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Abstract. In this paper we study a family of invariant measures of parameter-
ized iterated function systems where the corresponding probabilities are place-
dependent. We prove that the Hausdorff dimension of the measure is equal to
Entropy/Lyapunov exponent whenever it is less than 1 and the measure is ab-
solute continuous w.r.t. the Lebesgue measure if Entropy/Lyapunov exponent
is greater than 1 for Lebesgue almost every parameters.

1. Introduction and Statements

Let X be a compact interval on the real line and let {ψi}ki=1 be a family of

contractive maps mapping X into itself. We call the set {ψi}ki=1 an iterated function
system (IFS) on X. It is well known that there exists a unique non-empty compact
set Λ ⊆ X such that it is invariant w.r.t the IFS, that is Λ = ∪ki=1ψi (Λ). We call

the set Λ the attractor of the IFS. Moreover, for any probability weights {pi}ki=1

such that 0 < pi < 1 and
∑k

i=1 pi = 1 there exists a unique probability measure µ
that satisfies suppµ = Λ and

µ =
k∑
i=1

piµ ◦ ψ−1
i . (1.1)

The measure µ is called the invariant measure of the IFS (see e.g. Hutchinson [5],
Falconer [2]).

In this paper we focus on an extended class of invariant measures. We consider
the probability measures on the set Λ that satisfy the equation∫

f(x)dµ(x) =
k∑
i=1

∫
pi(x)f(ψi(x))dµ(x) for every f ∈ C(X), (1.2)

where pi : X 7→ (0, 1) are Hölder continuous for every i = 1 . . . k and
∑k

i=1pi(x)≡1.
Fan and Lau proved that there exists a unique probability measure which satisfies
the equation (1.2) and suppµ = Λ, see [3]. Let us call the measure µ place-dependent
invariant measure.

Place-dependent invariant measures were studied in several papers, see e.g. [4,
6, 7, 8, 19]. Our goal is to determine the Hausdorff dimension of such measures
and to give a sufficient condition for the absolute continuity w.r.t the Lebesgue
measure. For the basic properties and definition of the Hausdorff dimension see for
example [2].
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For further analysis let us introduce two notations. Let us define the entropy hµ
of the measure µ as

hµ := −
∫ k∑

i=1

pi(x) log pi(x)dµ(x). (1.3)

Moreover, denote χµ the Lyapunov exponent of the IFS w.r.t µ. That is,

χµ := −
∫ k∑

i=1

pi(x) log
∣∣ψ′i(x)

∣∣ dµ(x). (1.4)

Fan and Lau showed that if the IFS {ψi}ki=1 satisfies the so-called open set
condition (i.e. there exists an open set U such that ψi(U) ∩ ψj(U) = ∅ for every
i 6= j) then

dimH µ =
hµ
χµ
,

where dimH µ denotes the Hausdorff dimension of the measure µ, see [3, Corol-
lary 3.5]. Jaroszewska and Rams proved that without any separation condition the
entropy divided by the Lyapunov exponent is always an upper bound for the Haus-
dorff dimension, see [7, Theorem 1]. Furthermore, Lau, Ngai and Wang construc-
ted absolutely continuous place-dependent invariant measures defined by non-linear
IFSs with overlaps, see [9, Section 7]. However, sufficient condition for absolute
continuity is not known in general.

In the case of ordinary (not place-dependent) invariant measures (see (1.1))
to prove absolute continuity in general, essentially the only approach is the so-
called transversality method which was first introduced by Pollicott and Simon
[15]. Simon, Solomyak and Urbański considered parameterized families of iterated
function systems and proved that the Hausdorff dimension of the invariant measure
is the minimum of the entropy divided by the Lyapunov exponent and 1, further
the measure is absolute continuous if the entropy/Lyapunov exponent is strictly
greater than 1 for Lebesgue almost every parameters whenever the IFS satisfies
the transversality condition, see [18]. Our main theorem establishes this result for
place-dependent invariant measures.

Let U ⊂ Rd be an open, bounded set. Let us consider a family of IFSs Ψλ ={
ψλ
i

}k
i=1

, λ ∈ U . Denote S = {1, . . . , k} the set of symbols and Σ = SN the
symbolic space. Let us define the natural projection as

πλ(i) := lim
n→∞

ψλ
i0 ◦ · · · ◦ ψ

λ
in(0), for i = (i0i1 · · · ) ∈ Σ. (1.5)

Let us suppose that Ψλ and the weights {pi(x)}i∈S satisfy the following conditions.
Principal Assumptions:

(A1) Continuity: the maps λ 7→ ψλ
i are continuous from U to C1+θ(X) for

every i ∈ S.

(A2) Hyperbolicity: there exist 0 < γ < κ < 1 such that γ < |
(
ψλ
i

)′
(x)| < κ

for every λ ∈ U , x ∈ X and i ∈ S.
(A3) Transversality: there exists a constant C1 such that for every i, j ∈ Σ

with i0 6= j0

Ld {λ ∈ U : |πλ(i)− πλ(j)| < r} < C1r for all r > 0.
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(A4) Probabilities: the maps pi : X 7→ (0, 1) are Hölder continuous and

bounded away from zero for every i ∈ S. Moreover,
∑k

i=1 pi(x) ≡ 1.

