) < 0

which was to be proved.

Proposition 1.4.4. For every k ≥ 2, the IFS Ψk satisfies the transversality
condition on

λ2 ∈ TN(ξ) =
∏

i∈N
(ξ,min

{
λ(i,1),

2

(1 +
√

2)(α2
iλmax + 2)

}
− ξ) (1.4.23)

where ξ > 0 is arbitrary small and

αi =
max {aN−1 − ai, ai − a0}

min {fi+1 (a0) − ai, ai − fi−1 (aN−1)}
for i ∈ N .

Proof. Let

gi(x) =
1

1 +
√
λmaxαi

(
1 + αi

x

) .

We can extend gi onto [0,∞) as gi(0) = 0, which is a fixed point of gi. It is
easy to see by simple calculations that gi is strictly monotone increasing and
has a unique positive fixed point ε∗i .
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Hence, we can cover the rectangle
∏

i∈N (0,min
{
λ(i,1), ε

∗
i

}
) by countable

many rectangles in the type Rε, see (1.4.19).
It follows from Lemma 1.4.2 that for every k ≥ 2 and i′, j′ ∈ Σk with

i0 6= j
0

the function πλ
k (i′) − πλ

k (j′) satisfies (1.2.3) on the rectangle∏
i∈N (0,min

{
λ(i,1), ε

∗
i

}
).

Now we are going to prove that

2

(
√

2 + 1)(α2
iλmax + 2)

≤ ε∗i . (1.4.24)

To verify this, observe that

ε∗i =
2√

(α2
iλmax + 2)2 + 4(αiλmax − 1) + α2

iλmax + 2
.

If the second term under the square root is non-positive, that is if αiλmax ≤ 1
then clearly (1.4.24) holds. Otherwise, αiλmax > 1. Then αi > 1. A simple
calculation yields: 4(αiλmax − 1) ≤ (α2

iλmax + 2)2 which follows that (1.4.24)
holds. To complete the proof we apply Lemma 1.2.2 for the rectangle on the
right hand side of (1.4.23) with ξ = 0.

1.4.3 Hausdorff dimension

Before we prove the theorems we have to introduce a sequence of functions.
For every k ≥ 2 we introduce the function hλ,k(s) which is defined as the sum
of the s-powers of the contraction ratios of the IFS Ψk. That is

hλ,k(s) =
N−1∑

i=0

λs(i,1) +
k−2∑

l=0

(
∑

i∈N
λs(i,2)

)l∑

i∈N

N−1∑

j=0,j 6=i

λs(i,2)λ
s
(j,1). (1.4.25)

Let sk(λ) be the unique solution of hλ,k(s) = 1. Therefore dimH Ωλ
k ≤ min {1, sk(λ)},

where Ωλ
k is the attractor of Ψk.

Since the sequence sk(λ) is monotone increasing and bounded, it is con-
vergent. It is easy to see by some algebraic manipulation that the limit of
sk(λ) is the unique solution of

N−1∑

i=0

λs(i,1) +
∑

i∈N
λs(i,2)

(
1 − λs(i,1)

)
= 1.

This equation corresponds to (1.1.5).
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Moreover, we need to introduce a sequence of subsets of Σ∗. Let

C1 = I = {(0, 1), . . . , (N − 1, 1)} (1.4.26)

and by induction let

Ck+1 =

N−1⋃

j=0

⋃

i∈Ck
{(j, 1)i} ∪

⋃

j∈N

⋃

i∈Ck
(i0,κ0)6=(j,1)

{(j, 2)i} . (1.4.27)

Then we can look at the elements of Ck either as certain sequences of length k
of symbols from I ∪ J or juxtapositions of at most k elements of Uk.

Lemma 1.4.5. Let s̃k(λ) be the unique solution of

∑

i∈Ck
λsi = 1,

and let s̃(λ) = supk s̃k(λ) then

dimH Ωλ,a ≤ min {1, s̃(λ)} .

Moreover,
Hs̃(λ)(Ωλ,a) ≤ (aN−1 − a0)

s̃(λ).

Note that s̃k(λ) is bounded since Ck ⊂ (I ∪ J )k.

Proof. Using that for every i ∈ N

f(i,1) ◦ f(i,2) ≡ f(i,2) ◦ f(i,1),

and 0 < λ(i,2) < λ(i,1) < 1 we have that the set of closed intervals

{fi([a0, aN−1])}i∈Ck
gives a cover of Ωλ,a with diameter at most λkmax. Then

Hs̃(λ)

λk
max

(Ωλ,a) ≤
∑

i∈Ck
|fi([a0, aN−1])|s̃(λ) = (aN−1 − a0)

s̃(λ)
∑

i∈Ck
f ′
i(0)s̃(λ) ≤

(aN−1 − a0)
s̃(λ)
∑

i∈Ck
f ′
i(0)s̃k(λ)

︸ ︷︷ ︸
1

= (aN−1 − a0)
s̃(λ).

This proves the upper bound of the dimension and the measure claim of the
Lemma.
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Proof of Theorem 1.1.2. Let ξ > 0. By the definition of Ck we have that for
every k ≥ 1

Ck ⊂
k⋃

l=1

U l
k. (1.4.28)

As it was mentioned above, every i ∈ Ck can be decomposed as a juxtapo-
sition i = j

1
· · · j

r
, where each j

l
is in Uk and 1 ≤ r ≤ k. By using this

fact and Proposition 1.4.4 we have that the system Ψ̃k = {fi}i∈Ck satisfies

transversality on TN(ξ). By Theorem 1.2.1 we have

dimH Ω̃
λ
k = min {1, s̃k(λ)} for L-a.e. λ2 ∈ TN (ξ), (1.4.29)

where Ω̃λ
k denotes the attractor of {fi}i∈Ck . Using (1.4.28)

dimH Ω̃
λ
k ≤ dimH Ω

λ
k .

Moreover by Proposition 1.4.4 and Theorem 1.2.1 we have

dimH Ωλ
k = min {1, sk(λ)} for L-a.e. λ2 ∈ TN(ξ).

Since Ω̃λ
k ,Ω

λ
k ⊆ Ωλ,a for every k ≥ 2 by Lemma 1.4.5 we have

min {1, s̃k(λ)} ≤ min {1, sk(λ)} ≤ min {1, s̃(λ)} .

Since sk(λ) is strictly monotone increasing limk→∞ sk(λ) = supk sk(λ). This
implies that min {1, s(λ)} = min {1, s̃(λ)}, moreover

dimH Ωλ,a = min {1, s(λ)} .

To complete the proof of the last assertion of Theorem 1.1.2 first observe
that whenever s(λ) > 1 then there exists a k ≥ 2 such that sk(λ) > 1.

Therefore, by Theorem 1.2.1 and Proposition 1.4.4, L (Ωλ,a) ≥ L
(

Ω
λ
k

)
> 0

for a.e. λ2 ∈ TN(ξ) ∩ {λ2 : s(λ) > 1}. Since ξ was arbitrary, this completes
the proof.

1.4.4 Example

To visualize the behavior of the vector of contracting ratios we consider
an easy example, where the functions of F are uniformly distributed with
uniform contracting ratio, that is

F = {fi(x) = λx+ i(1 − λ)}N−1
i=0 ,

38



0.05 0.10 0.15 0.20
Λ

0.1

0.2

0.3

0.4

Γ0,Γ4

Λ

2

J1 + 2 N IΛ Α0
2 + 2M

0.05 0.10 0.15 0.20
Λ

0.1

0.2

0.3

0.4

Γ1,Γ3

Λ

2

J1 + 2 N IΛ Α1
2 + 2M

0.05 0.10 0.15 0.20
Λ

0.1

0.2

0.3

0.4

Γ2

Λ

2

J1 + 2 N IΛ Α2
2 + 2M

Figure 1.1: Transversality region for N = 5 fixed points

where 0 < λ < 1
N

. Let us add to the system the following N functions:

G = {gi(x) = γix + i(1 − γi)}N−1
i=0 .

Note that the fixed point of both fi and gi is i, i = 0, . . . , N − 1. It is easy
to see that for every i = 1, . . . , N − 2

αi = αN−1−i =
max {N − 1 − i, i}

min {1 − (i+ 1)λ, 1 − (N − i)λ} and α0 = αN−1 =
N − 1

1 − λ
,

where αi is as in Theorem 1.1.2. To satisfy the assumptions of Theorem 1.1.2
it is enough to require that

0 < γi < min

{
λ,

2

(1 +
√

2)(α2
iλ+ 2)

}
(1.4.30)

holds for i = 0, . . . , N − 1. For example, when N = 5 then we can choose γi
from the appropriate shaded region of Figure 1.1. In general, first we observe
that

αi ≤ α1 = αN−2 =
N − 2

1 − (N − 1)λ
,

holds for every i = 0, . . . , N − 1. So by (1.4.30) the assumptions of Theo-
rem 1.1.2 hold if we assume that

0 < γi < min




λ,

2

(1 +
√

2)

((
N−2

1−(N−1)λ

)2
λ+ 2

)




, 0 ≤ i ≤ N − 1.

(1.4.31)
We know that 0 < λ must be smaller than 1/N . By (1.4.31) we obtain that
whenever λ < 0.4764/N holds then the assumptions of Theorem 1.1.2 are
satisfied for γi < λ.
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1.5 Proof of Theorem 1.1.3

To prove Theorem 1.1.3 we use the method of Bandt and Graf [BG]. More
precisely, we use it in the way as it was used by Peres, Simon and Solomyak,
[PSS2] with some modifications.

Without loss of generality we may assume that s(λ) ≤ 1. (Otherwise
Hs(Ω) = 0 holds obviously.) Let us denote the local inverse of the left-shift
operator σ on Σ = (I ∪ J )N by σ−1

(i,κ). More precisely, for every i ∈ Σ let

σ−1
(i,κ)i = (i, κ)i. Denote σ−1

i := σ−1
(i0,κ0)

◦ · · · ◦ σ−1
(in,κn)

for an i ∈ Σ∗. Let

Σ̂ =

∞⋃

k=0

⋃

i∈(I∪J )k

{
σ−1
i J N

}
,

which is the subset of Σ such that every i ∈ Σ̂ contains only finitely many
symbols of I. Then

Ωλ,a = πλ,a

(
Σ̂
)⋃

πλ,a

(
Σ\Σ̂

)
.

Let

U∞ = I
⋃



∞⋃

l=0

⋃

i∈J l

⋃

i∈N

N−1⋃

j=0,j 6=i

{i(i, 2)(j, 1)}


 .

Cf. to (1.4.16) the definition of Uk.

Lemma 1.5.1.

πλ,a

(
Σ\Σ̂

)
⊆ πλ,a

(
UN
∞
)
.

Proof. For every i ∈ Σ\Σ̂ there are at most two possibilities, it contains
finitely or infinitely many blocks. If i contains an infinite length block (which
is equivalent to i contains finitely many blocks) then every element in the
last block can be changed to a suitable i ∈ I without the modification of the
value of the natural projection.

The fact f(i,1) ◦ f(i,2) ≡ f(i,2) ◦ f(i,1) completes the proof.

Since Hausdorff dimension of πλ,a

(
Σ̂
)

is equal to the Hausdorff dimension

of the attractor of G, which is the unique solution of
∑

i∈N λs(i,2) = 1, we have

Hs(λ)(Ωλ,a) = Hs(λ)
(
πλ,a

(
UN
∞
))
. (1.5.1)
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We say that i and j elements of U∗
∞ (the set of finite length symbols of

U∞) are incomparable if there are no η ∈ Σ̃∗
∞ such that i = jη or j = iη

holds.
We define an outer measure. Let

µs(K) = inf

{
∑

k∈I
|Uk|s : open, K ⊆

⋃

k∈I
Uk

}
.

Lemma 1.5.2. For measurable K ⊆ πλ,a
(
UN
∞
)
, Hs(λ)(K) coincides with the

outer measure µs(λ)(K). Moreover,

Hs(λ)
(
fi
(
πλ,a

(
UN
∞
))

∩ fj
(
πλ,a

(
UN
∞
)))

= 0

for every i, j ∈ U∗
∞ such that i and j are incomparable.

The proof of this lemma coincides with the proof of [BG, Proposition 3].

Proof of Theorem 1.1.3. Without loss of generality we can assume that for

every i ∈ N the quotient
log λ(i,2)

log λ(i,1)
is irrational. Otherwise dimH Ωλ,a < s(λ)

trivially.
Let i = (i, 1) · · · (i, 1)(j, κ1) and j = (i, 2) · · · (i, 2)(j, κ2) such that

♯(i,1)(i) = k1, ♯(i,2)(j) = k2 and j 6= i. Then

f−1
i ◦ fj(x) =

λk2(i,2)

λk1(i,1)
x +

(
1 −

λk2(i,2)

λk1(i,1)

)(
aj(1 − 1

λ(i,1)
) +

ai
λ(i,1)

)
.

Therefore for every δ > 0 there exists i, j ∈ U∗
∞ incomparable words such

that
sup

x∈[a(0,1),a(n−1,1)]

{∣∣∣x− f−1
i ◦ fj(x)

∣∣∣
}
< δ. (1.5.2)

Indirectly, let us suppose that Hs(λ)(Ωλ,a) > 0 and let ξ ∈ (1, 3
2
). Since

Ωλ,a is compact, there exists U1, . . . , Ul finite cover of Ωλ,a such that

l∑

m=1

|Ul|s(λ) < ξHs(λ)(Ωλ,a) = ξHs(λ)
(
πλ,a

(
UN
∞,n

))
(1.5.3)

by (1.5.1). Let

δ = inf

{
|a− x| : a ∈ Ωλ,a, x /∈

l⋃

m=1

Um

}
≤

inf

{
|a− x| : a ∈ πλ,a

(
UN
∞
)
, x /∈

l⋃

m=1

Um

}
. (1.5.4)
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Let i, j ∈ U∗
∞ such that

sup
x∈[a0,aN−1]

{∣∣∣x− f−1
i ◦ fj(x)

∣∣∣
}
< δ

and
λ
k2
(i,2)

λ
k1
(i,1)

> 2 − ξ. Therefore by (1.5.4) we have

f−1
i ◦ fj

(
πλ,a

(
UN
∞
))

⊆
l⋃

m=1

Um

and

fi
(
πλ,a

(
UN
∞
))⋃

fj
(
πλ,a

(
UN
∞
))

⊆ fi

(
l⋃

m=1

Um

)
.

So, we have by Lemma 1.5.2 that

Hs(λ)
(
fi
(
πλ,a

(
UN
∞
)))

+ Hs(λ)
(
fj
(
πλ,a

(
UN
∞
)))

=

Hs(λ)
(
fi
(
πλ,a

(
UN
∞
))⋃

fj
(
πλ,a

(
UN
∞
)))

which is less than or equal to

l∑

m=1

|fi(Um)|s(λ) = λ
k1s(λ)
(i,1)

l∑

m=1

|Um|s(λ) < λ
k1s(λ)
(i,1) ξHs(λ)

(
πλ,a

(
UN
∞
))

In the last inequality we have used (1.5.3) and (1.5.1).
However, by the definition of Hausdorff measure,

Hs(λ)
(
fi
(
πλ,a

(
UN
∞
)))

+ Hs(λ)
(
fj
(
πλ,a

(
UN
∞
)))

=

λ
k1s(λ)
(i,1) Hs(λ)

(
πλ,a

(
UN
∞
))

+ λ
k2s(λ)
(i,2) Hs(λ)

(
πλ,a

(
UN
∞
))
.

Since we assumed that Hs(λ) (Ωλ,a) > 0 and by Lemma 1.4.5, Hs(λ) (Ωλ,a)
is finite, by (1.5.1) we have 2 − ξ < ξ − 1 which is a contradiction.
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Chapter 2

Sub-additive pressure of

Iterated Function Systems with

triangular maps

2.1 Definitions and Statements

Let M ⊂ Rn be a non-empty, open and bounded set, and let Fi : M 7→M
contractive maps for every i = 1, ..., l. For an i = i1i2...ik, ij ∈ {1, ..., l},
we write Fi(x) = Fi1 ◦ Fi2 ◦ ... ◦ Fin(x). Our principal assumption about the
maps Fi, i = 1, ..., l is that

Fi(x1, ..., xn) =
(
f 1
i (x1), f

2
i (x1, x2), ..., f

n
i (x1, ..., xn)

)
, (2.1.1)

and Fi(x1, ..., xn) ∈ C1+ε(M) for every i = 1, ..., l. Moreover we require
that DxFi is a regular (non-singular matrix) for every x ∈ M and every
i ∈ {1, ..., l}. Denote the elements of DxFi by xij (i, x).

Proposition 2.1.1. There exists a real constant 0 < C <∞ such that

C−1 <
|xii (i, x)|∣∣xii
(
i, y
)∣∣ < C (2.1.2)

for every x, y ∈M and for every i ∈ {1, ..., l}∗.

Proof. Let G
(m)
i : Rm 7→ Rm for every integer m between 1 and n, be the

restriction of Fi to the first m component, i.e.:

G
(m)
i (x1, ..., xm) :=

(
f 1
i (x1), f

2
i (x1, x2), ..., f

m
i (x1, ..., xm)

)
.
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From [Pes1, Page 198; Propostion 20.1 (3)] it follows that for every x, y ∈M ,
for every i ∈ {1, ..., l}∗ finite sequence, and for 1 ≤ m ≤ n there exists a real
0 < Cm <∞ constant that

C−1
m <

Jac G
(m)
i (x)

Jac G
(m)
i (y)

< Cm.

Since for every m, the matrix DxG
(m)
i is a lower triangular matrix, the Jaco-

bian is the following

Jac G
(m)
i (x) = |x11(i, x) · · ·xmm(i, x)| .

Therefore for every integer 1 ≤ m < n and for every x, y ∈M

C−1
m

Cm+1
<

Jac G
(m)
i

(x)

Jac G
(m)
i

(y)

Jac G
(m+1)
i

(x)

Jac G
(m+1)
i

(y)

<
Cm

C−1
m+1

and
Jac G

(m)
i

(x)

Jac G
(m)
i

(y)

Jac G
(m+1)
i

(x)

Jac G
(m+1)
i

(y)

=

∣∣xm+1m+1

(
i, y
)∣∣

|xm+1m+1 (i, x)| .

Then C := max1≤m<n−1

{
Cm

C−1
m+1

, C1

}
choice completes the proof of the propo-

sition.