Theorem 1.1. Suppose that the family {Ψλ}λ∈U of iterated function systems sat-
isfies the assumptions (A1),(A2) and (A3). Moreover, let {pi(x)}i∈S be place-
dependent probability weights satisfying (A4) and let µλ be the place-dependent
invariant measure according to the weights {pi(x)}i∈S . Then

(1) for Lebesgue almost every λ ∈ U

dimH µλ = min

{
hµλ
χµλ

, 1

}
,

(2) µλ � L1 for Lebesgue almost every λ ∈
{
λ ∈ U :

hµλ
χµλ

> 1
}

.

As an easy consequence we have the following corollary.

Corollary 1.2. The measure µλ is equivalent with L1|Λλ
for Lebesgue almost every

λ ∈
{
λ ∈ U :

hµλ
χµλ

> 1
}

.

Proof. The statement follows immediately from Theorem 1.1(2) and [4, Theorem 1.1].
�

Remark 1.3. The statement of Theorem 1.1 is also valid when the probabilities
depends on the parameters continuously. Precisely, when the function λ 7→ pλi is

continuous from U to Cθ(X) for every i ∈ S.

Remark 1.4. In the assumption (A4) the Hölder continuity implies the unique-
ness of the measure. Jaroszewska showed that if the probability weights are only
continuous then the place-dependent invariant measure is not necessarily unique,
see [6, Theorem 4].

The organization of the paper is as follows: Section 2 is devoted for preliminaries
and we prove our main theorem in Section 3. The proof follows the idea and the
method of [18]. Simon, Solomyak and Urbański [18] investigated the dimension
theory of the push-down measures of fixed left-shift invariant measures on the
symbolic space. Since our measure is place-dependent, the induced measure on
the symbolic space will depend on the natural projection and therefore on the
parameters. So it is not possible to apply the known methods directly. To avoid
the difficulty that the induced measure on the symbolic space depends also on the
parameters we apply the method introduced by Persson [13]. In Section 4 we apply
our results for place-dependent Bernoulli convolutions.

2. Preliminaries

First of all, we introduce some standard notations. Denote σ the left-shift oper-
ator on Σ, that is

σ(i0i1 . . . ) = (i1i2 . . . ).

It is easy to see from the definition of the natural projection (1.5) that

πλ(i) = ψλ
i0(πλ(σi)). (2.1)
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Let us define the set S∗ = ∪∞n=0Sn the set of finite length words of symbols and
for a i = (i0i1 . . . ) ∈ Σ let i|n = (i0i1 . . . in−1). Moreover, for a finite length word
(i0 . . . in) let [i0 . . . in] be the corresponding cylinder set,

[i0 . . . in] := {j = (j0j1 . . . ) ∈ Σ : j0 = i0, . . . , jn = in} .

Furthermore, let i ∧ j = min {n : in 6= jn}.
Let us consider a set of place-dependent probability weights {pi(x)}i∈S and a

family of parameterized IFS Ψλ =
{
ψλ
i

}
λ∈S . Let us suppose that satisfy (A1),

(A2) and (A4). Then without loss of generality, we can assume that there exist
constants C, q > 0 and 0 < θ < 1 such that

|pi(x)− pi(y)| ≤ C|x− y|θ and pi(x) > q > 0 for every i ∈ S and x, y ∈ X, (2.2)

and∣∣∣(ψλ
i )′(x)− (ψλ

i )′(y)
∣∣∣ ≤ C|x− y|θ for every x, y ∈ X, i ∈ S and λ ∈ U. (2.3)

Define the corresponding Ruelle operator Tλ : C(X) 7→ C(X), where C(X) is
the set of continuous functions and

(Tλf)(x) =
k∑
i=1

pi(x)f(ψλ
i (x)), (2.4)

and let T ∗λ : M(X) 7→M(X) be the adjoint operator, where M(X) denotes the set
of Borel probability measures on X.

Proposition 2.1 (Fan, Lau). Suppose that {pi(x)}i∈S satisfies (2.2) and let
{
ψλ
i

}k
i=1

be an IFS on X satisfying (A2). Then for every λ ∈ U there exists a unique prob-
ability measure µλ such that

T ∗λµλ = µλ.

Moreover, for every f ∈ C(X), Tnλf converges uniformly to
∫
f(x)dµλ(x).

Proof. The proposition follows from [3, Theorem 1.1]. �

The uniqueness of the measure µλ implies that it is necessarily in pure type, that
is, the measure µλ is either singular or absolutely continuous w.r.t the Lebesgue
measure.

Now we give an important characterization of the measure µλ. We will show
that µλ is a push-down measure of a Gibbs measure on the symbolic space. First,
we need the following lemma.

Lemma 2.2. There exist a unique, ergodic, left-shift invariant probability measure
νλ on Σ and a constant c > 1 independent of λ such that for every i ∈ Σ and n ≥ 1

c−1 ≤
νλ([ i|n])∏n−1

m=0 pim(πλ(σm+1i))
≤ c. (2.5)

Moreover, the entropy hνλ of νλ satisfies

hνλ = −
∫

Σ

k∑
i=1

pi(πλ(i)) log pi(πλ(i))dνλ(i). (2.6)
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Proof. Let ϕλ(i) := log pi0(πλ(σi)). It is easy to see that

|ϕλ(i)− ϕλ(j)| ≤ bαi∧j for every i, j ∈ Σ, (2.7)

with the choose b = max
{

2
q ,

C
qκθ

}
and α = κθ, where C, q, θ are from (2.2) and κ

is from (A2). Then it follows from [1, Theorem 1.4] that there exists a unique σ
invariant prob. measure νλ ( which is called the the Gibbs measure of the potential
ϕλ) for one can find constant c1(λ), c2(λ) > 1 and P such that

c1(λ)−1 ≤
νλ([ i|n])

e−nP+
∑n−1
i=0 ϕλ(σii)

≤ c2(λ).

The ergodicity of νλ follows from [1, Proposition 1.14]. To prove (2.5) and (2.6),
first let us define the operator Tλ : C(Σ) 7→ C(Σ)

(Tλf)(i) :=

k∑
i=1

eϕλ(ii)f(ii) =

k∑
i=1

pi(πλ(i))f(ii). (2.8)

Then it is easy to see that the constant function h(i) ≡ 1 is an eigenfunction
corresponding to the maximal eigenvalue 1. This implies that P = 0, see [1, p. 26].
Then the equation (2.6) is an easy consequence of [1, Theorem 1.22]. Finally, to
get the inequality (2.5) one can check that

c1(λ), c2(λ) ≤ c := e3b/(1−α) = e
3 max

{
2
q
, C
qκθ

}
/(1−κθ)

,

see the proof of [1, Theorem 1.16]. �

Lemma 2.3. The measure µλ is the push-down measure of νλ. That is,

µλ = (πλ)∗ νλ = νλ ◦ π−1
λ .

Proof. Let f : X 7→ R continuous. Then∫
X
f(x)d (πλ)∗ νλ(x) =

∫
Σ
f(πλ(i))dνλ(i).

Applying the operator Tλ defined in the proof of Lemma 2.2, we have∫
Σ
f(πλ(i))dνλ(i) =

∫
Σ

k∑
i=1

pi(πλ(i))f(πλ(ii))dνλ(i) =

∫
Σ

k∑
i=1

pi(πλ(i))f(ψλ
i (πλ(i)))dνλ(i) =

∫
X

k∑
i=1

pi(x)f(ψλ
i (x))d (πλ)∗ νλ(x) =∫

X
(Tλf)(x)d (πλ)∗ νλ(x).

In the second equality we used the identity (2.1). This implies that (πλ)∗ νλ =
T ∗λ (πλ)∗ νλ. The statement of the lemma follows from Proposition 2.1. �

For the simplicity let us introduce the following notation, for an i ∈ Σ let

ψλ
i|n

(x) := ψλ
i0
◦ · · · ◦ ψλ

in−1
(x).
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Lemma 2.4. There exists a constant C2 > 1 such that for every n ≥ 1, i ∈ Σ,
λ ∈ U and x, y ∈ X we have

C−1
2 ≤

(
ψλ

i|n

)′
(x)(

ψλ
i|n

)′
(y)

≤ C2, (2.9)

Proof. For the proof we refer to [17, Lemma 5.8]. �

Finally, the we prove the continuity of the entropy and Lyapunov exponent.

Proposition 2.5. The maps λ 7→ hµλ and λ 7→ χµλ are continuous on U .

Before we prove the proposition we state an auxiliary lemma about the uniform
convergence of the Perron-Frobenius operator on the symbolic space. Let

β := max

{
2

−κθq log q
,

C

−qκ2θ log q
,

2

−κθγ log γ
,

C

κ2θγ log γ

}
and α := κθ,

where the constant C, q, κ, γ, θ are the constants in (A2),(2.2) and (2.3). Further-

more, let Bm := e2β
∑∞
n=m+1 α

n
and

Γ := {f ∈ C(Σ) : f ≥ 0, f(i) ≤ Bmf(j) when i ∧ j = m} .
For brevity, let us introduce the notation νλ(f) =

∫
f(i)dνλ(i).

Lemma 2.6. There exist a C ′ > 0 and 0 < η < 1 universal constants such that
for every f ∈ Γ

|T nλ f(i)− νλ(f)| < C ′νλ(f)(1− η)n for every n ≥ 1, i ∈ Σ and λ ∈ U,
where Tλ is the operator defined in (2.8).

To prove the lemma we will apply the so-called cone method which was first
introduced in [1].

Proof. If f ∈ Γ and i ∧ j = m then

eϕλ(ii)f(ii) ≤ eϕλ(ij)ebα
m+1

Bm+1f(ij) ≤ Bmeϕλ(ij)f(ij),

where b is the constant defined in (2.7). Therefore TλΓ ⊆ Γ.
Let

η :=
(2β − b)(1− α)

2βB2
0

and C ′ := B0 + 1.