The singular values of a linear contraction T are the positive square roots
of the eigenvalues of TT ∗, where T ∗ is the transpose of T . Let αk(DxFi)
be the k-th greatest singular value of the matrix DxFi. The singular value
function φs is defined for 0 ≤ s ≤ n as

φs(DxFi) := α1(DxFi)...αk−1(DxFi)αk(DxFi)
s−k+1 (2.1.3)

where k − 1 < s ≤ k and k is a positive integer. We define the maximum
and the minimum of the singular value function as

φ
s
(i) := max

x∈M
φs(DxFi) , φ

s(i) := min
x∈M

φs(DxFi).

We define the sub-additive pressure after K. Falconer [Fa4] and L. Barreira
[Barr]:

P (s) := lim
k→∞

1

k
log
∑

|i|=k

φ
s
(i) (2.1.4)
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and define the lower pressure:

P (s) := lim inf
k→∞

1

k
log
∑

|i|=k

φs(i). (2.1.5)

Theorem 2.1.2. Let 0 ≤ s ≤ n. If F1, ..., Fl are contractive maps in form
(2.1.1) and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = P (s).

The proof of Theorem 2.1.2 is based on [B4] which uses the technique of
[FM]. The result of the chapter was part of author’s Master Thesis.

2.2 Proof of Theorem 2.1.2

The m-dimensional exterior algebra Φm is a vector space spanned by for-
mal elements v1 ∧ ... ∧ vm with vi ∈ Rn such that v1 ∧ ... ∧ vm = 0 if vi = vj
for some i 6= j, and such that interchanging two different elements reverses
the sign, i.e. v1 ∧ ...vi...vj ... ∧ vm = −v1 ∧ ...vj ...vi... ∧ vm, if i 6= j. Then Φm

has dimension
(
n

m

)
with basis {ej1 ∧ ... ∧ ejm : 1 ≤ j1 < ... < jm ≤ n} where

e1, ...en are a given set of orthonormal vectors in Rn.
Let us define a scalar product on Φm in the following way. Let

< v1 ∧ · · · ∧ vm, u1 ∧ · · · ∧ um >Φm= det ((< vi, uj >)i,j=1...m) ,

where < ., . > is the usual scalar product on Rn. One can extend < ., . >Φm

to every element of Φm the natural way. Then Φm becomes a Hilbert-space.
Let us define the norm ‖.‖ on Φm by < ., . >Φm the usual way. Then it is easy
to see that ‖v1 ∧ ... ∧ vm‖ is equal to the absolute m-dimensional volume of
the parallelepiped spanned by v1, ...vm, for every v1 ∧ ... ∧ vm, see [K, p. 44].

We may also define an other norm ‖.‖∞ on Φm by

∥∥∥∥∥
∑

1≤i1<...<im≤m

λi1...im(ei1 ∧ ... ∧ eim)

∥∥∥∥∥
∞

:= max |λi1...im| .

If T : Rn 7→ Rn is linear then there is an induced linear mapping
T̃ : Φm 7→ Φm given by

T̃ (v1 ∧ ... ∧ vm) := (Tv1) ∧ ... ∧ (Tvm).
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The norms on Φm induce norms on the space of linear mappings L(Φm,Φm)
in the usual way by

∥∥∥T̃
∥∥∥ = sup

w∈Φm,w 6=0

∥∥∥T̃w
∥∥∥

‖w‖ .

Then with respect to the norm ‖.‖
∥∥∥T̃
∥∥∥ = φm(T ) (2.2.1)

and with respect to the ‖.‖∞
∥∥∥T̃
∥∥∥
∞

= max
{∣∣T (m)

∣∣ : T (m) is an m×m minor of T
}
, (2.2.2)

where T (m) = T
(
r1,...rm
s1,...,sm

)
is the determinant of that m × m minor of

n × n matrix T which is determined by the elements of T in the rows
1 ≤ r1 < ... < rm ≤ n and columns 1 ≤ s1 < ... < sm ≤ n.
The space of linear mappings L(Φm,Φm) is of finite dimension

(
n

m

)2
. Since

any two norms on a finite dimensional normed space are equivalent, there
are constants 0 < c1 < c2 <∞ depending only on n and m such that

c1

∥∥∥T̃
∥∥∥
∞

≤
∥∥∥T̃
∥∥∥ ≤ c2

∥∥∥T̃
∥∥∥
∞
. (2.2.3)

Now we notice several lemmas relating to minors of matrices. We will
need some well-known lemmas.

Lemma 2.2.1. Let xi ≥ 0, i = 1, ..., m and p ∈ R+.

1. If p > 1, then (xp1 + ... + xpm) ≤ (x1 + ... + xm)p ≤ mp−1(xp1 + ...+ xpm)

2. If 0 < p ≤ 1, then mp−1(xp1+...+xpm) ≤ (x1+...+xm)p ≤ (xp1+...+xpm).

Lemma 2.2.2. Let an be a sequence of real numbers such that an+m ≤ an +
am. Then there exists limn→∞

an
n

and it equals to infn
an
n
.

We first look at the expansion of m×m minors of the product of k matrices
A = A1A2 · · ·Ak, where for i = 1, ..., k

Ai =




ai11 ai12 ... ai1n
ai21 ai22 ... ai2n
...

...
. . .

...
ain1 ain2 ... ainn


 .
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Lemma 2.2.3. For 1 ≤ m ≤ n, the m × m minors of A = A1 · · ·Ak have
formal expansions in terms of the entries of the Ai of the form

A

(
r1, ...rm
s1, ..., sm

)
=
∑

c1,...,ck

±a11(c1) · · · a1m(c1)
a21(c2) · · · a2m(c2)

· · · ak1(ck) · · · a
k
m(ck)

such that for each i = 1, ..., k, the ai1(ci) · · · aim(ci)
are distinct entries airs of

Ai. In particular, for each i, 1(ci), ..., m(ci) denote pairs (r, s) corresponding
to entries in m different rows and columns of the ith matrix Ai, and the sum
is over all such entry combinations (c1, ..., ck) with appropriate sign ±.

The proof of this Lemma can be found in [FM, Lemmma 2.2]. Now we
consider lower triangular matrices. For i = 1, ..., k, let

Ui =




ui1 0 ... 0
ui21 ui2 ... 0
...

...
. . .

...
uin1 uin2 ... uin


 .

We consider the product

U = U1 · · ·Uk =




u1 0 ... 0
u21 u2 ... 0
...

...
. . .

...
un1 un2 ... un


 .

We note that

urs =
∑

r≥r1≥...≥rk−1≥s

u1rr1u
2
r1r2

· · ·ukrk−1s
1 ≤ r ≤ s ≤ n (2.2.4)

since all other products are 0.

Lemma 2.2.4. With the notation as above, let U1, ..., Uk be lower triangular
matrices and U = U1 · · ·Uk. Then

1. If r < s, urs = 0

2. If r = s, urs ≡ ur = u1r · · ·ukr
3. If r > s, then the sum (2.2.4) for urs has at most kr−s ≤ kn−1 non-

zero terms. Moreover, each non-zero summand u1rr1u
2
r1r2

· · ·ukrk−1s
has

at most n−1 non-diagonal terms in the product, i.e. terms with r 6= r1
or ri 6= ri+1 or rk−1 6= s.
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The proof can also be found in [FM, Lemma 2.3] for upper-triangular
matrices. Now we extend the estimate of Lemma 2.2.4 to minors.

Lemma 2.2.5. Let U1, ..., Uk and U be lower triangular matrices as above.
Then each m×m minor of U has an expansion of the form

U

(
r1, ...rm
s1, ..., sm

)
=
∑

c1,...,ck

±u11(c1)u21(c2) · · ·uk1(ck) · · ·u1m(c1)u
2
m(c2) · · ·ukm(ck)

where 1(ci), ..., m(ci) are as in Lemma 2.2.3 and

1. there are at most m!km(n−1) terms in the sum which are non-zero,

2. each summand contains at most (n−1)m non-diagonal elements in the
product.

The proof is equivalent to the proof of [FM, Lemma 2.4]. Before we prove
Theorem 2.1.2, we define two sums.

H(s, r) = max
j1,...,jm−1

j′1,...,j
′
m

∑

|i|=r

(dj1j1(i) · · · djm−1jm−1(i))
m−s(dj′1j′1(i) · · ·dj′mj′m

(i))s−m+1

(2.2.5)
where m− 1 < s ≤ m and djj(i) = infx |xjj (i, x)|. Moreover

T (s, r) = max
j1,...,jm−1

j′1,...,j
′
m

∑

|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m

(i))s−m+1

(2.2.6)
where m − 1 < s ≤ m and tjj(i) = supx |xjj (i, x)|. It is easy to see from
Proposition 2.1.1 and the definition of the two sums that

H(s, r) ≤ T (s, r) ≤ CsH(s, r). (2.2.7)

Lemma 2.2.6. For every positive integers r, z, T (s, r + z) ≤ T (s, r)T (s, z).

Moreover limr→∞
log T (s,r)

r
exists and equal with infr

log T (s,r)
r

.
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Proof of Lemma 2.2.6. From the definition of T (s, r) it follows

T (s, r + z) = max
j1,...,jm−1

j′1,...,j
′
m

∑

|i|=r+z

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m

(i))s−m+1 ≤

≤ max
j1,...,jm−1

j′1,...,j
′
m

(
∑

|i|=r

∑

|h|=z

((tj1j1(i)tj1j1(h) · · · tjm−1jm−1(i)tjm−1jm−1(h))m−s×

× (tj′1j′1(i)tj′1j′1(h) · · · tj′mj′m
(i)tj′mj′m

(h))s−m+1) =

= max
j1,...,jm−1

j′1,...,j
′
m

(
∑

|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m

(i))s−m+1×

×
∑

|h|=z

(tj1j1(h) · · · tjm−1jm−1(h))m−s(tj′1j′1(h) · · · tj′mj′m
(h))s−m+1)) ≤

≤ T (s, r)T (s, z).

The existence of the limit follows from Lemma 2.2.2.

The proof of Theorem 2.1.2 follows the method of the proof of [FM, The-
orem 2.5], but our theorem is not a consequence of it. The most important
difference is that the functions in [FM] are affine maps. So the derivatives
in our case are not constant matrices. Moreover, in the proof of [FM, The-
orem 2.5], the singular value functions and the minors of the derivative ma-
trices were compared. During the proof of Theorem 2.1.2 we will do this as
well, however, we have to introduce in the proof a new IFS, which will be the
r-th iteration of the original IFS, to take separation between the growth rate
of the non-zero and the non-diagonal terms of the minors of the derivative
matrices.

To control the consequences of the phenomenon of not constant matrices,
we have to state the following lemma.

Lemma 2.2.7. Let X be a compact subset of Rn and let {fi} be finitely many
continuous, real valued functions. Then

sup
x∈X

max
i
fi(x) = max

i
sup
x∈X

fi(x).

Proof of Lemma 2.2.7. Since X is compact, we have xi ∈ X such that fi(xi) =
supx fi(x). Therefore

sup
x

max
i
fi(x) ≤ max

i
sup
x

fi(x) = max
i
fi(xi) = max

i,j
fi(xj) = max

j
max

i
fi(xj)

≤ sup
x

max
i
fi(x),

which was to be proved.
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Proof of Theorem 2.1.2. Let

{Gh}l
r

h=1 = {Fi1...ir}l,...,li1=1,...,ir=1 . (2.2.8)

In this case an index h is equivalent to a i ∈ {1, ..., l}r finite sequence, length
r. Let us define

φ′s(h) = sup
x

φs(DxGh),

φ′s(h) = inf
x
φs(DxGh)

for h ∈ {1, ..., lr}∗, corresponding to IFS {Gh}l
r

h=1, see (2.1.3).
It is easy to see that

∑

|i|=kr

φs(DxFi) =
∑

|h|=k

φs(DxGh), (2.2.9)

where i ∈ {1, ..., l}kr and h ∈ {1, ..., lr}k. The elements of DxGh, denoted
by yij (h, x), are equal to xij (i, x) for an appropriate finite sequence i with
length r. It is very simple to see that

φs(DxGh) = (φm−1(DxGh))m−s(φm(DxGh))s−m+1,

where m−1 < s ≤ m. By using relations (2.2.1), (2.2.2) and (2.2.3) it follows
that

φm(DxGh) ≥ c2 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
.

The maximum m × m minor of DxGh is at least the largest product of
m distinct diagonal elements of DxGh, since such products are themselves
minors of triangular matrices. Therefore

φ′s(h) ≥

cs2

(
inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣
)m−s(

inf
x

∣∣yj′1j′1 (h, x) · · · yj′mj′m
(h, x)

∣∣
)s−m+1

for every j1, ..., jm−1, j
′
1, ..., j

′
m.

By the chain rule DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 · · ·DxGhk
,

yjj (h, x) = yjj (h1, Gh2...hk
(x)) yjj (h2, Gh3...hk

(x)) · · · yjj (hk, x). It follows
with the notation infx |yjj (h, x)| = d′jj(h) that

inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣m−s

inf
x

∣∣yj′1j′1 (h, x) · · · yj′mj′m
(h, x)

∣∣s−m+1 ≥

≥ (d′j1j1(h1) · · ·d′j1j1(hk)d′j2j2(h1) · · · d′jm−1jm−1
(h1) · · · d′jm−1jm−1

(hk))
m−s×

× (d′j′1j′1(h1) · · ·d
′
j′1j

′
1
(hk)d′j′2j′2(h1) · · · d

′
j′mj′m

(h1) · · · d′j′mj′m
(hk))s−m+1.
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The next inequality follows from the rearrangement of the product

∑

|h|=k

φ′s(h) ≥

cs2
∑

|h|=k

(d′j1j1(h1) · · · d′jm−1jm−1
(h1))

m−s(d′j′1j′1(h1) · · ·d
′
j′mj′m

(h1))
s−m+1 · · ·

· · · (d′j1j1(hk) · · ·d′jm−1jm−1
(hk))m−s(d′j′1j′1(hk) · · ·d′j′mj′m

(hk))
s−m+1 =

cs2((d
′
j1j1

(1) · · ·d′jm−1jm−1
(1))m−s(d′j′1j′1(1) · · ·d′j′mj′m

(1))s−m+1 + · · ·

· · · + (d′j1j1(l
r) · · ·d′jm−1jm−1

(lr))m−s(d′j′1j′1(l
r) · · ·d′j′mj′m

(lr))s−m+1)k.

The inequality above is true for every j1, ..., jm−1, j
′
1, ..., j

′
m, therefore we ob-

tain the maximum. From the definition of {Gh}l
r

h=1 and H(s, r), see (2.2.5)
and (2.2.8), it follows

∑

|h|=k

φ′s(h) ≥ cs2H(s, r)k. (2.2.10)

By using relations (2.2.1), (2.2.2) and (2.2.3) it follows similarly that

φm(DxGh) ≤ c1 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
.

Therefore
∑

|h|=k

φ′s(i) ≤

c21
∑

|h|=k

(
sup
x

max
m−1×m−1 minor

∣∣∣DxG
(m−1)
h

∣∣∣
)m−s(

sup
x

max
m×m minor

∣∣∣DxG
(m)
h

∣∣∣
)s−m+1

.

By Lemma 2.2.7, the order of the supremum and the maximum can be
changed in this situation and we can estimate the sum with

C max{
r1,...,rm−1
s1,...,sm−1

} max



r′1,...,r
′
m

s′1,...,s
′
m





∑

|h|=k

(
sup
x

∣∣∣DxG
(m−1)
h

∣∣∣
)m−s(

sup
x

∣∣∣DxG
(m)
h

∣∣∣
)s−m+1

where r1, ..., rm−1 are the rows and s1, ..., sm−1 are the columns of the
(m− 1) ×(m− 1) minor, and r′1, ..., r

′
m are the rows and s′1, ..., s

′
m are the
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columns of m×m minor, moreover C = c21
(
n

m

)2( n

m−1

)2
. By the chain rule

DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 ...DxGhk
, we obtain

DxGh

(
r1, ..., rm
s1, ..., sm

)
=

∑

c1,...,ck

±y1(c1)(h1, Gh2...hk
(x))...y1(ck)(hk, x)...ym(c1)(h1, Gh2...hk

(x))×

× ym(c2)(h2, Gh3...hk
(x))...ym(ck)(hk, x).

(2.2.11)

Therefore

sup
x

∣∣∣DxG
(m)
h

∣∣∣ ≤
∑

c1,...,ck

sup
x

∣∣y1(c1)(h1, x)
∣∣ ... sup

x

∣∣y1(ck)(hk, x)
∣∣ ... sup

x

∣∣ym(c1)(h1, x)
∣∣×

× sup
x

∣∣ym(c2)(h2, x)
∣∣ ... sup

x

∣∣ym(ck)(hk, x)
∣∣ . (2.2.12)

Denote by t′kl(h) := supx |ykl(h, x)| the supremum. It follows from the in-
equality (2.2.12) and the Lemma 2.2.1

∑

|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣
m−s

sup
x

∣∣∣DxG
(m)
h

∣∣∣
s−m+1

≤

∑

c1,...,ck
c′1,...,c

′
k

((t′1(c1)(1)...t′m−1(c1)(1))m−s(t′1(c′1)(1)...t′m(c′1)
(1))s−m+1+

... + (t′1(c1)(l
r)...t′m−1(c1)

(lr))m−s(t′1(c′1)(l
r)...t′m(c′1)

(lr))s−m+1)×

...× ((t′1(ck)(1)...t′m−1(ck)
(1))m−s(t′1(c′

k
)(1)...t′m(c′

k
)(1))s−m+1+

... + (t′1(ck)(l
r)...t′m−1(ck)

(lr))m−s(t′1(c′
k
)(l

r)...t′m(c′
k
)(l

r))s−m+1).

(2.2.13)

Lemma 2.2.5 implies that each non-zero term of the sum above has at most
2(n − 1)m = b of the indices 1(c1), ..., m − 1(c1), ..., 1(ck), ..., m − 1(ck),
1(c′1), ..., m(c′1), ..., 1(c′k), ..., m(c′k) that are non-diagonal terms. Thus, for
each set of indices (c1, ..., ck, c

′
1, ..., c

′
k), we have at least k − b of these in-

dices such that 1(cr), ..., m − 1(cr), 1(c′r), ..., m(c′r) are all diagonal entries.
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For such cr and c′r

((t′1(cr)(1)...t′m−1(cr)(1))m−s(t′1(c′r)(1)...t′m(c′r)
(1))s−m+1 + ...