Now, fix an f ∈ Γ and suppose that νλ(f) = 1. Define f1 such that it satisfies
νλ(f1) = 1 and

Tλf = η + (1− η)f1. (2.10)

We claim that f1 ∈ Γ. It is enough to see that (Tλf − η) / (1− η) ∈ Γ. Since
Tλf(i) ≥ B−1

0 ≥ η therefore f1 ≥ 0. Moreover, to see that f1(i) ≤ Bmf1(j)
whenever i ∧ j = m it is enough to prove that

η ≤ BmTλf(j)− Tλf(i)

Bm − 1
.

It follows easily from the definitions that

BmTλf(j)− Tλf(i)

Bm − 1
≥ Bm −Bm+1e

bαm+1

Bm − 1
Tλf(j) ≥ Bm −Bm+1e

bαm+1

Bm − 1
B−1

0 .

By Lagrange theorem,

for every x, y ∈ [0, logB0], x > y we have x− y < ex − ey < B0(x− y).
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Applying Lagrange theorem we get

Bm −Bm+1e
bαm+1

Bm − 1
B−1

0 >
logBm − logBm+1e

bαm+1

logBm
B−2

0 =
(2β − b)(1− α)

2βB2
0

,

which is exactly the definition of η. Iterating (2.10) we obtain that for every n ≥ 1
there exists an fn ∈ Γ such that νλ(fn) = 1 and

T nλ f = 1− (1− η)n + (1− η)nfn.

Hence we get that for every f ∈ Γ with νλ(f) = 1

|T nλ f(i)− 1| ≤ (1− η)n(1 +B0).

This implies the statement of the lemma. �

Proof of Proposition 2.5. We will only prove that the entropy is continuous, the
proof for the Lyapunov exponent is similar. First, we prove that the function
−ϕλ = − log pi0(πλ(σi)) is in Γ. From equation (2.7) it follows that for i ∧ j = m

−ϕλ(i)

−ϕλ(j)
≤ −ϕλ(j) + bαm

−ϕλ(j)
≤ 1 +

b

− log qα
αm+1 ≤ e

b
− log qα

αm+1

≤ Bm.

Therefore, by applying Lemma 2.6 we get for every λ ∈ U
|T nλ (−ϕλ)− νλ(−ϕλ)| ≤ C ′ log k(1− η)n for every n ≥ 1.

Fix ε > 0. Since the function λ 7→ T nλ (−ϕλ) is continuous for every n ∈ N one

can choose N ≥ 1 and δ > 0 such that C ′ log k(1− η)N < ε/3 and |λ1 − λ2| < δ ⇒∣∣T Nλ1
(−ϕλ1)− T Nλ2

(−ϕλ2)
∣∣ < ε/3. Therefore,

|νλ1(−ϕλ1)− νλ2(−ϕλ2)| <∣∣νλ1(−ϕλ1)− T Nλ1
(−ϕλ1)

∣∣+∣∣T Nλ1
(−ϕλ1)− T Nλ2

(−ϕλ2)
∣∣+∣∣T Nλ2

(−ϕλ2)− νλ2(−ϕλ2)
∣∣ < ε.

The statement follows from Lemma 2.3 and the fact that hνλ = νλ(−ϕλ). �

3. Proof of Theorem 1.1

During the proof of Theorem 1.1 we follow the method of Simon, Solomyak and
Urbański [18] with a relevant modification based on the idea of Persson [13]. The
method introduced by Pollicott and Simon [15] and later extended by Peres and
Solomyak [12] and Simon, Solomyak and Urbański [18] is applied for the push-down
measures of left-shift invariant ergodic measures on the symbolic space. More pre-
cisely, for a fixed ergodic σ-invariant measure on the symbolic space, the dimension
of its push-down measure is the minimum of the entropy/Lyapunov exponent and
1, whenever the transversality condition holds. That is, the measure on the sym-
bolic space is independent of the parameters. In our case, the Gibbs measure on
the symbolic space depends on the parameters of the IFS as well. To avoid the
difficulties of this fact we need the following lemma according to [13, Lemma 3].

Lemma 3.1. Let i, j ∈ Σ be such that i0 6= j0. Then for every r > 0 there exists a
function Gr(i, j,λ) such that

1{|πλ(i)−πλ(j)|<r} ≤ Gr(i, j,λ) (3.1)

and ∫
Gr(i, j,λ)dLd(λ) ≤ 2C1r, (3.2)
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where 1 denotes the indicator function and C1 is the constant from (A3). Moreover,
the function Gr(i, j,λ) is constant on cylinders [ i|N+1] × [ j|N+1], where N =⌈

log(r/(2diamX)
log κ

⌉
.

Proof. Let us suppose that i ∈ [i0 . . . iN ] and j ∈ [j0 . . . jN ]. Let i∗ := (i0 . . . iN1)
and j∗ := (j0 . . . jN1), where 1 denotes the word (11 . . . ). Define Gr(i, j,λ) as

Gr(i, j,λ) := 1{|πλ(i∗)−πλ(j∗)|<2r}.

Then by (2.1) and Lagrange mean value theorem

||πλ(i)− πλ(j)| − |πλ(i∗)− πλ(j∗)|| ≤ |(πλ(i)− πλ(i∗))− (πλ(j)− πλ(j∗))| ≤∣∣∣∣(ψλ
i|N+1

)′
(ξ1)

∣∣∣∣ ∣∣πλ(σN+1i)− πλ(1)
∣∣+

∣∣∣∣(ψλ
j|N+1

)′
(ξ2)

∣∣∣∣ ∣∣πλ(σN+1j)− πλ(1)
∣∣ ≤

2diamXκN+1 ≤ r.

This implies the inequality (3.1). The other inequality follows from (A3). �

Now we recall some classical result. By Shannon-McMillan-Breiman Theorem,

− 1

n
log νλ([ i|n])→ hνλ for νλ a. e. i ∈ Σ,

and by Birkhoff’s Ergodic Theorem

− 1

n
log
∣∣∣(ψλ

i|n
)′(πλ(σni))

∣∣∣→ χνλ for νλ a. e. i ∈ Σ.

Lemma 3.2. For every ε > 0 and ε1 > 0, ε2 > 0 there exist a set J ⊆ U and a

constant C̃ > 1 such that Ld(U\J) < ε2 and for every λ ∈ U there exists a set
Ωλ ⊆ Σ such that νλ(Ωλ) > 1− ε1,

C̃−1e−n(hµλ+ε) ≤ νλ([ i|n] ≤ C̃e−n(hµλ−ε) and (3.3)

C̃−1e−n(χµλ+ε) ≤
∣∣∣∣(ψλ

i|n

)′
(πλ(σn+1i))

∣∣∣∣ ≤ C̃e−n(χµλ−ε) for every n ≥ 1,

λ ∈ J and i ∈ Ωλ. (3.4)

Proof. By Egorov’s Theorem, for every ε > 0, ε1 > 0 and λ ∈ U there exists a set
Ωλ ⊆ Σ such that νλ(Ωλ) > 1− ε1,

C̃−1
λ e−n(hµλ+ε) ≤ νλ([ i|n] ≤ C̃λe

−n(hµλ−ε) and

C̃−1
λ e−n(χµλ+ε) ≤

∣∣∣∣(ψλ
i|n

)′
(πλ(σn+1i))

∣∣∣∣ ≤ C̃λe
−n(χµλ−ε) for every n ≥ 1 and

i ∈ Ωλ.

An application of Lusin’s Theorem shows that for every ε2 > 0 there exist a set

J ⊆ U and a constant C̃ such that Ld(U\J) < ε2 and C̃λ ≤ C̃ for every λ ∈ J . �

Denote ν̃λ the restriction of the measure νλ to Ωλ and µ̃λ its push-down measure.
That is,

ν̃λ := νλ|Ωλ
and µ̃λ := ν̃λ ◦ π−1

λ , (3.5)
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where Ωλ is defined in Lemma 3.2. For a finite length word (l0 . . . ln−1) ∈ S∗ let
us define

Aλ
(l0...ln−1) =

{
(i, j) ∈ Ω2

λ : i ∧ j = n and im = jm = lm for 0 ≤ m ≤ n− 1
}
.

We note that for an empty word Aλ
∅ =

{
(i, j) ∈ Ω2

λ : i0 6= j0
}

.
Frostman’s Theorem, see [2, Theorem 4.13], implies

dimH µλ ≥ sup

{
s > 0 :

∫∫
R2

|x− y|−s dµλ(x)dµλ(y) <∞
}
. (3.6)

Lemma 3.3. For every 0 < s < 1 and i, j ∈ Σ such that i0 6= j0 we have

|πλ(i)− πλ(j)|−s ≤
∞∑
n=0

2s(n+1)

diamXs
GdiamX

2n
(i, j,λ).

Proof. If |πλ(i)− πλ(j)| = 0 then the right hand side of the inequality is divergent.
Otherwise, if |πλ(i)− πλ(j)| > 0 then

|πλ(i)− πλ(j)|−s ≤
∞∑
n=0

2s(n+1)

diamXs
1{ 2sn

diamXs
<|πλ(i)−πλ(j)|−s≤ 2s(n+1)

diamXs

} =

∞∑
n=0

2s(n+1)

diamXs
1{diamX

2n+1 ≤|πλ(i)−πλ(j)|<diamX
2n

} ≤ ∞∑
n=0

2s(n+1)

diamXs
1{|πλ(i)−πλ(j)|<diamX

2n }.

The statement follows from (3.1). �

Proposition 3.4. For every λ0 ∈ U and ε > 0 there exists a δ > 0 such that

dimH µλ ≥ min

{
hµλ0

− 2ε

χµλ0
+ 2ε

, 1− ε

}
for Lebesgue-a.e. λ ∈ Bδ(λ0), (3.7)

where Bδ(λ0) denotes the ball with center at λ0 and radius δ.

Proof. Fix an ε > 0 and a λ0 ∈ U . By Proposition 2.5 let δ > 0 be such that if
|λ0 − λ| < δ ∣∣∣hµλ0

− hµλ
∣∣∣ < ε and

∣∣∣χµλ0
− χµλ

∣∣∣ < ε. (3.8)

Let s < min
{

1− ε, hµλ−2ε

χµλ+2ε

}
and let ε2 > 0 and J as in Lemma 3.2. For the

simplicity, Jδ(λ0) := Bδ(λ0) ∩ J . Since dimH µλ ≥ dimH µ̃λ and µ̃λ is the push-
down measure of ν̃λ, to prove (3.7) it is enough to show according to (3.6) that

I :=

∫
Jδ(λ0)

∫∫
Ω2

λ

|πλ(i)− πλ(j)|−s dν̃λ(i)dν̃λ(j)dLd(λ) <∞.