...+ (t′1(cr)(l
r)...t′m−1(c1)(l))

m−s(t′1(c′r)(l
r)...t′m(c′r)

(lr))s−m+1) ≤

max
{j1,...,jm−1},{j′1,...,j′m}

((t′j1j1(1)...t′jm−1jm−1
(1))m−s(t′j′1(1)...t′j′m(1))s−m+1 + ...

...+ (t′j1j1(l
r)...t′jm−1jm−1

(lr))m−s(t′j′1(l
r)...t′j′mj′m

(lr))s−m+1) = T (s, r).

The last equality follows from the definition of {Gh}l
r

h=1 and T (s, r). Hence
from (2.2.13)

∑

|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣
m−s

sup
x

∣∣∣DxG
(m)
h

∣∣∣
s−m+1

≤
∑

c1,...,ck
c′1,...,c

′
k

(
T (s, r)k−b(lr)b

)
≤ c′′kqlrbT (s, r)k−b,

(2.2.14)

where, using Lemma 2.2.5, c′′ = m!(m− 1)! and q = (2m− 1)(n− 1).
By using (2.2.7), (2.2.9), (2.2.10) and (2.2.14)

∑

|i|=kr

φ
s
(i) =

∑

|h|=k

φ′s(h) ≤ c′′kqlrbT (s, r)k−b ≤ c′′(Cs)kkqlrbT (s, r)−bH(s, r)k ≤

c′′′(Cs)kkqlrbT (s, r)−b
∑

|h|=k

φ′s(h) = c′′′kqlrbT (s, r)−b
∑

|i|=kr

φs(i). (2.2.15)

We take the logarithm of both sides of the inequality and we divide by
kr, then

log
∑

|i|=kr φ
s
(i)

kr
≤

log c′′′

kr
+
q log k

kr
+
rb log l

kr
+

(kb) log(Cs)

kr
+

−b log T (s, r)

kr
+

log
∑

|i|=kr φ
s(i)

kr
(2.2.16)

is true for every positive k, r integer. We take limit inferior of both sides. The
limit exists in the left-hand side of the inequality and in the right-hand side
the limit of every term exists and equals zero except the last term. Therefore

P (s) ≤ P (s)

While the opposite relation is trivial this completes the proof.
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The next corollary is a consequence of the previous proof.

Corollary 2.2.8. For 0 ≤ s ≤ n. If F1, ..., Fl contractive maps in form
(2.1.1) and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = lim
r→∞

1

r
log( max

j1,...,jm−1

j′1,...,j
′
m

∑

|i|=r

(
|xj1j1 (i, x)| ...

∣∣xjm−1jm−1 (i, x)
∣∣)m−s ×

×
(∣∣xj′1j′1 (i, x)

∣∣ ...
∣∣xj′mj′m

(i, x)
∣∣)s−m+1

) (2.2.17)

for every x ∈M .

Proof. It follows from inequality (2.2.7) that the limr→∞
logH(s,r)

r
exists and

lim
r→∞

logH(s, r)

r
= lim

r→∞
log T (s, r)

r
.

It is clear by (2.2.15) that limr→∞
log T (s,r)

r
= P (s). Because of the definition

H(s, r), T (s, r), this is exactly what we want to prove.

2.3 Some applications

In this section we compute the Hausdorff dimension of some non-conformal
IFS by using Corollary 2.2.8. It follows from [Zh] that the Hausdorff dimen-
sion is less than or equal to s0 where P (s0) = 0. We will show some examples
where the root is exactly the dimension.

2.3.1 Example 1

The easiest example is the non-linear modified Sierpiński triangle, see
Figure 2.1. Let

T =

[
1
3

0
0 1

3

]

and Tix = Tx+ vi for i = 1, 2, 3, where v1 =
(
0
0

)
, v2 =

( 2
3
0

)
, v3 =

( 1
3
2
3

)
. We call

the attractor of this IFS as modified Sierpiński gasket. Clearly, the Hausdorff
and box dimension is ln 3

ln 3
= 1.

Let fi : [0, 1] 7→ [0, 1] be functions for i = 1, 2, 3 in C1+ε such that

Fi(x, y) = (
x

3
+ vi, y/3 + fi(x) + wi)
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Figure 2.1: The image of the modified and the non-linear modified Sierpinski-
triangular for fi(x) = sin(πx)/6 for every i.

are contractions where (v1, w1) = (0, 0), (v2, w2) =
(
2
3
, 0
)
, (v3, w3) =

(
1
3
, 1
2

)
.

We can consider the attractor as a non-linear Sierpiński triangle.
We prove that the Hausdorff dimension of the non-linear modified Sierpiński

gasket is equal to 1, with the assumption that for i = 1, 2, 3, fi ∈ C1+ε and

(f ′
i(x))2+ | f ′

i(x) |
√

(f ′
i(x))2 +

4

9
<

16

9
.

We need this assumption to provide that the {F1, F2, F3} is contracting.

From the definition in this case it is easy to see that x11 (i, x) = x22 (i, x) = 1
3

|i|
.

We can suppose that 1 ≤ s < 2. Then by using Corollary 2.2.8

P (s) = lim
r→∞

1

r
log


max

j1,

j′1,j
′
2

∑

|i|=r

(|xj1j1 (i, x)|)2−s ×
(∣∣xj′1j′1 (i, x)

∣∣ ∣∣xj′2j′2 (i, x)
∣∣)s−2+1


 =

lim
r→∞

1

r
log


∑

|i|=r

(
1

3

|i|)2−s(
1

3

|i|1

3

|i|)s−1

 = lim

r→∞
1

r
log

(
3r 1

3

sr
)

= log 3 − s log 3.

It is easy to see that P (s) = 0 if and only if s = 1, which is the upper bound
of the Hausdorff dimension of the modified non-linear attractor, this follows
from [Zh]. To get a lower bound it is enough to project it onto the x axis
and we get the [0, 1] interval.
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2.3.2 Example 2

The next example is a non-linear perturbation of a self-affine IFS, where
the attractors of the original and the perturbed IFS are both graphs of real
functions mapping [0, 1] into itself, see Figure 2.2. Let c1, c2 ∈ (0, 1). Con-
sider the following self-affine IFS

g0(x) =

[
c1 0
0 c2

]
x, g1(x) =

[
1 − c1 0

0 1 − c2

]
x +

[
c1
c2

]
.

It is easy to see that the attractor of this IFS has Hausdorff dimension 1
since it is a graph of a strictly monotone function. We perturb this IFS as
follows, let {g̃0, g̃1} be the following

g̃0(x, y) =

[
c1x

c2y + f0(x)

]
, g̃1(x, y) =

[
(1 − c1)x + c1

(1 − c2)y + c2 + f1(x)

]
.

where f0, f1 ∈ C1+ε and fi are periodic with period 1. Moreover we suppose
that g̃0, g̃1 are contractions, namely the following inequalities hold

c21 + (f ′
0(x))2 + c22 +

√
(c21 + (f ′

0(x))2 + c22)
2 − 4c21c

2
2 < 2

(1 − c1)
2 + (f ′

1(x))2 + (1 − c2)
2

+
√

((1 − c1)2 + (f ′
1(x))2 + (1 − c2)2)2 − 4(1 − c1)2(1 − c2)2 < 2.

In this case the Hausdorff dimension of the modified attractor is greater
than or equal to 1 since the projection to the x axis is the [0, 1] interval.
To get an upper bound we have to use the sub-additive pressure and Corol-
lary 2.2.8. For every i ∈ {0, 1}∗ we have x11 (i, x) = c♯0i1 (1 − c1)

♯1i and
x22 (i, x) = c♯0i2 (1 − c2)

♯1i where ♯ji is the number of js in i. Then

max
j

∑

|i|=r

xjj (i, x)2−s (x11 (i, x) x22 (i, x))s−2+1 =

max
j

∑

|i|=r

c
(2−s)♯0i
j (1 − cj)

(2−s)♯1ic
(s−1)♯0i
1 (1 − c1)

(s−1)♯1ic
(s−1)♯0i
2 (1 − c2)

(s−1)♯1i =

max
{

(c1c
s−1
2 + (1 − c1)(1 − c2)

s−1)r, (c2c
s−1
1 + (1 − c2)(1 − c1)

s−1)r
}
.

Therefore by formula (2.2.17) we have P (1) = 0, and by [Zh] 1 is an upper
bound for Hausdorff dimension, so the Hausdorff dimension is exactly 1.
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Figure 2.2: The images of the attractors in case c1 = 1
2
, c2 = 1

4
,

f0(x) = (1 − c2) sin(πx), f1(x) = −c2 sin(πx)
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Chapter 3

Box Dimension of the

generalized 4-corner set

3.1 Definitions and Statements

In this chapter we consider the generalized 4-corner set Λ(α, β) which is
the attractor of the self-affine iterated function system (IFS) of Figure 4 on
page 6. Precisely, let Ψ = {f0(x), f1(x), f2(x), f3(x)} be an iterated function
system on the real plane and Λ(α, β) its attractor, where

f0(x) =

(
α0 0
0 β0

)
x,

f1(x) =

(
α1 0
0 β1

)
x +

(
0

1 − β1

)
,

f2(x) =

(
α2 0
0 β2

)
x +

(
1 − α2

0

)
,

f3(x) =

(
α3 0
0 β3

)
x +

(
1 − α3

1 − β3

)
.

(3.1.1)

Before we compute the box dimension of the generalized 4-corner set, we
state a general theorem on the box dimension of diagonally self-affine sets.

Let
fi(x, y) = (αix+ ti, βiy + ui) (3.1.2)

for i = 0, . . . , m such that

0 < αi, βi < 1

fi([0, 1]2) ⊆ [0, 1]2 for i = 0, . . . , m

fi((0, 1)2)
⋂

fj((0, 1)2) = ∅ for i 6= j.

(3.1.3)
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Denote the attractor of Ψ = {fi(x, y)}mi=0 by Λ and define projxΛ (and
projyΛ) as the projection of Λ onto the x-axis (and y-axis, respectively).

Theorem 3.1.1. Let fi be in form (3.1.2) for i = 0, . . . , m and let us suppose
that Ψ = {fi(x, y)}mi=0 satisfies (3.1.3). Then the attractor Λ of Ψ satisfies

dimB Λ = max {dα, dβ}

where dα and dβ are the unique solutions of

m∑

i=0

αsα
i β

dα−sα
i = 1 and

m∑

i=0

β
sβ
i α

dβ−sβ
i = 1,

where sα = dimB projxΛ and sβ = dimB projyΛ.

Using this and [SS, Theorem 2.1] we can compute the box dimension of
the attractor at least for almost all translations such that (3.1.3) holds.

Corollary 3.1.2. Let fi be in form (3.1.2) for i = 0, . . . , m and let T ⊂
R2m+2 be the set of translation vectors such that Ψ = {fi(x, y)}mi=0 satisfies
(3.1.3). Then the attractor Λ of Ψ satisfies

dimB Λ = max {dα, dβ} for almost every translations in T with respect to

2m+ 2-dimensional Lebesgue measure

where dα and dβ are the unique solutions of

m∑

i=0

α
min{1,sα}
i β

dα−min{1,sα}
i = 1 and

m∑

i=0

β
min{1,sβ}
i α

dβ−min{1,sβ}
i = 1,

and sα, sβ are the unique solutions of

m∑

i=0

αsα
i = 1 and

m∑

i=0

β
sβ
i = 1.

Now, using the main theorem of this chapter and the earlier result of
Chapter 1 we are able to calculate the box dimension of the generalized
4-corner set for almost every parameters.

Theorem 3.1.3. Let Λ(α, β) be the attractor of the self-affine IFS of Fig-
ure 4. Then

dimB Λ(α, β) = max {dα, dβ} , for Lebesgue almost every (α, β) such that

max {αi + αi+2, βi + βi+2} < 1 and min {αi + α3−i, βi + β3−i} < 1 for i = 0, 1
(3.1.4)
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where dα and dβ are defined in two steps. First we define two numbers sα, sβ
as the unique solutions of the equations

αsα
0 + αsα

1 + αsα
2 + αsα

3 − αsα
0 α

sα
1 − αsα

2 α
sα
3 = 1

β
sβ
0 + β

sβ
1 + β

sβ
2 + β

sβ
3 − β

sβ
0 β

sβ
2 − β

sβ
1 β

sβ
3 = 1.

Then we can define dα and dβ as the unique real numbers such that

3∑

i=0

α
min{1,sα}
i β

dα−min{1,sα}
i = 1,

3∑

i=0

β
min{1,sβ}
i α

dβ−min{1,sβ}
i = 1. (3.1.5)

Proof. The proof is an easy consequence of Theorem 1.1.1 and Theorem 3.1.1.

The proof of Theorem 3.1.1 is based on [B1] which follows the method of
Feng, Wang [FW, Theorem 1] and Barański [Bara, Theorem B] with slight
modifications. The proof of Theorem 3.1.1 is decomposed into three lemmas,
Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.3.

3.2 Proof of Theorem 3.1.1

Let us introduce some notation. Let Σ = {0, . . . , m}N and
Σ∗ =

⋃∞
n=0 {0, . . . , m}n. Denote the right cut on Σ∗ by δ. More precisely,

let δ(∅) = ∅ and
δ(i0 · · · ik) = i0 · · · ik−1.

For any i ∈ Σ∗ let fi = fi0 ◦ · · · ◦ fik and αi = αi0 · · ·αik , βi = βi0 · · ·βik .
For every 0 < r < 1 let

∆r = {i ∈ Σ∗ : min {αδi, βδi} ≥ r,min {αi, βi} < r}

and
∆α

r = {i ∈ ∆r : αi ≥ βi} and ∆β
r = {i ∈ ∆r : αi < βi} .

It is easy to see that ∆r is a partition of Σ.

For every i ∈ ∆α
r we set ωα(i) =

[
αi

βi

]
and similarly, for every i ∈ ∆β

r

we set ωβ(i) =
[
βi

αi

]
. For any i ∈ ∆α

r we divide fi([0, 1]2) into ωα(i) equal

rectangles with height βi and width αi/ωα(i), denote the kth rectangle by
Rα

k (i) for k = 1, . . . , ωα(i). Similarly, for i ∈ ∆β
r we divide fi([0, 1]2) into

ωβ(i) equal rectangles with width αi and height βi/ωβ(i) and denote the kth

rectangle by Rβ
k(i) for k = 1, . . . , ωβ(i).
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Let

Cα
r = {Rα

k (i) : i ∈ ∆α
r , 1 ≤ k ≤ ωα(i), Rα

k (i) ∩ fi(Λ) 6= ∅}
Cβ

r =
{
Rβ

k (i) : i ∈ ∆β
r , 1 ≤ k ≤ ωβ(i), Rβ

k(i) ∩ fi(Λ) 6= ∅
}
,

moreover

ηαr (i) = ♯ {Rα
k (i) : 1 ≤ k ≤ ωα(i), Rα

k (i) ∩ fi(Λ) 6= ∅} for i ∈ ∆α
r and

ηαr (i) = ♯
{
Rβ

k(i) : 1 ≤ k ≤ ωβ(i), Rβ
k(i) ∩ fi(Λ) 6= ∅

}
for i ∈ ∆β

r .

Lemma 3.2.1. Let fi be as in form (3.1.2) for i = 0, . . . , m and let us sup-

pose that Ψ = {fi(x, y)}mi=0 satisfies (3.1.3). Moreover, let Ñr = ♯
(
Cα

r ∪ Cβ
r

)
.

Then the attractor Λ of Ψ satisfies

dimBΛ = lim sup
r→0+

log Ñr

− log r
and dimBΛ = lim inf

r→0+

log Ñr

− log r
.

Proof. Denote the minimal number of squares with side length r covering
the attractor Λ by Nr.

By definition Cα
r ∪ Cβ

r covers Λ and since for every c ≥ 1 real number
1
2
c ≤ [c] ≤ c we have that every rectangle in Cα

r ∪Cβ
r has side length at most

2r. Therefore
N2r ≤ Ñr.

Let αmin = mini=0,...,m αi and βmin = mini=0,...,m βi, moreover let
ρ = min {αmin, βmin}.

Then every rectangle in Cα
r ∪ Cβ

r have side length at least ρr. Therefore,
by condition (3.1.3), every square with side length ρ

2
r can intersect at most

4 rectangles in Cα
r ∪ Cβ

r , which implies that

4N ρ
2
r ≥ Ñr.

One can finish the proof using the definition of the lower and upper box
dimension.

For i ∈ ∆α
r by some simple manipulation we get that

ηαr (i) = ♯ {Rα
k (i) : 1 ≤ k ≤ ωα(i), Rα

k (i) ∩ fi(Λ) 6= ∅} =

♯

{[
k − 1

ωα(i)
,

k

ωα(i)

]
× [0, 1] : 1 ≤ k ≤ ωα(i),

[
k − 1

ωα(i)
,

k

ωα(i)

]
× [0, 1] ∩ Λ 6= ∅

}
=

♯

{[
k − 1

ωα(i)
,

k

ωα(i)

]
: 1 ≤ k ≤ ωα(i),

[
k − 1

ωα(i)
,

k

ωα(i)

]
∩ projxΛ 6= ∅

}
. (3.2.1)
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and by similar arguments for i ∈ ∆β
r

ηβr (i) = ♯

{[
k − 1

ωβ(i)
,

k

ωβ(i)

]
: 1 ≤ k ≤ ωβ(i),

[
k − 1

ωβ(i)
,

k

ωβ(i)

]
∩ projyΛ 6= ∅

}
.

(3.2.2)
Let us divide the unit interval into n ∈ N equal parts and denoteN 1

n
(projxΛ)

(and N 1
n
(projyΛ)) the number of intervals with length 1

n
intersect the set

projxΛ (and projyΛ, respectively). Since projxΛ and projyΛ are self-similar
sets, the box dimensions exist, therefore for every ε > 0 exists a c = c(ε) > 0
such that for every integer n ≥ 1

c−1nsα−ε ≤ N 1
n
(projxΛ) ≤ cnsα+ε and

c−1nsβ−ε ≤ N 1
n
(projyΛ) ≤ cnsβ+ε,

(3.2.3)

where sα = dimB projxΛ and sβ = dimB projyΛ. Using (3.2.1) and (3.2.2) we
have

Ñr =
∑

i∈∆α
r

ηαr (i) +
∑

i∈∆β
r

ηβr (i) ≤ c
∑

i∈∆α
r

ωα(i)sα+ε + c
∑

i∈∆β
r

ωβ(i)sβ+ε ≤

c
∑

i∈∆α
r

(
αi

βi

)sα+ε

+ c
∑

i∈∆β
r

(
βi
αi

)sβ+ε

(3.2.4)

and similarly

Ñr ≥ c−12−(sα−ε)
∑

i∈∆α
r

(
αi

βi

)sα−ε

+ c−12−(sβ−ε)
∑

i∈∆β
r

(
βi
αi

)sβ−ε

. (3.2.5)

Let dα(t) and dβ(t) be the unique solutions for t ≥ −min {sα, sβ} of

m∑

i=0

(
αi

βi

)sα+t

β
dα(t)
i = 1 and

m∑

i=0

(
βi
αi

)sβ+t

α
dβ(t)
i = 1.