For the simplicity denote ν̃λ × ν̃λ by ν2
λ then

I =

∞∑
n=0

∑
ı∈Sn

∫
Jδ(λ0)

∫∫
Aλ
ı

|πλ(i)− πλ(j)|−s dν2
λ(i, j)dLd(λ)

By (2.9) we have

I ≤
∞∑
n=0

∑
ı∈Sn

∫
Jδ(λ0)

∫∫
Aλ
ı

Cs2

∣∣∣∣(ψλ
i|n

)′
(πλ(σni))

∣∣∣∣−s |πλ(σni)− πλ(σnj)|−s dν2
λ(i, j)dLd(λ).
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By Lemma 3.2(3.4) and (3.8)

I ≤

Cs2C̃
∞∑
n=0

e
n(χµλ0

+2ε)s
∑
ı∈Sn

∫
Jδ(λ0)

∫∫
Aλ
ı

|πλ(σni)− πλ(σnj)|−s dν2
λ(i, j)dLd(λ).

By applying Lemma 3.3 and Fatou’s Lemma we get

I ≤

Cs2C̃
∞∑
n=0

e
n(χµλ0

+2ε)s
∑
ı∈Sn

∞∑
m=0

2s(m+1)

diamX

∫
Jδ(λ0)

∫∫
Aλ
ı

GdiamX
2m

(σni, σnj,λ)dν2
λ(i, j)dLd(λ).

Lemma 3.1 implies that∫∫
Aλ
ı

GdiamX
2m

(σni, σnj,λ)dν2
λ(i, j) =

∑
1,2∈SN(m)

∑
l,p∈S
l 6=p

GdiamX
2m

(l11, p21,λ)ν2
λ([ıl1]×[ıp2]),

where N(m) =
⌈
(m+ 1) log 2

− log κ

⌉
according to Lemma 3.1. Therefore,

∑
ı∈Sn

∑
1,2∈SN(m)

∑
l,p∈S
l 6=p

∫
Jδ(λ0)

GdiamX
2m

(l11, p21,λ)ν2
λ([ıl1]× [ıp2])dLd(λ) ≤

∑
ı∈Sn

∑
1,2∈SN(m)

∑
l,p∈S
l 6=p

max
~1,~2∈SN(m)

∫
Jδ(λ0)

GdiamX
2m

(l~11, p~21,λ)ν2
λ([ıl1]×[ıp2])dLd(λ) =

max
~1,~2∈SN(m)

∫
Jδ(λ0)

GdiamX
2m

(l~11, p~21,λ)
∑
ı∈Sn

ν2
λ(Aı)dLd(λ) ≤

sup
λ∈Jδ(λ0)

∑
ı∈Sn

ν2
λ(Aı) max

~1,~2∈SN(m)

∫
Jδ(λ0)

GdiamX
2m

(l~11, p~21,λ)dLd(λ) ≤

2C1diamX

2m
sup

λ∈Jδ(λ0)

∑
ı∈Sn

ν2
λ(Aı),

where we used in the last inequality (3.2). Hence,

I ≤ Cs2C̃
∞∑
n=0

e
n(χµλ0

+2ε)s
∞∑
m=0

2s(m+1)

diamXs

2C1diamX

2m
sup

λ∈Jδ(λ0)

∑
ı∈Sn

ν2
λ(Aı).

Applying Lemma 3.2(3.3) and (3.8) we get

ν2
λ(Aı) ≤ C̃e

−n(hµλ0
−2ε)

νλ([ı])

and this implies that

I ≤ Cs2C̃2C1diamX1−s2s+1
∞∑
n=0

e
n
(

(χµλ0
+2ε)s−(hµλ0

−2ε)
) ∞∑
m=0

2(s−1)m.

Since s < min

{
1− ε,

hµλ0
−2ε

χµλ0
+2ε

}
the right-hand side of the inequality is finite.
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Moreover, ε2 > 0 was arbitrary and therefore dimH µλ ≥ min

{
1− ε,

hµλ0
−2ε

χµλ0
+2ε

}
for Lebesgue almost every λ ∈ Bδ(λ0) which was to be proven. �

Proof of Theorem 1.1(1). Since dimH µλ ≤
hµλ
χµλ

for all λ ∈ U by [7, Theorem 1],

we only need to establish the estimate from below.
Let us argue by contradiction. Suppose that there exist an ε > 0 and a positive

measure set Û of parameters such that

dimH µλ < min

{
1,
hµλ
χµλ

}
− ε for almost every λ ∈ Û .

Let λ0 be a density point of Û . Then there exists a δ0 > 0 such that for every
0 < δ < δ0

Ld
(
λ ∈ Bδ(λ0) : dimH µλ < min

{
1,
hµλ
χµλ

}
− ε
)
> 0.

Using the continuity of the entropy and the Lyapunov exponent (Proposition 2.5)
we get for sufficiently small δ > 0

Ld

(
λ ∈ Bδ(λ0) : dimH µλ < min

{
1,
hµλ0

χµλ0

}
− ε

2

)
> 0.

This contradicts to Proposition 3.4. �

Proof of Theorem 1.1(2). Let U ′ = U ∩
{
λ ∈ U :

hµλ
χµλ

> 1
}

, which is by Proposi-

tion 2.5 open. Fix an arbitrary λ0 ∈ U ′.
Let ε > 0 be such that

hµλ0
−2ε

χµλ0
+2ε > 1. By Proposition 2.5 let δ > 0 be such that

if |λ0 − λ| < δ ∣∣∣hµλ0
− hµλ

∣∣∣ < ε and
∣∣∣χµλ0

− χµλ
∣∣∣ < ε. (3.9)

Let ε1, ε2 > 0 and let J and Ωλ as in Lemma 3.2 and Jδ(λ0) := Bδ(λ0) ∩ J .
We are going to prove that µ̃λ is absolutely continuous for Lebesgue almost every
λ ∈ Jδ(λ0) with density in L2. Letting ε2 → 0 we get that µ̃λ is absolutely
continuous for Lebesgue-a. e. λ ∈ Bδ(λ0) with density in L2, then letting ε1 → 0
along a countable set we get that µλ is abs. cont. for almost every Bδ(λ0), but
the L2 property may disappear.

Let

D(µ̃λ, x) := lim inf
r→0

µ̃λ((x− r, x+ r))

2r
.

the lower density of the measure µ̃λ at the point x. By [10, Theorem 2.12], if
D(µ̃λ, x) < ∞ for µ̃λ-a.e. x then the measure is absolutely continuous. To prove
that it is sufficient to show

J :=

∫
Jδ(λ0)

∫
R
D(µ̃λ, x)dµ̃λ(x)dLd(λ) <∞.

Applying (3.5) and Fubini’s Lemma we get

J ≤ lim inf
r→0

1

2r

∫
Jδ(λ0)

∫∫
Ω2

λ

1{|πλ(i)−πλ(j)|<r}dν
2
λ(i, j)dLd(λ),
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where ν2
λ = ν̃λ × ν̃λ. Then

J ≤ lim inf
r→0

1

2r

∞∑
n=0

∑
ı∈Sn

∫
Jδ(λ0)

∫∫
Aı

1{|πλ(i)−πλ(j)|<r}dν
2
λ(i, j)dLd(λ),

and by (2.9), (3.4) and (3.9)

J ≤ lim inf
r→0

1

2r

∞∑
n=0

∑
ı∈Sn

∫
Jδ(λ0)

∫∫
Aı

1{
|πλ(σni)−πλ(σnj)|<C2C̃re

n(χµλ0
+2ε)

}dν2
λ(i, j)dLd(λ).

Applying Lemma 3.1 we get

J ≤

lim inf
r→0

1

2r

∞∑
n=0

∑
ı∈Sn

∑
p,l∈S
p 6=l

∑
1,2∈SN(n,r)

∫
Jδ(λ0)

G
C2C̃re

n(χµλ0
+2ε)(l11, p21,λ)ν2

λ([ıl1]×[ıp2])dLd(λ),

where N(n, r) =

⌈
logC2C̃re

n(χµλ0
+2ε)

/2diamX
log κ

⌉
according to Lemma 3.1. Similarly,

as in the proof of Proposition 3.4 one can get∑
ı∈Sn

∑
p,l∈S
p 6=l

∑
1,2∈SN(n,r)

∫
Jδ(λ0)

G
C2C̃re

n(χµλ0
+2ε)(l11, p21,λ)ν2

λ([ıl1]×[ıp2])dLd(λ) ≤

2C1C2C̃re
n(χµλ0

+2ε)
sup

λ∈Jδ(λ0)

∑
ı∈Sn

ν2
λ(Aı)

and

sup
λ∈Jδ(λ0)

∑
ı∈Sn

ν2
λ(Aı) ≤ C̃e

−n(hµλ0
−2ε)

.

Therefore,

J ≤ 2C1C2C̃
2
∞∑
n=0

e
n(χµλ0

−hµλ0
+4ε)

.

Since χµλ0
−hµλ0

+4ε < 0 the right-hand side is finite. This completes the proof. �

4. An example: place-dependent Bernoulli convolutions

In this section we show an application for our main theorem. Let 0 < ρ < 1
2

and 0.5 < λ < 1 and let us consider the following function f : [−1, 1] × [0, 1] 7→
[−1, 1]× [0, 1]

f(x, y) =

{
(λx− (1− λ), 2y

1+2ρx) if 0 ≤ y < 1
2 + ρx

(λx+ (1− λ), 2y−2ρx−1
1−2ρx ) if 1

2 + ρx ≤ y ≤ 1.