We remark that dα(0) = dα and dβ(0) = dβ.

Lemma 3.2.2. Let fi be in form (3.1.2) for i = 0, . . . , m and let us suppose
that Ψ = {fi(x, y)}mi=0 satisfies (3.1.3), then the attractor Λ of Ψ satisfies
that dimBΛ ≤ max {dα, dβ}.
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Proof. Let ε > 0 be arbitrary small. Then by (3.2.4)

log Ñr

− log r
≤ log c

− log r
+

log

(∑
i∈∆α

r

(
αi

βi

)sα+ε

+
∑

i∈∆β
r

(
βi

αi

)sβ+ε
)

− log r
≤ log c

− log r
+

max {dα(ε), dβ(ε)}
(

1 +
log ρ

log r

)
+

log

(∑
i∈∆α

r

(
αi

βi

)sα+ε

β
dα(ε)
i +

∑
i∈∆β

r

(
βi

αi

)sβ+ε

α
dβ(ε)
i

)

− log r
.

Since ∆r is a partition,
∑

i∈∆r

(
αi

βi

)sα+ε

β
dα(ε)
i = 1 and

∑
i∈∆r

(
βi

αi

)sβ+ε

α
dβ(ε)
i = 1 which implies that

∑

i∈∆α
r

(
αi

βi

)sα+ε

β
dα(ε)
i +

∑

i∈∆β
r

(
βi
αi

)sβ+ε

α
dβ(ε)
i ≤ 2.

Therefore

log Ñr

− log r
≤ log c

− log r
+ max {dα(ε), dβ(ε)}

(
1 +

log ρ

log r

)
+

log 2

− log r
.

Taking limit superior as r tends to 0 and by Lemma 3.2.1

dimBΛ ≤ max {dα(ε), dβ(ε)}
for every ε > 0. Finally, since ε > 0 was arbitrary, we proved the lemma.

Lemma 3.2.3. Let fi be in form (3.1.2) for i = 0, . . . , m and let us suppose
that Ψ = {fi(x, y)}mi=0 satisfies (3.1.3), then

dimBΛ ≥ max {dα, dβ} .
Before we prove the lower bound of the lower box dimension, we have to

state another lemma about the dimension of the projections. To state this
lemma we need a sublemma about the partitions of Σ. First let us introduce
some notation. Let G be a partition of Σ containing only cylinder sets, and
denote ⌈G⌉ the length of the longest and denote ⌊G⌋ the length of the shortest
cylinder set of G. h

Sublemma 3.2.4. Let G be a partition of Σ = {0, . . . , m}N containing only
cylinder sets and let γi, i = 0, . . . , m be positive real numbers such that∑m

i=0 γi > 1. Then

∑

i∈G
γi ≥

(
m∑

i=0

γi

)⌊G⌋

.

63



Proof. We prove the statement of the sublemma by induction for the length
of the longest cylinder set of G.

For ⌈G⌉ = 1 the statement holds trivially. Let us suppose that the state-
ment of the sublemma is true for every partition in which the length of the
longest cylinder set is equal to n . Let G be a partition containing only
cylinder sets with ⌈G⌉ = n+ 1.

If ⌈G⌉ = ⌊G⌋ then the statement is true since

∑

i∈G
γi =

(
m∑

i=0

γi

)⌊G⌋

.

Therefore without loss of generality we may assume that ⌊G⌋ < ⌈G⌉. Let
[i0 · · · in] ∈ G be one of the longest cylinder sets of G. Since G is a partition
of Σ, [i0 · · · in−1j] ∈ G for every j = 0, . . . , m. Using this fact we can define
a partition G2 such that for every i ∈ G with length strictly less than n + 1,
i ∈ G2 and for every i ∈ G with length n+ 1, i|n ∈ G2. Then

∑

i∈G
γi ≥

∑

i∈G2

γi ≥
(

m∑

i=0

γi

)⌊G⌋

.

In the last inequality we used the inductional assumption and ⌊G⌋ = ⌊G2⌋ by
the definition of G2.

Lemma 3.2.5. Let fi be in form (3.1.2) for i = 0, . . . , m and let us suppose
that Ψ = {fi(x, y)}mi=0 satisfies (3.1.3), then

m∑

i=0

αsα
i β

sβ
i ≤ 1. (3.2.6)

Proof. We begin the proof of the lemma by dividing the [0, 1] interval on the
x and y axis into r long intervals. Let ε > 0 be arbitrary small but fixed.
Let us take the intervals which intersect projxΛ on the x axis and projyΛ on
the y axis, moreover take the left and the right neighbor interval of those
intervals. Then for every sufficiently small r the number of intervals on the x
axis (and y axis) is at most 3

(
1
r

)sα+ε
(and 3

(
1
r

)sβ+ε
). Let us take the direct

product of these intervals. It is easy to see that the cover constructed in this
way covers the approximate squares Cα

r ∪ Cβ
r and this implies that the area

of Cα
r ∪Cβ

r is less than or equal to the area of the squares constructed above.
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That is

9

(
1

r

)sα+ε(
1

r

)sβ+ε

r2 ≥ c−1
∑

i∈∆α
r

βi
αi

ωα(i)
ωα(i)sα−ε+c−1

∑

i∈∆β
r

αi

βi
ωβ(i)

ωβ(i)sβ−ε

≥ c−1
∑

i∈∆α
r

β2
i ωα(i)sα−ε + c−1

∑

i∈∆β
r

α2
iωβ(i)sβ−ε,

where c is a constant depending only on ε as in (3.2.3). By simple algebraic
manipulations and using the definitions of ωα(i), ωβ(i) and ∆α

r ,∆
β
r we have

∑

i∈∆α
r

β2
i ωα(i)sα−εrsα+sβ−2 ≥ c1r

ε
∑

i∈∆α
r

αsα
i β

sβ
i , and

∑

i∈∆β
r

α2
i ωβ(i)sβ−εrsα+sβ−2 ≥ c1r

ε
∑

i∈∆β
r

αsα
i β

sβ
i ,

where c1 depends only on ε. Then there exists a constant c̃ depending only
on ε such that for every sufficiently small r

c̃r−3ε ≥
∑

i∈∆r

αsα
i β

sβ
i .

Since ε was arbitrary we have that

0 ≤ lim inf
r→0+

log
∑

i∈∆r
αsα
i β

sβ
i

log r
. (3.2.7)

Now we argue by contradiction. Let us suppose that
∑m

i=0 α
sα
i β

sβ
i > 1.

Then by using Sublemma 3.2.4 we have

∑

i∈∆r

αsα
i β

sβ
i ≥

(
m∑

i=0

αsα
i β

sβ
i

)⌊∆r⌋

.

It is easy to see that ⌊∆r⌋ = ⌈ log r
log ρ

⌉, where ρ = mini {αi, βi}. This implies
that

lim sup
r→0+

log
∑

i∈∆r
αsα
i β

sβ
i

log r
≤ log

∑m
i=0 α

sα
i β

sβ
i

log ρ
< 0,

which contradicts (3.2.7).

Proof of Lemma 3.2.3. By Lemma 3.2.5 we divide the proof into two parts.
First let us assume that

m∑

i=0

αsα
i β

sβ
i = 1. (3.2.8)
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Let us observe that in this case dα = dβ = sα+sβ. Then by inequality (3.2.3)
we have

log Ñr

− log r
≥

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

+
∑

i∈∆β
r

(
βi

αi

)sβ−ε
)

− log r
≥

sα + sβ +

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

β
sα+sβ
i +

∑
i∈∆β

r

(
βi

αi

)sβ−ε

α
sα+sβ
i

)

− log r
≥

sα + sβ − ε
⌈∆r⌉ log maxi

{
αi

βi
, βi

αi

}

− log r
+

log
(∑

i∈∆r
αsα
i β

sβ
i

)

− log r
.

It is easy to see that ⌈∆r⌉ = log r
logmaxi{αi,βi} . Applying this fact and our as-

sumption (3.2.8) we get for every ε > 0 that

lim inf
r→0

log Ñr

− log r
≥ sα + sβ − ε

1

− log maxi {αi, βi}
,

and this completes the proof in the first case.
In the second case let us assume that

m∑

i=0

αsα
i β

sβ
i < 1. (3.2.9)

Without loss of generality we may suppose that dα ≥ dβ.
Then there exists an ε∗ > 0 by (3.2.9) such that for every 0 < ε < ε∗,

m∑

i=0

αsα−ε
i β

sβ−ε

i < 1.

This implies that
dβ(−ε), dα(−ε) ≤ sα + sβ − 2ε. (3.2.10)

Then for every i ∈ ∆β
r

αsα−ε
i β

dα(−ε)−sα+ε
i

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i

=

(
αi

βi

)sα+sβ−2ε−dα(−ε)

α
dα(−ε)−dβ(−ε)
i ≤ α

dα(−ε)−dβ(−ε)
i

(3.2.11)
and for every i ∈ ∆α

r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i

αsα−ε
i β

dα(−ε)−sα+ε
i

≤ β
dβ(−ε)−dα(−ε)
i . (3.2.12)
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Now we prove the lemma in the case when dα > dβ. Then there exists a
ε∗∗ > 0 such that for every 0 < ε < ε∗∗, dα(−ε) > dβ(−ε). Then by (3.2.11)

∑

i∈∆β
r

αsα−ε
i β

dα(−ε)−sα+ε

i ≤ 1

2

∑

i∈∆β
r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i ≤ 1

2

holds for sufficiently small r > 0. Therefore

∑

i∈∆α
r

αsα−ε
i β

dα(−ε)−sα+ε
i ≥ 1

2
. (3.2.13)

Using (3.2.5)

log Ñr

− log r
≥

log

(
c−12−(sα−ε)

∑
i∈∆α

r

(
αi

βi

)sα−ε

+ c−12−(sβ−ε)
∑

i∈∆β
r

(
βi

αi

)sβ−ε
)

− log r
≥

log(c−12−(max{sα,sβ}−ε))

− log r
+

log r−dα(−ε)
∑

i∈∆α
r

(
αi

βi

)sα−ε

β
dα(−ε)
i

− log r
,

and by (3.2.13)

log Ñr

− log r
≥ dα(−ε) +

log(c−12−(max{sα,sβ}−ε))

− log r
+

log 2

log r
.

Taking liminf as r goes to 0 implies by Lemma 3.2.1 that

dimBΛ ≥ dα(−ε).

Since ε > 0 was arbitrary small we proved the lemma in the case dα > dβ.
Now let us consider the case dα = dβ. The fact (3.2.10) and (3.2.11),

(3.2.12) imply for every sufficiently small ε > 0 that

∑

i∈∆β
r

αsα−ε
i β

dα(−ε)−sα+ε
i ≤

∑

i∈∆β
r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i or

∑

i∈∆α
r

β
sβ−ε

i α
dβ(−ε)−sβ+ε

i ≤
∑

i∈∆α
r

αsα−ε
i β

dα(−ε)−sα+ε
i .

Therefore

∑

i∈∆α
r

(
αi

βi

)sα−ε

β
dα(−ε)
i +

∑

i∈∆β
r

(
βi
αi

)sβ−ε

α
dβ(−ε)
i ≥ 1. (3.2.14)
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Using (3.2.5)

log Ñr

− log r
≥ log(c−12−(max{sα,sβ}−ε))

− log r
+ min {dα(−ε), dβ(−ε)}+

log

(∑
i∈∆α

r

(
αi

βi

)sα−ε

β
dα(−ε)
i +

∑
i∈∆β

r

(
βi

αi

)sβ−ε

α
dβ(−ε)
i

)

− log r

and by (3.2.14)

log Ñr

− log r
≥ log(c−12−(max{sα,sβ}−ε))

− log r
+ min {dα(−ε), dβ(−ε)} .

Taking liminf as r goes to 0 implies by Lemma 3.2.1 that

dimBΛ ≥ min {dα(−ε), dβ(−ε)} .

Since ε > 0 was arbitrary small and dα = dβ this completes the proof of the
lemma.

Proof of Theorem 3.1.1. The proof is the combination of Lemma 3.2.2 and
Lemma 3.2.3.
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Chapter 4

Dimension Theory of the

intersections of the Sierpiński

Gasket and lines with rational

slope

4.1 Definitions and Statements

Denote by ∆ ⊂ R2 the usual Sierpiński gasket, that is, ∆ is the unique
non-empty compact set satisfying

∆ = S0(∆) ∪ S1(∆) ∪ S2(∆),

where

S0(x, y) =

(
1

2
x,

1

2
y

)
, S1(x, y) =

(
1

2
x +

1

2
,
1

2
y

)
, S2(x, y) =

(
1

2
x+

1

4
,

1

2
y +

√
3

4

)
.

(4.1.1)
It is well known that dimH ∆ = dimB ∆ = log 3

log 2
= s.

We denote by projθ the projection onto the line through the origin making
angle θ with the x-axis. For a ∈ projθ(∆) we let

Lθ,a = {(x, y) : projθ(x, y) = a} = {(x, a+ x tan θ) : x ∈ R}.

The main subject of this chapter is to analyze the dimension theory of the
slices Eθ,a = Lθ,a ∩ ∆. Since ∆ is rotation and reflection invariant, without
loss of generality we may assume that θ ∈ [0, π

3
).
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Denote by ν the natural self-similar measure of ∆. That is, ν =
Hs|∆
Hs(∆)

,
where Hs denotes the s-dimensional Hausdorff measure. In this case, ν sat-
isfies that

ν =
2∑

i=0

1

3
ν ◦ S−1

i .

Denote by νθ the projection of ν by angle θ. That is, νθ = ν ◦ proj−1
θ .

Similarly, let ∆θ be the projection of ∆.
For typical line segments, we have a special case of a theorem of Marstrand

(see [Mar1] or [Mat, Theorem 10.11]).

Proposition 4.1.1 (Marstrand). For Lebesgue almost every θ ∈ [0, π
3
) and

νθ-almost all a ∈ ∆θ

dimB Eθ,a = dimH Eθ,a = s− 1.

Let us define the (upper and lower) local dimension of a measure η at the
point x by

dη(x) = lim inf
r→0

log η(Br(x))

log r
, dη(x) = lim sup

r→0

log η(Br(x))

log r
.

In the first result of this chapter, Proposition 4.1.2, we will show that
a dimension conservation principle holds, connecting the local dimension of
the projected natural measure and the box dimension of the slices. Manning
and Simon proved such dimension conservation phenomena for the Sierpiński
carpet, (see [MS1, Proposition 4]).

Proposition 4.1.2. For every θ ∈ (0, π
3
) and a ∈ ∆θ

dνθ(a) + dimBEθ,a = s, (4.1.2)

dνθ(a) + dimBEθ,a = s. (4.1.3)

Feng and Hu proved in [FH, Theorem 2.12] that every self-similar measure
is exact dimensional. That is, the lower and upper local-dimension coincide
and this common value is almost everywhere constant. Moreover, Young
proved in [You] that this constant is the Hausdorff dimension of the measure.
In other words, if η is self-similar then

for η-almost all x, dη(x) = dη(x) = dη(x) = dimH η = inf {dimH A : η(A) = 1} .

Using the above results we easily deduce.
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Corollary 4.1.3. For every θ ∈ (0, π
3
) and νθ-almost every a ∈ ∆θ we have

dimB Eθ,a = s− dimH νθ ≥ s− 1.

Furthermore, in Theorem 4.1.4 we prove that whenever tan θ =
√
3p

2q+p
for

positive integers p, q, the direction θ is exceptional in Marstrand’s Theorem.
More precisely, the dimension of Lebesgue almost all slices is a constant
strictly smaller than s−1 but the dimension for almost all slices with respect
to the projected measure is another constant strictly greater than s− 1.

Theorem 4.1.4. Let p, q ∈ N and let us suppose that tan θ =
√
3p

2q+p
and

θ ∈ (0, π
3
). Then there exist constants α(θ), β(θ) depending only on θ such

that

1. for Lebesgue almost all a ∈ ∆θ

α(θ) := dimB Eθ,a = dimH Eθ,a < s− 1,

2. for νθ-almost all a ∈ ∆θ

β(θ) := dimB Eθ,a = dimH Eθ,a > s− 1.

A simple calculation reveals that the tangent of the set of angles in this
theorem is equal to Q′ =

{
0 <

√
3m

n
<
√

3 : if m is odd then n is odd
}

.
In [Fur], Furstenberg introduced and proved a dimension conservation for-

mula [Fur, Definition 1.1] for homogeneous fractals (for example self-similar
sets with IFS containing only homothetic similarities). As a consequence of
Theorem 4.1.4(2) and Corollary 4.1.3 we state the special case of Furstenberg
dimension conservation formula for the Sierpiński gasket and rational slopes.
By [Fur, Theorem 6.2], the formula is valid for arbitrary angles.

Furstenberg in [Fur, Theorem 6.2] stated the result as an inequality but
combining the result as stated with the Marstrand Slicing Theorem (see
[Mar2] or [Fa3, Theorem 5.8]) we see that

Lemma 4.1.5 (Marstrand Slicing Theorem). Let F be any subset of R2, and
let E be a subset of the y-axis. If dimH(F ∩ Lθ,a) ≥ t for all a ∈ E, then
dimH F ≥ t + dimH E.

Corollary 4.1.6 (Furstenberg). Let us fix p, q ∈ N and let us suppose that

tan θ =
√
3p

2q+p
and θ ∈ (0, π

3
). Then the projθ satisfies the dimension conser-

vation formula [Fur, Definition 1.1] by β(θ). Precisely,

β(θ) + dimH {a ∈ ∆θ : dimH Eθ,a ≥ β(θ)} = s. (4.1.4)
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Proof.

dimH {a ∈ ∆θ : dimH Eθ,a ≥ β(θ)}
≥ dimH {a ∈ ∆θ : dimB Eθ,a = dimH Eθ,a = β(θ)}

≥ dimH νθ = s− β(θ).

The other direction follows from Lemma 4.1.5.

One can prove by similar argument that

β(θ) + dimH {a ∈ ∆θ : dimH Eθ,a = β(θ)} = s.