For the action of f on the rectangle [−1, 1]× [0, 1] see Figure 1.
It follows by [14] that there exists an f -invariant measure µSBR which is called

as the SBR-measure such that

1

n

n−1∑
k=0

L2 ◦ f−k → µSBR weakly,
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x

y

f

-1 10

1

y ® x Ρ +
1

2

x

y

8Λ

Figure 1. The map f acting on the rectangle [−1, 1]× [0, 1].

where L2 is the normalized Lebesgue measure to the rectangle. Our aim to find a
set of parameters such that µSBR � L2. It is easy to see that

dµSBR(x, y) = dµλ,ρ(x)dL1(y),

where µλ,ρ is the place-dependent invariant measure of the IFS

Ψλ =
{
ψλ0 (x) = λx− (1− λ), ψλ1 (x) = λx+ (1− λ)

}
with probabilities

{
p0(x) = 1

2 + ρx, p1(x) = 1
2 − ρx

}
. Then the property µSBR �

L2 is equivalent to µλ,ρ � L1. It was proven by Peres and Solomyak [11] that
if ρ = 0 then µλ,0 is absolutely continuous w.r.t Lebesgue measure for Leb-a.e.
λ ∈ (0.5, 1).

According to (1.3) and (1.4) we have

χµλ,ρ = − log λ and

hµλ,ρ = −
∫
R
(

1
2 + ρx

)
log
(

1
2 + ρx

)
+
(

1
2 − ρx

)
log
(

1
2 − ρx

)
dµλ,ρ(x).

To simplify the entropy let us observe that |2ρx| < 1, therefore

hµλ,ρ = log 2 +
1

2

∫
R

(1 + 2ρx)
∞∑
n=1

(−2ρx)n

n
+ (1− 2ρx)

∞∑
n=1

(2ρx)n

n
dµλ,ρ(x) =

log 2−
∞∑
n=1

(2ρ)2n

2n(2n− 1)

∫
R
x2ndµλ,ρ(x). (4.1)

For brevity, let Fn =
∫
R x

2ndµλ,ρ(x). Using (2.4) one can write an inductive formula
for the series {Fn}∞n=0. Precisely,

Fn = (1− λ)2n +
n∑

m=1

2m(1− λ)2n−2mλ2m−1

(
2n

2m

)(
λ

2m
− 2ρ(1− λ)

2n− 2m+ 1

)
Fm,

and therefore

Fn =
(1− λ)2n

1 + λ2n−1(4nρ(1− λ)− λ)
+

n−1∑
m=1

2m(1− λ)2n−2mλ2m−1

1 + λ2n−1(4nρ(1− λ)− λ)

(
2n

2m

)(
λ

2m
− 2ρ(1− λ)

2n− 2m+ 1

)
Fm.
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0.55 0.60 0.65 Λ

0.1

0.2

0.3

0.4

Ρ

singular

abs.cont.

Figure 2. The singularity and absolute continuity region of the
measure µλ,ρ.

For example,

F1 = (1−λ)2

1+λ(4ρ(1−λ)−λ) ,

F2 = (1−λ)4

1+λ3(8ρ(1−λ)−λ)
+ 2(1−λ)4λ(3λ−4ρ(1−λ))

(1+λ3(8ρ(1−λ)−λ))(1+λ(4ρ(1−λ)−λ))
, etc.

It follows from (4.1) that for every N ≥ 1

log 2−
N∑
n=1

(2ρ)2n

2n(2n− 1)
Fn−

(2ρ)N+1

(2N + 2)(2N + 1)(1− (2ρ)2)
≤ hµλ,ρ ≤ log 2−

N∑
n=1

(2ρ)2n

2n(2n− 1)
Fn.

(4.2)

Theorem 4.1. For every 0 ≤ ρ < 0.5 and Lebesgue almost every λ ∈ (0.5, 0.6684755)

log 2− 2ρ2(1−λ)2

1+λ(4ρ(1−λ)−λ) −
ρ2

3(1−4ρ2)

− log λ
≤ dimH µλ,ρ ≤

log 2− 2ρ2(1−λ)2

1+λ(4ρ(1−λ)−λ)

− log λ
.

Moreover, µλ,ρ is absolutely continuous for Lebesgue almost every

λ ∈
{
λ ∈ (0.5, 0.6684755) : log 2− 2ρ2(1− λ)2

1 + λ(4ρ(1− λ)− λ)
− ρ2

3(1− 4ρ2)
> − log λ

}
.

We note that if 0 < λ < 0.5 then the attractor of the IFS is a Cantor set
with dimension strictly less than one. Moreover, it satisfies the open set condition
trivially, therefore without loss of generality we may assume that λ > 0.5.

Proof. The system Ψλ and the probabilities
{

1
2 + ρx, 1

2 − ρx
}

satisfy the conditions
(A1),(A2) and (A4) trivially.

It follows from [12, Section 5] and [16, Theorem 2.6] that Ψλ satisfies the condi-
tion (A3) on the interval (0.5, 0.6684755). The theorem now is an easy consequence
of Theorem 1.1 and the bound (4.2) with N = 1. �

For more precise characterization of the measure µλ,ρ, see Figure 2.
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[18] K. Simon, B. Solomyak, and M. Urbański: Invariant measures for parabolic IFS with overlaps

and random continued fractions, Trans. Amer. Math. Soc. 353 (2001), 5145-5164.
[19] I. Werner: Contractive Markov systems, J. Lond. Math. Soc. 71 No. 2 (2005), 236-258.
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