The other main goal of the chapter is to analyze the behavior of the func-

tion Γ : δ 7→ dimH {a ∈ ∆θ : dimH Eθ,a ≥ δ} in the case when tan θ =
√
3p

2q+p
,

where p, q ∈ N and (p, q) = 1. For the analysis we use two matrices generated
naturally by the projection and the IFS {S0, S1, S2}. For the simplicity, we
illustrate these matrices for the right-angle gasket.

More precisely, for technical reasons, we elect to prove our statements for
the so-called right-angle Sierpiński gasket Λ which is the attractor of iterated
function system

Φ =

{
F0(x, y) =

(x
2
,
y

2

)
, F1(x, y) =

(
x

2
+

1

2
,
y

2

)
, F2(x, y) =

(
x

2
,
y

2
+

1

2

)}
,

(4.1.5)
and intersections with rational slope lines. There is a linear transformation T

T =

(
1 −

√
3
3

0 2
√
3

3

)
(4.1.6)

which maps the Sierpiński gasket into the right-angle Sierpińsi gasket. Since
an invertible linear transformation does not change the dimension of any set
we state our results for the usual Sierpiński gasket and for appropriate slopes.
For the transformation see Figure 4.1.

Denote the angle θ projection of Λ to the y-axis by Λθ. Then
Λθ = [− tan θ, 1]. Moreover, let us consider the projected IFS of Φ. Namely,
let

φ =

{
f0(t) =

t

2
, f1(t) =

t

2
+

1

2
, f2(t) =

t

2
− p

2q

}
.

By straightforward calculations and [NW1, Theorem 2.7.] we see that φ
satisfies the finite type condition and therefore, the weak separation property.

Let us divide Λθ into p+ q equal intervals such that Ik =
[
1 − k

q
, 1 − k−1

q

]

for k = 1, . . . , p + q. Moreover, let us divide Ik for every k into two equal
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T

Θ
Θ¢

tanHΘL � 3 p

p + 2 q
tanHΘ¢L � p

q

Figure 4.1: The transformation between the usual and right-angle Sierpiński
gasket.

parts. Namely, let I0k =
[
1 − k

q
, 1 − 2k−1

2q

]
and I1k =

[
1 − 2k−1

2q
, 1 − k−1

q

]
. Let

us define the (p+ q) × (p+ q) matrices A0, A1 in the following way:

(An)i,j = ♯ {k ∈ {0, 1, 2} : fk(Ij) = Ini } . (4.1.7)

For example, see the case p

q
= 2

3
of the construction in Figure 4.2 and the

matrices are

A0 =




1 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 0 1 0
0 0 0 1 0




and A1 =




0 1 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 1 0 1
0 0 0 0 1



.

We note that by some simple calculations the matrices A0, A1 can be
written in the form

(An)i,j = 1 if and only if 2i+ 1 − n ≡ j mod p+ q or

2q + p ≥ 2i+ n− 1 ≥ q + 1 and 2i+ 1 − n− q ≡ j mod p+ q (4.1.8)

for n = 0, 1 and 1 ≤ i, j ≤ p + q. Using these matrices we are able to
explicitly express the quantities α(θ), β(θ).
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Figure 4.2: Graph of the projection and construction of matrices A0, A1 in
the case p

q
= 2

3
.

Proposition 4.1.7. Let p, q ∈ N and let us suppose that tan θ =
√
3p

2q+p
and

θ ∈ (0, π
3
). Moreover, let α(θ) and β(θ) be as in Theorem 4.1.4. Then

α(θ) =
1

log 2
lim
n→∞

1

n

1∑

ξ1,...,ξn=0

1

2n
log eAξ1 · · ·Aξne,

β(θ) =
1

log 2
lim
n→∞

1

n

1∑

ξ1,...,ξn=0

1

3n
eAξ1 · · ·Aξnp log

(
eAξ1 · · ·Aξnp

)
,

where e = (1, · · · , 1) and p is the unique probability vector such that
(A0 + A1) p = 3 p.

The proof of Proposition 4.1.7 will follow from the proof of Theorem
4.1.4. In order to obtain further information on the nature of the func-
tion Γ : δ 7→ dimH {a ∈ ∆θ : dimH Eθ,a ≥ δ} we will employ the theory of
multifractal analysis for products of non-negative matrices [Fe1, Fe2, FL2].
Let P (t) denote the pressure function which is defined as

P (t) = lim
n→∞

1

n
log

1∑

ξ1,...,ξn=0

(eAξ1 · · ·Aξne)
t (4.1.9)
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and let us define

bmin = lim
t→−∞

P (t)

t
, bmax = lim

t→∞
P (t)

t
.

Proposition 4.1.8. Let p, q ∈ N and let us suppose that tan θ =
√
3p

2q+p
and

θ ∈ (0, π
3
). Then

1. dimH {a ∈ ∆θ : dimB Eθ,a = α} = inft

{
−αt + P (t)

log 2

}
for bmin ≤ α ≤ bmax.

2. dimH {a ∈ ∆θ : dνθ(a) = α} = inft

{
−(s− α)t+ P (t)

log 2

}
for

s− bmax ≤ α ≤ s− bmin.

Both of the functions are concave and continuous.

Proof. Proposition 4.1.8(2) follows immediately from [FL1, Theorem 1.1],
[FL1, Theorem 1.2]. Proposition 4.1.8(1) follows from combining the dimen-
sion conservation principle Proposition 4.1.2 with Proposition 4.1.8(2).

We note that Proposition 4.1.8(1) follows also from the results of [Fe2]
and we will present a short alternative proof later by using it.

Theorem 4.1.9. Let p, q ∈ N and let us suppose that tan θ =
√
3p

2q+p
and

θ ∈ (0, π
3
). Then

1. Γ(δ) = dimH {a ∈ ∆θ : dimH Eθ,a ≥ δ} = inft>0

{
−δt + P (t)

log 2

}
if

bmax ≥ δ > α(θ) and Γ(δ) = 1 if δ ≤ α(θ). The function Γ is
decreasing and continuous.

2. χ(δ) = dimH {a ∈ ∆θ : dimH Eθ,a = δ} = inft>0

{
−δt + P (t)

log 2

}
for

every bmax ≥ δ ≥ α(θ). The function χ is decreasing and continuous.

For an example of the function δ 7→ dimH {a ∈ ∆θ : dimH Eθ,a = δ} with

tan θ =
√
3
3

in the usual Sierpiński gasket case, see Figure 4.3.
The chapter is based on [BFS] which is a joint work with Andrew Ferguson

and Károly Simon.
The organization of the chapter is the following: We prove Proposition

4.1.2 in Section 4.2, Theorem 4.1.4 in Section 4.3 and Theorem 4.1.9 in
Section 4.4.
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Figure 4.3: The graph of the function δ 7→ dimH {a ∈ ∆θ : dimH Eθ,a = δ} of
the case p

q
= 1.

4.2 Proof of Proposition 4.1.2

In this section we modify the method of [MS1, Proposition 4].
First, let us introduce some general notation. Let S0, S1, S2 be as in

(4.1.1), moreover let Σ = {0, 1, 2}N and Σ∗ =
⋃∞

n=0 {0, 1, 2}n. Write σ : Σ 7→ Σ
for the left shift operator. Moreover, let Π : Σ 7→ ∆ be the natural projection.
That is, for every i = (i1i2 · · · ) ∈ Σ

Π(i) = lim
n→∞

Si1 ◦ Si2 ◦ · · · ◦ Sin(0).

Let µ be the equally distributed Bernoulli measure on Σ. That is, for every
i ∈ Σ∗ the measure of [i] = {i : i = iω} is µ([i]) = 3−|i|, where |i| denotes the
length of i. Then ν = Π∗µ = µ ◦ Π−1.

For simplicity we denote by ∆i1···in = Si1 ◦· · ·◦Sin(∆). Let us call the n’th
level “good sets” of a ∈ ∆θ the set of (i1 · · · in) such that ∆i1···in intersects
the set Eθ,a. More precisely,

Gn(θ, a) = {(i1 · · · in) : ∆i1···in ∩ Eθ,a 6= ∅} . (4.2.1)
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Lemma 4.2.1. For every θ ∈ [0, π
3
) and a ∈ ∆θ

dimBEθ,a = lim inf
n→∞

log ♯Gn(θ, a)

n log 2
and dimBEθ,a = lim sup

n→∞

log ♯Gn(θ, a)

n log 2
.

Proof. Let us denote the minimal number of intervals with length r covering
the set Eθ,a by Nr(θ, a). It is easy to see that

N2−n(θ, a) ≤ ♯Gn(θ, a). (4.2.2)

On the other hand, for a minimal cover of Eθ,a with intervals of side length
2−n, for every interval there exists an i in Gn(θ, a) and for every “good” ∆i

there exists an interval in the minimal cover such that ∆i intersects the
interval. Moreover, for every interval with side length 2−n there are at most⌈
4
√
3(2+π)
3

⌉
cylinders in Gn(θ, a) which intersects it. Therefore

♯Gn(θ, a) ≤
⌈

4
√

3(2 + π)

3

⌉
N2−n(θ, a). (4.2.3)

The equations (4.2.2) and (4.2.3) imply the statement of the lemma.

Proof of Proposition 4.1.2. Let θ ∈ (0, π
3
) and a ∈ ∆θ. Consider the C(θ)2−n

neighbourhood of a, where C(θ) = 1
2

min
{

tan θ, cos(θ + π
6
)
}

. Then

νθ(BC(θ)2−n(a)) = ν(Bcos θC(θ)2−n(Lθ,a)) ≥ ν


 ⋃

i∈Gn−c(θ)

∆i


 = 3−n+c(θ)♯Gn−c(θ)(θ, a),

where c(θ) = log(cos θC(θ))
log 2

. Taking logarithm and dividing by −n log 2 we have

log νθ(BC(θ)2−n(a))

−n log 2
≤ (n− c(θ)) log 3

n log 2
+

log ♯Gn−c(θ)(θ, a)

−n log 2
.

Taking limit inferior and limit superior and using Lemma 4.2.1 we get

dνθ(a) + dimBEθ,a ≤ s,

dνθ(a) + dimBEθ,a ≤ s.
(4.2.4)

For the reverse inequality we have to introduce the so called “bad” sets
which do not intersect Eθ,a but intersect its neighbourhood. That is,

Rn(θ, a) =
{

(i1 · · · in) : ∆i1···in ∩ Eθ,a = ∅ and ∆i1···in ∩Bcos θC(θ)2−n(Lθ,a) 6= ∅
}
.
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Figure 4.4: A “bad” set of the Sierpiński gasket

Then

νθ(BC(θ)2−n(a)) = ν(Bcos θC(θ)2−n(Lθ,a)) ≤ 3−n (♯Rn(θ, a) + ♯Gn(θ, a)) .

It is enough to prove that ♯Rn(θ, a) is less than or equal to ♯Gn(θ, a) up to a
multiplicative constant.

Let ∆i be an arbitrary n’th level cylinder set of ∆. It is easy to see that if
∆i is not one of the corners of ∆ then every corner of ∆i connects to another
n’th level cylinder set, see Figure 4.4. We note that the constant C(θ) is
chosen in the way that if the cos θC(θ)2−n neighbourhood of the line Lθ,a

intersects a cylinder but not the line itself intersects it (that is it is a “bad”
set) then the line intersects the closest neighbour of the cylinder. Therefore,
for every i ∈ Rn(θ, a) there exists at least one j ∈ Gn(θ, a) such that ∆i

and ∆j are connected to each other (by the choice of C(θ)). Moreover, a
cylinder set can be connected to at most 6 other cylinder sets. Therefore,
Rn(θ, a) ≤ 6Gn(θ, a).

Applying this, we have

νθ(BC(θ)2−n(a)) ≤ 3−n7♯Gn(θ, a).

Taking logarithms, dividing by −n log 2 and taking limit inferior and limit
superior we get by Lemma 4.2.1

dνθ(a) + dimBEθ,a ≥ s,

dνθ(a) + dimBEθ,a ≥ s.
(4.2.5)

78



The inequalities (4.2.4) and (4.2.5) imply the statements.

We note that Proposition 4.1.2 holds in the case when ∆ is transformed
in an invertible linear way, as well.

4.3 Proof of Theorem 4.1.4

Throughout the section we use the method of [MS1, Theorem 9] with a
slight modification. We follow the way of the proof but the construction of
the matrices are strictly different.

In the rest of the chapter we will focus on the right-angle Sierpiński gasket
Λ and for rational slopes. We prove the statements in that case. For precise
details of the right-angle Sierpiński gasket and the transformation between
the right-angle and the usual one, see Section 4.1.

For the rest of the chapter we assume that θ ∈ (0, π
2
) such that tan θ = p

q

where p, q ∈ N and the greatest common divisor is 1. (This is equivalent
with the choice θ ∈ (0, π

3
) for ∆.)

Lemma 4.3.1. Let θ and a ∈ Λθ be such that tan θ = p

q
and

a = 1 − k − 1

q
− 1

q

∞∑

i=1

ξi
2i

then

dimBEθ,a = lim inf
n→∞

log ekAξ1 · · ·Aξne

n log 2
and dimBEθ,a = lim sup

n→∞

log ekAξ1 · · ·Aξne

n log 2
,

where ek is the k’th element of the natural basis of Rp+q and e =
∑p+q

k=1 ek.

Proof. By the definition of the matrices A0, A1 it is easy to see that for every
n ≥ 1 and ξ1, . . . , ξn ∈ {0, 1} we have

(Aξ1 · · ·Aξn)
i,j

= ♯
{
i ∈ {0, 1}n : fi(Ij) = Iξ1,...,ξni

}
,

where Iξ1,...,ξni denotes the interval [1− i−1
q
− 1

q

∑n
l=1

ξl
2l
− 1

q2n
, 1− i−1

q
− 1

q

∑n
l=1

ξl
2l

].
Therefore

ekAξ1 · · ·Aξne = ♯
{
i ∈ {0, 1}n : there exists a 1 ≤ j ≤ p + q such that fi(Ij) = Iξ1,...,ξnk

}
.
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For every Iξ1,...,ξnk and every (i1, . . . , in) if there exists a 1 ≤ j ≤ p + q such

that fi1,...,in(Ij) = Iξ1,...,ξnk then Iξ1,...,ξnk ⊆ projθΛi1,...,in . This implies that for

every a ∈ Iξ1,...,ξnk

ekAξ1 · · ·Aξne ≤ ♯Gn(θ, a).

On the other hand for every a ∈ projθΛ if a ∈ int(Iξ1,...,ξnk ) then for
every (i1, . . . , in) ∈ Gn(θ, a) there exists a 1 ≤ j ≤ p + q such that
fi1,...,in(Ij) = Iξ1,...,ξnk . If a ∈ ∂(Iξ1,...,ξnk ) then for every (i1, . . . , in) ∈ Gn(θ, a)
there exists a (i′1, . . . , i

′
n) ∈ Gn(θ, a) and a 1 ≤ j ≤ p + q such that

fi′1,...,i′n(Ij) = Iξ1,...,ξnk as well as Λi1,...,in and Λi′1,...,i
′
n

are connected or equal.
Since for every cylinder set can be connected to at most three other cylinder
sets, for any a ∈ Iξ1,...,ξnk

♯Gn(θ, a) ≤ 3ekAξ1 · · ·Aξne.

The proof is complete by Lemma 4.2.1.

One of the main properties of the matrices A0, A1 is stated in the following
proposition.

Proposition 4.3.2. Let p, q be integers such that the greatest common divisor
is 1, and let A0 and A1 be defined as in (4.1.7) (or equivalently as in (4.1.8)).
Then there exists an n0 ≥ 1 and a finite sequence (ξ1, . . . , ξn0) ∈ {0, 1}n0 such
that every element of Aξ1 · · ·Aξn0

is strictly positive.
Moreover, for every n ≥ 1

♯
{

(ξ1, . . . , ξn) ∈ {0, 1}n : ∃1 ≤ i, j ≤ p+ q such that (Aξ1,...,ξn)
i,j

= 0
}
≤

(p+q−1)(p+q)−1∑

l=0

(
n

l

)
2l. (4.3.1)

We note that
(
n

m

)
= 0 whenever n < m.

The most of the proof of Proposition 4.3.2 is divided into the following
three lemmas.

Lemma 4.3.3. Let p, q be integers such that the greatest common divisor is
1, and let A0 and A1 be defined as in (4.1.7). Then there are at least one
and at most two 1 in each column and in each row of An. Moreover, the sum
of each column of A0 + A1 is three.

The proof is straightforward from the definition.
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Lemma 4.3.4. Let p, q be integers such that the greatest common divisor is
1, and let A0 and A1 be defined as in (4.1.7) and in (4.1.8). Then for every
1 ≤ m ≤ p + q distinct columns 1 ≤ j1, . . . , jm ≤ p + q and every n = 0, 1
there exist m distinct rows 1 ≤ i1, . . . , im ≤ p+ q such that (An)ik,jk = 1 for
every k = 1, . . . , m. Note that i1, . . . , im may depend on n.

Proof. If p + q is odd then for any jk there exists a unique ik such that
2ik − 1 + n ≡ jk mod p + q and, by (4.1.8), (An)ik,jk = 1. Moreover, if
jk 6= jk′ then ik 6= ik′. This implies the statement of the lemma.

Now, let us assume that p+ q is even. Further, assume that there are two
non-zero elements j1, j2 in the row i1. Then

2i1 − 1 + n ≡ j1 mod p + q and 2i1 − 1 + n− q ≡ j2 mod p+ q.

It is easy to see that every element of the column j2 is 0 except (i1, j2).
Moreover, there exists 1 ≤ i′1 ≤ p+ q such that 2i′1 − 1 + n ≡ j1 mod p+ q.
In this case, every element of the row i′1 is 0 except (i′1, j1). Otherwise,
if there would be j3 6= j1 such that 2i′1 − 1 + n − q ≡ j3 mod p + q then
j3 ≡ j1−q ≡ j2 mod p+q, but every element of the column j2 is zero except
(i1, j2), which is a contradiction. Therefore, for An, n = 0, 1 and for every m
distinct columns j1, . . . , jm there are at least m distinct rows i1, . . . , im such
that (An)ik,jk = 1.

Lemma 4.3.5. Let p, q be integers such that the greatest common divisor
is 1, and let A0 and A1 be defined as in (4.1.7) and in (4.1.8). Then for
every 1 ≤ m < p+ q distinct columns 1 ≤ j1, . . . , jm ≤ p+ q there exists an
n ∈ {0, 1} and at least m+ 1 distinct rows 1 ≤ i1, . . . , im+1 ≤ p+ q such that
(An)ik,jk = 1 for k = 1, . . . , m and there exists a j ∈ {j1, . . . , jm} such that
(An)im+1,j

= 1.

Proof. We argue by contradiction. Let us fix the m distinct columns
1 ≤ j1, . . . , jm ≤ p + q. By Lemma 4.3.3 in every column there are at
least one and at most two “1” elements and by Lemma 4.3.4 there are at
least m different rows 1 ≤ i1, . . . , im ≤ p + q in A0 and at least m different
rows 1 ≤ s1, . . . , sm ≤ p + q in A1 such that (A0)ik,jk = 1 and (A1)sk,jk = 1.
To get a contradiction we assume that

∀i 6∈ {i1, . . . , im} , ∀s 6∈ {s1, . . . , sm} , ∀k : (A0)i,jk = 0, (A1)s,jk = 0. (A1)

By Lemma 4.3.3, in the matrix A0 +A1 in every column there are exactly 3
non-zero elements. Therefore we can assume without loss of generality that
there is an 0 ≤ l ≤ m such that in A0 the columns j1, . . . , jl and in A1

the columns jl+1, . . . , jm contain two non-zero elements. Namely, there are l
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distinct rows 1 ≤ i′1, . . . , i
′
l ≤ and m− l distinct rows 1 ≤ s′l+1, . . . , s

′
m ≤ p+q

such that (A0)i′
k
,jk

= 1 for k = 1, . . . , l and (A1)s′
k
,jk

= 1 for k = l+ 1, . . . , m.

Moreover, by our assumption (A1) and Lemma 4.3.4, for every i′k there exists
a itk such that l+ 1 ≤ tk ≤ m and i′k = itk , similarly for every s′k there exists
a stk such that 1 ≤ tk ≤ l and s′k = stk .

Let us define now a directed graph G(V,E) such that the vertices are
V = {j1, . . . , jm} and there is an edge jk → jn if and only if s′k = sn or
i′k = in. It is easy to see that

jk → jn ⇐⇒
{
jn − q ≡ jk mod p+ q if p+ q is odd
jk − q ≡ jn mod p+ q if p + q is even.

(4.3.2)

Since from every vertex of G there is an edge pointing out, there is a circle
jn1 → jn2 → · · · → jnt → jn1, where 1 ≤ t ≤ m. By (4.3.2) we have

jn1 ≡ jn2 − q ≡ · · · ≡ jnt − (t− 1)q ≡ jn1 − tq mod p+ q if p+ q is odd or

jn1 ≡ jnt − q ≡ · · · ≡ jn2 − (t− 1)q ≡ jn1 − tq mod p+ q if p+ q is even.

Then tq ≡ 0 mod p+q. Since (q, p+q) = 1, then t ≡ 0 mod p+q. Therefore
p+ q ≤ t ≤ m < p+ q which is a contradiction.

Proof of Proposition 4.3.2. First, we prove the existence of such a sequence.
It is easy to see by Lemma 4.3.4 that for every matrix B with non-negative
elements and n = 0, 1, if the l’th column of B contains m non-zero elements
then the l’th column of the matrix AnB contains at least m non-zero ele-
ments. Moreover, by Lemma 4.3.5, for every column l of B there exists an
n ∈ {0, 1} such that if it contains m non-zero elements then the l’th column
of AnB contains at least m + 1 non-zero elements.

Therefore, there exists an at most n = (p+q)(p+q−1)+1 length sequence
{ξk}nk=1of 0, 1 such that every element of the matrix Aξn · · ·Aξ1 is non-zero.

For the second statement, let us observe that for any non-negative matrix
B and any column 1 ≤ j ≤ p + q there is at most one matrix An such that
the number of non-zero elements of the l’th column of AnB is equal to the
number of non-zero elements in the l’th column of B. Therefore, if for a
finite word (ξ1, . . . , ξn) and the matrix Aξn · · · , Aξ1 there is at least one zero
element then the word (ξ1, . . . , ξn) may contain at most (p+ q−1)(p+ q)−1
arbitrary elements, but in the other places there have to be the matrix, which
does not grow the number of non-zero elements in the columns. This implies
the inequality.

It is natural to introduce the dyadic symbolic space. Let Ξ = {0, 1}N and
Ξ∗ be the set of dyadic finite length words. Define the natural projection
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π : Ξ 7→ [0, 1] by

π(i) =
∞∑

k=1

ik
2k
.

Moreover, let σ be the left shift operator on Ξ.

For any θ with tan θ ∈ Q and a ∈ Λθ let us define Γa =
{
a+ i

q
∈ Λθ : i ∈ Z

}

and Fθ,a =
⋃

b∈Γa
Eθ,b.

Proposition 4.3.6. Let p, q ∈ N be such that (p, q) = 1 and let θ ∈ (0, π
2
) be

such that tan θ = p

q
. Then for Lebesgue-almost every a ∈ Λθ

dimB Eθ,a = α(θ),

where

α(θ) =
1

log 2
lim
n→∞

1

n
log eAξ1 · · ·Aξne, for P-a.a. (ξ1, ξ2, . . . ) ∈ Ξ, (4.3.3)

where P is the equidistributed Bernoulli measure on Ξ. Similarly,

α(θ) =
1

log 2
lim
n→∞

1

n

∑

ξ1,...,ξn

1

2n
log eAξ1 · · ·Aξne. (4.3.4)

Proof. Since A0, A1 are non-negative matrices, we have for any (ξ1, . . . , ξn) ∈ Ξ∗

and 1 ≤ k ≤ n

eAξ1 · · ·Aξne ≤ eAξ1 · · ·Aξke eAξk+1
· · ·Aξne.

Let P =
{

1
2
, 1
2

}N
be the equidistributed Bernoulli measure on Ξ. Then by

the sub-additive ergodic theorem (see [Wa, p. 231]) we have for P-almost all
ξ ∈ Ξ the limit (4.3.3) exists and constant. The equation (4.3.4) follows also
from the sub-additive ergodic theorem.

It is easy to see that the measure
∑p+q

k=1
1

p+q
P ◦ π−1 ◦ hk|Ik is equivalent

with the Lebesgue measure on Λθ, where hk(x) = −qx + q − k, so that
hk(Ik) = [0, 1]. This and Lemma 4.3.1 implies that for Lebesgue almost
every a ∈ Λθ

max
b∈Γa

dimB Eθ,b = dimB Fθ,a = α(θ). (4.3.5)

Let (ξ1, . . . , ξn0) ∈ {0, 1}n0 be as in Proposition 4.3.2. Then for every
1 ≤ k ≤ p+q and every finite length word (ζ1, . . . , ζn) ∈ {0, 1}∗ and Lebesgue-

almost every a ∈ I
ζ1,...,ζnξ1...ξn0
k we have

dimB Eθ,a = dimB Fθ,a′ = α(θ),
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where a′ = 2n+n0

(
a− 1 + k−1

q

)
+ 1

q

∑n

i=1 2n+n0−iζi+
1
q

∑n0

i=1 2n0−iξi +1− k−1
q

.

The statement of the proposition follows from the fact that the set⋃p+q
k=1

⋃∞
n=0

⋃
(ζ1,...,ζn)∈{0,1}n I

ζ1,...,ζnξ1...ξn0
k has full Lebesgue measure in Λθ.

Lemma 4.3.7. The function α(θ) < s− 1 for every θ such that tan θ ∈ Q+.

The proof of Lemma 4.3.7 coincides with the proof of [MS1, Theorem 9],
(see [MS1, Subsection 3.4, Subsection 3.5]), therefore we omit it.

Finally, we have to state a proposition about the coincidence of the Haus-
dorff and box dimension for “typical” points before we prove Theorem 4.1.4.

Proposition 4.3.8. Let p, q ∈ N be such that (p, q) = 1 and let θ ∈ (0, π
2
) be

such that tan θ = p

q
. Let η be a left shift invariant measure on Ξ such that

η




∞⋃

n=0

⋃

(ζ1,...,ζn)∈{0,1}n
[ζ1, . . . , ζnξ1 . . . ξn0]


 = 1, (4.3.6)

where (ξ1, . . . , ξn0) is as in Proposition 4.3.2. Let η =
∑p+q

k=1 ηk be an ar-
bitrary positive decomposition of η. (That is, ηk([ζ1, . . . , ζn]) > 0 for any
1 ≤ k ≤ p+ q and any cylinder set.) Then for λ-almost every a ∈ Λθ

dimH Eθ,a = dimB Eθ,a,

where

λ =

p+q∑

k=1

ηk ◦ π−1 ◦ hk
∣∣
Ik
.

The proof follows the proof of [LXZ, Theorem 1.1(3)] and [MS1, Proposi-
tion 8.]. The following lemma appears in a paper of Kenyon and Peres [KP,
Proposition 2.6], the proof is attributed to Ledrappier. We state the lemma
only for our special case.

Lemma 4.3.9 (Ledrappier). Let T2 be the endomorphism T2(x) = 2x mod 1
on the one-dimensional torus S1. Assume that F ⊂ S1×S1 = T2 is compact
and invariant under T2×T2 and ν a T2-invariant probability measure on S1.
Then for ν-a.e. x

dimH proj−1(x) = dimB proj−1(x),

where proj : F 7→ S1 is the projection to the second coordinate.
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Proof of Proposition 4.3.8. It is easy to see that

Fθ,a = Λ ∩ {(x, y) : px− qy ≡ −qa mod 1} .

Let P : (x, y) 7→ (x, (px− qy) mod 1) be a map of T2 into itself. Then

dimBP (Fθ,a) = dimBFθ,a, dimBP (Fθ,a) = dimBFθ,a and dimH P (Fθ,a) = dimH Fθ,a.

and P (Λ) ⊂ T2 is compact and T2 × T2-invariant. Moreover, let
Q(a) = − qa mod 1 be the mapping Λθ into S1. Since η is left shift
invariant then λ ◦Q−1 = η ◦ π−1 is T2 invariant. Since

proj−1(−qa mod 1) = P (Fθ,a)

by Lemma 4.3.9 we have for λ-almost all a ∈ Λθ that

dimH Fθ,a = dimB Fθ,a. (4.3.7)

Let (ξ1, . . . , ξn0) ∈ {0, 1}n0 be as in Proposition 4.3.2. Then by the as-
sumptions, for every 1 ≤ k ≤ p+q and every finite length word (ζ1, . . . , ζn) ∈ {0, 1}∗
the measure λ(I

ζ1,...,ζnξ1...ξn0

k ) > 0 and for λ-almost every a ∈ I
ζ1,...,ζnξ1...ξn0

k the
equation (4.3.7) holds. Moreover, the fact that the matrix Aξ1 · · ·Aξn0

has
strictly positive coefficients implies that

dimB Eθ,a = dimB Fθ,a′ = dimH Fθ,a′ = dimH Eθ,a,

where a′ = 2n+n0

(
a− 1 + k−1

q

)
+ 1

q

∑n
i=1 2n+n0−iζi+

1
q

∑n0

i=1 2n0−iξi +1− k−1
q

.

The proof is completed by applying the assumption (4.3.6).

Proof of Theorem 4.1.4. Theorem 4.1.4(1) is an easy consequence of Propo-
sition 4.3.6, Lemma 4.3.7 and Proposition 4.3.8.

The equalities of Theorem 4.1.4(2) follow from Corollary 4.1.3 and Propo-
sition 4.3.8. It is enough to prove that β(θ) > s − 1. To prove this fact, we
use the method of [R].

Define a probability measure η on Ξ as

η([ξ1, . . . , ξn]) :=
1

3n
eAξ1 · · ·Aξnp,

where p is the unique probability vector such that 1
3

(A0 + A1) p = p. Then
it is easy to see that η is left shift invariant. Moreover, by Perron-Frobenius
Theorem, the measure η is mixing (that is, for any cylinder sets A,B of Ξ,
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limn→∞ η(σ−nA∩B) = η(A)η(B)) and therefore, an ergodic probability mea-
sure. Decompose η =

∑p+q
k=1 ηk as

ηk([ξ1, . . . , ξn]) =
1

3n
ekAξ1 · · ·Aξnp

for every cylinder set [ξ1, . . . , ξn]. Let us recall that νθ is the projection of
the natural self-similar measure on Λ. Observe that νθ|Ik ◦hk = ηk ◦π−1 and

define ν̃θ(.) =
∑p+q

k=1 νθ|Ik ◦ hk = η ◦ π−1. Then ν̃θ is T2 invariant and mixing
probability measure satisfying the assumptions of Proposition 4.3.8.

By the Volume lemma [PU, Theorem 10.4.1] and [PU, Theorem 10.4.2]
we have

dimH ν̃θ = lim
n→∞

− 1

n log 2

1∑

ξ1,...,ξn=0

1

3n
eAξ1 · · ·Aξnp log

(
1

3n
eAξ1 · · ·Aξnp

)

(4.3.8)
On the other hand, since νθ|Ik ◦ hk ≪ ν̃θ for every 1 ≤ k ≤ p + q which
implies that dimH νθ|Ik = dimH νθ|Ik ◦ hk ≤ dimH ν̃θ. However,

dimH ν̃θ = inf
1≤k≤p+q

dimH νθ|Ik ◦ hk = inf
1≤k≤p+q

dimH νθ|Ik = dimH νθ.

By Lemma 4.3.7 there exists a δ > 0 such that for sufficiently large n
there exists a sequence (ξ1, . . . , ξn) that

eAξ1 · · ·Aξnp < 2−(n+δn).

This implies that the limit in (4.3.8) is strictly less than 1. The proof can be
finished by Corollary 4.1.3.

Proof of Proposition 4.1.7. The statement of the proposition follows from
Proposition 4.3.6 and the proof of Theorem 4.1.4(2).

4.4 Proof of Theorem 4.1.9

In this section we would like to apply the results of [Fe1], [Fe2] and [FL2].
Let

Λ̃θ =

{
a = 1 − k − 1

q
− 1

q

∞∑

i=1

ξi
2i

∈ Λθ : ∃k ≥ 1, Aξ1 · · ·Aξk > 0

}
.

By Proposition 4.3.2 we have

dimBΛθ\Λ̃θ = 0. (4.4.1)

Moreover, we can reformulate Lemma 4.3.1.
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Lemma 4.4.1. Let θ and a ∈ Λ̃θ be such that tan θ = p

q
and

a = 1 − k − 1

q
− 1

q

∞∑

i=1

ξi
2i

then

dimBEθ,a = lim inf
n→∞

log eAξ1 · · ·Aξne

n log 2
and dimBEθ,a = lim sup

n→∞

log eAξ1 · · ·Aξne

n log 2
.

Proof of Proposition 4.1.8(1). As a consequence of Lemma 4.4.1 and (4.4.1)
we have

dimH {a ∈ Λθ : dimB Eθ,a = α} =

dimH

{
1 − k − 1

q
− 1

q

∞∑

i=1

ξi
2i

∈ Λ̃θ : lim
n→∞

log eAξ1 · · ·Aξne

n
= α log 2

}
=

dimH

{
(ξ1, ξ2, . . . ) ∈ Ξ : lim

n→∞
log eAξ1 · · ·Aξne

n
= α log 2

}
.

By Proposition 4.3.2, one can finish the proof using [Fe2, Theorem 1.1].

By [Fe2, Lemma 2.2] and [FL2, Theorem 3.3] we can state a lemma for
the pressure function.

Lemma 4.4.2. Let P (t) be defined as in (4.1.9). Then P (t) is monotone
increasing, convex and continuous for t ∈ R. Moreover, for t > 0 the pressure
is differentiable.

Lemma 4.4.3. For every 0 ≤ δ ≤ α(θ),

dimH {a ∈ Λθ : dimH Eθ,a ≥ δ} = 1.

Proof. For every 0 ≤ δ ≤ α(θ) we have

dimH {a ∈ Λθ : dimH Eθ,a ≥ δ} ≥
dimH {a ∈ Λθ : dimH Eθ,a = dimB Eθ,a = α(θ)} = 1.

The last equation follows from Theorem 4.1.4(1). The upper bound is trivial.

Lemma 4.4.4. Let P (t) be defined as in (4.1.9). Then

lim
t→0+

P ′(t) = α(θ) log 2.
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Proof. First, we prove limt→0+ P
′(t) ≥ α(θ) log 2. Suppose by way of contra-

diction that that there is a t′ > 0 such that P ′(t′) = α(θ) log 2 and for every
0 < t < t′, P ′(t) < α(θ) log 2. Then

1 = dimH {a ∈ Λθ : dimB Eθ,a = α(θ)} = inf
t

{
−α(θ)t +

P (t)

log 2

}
= −α(θ)t′+

P (t′)

log 2
.

Therefore P (0) = log 2 and P (t′) = log 2α(θ)t′ + log 2 contradicting the
assumption that P ′(t) < α(θ) log 2.

We now prove the other inequality, limt→0+ P
′(t) ≤ α(θ) log 2, by contra-

diction, as well. Suppose that there is a limt→0+ P
′(t) > δ > α(θ) then by

Theorem 4.1.8(1) there is a t− ≤ 0

dimH {a ∈ Λθ : dimB Eθ,a = δ} = inf
t

{
−δt +

P (t)

log 2

}
= −δt− +

P (t−)

log 2
>

−α(θ)t−+
P (t−)

log 2
≥ inf

t

{
−α(θ)t +

P (t)

log 2

}
= dimH {a ∈ Λθ : dimB Eθ,a = α(θ)} = 1,

which is a contradiction. (The last equality follows from Theorem 4.1.4(1).)

Before we prove the case when α(θ) < δ ≤ bmax we need the so-called
Gibbs measure.

Lemma 4.4.5. For every t > 0 there is a unique ergodic, left shift invari-
ant Gibbs measure µt on Ξ such that there exists a C > 0 that for any
(ξ1, . . . , ξk) ∈ Ξ∗

C−1 ≤ µt((ξ1, . . . , ξk))

(eAξ1 · · ·Aξke)
t e−kP (t)

≤ C.

Moreover,

dimH µt =
−tP ′(t) + P (t)

log 2
(4.4.2)

and

lim
n→∞

log eAξ1 · · ·Aξne

n log 2
=
P ′(t)

log 2
for µt-a.a. (ξ1, ξ2, . . . ). (4.4.3)

The proof of the lemma follows from [FL2, Theorem 3.2] and [FL2, Proof
of Theorem 1.3].

Lemma 4.4.6. For every α(θ) < δ ≤ bmax,

dimH {a ∈ Λθ : dimH Eθ,a ≥ δ} = inf
t>0

{
−δt +

P (t)

log 2

}
.
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Proof. Let us observe by Lemma 4.4.4 that

inf
t

{
−δt +

P (t)

log 2

}
= inf

t>0

{
−δt +

P (t)

log 2

}
.

First, we will prove the upper bound with the method of [Wi, Lemma 3.18].
Let us define

An(ε) =

{
(ξ1, . . . , ξk) : k ≥ n, δ − ε ≤ log eAξ1 · · ·Aξke

k log 2

}
.

It is easy to see that the set

p+q⋃

j=1

⋃

(ξ1,...,ξk)∈An(ε)

Iξ1,...,ξkj

covers the set Gδ := {a ∈ Λθ : δ ≤ dimBEθ,a}. Let Bn(ε) be the set of disjoint
cylinders of An(ε) such that

p+q⋃

j=1

⋃

(ξ1,...,ξk)∈Bn(ε)

Iξ1,...,ξkj =

p+q⋃

j=1

⋃

(ξ1,...,ξk)∈An(ε)

Iξ1,...,ξkj .

Then for any t > 0 and ε′ > 0 we have

H−δt+
P (t)
log 2

+ε′t

2−n (Gδ) ≤
p+q∑

j=1

∑

(ξ1,...,ξk)∈Bn(ε)

∣∣∣Iξ1,...,ξkj

∣∣∣
−δt+

P (t)
log 2

+ε′t

≤

(p+ q)2(ε−ε′)nt
∑

(ξ1,...,ξk)∈Bn(ε)

(eAξ1 · · ·Aξke)
t e−kP (t).

By Lemma 4.4.5

H−δt+P (t)
log 2

+ε′

2−n (Gδ) ≤ C(p+q)2(ε−ε′)nt
∑

(ξ1,...,ξk)∈Bn(ε)

µt((ξ1, . . . , ξk)) ≤ C(p+q)2(ε−ε′)nt.

This implies that

dimH {a ∈ Λθ : δ ≤ dimH Eθ,a} ≤ dimH {a ∈ Λθ : δ ≤ dimBEθ,a} ≤ −δt+P (t)

log 2
+ε′t

for any t > 0 and ε′ > ε > 0. This proves the upper bound.
Now, we prove the lower bound. By Lemma 4.4.2, for every α(θ) < δ < bmax

there exists a t > 0 such that P ′(t) = δ log 2. By Lemma 4.4.5, let µt be the

89



Gibbs measure. The measure µt is shift invariant and ergodic. Moreover, by
the Gibbs property, µt satisfies the assumption of Proposition 4.3.8 and we
have

dimH Eθ,a = dimB Eθ,a for µt-almost all (ξ1, ξ2, . . . ),

where a = 1 − k−1
q

− 1
q

∑∞
i=1

ξi
2i

for some 1 ≤ k ≤ p+ q. Then by (4.4.2) and

(4.4.3) we have

dimH {a ∈ Λθ : dimH Eθ,a ≥ δ} ≥ dimH {a ∈ Λθ : dimH Eθ,a = dimB Eθ,a = δ} ≥

dimH µt = −tδ +
P (t)

log 2
≥ inf

t>0

{
−tδ +

P (t)

log 2

}
.

If δ = bmax then

dimH {a ∈ Λθ : dimH Eθ,a ≥ bmax} ≤ lim
δ→bmax+

dimH {a ∈ Λθ : dimH Eθ,a ≥ δ} =

lim
δ→bmax+

inf
t>0

{
−tδ +

P (t)

log 2

}
= inf

t>0

{
−tbmax +

P (t)

log 2

}
= 0.

In the last two equations we used the continuity property [Fe2, Theorem 1.1]
and the definition of bmax.

Proof of Theorem 4.1.9(1). The proof is the combination of Lemma 4.4.3
and Lemma 4.4.6.

Proof of Theorem 4.1.9(2). By the observation

dimH {a ∈ Λθ : dimBEθ,a ≥ δ} ≥ dimH {a ∈ Λθ : dimH Eθ,a = δ} ≥
dimH {a ∈ Λθ : dimB Eθ,a = dimH Eθ,a = δ}

one can finish the proof as Lemma 4.4.6.
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Chapter 5

The absolute continuity of the

invariant measure of Random

Iterated Function Systems

5.1 Definitions and Statements

In this last chapter, we study the invariant measure of random iterated
function systems. Let {f1, . . . , fl} be an iterated function system (IFS) on
the real line, where the maps are applied according to the probabilities
(p1, . . . , pl), with the choice of the map random and independent at each
step.

Suppose that for each i ∈ {1, . . . , l}, fi maps [−1, 1) into itself, such that
fi([−1, 1)) is bounded away from −1 and 1, fi ∈ C1+α([−1, 1)) and

0 < λi,min ≤ |f ′
i(x)| ≤ λi,max < 1 (5.1.1)

for every x ∈ [−1, 1). Moreover let us assume that for every i the fixed point
of fi is ai ∈ (−1, 1), and

i 6= j ⇒ ai 6= aj . (5.1.2)

Denote the invariant measure of the IFS {f1, . . . , fl} with respect to the
probability vector (p1, . . . , pl) by ν. That is

ν =
l∑

i=1

piν ◦ f−1
i . (5.1.3)

Let µ = (p1, . . . , pl)
N be a Bernoulli measure on the space Σ = {1, . . . , l}N

and let Yε be uniformly distributed on [1 − ε, 1 + ε]. Denote the probability
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measure of Yε by ηε. Let

fi,Yε(x) = Yεfi(x) + ai(1 − Yε) (5.1.4)

for every i ∈ {1, . . . , l}. Then fi,Yε(x) is in [−1, 1) for all values of x ∈ [−1, 1)
and Yε, provided ε is sufficiently small. The iterated maps are applied ran-
domly according to the stationary measure µ, with the sequence of indepen-
dent and identically distributed errors y1, y2, . . ., distributed as Yε, indepen-
dent of the choice of the function. The Lyapunov exponent of the IFS is
defined by

χ(µ, ηε) = E(log(Yεf
′))

and it is easy to see that

χ(µ, ηε) <
l∑

i=1

pi log((1 + ε)λi,max) < 0,

for sufficiently small ε > 0. Let Zε be the following random variable

Zε := lim
n→∞

fi1,y1,ε ◦ fi2,y2,ε ◦ · · · ◦ fin,yn,ε(0), (5.1.5)

where the numbers ik are i.i.d., with the distribution µ on {1, . . . , l}, and yk,ε
are pairwise independent with distribution of Yε and also independent of the
choice of ik. Let νε be the distribution of Zε.

One can easily prove the following theorem.

Theorem 5.1.1. The measure νε converges weakly to the measure ν as
ε → 0, see (5.1.3).

Theorem 5.1.2. Let νε be the distribution of the limit (5.1.5). We assume
that (5.1.1) and (5.1.2) hold, and

l∑

i=1

p2i
λi,max

λ2i,min

< 1. (5.1.6)

Then for every sufficiently small ε > 0, we have that νε is absolutely
continuous with respect to the Lebesgue measure, with density in L2, and
there exists a constant C such that the density of νε satisfies

‖νε‖2 ≤
C√
ε
.

92



Remark 5.1.1. Let

C ′
ε =

√√√√
32(

1 −∑l

i=1 p
2
i

(1+ε)λi,max

((1−ε)λi,min)2

)
C ′′

ε

and

C ′′
ε = min

i 6=j

{ |ai − aj | + ε(−|ai + aj| − 2)

1 − ε2

}
.

The proof of Theorem 5.1.2 will show that we have ‖νε‖2 ≤ C ′
ε/
√
ε. Hence

we can choose any C > limε→0C
′
ε.

Remark 5.1.2. Actually the proof of Theorem 5.1.1 shows that Zε conditioned
on the perturbations y1,ε, y2,ε, . . . has density in L2 for almost all y1,ε, y2,ε, . . ..

We can state an easy corollary of the theorem.

Corollary 5.1.3. Let {λiYεx + ai(1 − λiYε)}li=1 be a random iterated func-
tion system. We assume that (5.1.2) holds, and

l∑

i=1

p2i
λi
< 1. (5.1.7)

Then for every sufficiently small ε > 0, we have that νε is absolutely
continuous with respect to the Lebesgue measure with density in L2, and there
exists a constant C such that

‖νε‖2 ≤
C√
ε
.

We study another case of random perturbation, namely let λ̃i,ε be uni-

formly distributed on [λi − ε, λi + ε]. Let
{
λ̃i,εx + ai(1 − λ̃i,ε)

}l

i=1
be our

random iterated function system, where ai 6= aj for every i 6= j. Let
λ = (λ1, . . . , λl), and Xλ,ε be the following random variable

Xλ,ε =

∞∑

k=1

(aik(1 − λ̃ik,ε))

k−1∏

j=1

λ̃ij ,ε (5.1.8)

where the numbers ik are i.i.d., with the distribution µ on {1, . . . , l}, and

λ̃ik,ε are pairwise independent. Let νλ,ε denote the distribution of the ran-
dom variable Xλ,ε. Moreover let νλ be the invariant measure of the iterated

function system {λix+ ai(1 − λi)}li=1 according to µ.
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Theorem 5.1.4. The measure νλ,ε converges weakly to the measure νλ as
ε → 0.

To have a similar statement as in Theorem 5.1.2 we need a technical
assumption, namely

min
i 6=j

∣∣∣∣
ajλi − aiλj
λi − λj

∣∣∣∣ > 1. (5.1.9)

Theorem 5.1.5. Let us suppose that (5.1.9) and (5.1.2) hold, and moreover
that

l∑

i=1

p2i
λi
< 1. (5.1.10)

Then for every sufficiently small ε > 0, the measure νλ,ε is absolutely con-
tinuous with respect to the Lebesgue measure, with density in L2, and there
exists a constant C such that

‖νλ,ε‖2 ≤
C√
ε
.

Remark 5.1.3. Let

C ′
ε =

√√√√
32(

1 −∑l
i=1 p

2
i

λi+ε
(λi−ε)2

)
C ′′

ε

and

C ′′
ε = σmin

i 6=j

|aiλj − ajλi| − |λi − λj |
λiλj

,

where 0 < σ < 1. As in Remark 5.1.1, the proof of Theorem 5.1.5 will show
that we have ‖νλ,ε‖2 ≤ C ′

ε/
√
ε for small ε.

The main difference between Theorem 5.1.5 and Corollary 5.1.3 is the
random perturbation. Namely, in Theorem 5.1.5 we choose the contraction
ratio uniformly in the ε neighborhood of λi, but in Corollary 5.1.3 we choose
the contraction ratio uniformly in the λiε neighborhood of λi.

The chapter is based on [BP] which is a joint work with Tomas Persson.

5.2 Proof of Theorem 5.1.2
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Figure 5.1: Picture showing the action of gε,m restricted to Qi,k.

Let Q = [−1, 1)3 and m ∈ N. We partition the cube Q into the rectangles
{Q1,k, . . . , Ql,k}2

m−1
k=0 , where

Qi,k =

{
(x, y, z) ∈ Q : −1 + 2

i−1∑

j=1

pj ≤ y < −1 + 2
i∑

j=1

pi,

− 1 + k2−m+1 ≤ z < −1 + (k + 1)2−m+1

}
,

where we use the convention that an empty sum is 0. Hence we slice Q in
2m slices along the z-axis and l slices along the y-axis. We thereby get 2ml
pieces which we call Qi,k, according to the definition above.

Let

Qi =

2m−1⋃

k=0

Qi,k.

On each of the slices Qi,k, we define the map gε,m to map Qi,k into Q
such that Qi,k is expanded as much as possible in the second and third
coordinate. In the first coordinate it is mapped according to a perturbation
of fi, and hence contracted. Which perturbation is chosen depends on the
third coordinate. There is a picture of this in Figure 5.1.

More precisely, for (x, y, z) ∈ Qi,k, we define gε,m : Q→ Q by

gε,m : (x, y, z) 7→
(
d(z)fi(x) + ai(1 − d(z)),

1

pi
y + b(y), 2mz + c(z)

)
,
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where

d(z) = 1 + 2mε(z − (−1 + (k +
1

2
)2−m+1), for (x, y, z) ∈ Qi,k,

b(y) = 1 − 1

pi

(
−1 + 2

i∑

j=1

pj

)
, for (x, y, z) ∈ Qi,k,

c(z) = 2m − 2k − 1, for (x, y, z) ∈ Qi,k.

Hence gε,m maps each of the pieces Qi,j so that it is contracted in the
x-direction and fully expanded in the y- and z-directions.

Let L3 be the normalised Lebesgue measure on Q. The measures

γε,m,n =
1

n

n−1∑

k=0

L3 ◦ g−k
ε,m

converge weakly to an SRB-measure γε,m as n → ∞, see [Pes2] and [ST].
The measure γε,m is ergodic by the Hopf argument, since gε,m is hyperbolic
and the stable and unstable manifolds are parallel to the coordinate axes and
have maximal extension in the box Q. Moreover, let νε,m be the projection of
γε,m onto the first coordinate. More precisely, if E ⊂ [−1, 1) is a measurable
set, then we define νε,m(E) = γε,m(E × [−1, 1) × [−1, 1)).

The measure νε,m is the distribution of the limit

lim
n→∞

fi1,y1,ε ◦ fi2,y2,ε ◦ · · · ◦ fin,yn,ε(0),

where yi,ε are uniformly distributed on [1 − ε, 1 + ε], but not independent.
However, one can easily prove the following lemma.

Lemma 5.2.1. The measure νε,m converges weakly to νε as m→ ∞.

Let
Ai = {(i, 0), (i, 1), . . . , (i, 2m − 1)}

and

A =

l⋃

i=1

Ai.

If a = (i, k) ∈ A we will use the notation Q̂a to denote Qi,k. With this
notation we have

Q =
⋃

a∈A
Q̂a and Qi =

⋃

a∈Ai

Q̂a, i = 0, 1, . . . , l.
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Let Θ0 = AN∪{0}. If p ∈ Q then there is a unique sequence
ρ0(p) = {ρ0(p)k}∞k=0 ∈ Θ0 such that

gkε,m(p) ∈ Qρ0(p)k , k = 0, 1, . . .

The map ρ0 : Q → Θ0 is not injective. We have ρ0(x, y, z) = ρ0(x
′, y′, z′) if

y = y′ and z = z′, but ρ0(x, y, z) 6= ρ0(x
′, y′, z′) otherwise. Hence we can

(and will) use the notation ρ0(y, z) instead of ρ0(x, y, z).
We will denote elements in Θ0 by a, b and so on. We let σ denote the left

shift on Θ0, defined in the usual way.
We can transfer the measures γε,m to a measure γΘ0 by γΘ0 = γε,m ◦ ρ−1

0 .
We let Θ denote the natural extension of Θ0. That is, Θ is the set of

all two sided infinite sequences such that any one sided infinite subsequence
of a sequence in Θ is a sequence in Θ0. The measures γΘ0 defines an er-
godic measure γΘ on Θ in a natural way. If ξ : Θ → Θ0 is defined by
ξ({ik}k∈Z) = {ik}k∈N∪{0}, then we define γΘ(ξ−1E) = γΘ0(E). We can de-

fine a map ρ−1 : Θ → Q such that ρ−1(σ(a)) = gε,m(ρ−1(a)) holds for any
sequence a ∈ Θ.

We note that the L2 norm of the density νε,m is not larger than twice that
of the density of γε,m. If hνε,m(x) and hγε,m(x, y, z) denote the density of νε,m
and γε,m respectively, then by Cauchy–Schwarz’s inequality

‖νε,m‖22 ≤
∫ 1

−1

hνε,m(x)2 dx = 32

∫ 1

−1

(∫ 1

−1

∫ 1

−1

hγε,m(x, y, z)
dy

2

dz

2

)2
dx

2

≤ 32

∫ 1

−1

∫ 1

−1

∫ 1

−1

hγε,m(x, y, z)2
dy

2

dz

2

dx

2
= 4‖γε,m‖22.

This proves that if γε,m has L2 density, then so has νε,m, and

‖νε,m‖2 ≤ 2‖γε,m‖2. (5.2.1)

If p is a point in Q, then we let TpQ denote the tangent space at p. For
each p in Q we define the following cone in the tangent space TpQ:

Cp =

{
(u, v, w) ∈ TpQ :

∣∣∣ u
w

∣∣∣,
∣∣∣ v
w

∣∣∣ < 2m+1ε

2m − λmax,max(1 + ε)

}
,

where λmax,max = maxi λi,max = maxi supx∈[−1,1) |f ′
i(x)|. The following lemma

states that the set of cones Cp, defines a family of unstable cones, and that
images of certain curves intersect transversally. There is an illustration of
the transversality in Figure 5.2.
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Figure 5.2: Every two different Qi,k and Qj,l on the same height (i = j) share
the same image, but in the case when i 6= j their images have transversal
intersection if they intersect.

Lemma 5.2.2. The cones Cp make up a family of unstable cones, that is
dpgε,m(Cp) ⊂ Cgε,m(p).

Moreover, for sufficiently large m and every 0 < ε < mini 6=j
|ai−aj |

2+|ai+aj | , if

ζ1 ⊂ Qξ1 and ζ2 ⊂ Qξ2 are two curve segments with tangents in Cp such that
ξ1 ∈ Ai and ξ2 ∈ Aj, i 6= j, then if gε,m(ζ1) and gε,m(ζ2) intersect, and if
(u1, v1, 1) and (u2, v2, 1) are tangents to gε,m(ζ1) and gε,m(ζ2) respectively, it
holds |u1 − u2| > Cε,mε, where

Cε,m = min
i 6=j

{ |ai − aj | + ε(−|ai + aj | − 2)

1 − ε2
− 4(1 + ε)λmax,max

2m − λmax,max(1 + ε)

}
.

Proof of Lemma 5.2.2. The Jacobian of gε,m is

dpgε,m =




d(z)f ′
i(x) 0 2mε(fi(x) − ai)

0 1
pi

0

0 0 2m




where p = (x, y, z) ∈ Qi,k. If (u, v, w) ∈ Cp, then

dpgε,m(u, v, w) =




d(z)f ′
i(x)u+ 2mε(fi(x) − ai)w

1
pi
v

2mw




We just need to check that this vector is in Cp, provided that m is
large. This is easily checked, using that |d(z)| ≤ 1 + ε, |f ′

i(x)| ≤ λi,max
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and |fi(x) − ai| ≤ 2. Indeed,

|d(z)f ′
i(x)u+ 2mε(fi(x) − ai)w|

|2mw| ≤ (1 + ε)λi,max

2m

|u|
|w| + 2ε

≤ (1 + ε)λi,max

2m

2m+1ε

2m − (1 + ε)λmax,max
+ 2ε ≤ 2m+1ε

2m − (1 + ε)λmax,max

and
| 1
pi
v|

|2mw| ≤
1

pi2m

2m+1ε

2m − (1 + ε)λmax,max

≤ 2m+1ε

2m − (1 + ε)λmax,max

proves that dpgε,m(Cp) ⊂ Cgε,m(p) if m is sufficiently large, so that
2m − (1 + ε)λmax,max > 0 and pi2

m > 1.
To prove the other statement of the Lemma, assume that p = (xp, yp, zp) ∈ Qi

and q = (xq, yq, zq) ∈ Qj , i 6= j, are such that gε,m(p) = gε,m(q) = (x, y, z).
Then, if p ∈ Qi

dpgε,m : (u, v, 1) 7→ 2m

(
d(zp)f

′
i(xp)

2m
u+ (fi(xp) − ai)ε,

v

pi
, 1

)

Then

fi(xp) =
x− ai(1 − d(zp))

d(zp)
and fj(xq) =

x− aj(1 − d(zq))

d(zq)
.

Without loss of generality, let us assume that ai > aj. For simplicity
we study the case x ≥ ai > aj. The proofs of the cases ai ≥ x ≥ aj and
ai > aj ≥ x are similar. Then

dpgε,m(Cp) ⊂
{
w(u, v, 1) :

x− ai
1 + ε

ε− ∆iε ≤ u ≤ x− ai
1 − ε

ε+ ∆iε

}
,

where ∆i =
2(1+ε)λi,max

2m−λmax,max(1+ε)
. Therefore

|u2 − u1| ≥
x− aj
1 + ε

ε− x− ai
1 − ε

ε− (∆i + ∆j)ε

≥
(
ai − aj + ε(ai + aj − 2)

1 − ε2
− 2 max

i
∆i

)
ε

for every x ≥ ai > aj . Let ∆max = maxi ∆i. Since 0 < ε < mini 6=j
|ai−aj |

2+|ai+aj | ,

we have
ai − aj + ε(ai + aj − 2)

1 − ε2
> 0.
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Therefore
ai − aj + ε(ai + aj − 2)

1 − ε2
− 2∆max > 0,

for sufficiently large m. By similar methods, we have for ai ≥ x ≥ aj

|u2 − u1| ≥
(
ai − aj
1 + ε

− 2∆max

)
ε,

and for ai > aj ≥ x

|u2 − u1| ≥
(
ai − aj − ε(ai + aj + 2)

1 − ε2
− 2∆max

)
ε.

Therefore we can choose

Cε,m = min
i 6=j

{ |ai − aj | + ε(−|ai + aj| − 2)

1 − ε2
− 2∆max

}
.

The rest of the section will follow the method of Tsujii’s article [T].

Proof of Theorem 5.1.2. For any r > 0 we define the bilinear form (·, ·)r of
signed measures on R by

(ρ1, ρ2)r =

∫

R

ρ1(Br(x))ρ2(Br(x)) dx

where Br(x) = [x− r, x + r]. It is easy to see that if

lim inf
r→0

1

r2
(ρ, ρ)r <∞

then the measure ρ has density in L2, see [T]. Moreover

‖ρ‖22 ≤ lim inf
r→0

1

r2
(ρ, ρ)r.

Let γz denote the conditional measure of γε,m on the set
Rz = { (u, v, w) ∈ Q : v = y, w = z }. Since the one-dimensional
Lebesgue measure is invariant under the action of gε,m projected to the sec-
ond coordinate, we conclude that γz is independent of y almost everywhere.
Therefore, it follows that

‖γε,m‖22 =

∫ 1

−1

‖γz‖22 dz. (5.2.2)
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Let

J(r) :=
1

r2

∫ 1

−1

(γz, γz)r dz.

By the invariance of γε,m it follows that

γz = 2−m

l∑

i=1

pi
∑

a∈Ai

γg−a
ε,m(z) ◦ g−a

ε,m, (5.2.3)

where g−a
ε,m denotes the inverse branch of gε,m such that the image of g−a

ε,m is

in Q̂a. Recall that a ∈ Ai means that a = (i, k) for some k, so that Q̂a = Qi,k

for some k. We denote the measure γg−a
ε,m(z) ◦ g−a

ε,m by σa,z. Then by (5.2.3)

and the definition of J(r)

J(r) =
1

22mr2

l∑

i=1

l∑

j=1

pipj
∑

a∈Ai

∑

b∈Aj

∫ 1

−1

(σa,z , σb,z)r dz. (5.2.4)

For fixed a, b ∈ Ai it holds,

(σa,z, σb,z)r ≤ (σa,z , σa,z)
1
2
r (σb,z, σb,z)

1
2
r

≤ (1 + ε)λi,max(γg−a
ε,m(z), γg−a

ε,m(z))
1
2

r
(1−ε)λi,min

× (γg−b
ε,m(z), γg−b

ε,m(z))
1
2

r
(1−ε)λi,min

≤ (1 + ε)λi,max

(γg−a
ε,m(z), γg−a

ε,m(z)) r
(1−ε)λi,min

+ (γg−b
ε,m(z), γg−b

ε,m(z)) r
(1−ε)λi,min

2
.

(5.2.5)

Moreover, if a ∈ Ai and b ∈ Aj , i 6= j, then

(σa,z,σb,z)r

=

∫
σa,z(Br(x))σb,z(Br(x)) dx

=

∫ ∫ ∫
I{ s:|s−x|<r }(s)I{ t:|t−x|<r }(t) dσa,z(s)dσb,z(t)dx

≤
∫ ∫

2rI{ (s,t):|s−t|<2r }(s, t) dσa,z(s)dσb,z(t)

=

∫ ∫
I{ (c,d):|ρ−1(···c−2c−1aρ0(z))−ρ−1(···d−2d−1bρ0(z))|<2r }(c,d)

dγΘ(c)dγΘ(d).

Let us comment on the notation ρ0(z). Actually ρ0(z) is not defined, but
rather ρ0(x, y, z). Recall that ρ0(x, y, z) is independent of x and that we
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therefore have introduced the notation ρ0(y, z). Moreover, as noticed above,
the measures γz, and therefore also σa,z , are independent of y. Hence we can
choose arbitrary x, y and let ρ0(z) denote ρ0(x, y, z) = ρ0(y, z). Since all
the estimates below will be independent of this choice of y, we will use the
notation ρ0(z) instead of ρ0(x, y, z).

By a change of order of integration we get that

∫ 1

−1

(σa,z , σb,z)r dz

≤ 2r

∫ ∫
L1({ z : |ρ−1(· · · c−2c−1aρ0(z))

− ρ−1(· · · d−2d−1bρ0(z))| < 2r }) dγΘ(c)dγΘ(d). (5.2.6)

We will now use Lemma 5.2.2 on (5.2.6). Note that

z 7→ ρ−1(· · · c−2c−1aρ0(z))

z 7→ ρ−1(· · · d−2d−1bρ0(z))

defines two curves with tangents in the cones Cp. Lemma 5.2.2 states that
these curves have a transversal intersection, if they intersect, so that

L1(
{
z : |ρ−1(· · · c−2c−1aρ0(z)) − ρ−1(· · ·d−2d−1bρ0(z))| < 2r

}
) ≤ 4r

Cε,m

.

Hence ∫ 1

−1

(σa,z, σb,z)r dz ≤
8r2

Cε,mε
. (5.2.7)

By using (5.2.4) we have

J(r) =
1

22mr2

l∑

i=1

p2i
∑

a,b∈Ai

∫ 1

−1

(σa,z, σb,z)r dz

+
1

22mr2

∑

i 6=j

pipj
∑

a∈Ai

∑

b∈Aj

∫ 1

−1

(σa,z, σb,z)r dz. (5.2.8)

We first give an upper bound for the first part of the sum in (5.2.8), using
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(5.2.5) and an integral transformation. By (2.2.7) we have

∑

a,b∈Ai

∫ 1

−1

(σa,z, σb,z)r dz

≤ (1 + ε)λi,max2
m
∑

a∈Ai

∫ 1

−1

(γg−a
ε,m(z), γg−a

ε,m(z)) r
(1−ε)λi,min

dz

= (1 + ε)λi,max2
m

2m−1∑

k=0

2m

∫ −1+(k+1)2−m+1

−1+k2−m+1

(γz, γz) r
(1−ε)λi,min

dz.

Hence

1

22mr2

l∑

i=1

p2i
∑

a,b∈Ai

∫ 1

−1

(σa,z, σb,z)r dz

≤ 1

22mr2

l∑

i=1

p2i (1 + ε)λi,max2
m

2m−1∑

k=0

2m

−1+(k+1)2−m+1∫

−1+k2−m+1

(γz, γz) r
(1−ε)λi,min

dz

≤
l∑

i=1

p2i
(1 + ε)λi,max

((1 − ε)λi,min)2
1

(
r

(1 − ε)λi,min

)2

∫ 1

−1

(γz, γz) r
(1−ε)λi,min

dz

≤ max
i
J

(
r

λi,min(1 − ε)

) l∑

i=1

p2i
(1 + ε)λi,max

((1 − ε)λi,min)2
. (5.2.9)

For the second part of the sum in (5.2.8), we use (5.2.7), to prove that it
is bounded by

1

22mr2

∑

i 6=j

pipj
∑

a∈Ai

∑

b∈Aj

∫ 1

−1

(σa,z, σb,z)r dz

≤ 1

22mr2

∑

i 6=j

pipj
∑

a∈Ai

∑

b∈Aj

8r2

Cε,mε
≤ 8

Cε,mε
. (5.2.10)

By combining (5.2.9) and (5.2.10) we have

J(r) ≤ 8

Cε,mε
+ βmax

i
J

(
r

λi,min(1 − ε)

)
(5.2.11)

where β =
∑l

i=1 p
2
i

(1+ε)λi,max

((1−ε)λi,min)2
is less than 1 by (5.1.6).
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We define a strictly monotone decreasing sequence rk. Let r0 < 1/2 be
fixed and define rk recursively. Assume that rk−1 has been defined. Then we
define rk = (1 − ε)λik,minrk−1, where ik is chosen such that

max
i
J

(
rk

(1 − ε)λi,min

)
= J

(
rk

(1 − ε)λik,min

)
= J(rk−1).

Hence we have rk = r0(1 − ε)k
∏k

n=1(λin,min).
We note that rk is a well defined sequence. By induction and (5.2.11), we

have

J(rk) ≤ 8

Cε,mε

1 − βk

1 − β
+ βkJ(r0) (5.2.12)

for every k ≥ 1. Hence by (5.2.1), (5.2.2) and (5.2.12) we get

‖νε,m‖22 ≤ 4 lim inf
r→0

J(r) ≤ 4 lim inf
k→∞

J(rk)

≤ 32

Cε,mε

1

1 −∑l
i=1 p

2
i

(1+ε)λi,max

((1−ε)λi,min)2

. (5.2.13)

We now use that L2 is a Hilbert space, and that in a Hilbert space, a closed
ball is compact in the weak topology. (See for instance [Yos, Theorem V.2.1].)
Hence, if hνε,m is the density of νε,m, then hνε,m is in L2, and from above we
know that there is a constant C ′

ε such that ‖hνε,m‖2 ≤ C ′
ε/
√
ε.

By the compactness statement above, there is an h with ‖h‖2 ≤ C ′
ε/
√
ε,

such that some subsequence of hνε,m converges weakly to h. Moreover h
defines a probability measure since 1 =

∫
1 · hνε,m dL3 →

∫
1 · h dL3.

Since νε,m converges weakly to νε we get that νε has density in L2 and
that

‖νε‖2 ≤
1√
ε
C ′

ε, (5.2.14)

where

C ′
ε =

√√√√
32(

1 −∑l

i=1 p
2
i

(1+ε)λi,max

((1−ε)λi,min)2

)
C ′′

ε

and

C ′′
ε = lim

m→∞
Cε,m = min

i 6=j

{ |ai − aj | + ε(−|ai + aj| − 2)

1 − ε2

}
.

5.3 Proof of Theorem 5.1.5
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We do not give the whole proof of Theorem 5.1.5, because it is similar to
the proof of Theorem 5.1.2. We prove only the modification of Lemma 5.2.2,
which is important as it proves transversality.

First we define a new dynamical system g̃ε,m : Q → Q, similar to the
dynamical system gε,m : Q → Q. Let Qi,k and Ai,k be as in Section 5.2. Let
g̃ε,m : Q→ Q be defined by

g̃ε,m : (x, y, z) 7→
(
d̃(z)x + ai(1 − d̃(z)),

1

pi
y + b(y), 2mz + c(z)

)
,

for (x, y, z) ∈ Qi, where

d̃(z) = λi + 2mε(z − (−1 + (k +
1

2
)2−m+1)), for (x, y, z) ∈ Qi,k,

b(y) = 1 − 1

pi

(
−1 + 2

i∑

j=1

pj

)
, for (x, y, z) ∈ Qi,k,

c(z) = 2m − 2k − 1, for (x, y, z) ∈ Qi,k.

Hence the only difference between g̃ε,m and gε,m is in the first coordinate,
where the perturbations of fi are made. Figure 5.1 also serves in visualizing
the action of g̃ε,m.

We define the cones

Cp =

{
(u, v, w) ∈ TpQ :

∣∣∣ u
w

∣∣∣,
∣∣∣ v
w

∣∣∣ < 2m+1ε

2m − λmax − ε

}
,

where p ∈ Q and λmax = maxi λi. Similar to Lemma 5.2.2, we show that
these cones define a family of unstable cones, and that a certain transversality
property holds.

Lemma 5.3.1. Let us suppose that (5.1.9) holds. The cones Cp defines a
family of unstable cones, that is dpg̃ε,m(Cp) ⊂ Cg̃ε,m(p).

Moreover, for sufficiently large m and every sufficiently small 0 < ε, if
ζ1 ⊂ Qξ1 and ζ2 ⊂ Qξ2 are two line segments with tangents in Cp such that
ξ1 ∈ Ai and ξ2 ∈ Aj, i 6= j, then if g̃ε,m(ζ1) and g̃ε,m(ζ2) intersects, and
if (u1, v1, 1) and (u2, v2, 1) are tangents to g̃ε,m(ζ1) and g̃ε,m(ζ2) respectively,
there exists a constant Cε,m, depending on ε and m, but bounded away from
0 and infinity, such that |u1 − u2| > Cε,mε.

Proof of Lemma 5.3.1. The Jacobian of g̃ε,m

dpg̃ε,m =




d̃(z) 0 2mε(x− ai)
0 1

pi
0

0 0 2m


 ,
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where p = (x, y, z) ∈ Qi,k. If (u, v, w) ∈ Cp, then

dpg̃ε,m(u, v, w) =




d̃(z)u+ 2mε(x− ai)w
1
pi
v

2mw


 .

The estimate

|d̃(z)u+ 2mε(x− ai)w|
|2mw| ≤ d̃(z)|u|

2m|w| + 2ε

≤ λi + ε

2m

2m+1ε

2m − λmax − ε
+ 2ε ≤ 2m+1ε

2m − λmax − ε

shows that dpg̃ε,m(Cp) ⊂ Cg̃ε,m(p). Now we prove the other statement of the
Lemma. Assume that p = (xp, yp, zp) ∈ Qi and q = (xq, yq, zq) ∈ Qj , i 6= j,
are such that g̃ε,m(p) = g̃ε,m(q) = (x, y, z). Then

p ∈ Qi ⇒ dpg̃ε,m : (u, v, 1) 7→ 2m

(
d̃(zp)

2m
u+ (xp − ai)ε,

v

pi
, 1

)
,

and

xp =
x− ai(1 − d̃(zp))

d̃(zp)
, xq =

x− aj(1 − d̃(zq))

d̃(zq)
.

Let ∆̃i = 2(λi+ε)
2m−λmax−ε

. Then

dpg̃ε,m(Cp) ⊂
{
w(u, v, 1) :

x− ai

d̃(zp)
ε − ∆̃iε ≤ u ≤ x− ai

d̃(zp)
ε + ∆̃iε

}
.

Therefore

|u2 − u1| ≥
(∣∣∣∣∣
x− ai

d̃(zp)
− x− aj

d̃(zq)

∣∣∣∣∣− (∆̃i + ∆̃j)

)
ε.

The term ∣∣∣∣∣
x− ai

d̃(zp)
− x− aj

d̃(zq)

∣∣∣∣∣

can be estimated by
∣∣∣∣∣
x− ai

d̃(zp)
− x− aj

d̃(zq)

∣∣∣∣∣ ≥
∣∣∣∣∣
|d̃(zp) − d̃(zq)||x| − |aj d̃(zp) − aid̃(zq)|

d̃(zp)d̃(zq)

∣∣∣∣∣ .
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Hence, this term is positive provided that

|ajd̃(zp) − aid̃(zq)| > |d̃(zp) − d̃(zq)|.

Since λi − ε ≤ d̃(zp) ≤ λi + ε and λj − ε ≤ d̃(zq) ≤ λj + ε, this is implied by
(2.1.1) if ε is sufficiently small.

If we let

Cε,m =
1

2
min
i 6=j

|aiλj − ajλi| − |λi − λj|
λiλj

,

then
|u2 − u1| ≥ Cε,mε,

provided that ε is small and m large.
In fact we can let

Cε,m = σmin
i 6=j

|aiλj − ajλi| − |λi − λj|
λiλj

,

for 0 < σ < 1.
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preprint, (2011).
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[PU] F. Przytycki, M. Urbański: Conformal Fractals Ergodic Theory Meth-
ods, 2009.

[R] V. Ruiz: A compact framework for hidden Markov chains with appli-
cations to fractal geometry, J. Appl. Prob. 45, (2008), 630-639.

[Sc] A. Schief: Self-similar sets in complete metric spaces, Proc. Amer.
Math. Soc. 124 No. 2, (1996), 481-490.

[ST] J. Schmeling, S. Troubetzkoy: Dimension and invertibility of hyper-
bolic endomorphisms with singularities, Erg. Th. & Dyn. Sys. 18,
(1998), 1257-1282.

111



[SS] K. Simon, B. Solomyak: On the dimension of self-similar sets, Fractals
10 No. 1, (2002), 59-65.

[SSU1] K. Simon, B. Solomyak and M. Urbański: Hausdorff dimension of
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