ON ITERATED FUNCTION SYSTEMS WITH
PLACE-DEPENDENT PROBABILITIES

BALAZS BARANY

ABSTRACT. In this paper we study a family of invariant measures of parameter-
ized iterated function systems where the corresponding probabilities are place-
dependent. We prove that the Hausdorff dimension of the measure is equal to
Entropy/Lyapunov exponent whenever it is less than 1 and the measure is ab-
solute continuous w.r.t. the Lebesgue measure if Entropy/Lyapunov exponent
is greater than 1 for Lebesgue almost every parameters.

1. INTRODUCTION AND STATEMENTS

Let X be a compact interval on the real line and let {wi}le be a family of
contractive maps mapping X into itself. We call the set {wi}le an iterated function
system (IFS) on X. It is well known that there exists a unique non-empty compact
set A C X such that it is invariant w.r.t the IFS, that is A = UX_;4; (A). We call
the set A the attractor of the IFS. Moreover, for any probability weights {pi}le
such that 0 < p; < 1 and Z,’f:l p; = 1 there exists a unique probability measure
that satisfies suppu = A and

k
p=> pipory; . (1.1)
=1

The measure p is called the invariant measure of the IFS (see e.g. Hutchinson [5],
Falconer [2]).

In this paper we focus on an extended class of invariant measures. We consider
the probability measures on the set A that satisfy the equation

k
/ F@)du(z) =Y / pi() £ (i) du(x) for every f € C(X),  (1.2)
=1

where p; : X + (0,1) are Holder continuous for every ¢ = 1...k and Zlepi(x)zl.
Fan and Lau proved that there exists a unique probability measure which satisfies
the equation (1.2) and suppu = A, see [3]. Let us call the measure u place-dependent
mvariant measure.

Place-dependent invariant measures were studied in several papers, see e.g. [4,
6, 7, 8, 19]. Our goal is to determine the Hausdorff dimension of such measures
and to give a sufficient condition for the absolute continuity w.r.t the Lebesgue
measure. For the basic properties and definition of the Hausdorff dimension see for
example [2].
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For further analysis let us introduce two notations. Let us define the entropy h,
of the measure u as

k
b= = [ Y pie)logpi(e)du(a). (13)
=1

Moreover, denote x,, the Lyapunov exponent of the IFS w.r.t u. That is,

k
Xu 1= —/sz(l‘) log ’1,!);(1‘)‘ du(z). (1.4)
i=1

Fan and Lau showed that if the IFS {1/)7;}?:1 satisfies the so-called open set
condition (i.e. there exists an open set U such that ¢;(U) N;(U) = 0 for every
i # j) then

: hy,

dim pr = 22,

X
where dimg o denotes the Hausdorff dimension of the measure p, see [3, Corol-
lary 3.5]. Jaroszewska and Rams proved that without any separation condition the
entropy divided by the Lyapunov exponent is always an upper bound for the Haus-
dorff dimension, see [7, Theorem 1]. Furthermore, Lau, Ngai and Wang construc-
ted absolutely continuous place-dependent invariant measures defined by non-linear
IFSs with overlaps, see [9, Section 7]. However, sufficient condition for absolute

continuity is not known in general.

In the case of ordinary (not place-dependent) invariant measures (see (1.1))
to prove absolute continuity in general, essentially the only approach is the so-
called transversality method which was first introduced by Pollicott and Simon
[15]. Simon, Solomyak and Urbaiiski considered parameterized families of iterated
function systems and proved that the Hausdorff dimension of the invariant measure
is the minimum of the entropy divided by the Lyapunov exponent and 1, further
the measure is absolute continuous if the entropy/Lyapunov exponent is strictly
greater than 1 for Lebesgue almost every parameters whenever the IFS satisfies
the transversality condition, see [18]. Our main theorem establishes this result for
place-dependent invariant measures.

Let U C R% be an open, bounded set. Let us consider a family of IFSs Uy =
{wi)‘}f:l, XA € U. Denote S = {1,...,k} the set of symbols and ¥ = SV the
symbolic space. Let us define the natural projection as

(i) = nli_}n;(}%’(‘) o+ o (0), fori= (igi1---) € X. (1.5)

Let us suppose that W and the weights {p;(x)},.g satisfy the following conditions.

Principal Assumptions:

(A1) CONTINUITY: the maps A ~ ¢ are continuous from U to C'*?(X) for
every i € S.

(A2) HYPERBOLICITY: there exist 0 < v < k < 1 such that v < | (7/’1‘}\)/ ()] < K
for every A€ U,z € X and i € S.

(A3) TRANSVERSALITY: there exists a constant C; such that for every i,j € X
with io 75 jo

Lag{A €U :|ma(i) — ()| < r} < Cyr for all r > 0.



IFS WITH PLACE-DEPENDENT PROBABILITIES 3

(A4) PROBABILITIES: the maps p; : X — (0,1) are Holder continuous and
bounded away from zero for every i € S. Moreover, Zle pi(x) = 1.

Theorem 1.1. Suppose that the family {VUx}, gy of iterated function systems sat-
isfies the assumptions (A1),(A2) and (A3). Moreover, let {p;(x)},cs be place-
dependent probability weights satisfying (A4) and let px be the place-dependent
invariant measure according to the weights {p;(x)},cs. Then

(1) for Lebesgue almost every X € U

h
dimpy p) = min {“}‘, 1} ,
Xpx

(2) ux < Ly for Lebesgue almost every X € {)\ eU: Z“T" > 1}.
A

As an easy consequence we have the following corollary.

Corollary 1.2. The measure py is equivalent with £1|A)\ for Lebesgue almost every
AE{/\GU:h“—">1}.
Xux

Proof. The statement follows immediately from Theorem 1.1(2) and [4, Theorem 1.1].
U

Remark 1.3. The statement of Theorem 1.1 is also valid when the probabilities
depends on the parameters continuously. Precisely, when the function A — pi}‘ 18
continuous from U to C%(X) for everyi € S.

Remark 1.4. In the assumption (A4) the Hélder continuity implies the unique-
ness of the measure. Jaroszewska showed that if the probability weights are only
continuous then the place-dependent invariant measure is not necessarily unique,
see [6, Theorem 4].

The organization of the paper is as follows: Section 2 is devoted for preliminaries
and we prove our main theorem in Section 3. The proof follows the idea and the
method of [18]. Simon, Solomyak and Urbanski [18] investigated the dimension
theory of the push-down measures of fixed left-shift invariant measures on the
symbolic space. Since our measure is place-dependent, the induced measure on
the symbolic space will depend on the natural projection and therefore on the
parameters. So it is not possible to apply the known methods directly. To avoid
the difficulty that the induced measure on the symbolic space depends also on the
parameters we apply the method introduced by Persson [13]. In Section 4 we apply
our results for place-dependent Bernoulli convolutions.

2. PRELIMINARIES

First of all, we introduce some standard notations. Denote o the left-shift oper-
ator on X, that is

U(Zoll)z(llm)

It is easy to see from the definition of the natural projection (1.5) that

(i) = ¥ (ma(oi)). (2.1)
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Let us define the set §* = Up2 (S™ the set of finite length words of symbols and
for a i = (igi1...) € ¥ let i|,, = (ig?1...4n—1). Moreover, for a finite length word
(i0...1n) let [ig...4,] be the corresponding cylinder set,

[Zoln] :{J:(]OJI)GEJOZZO;,]n:Zn}

Furthermore, let i A j = min{n : i, # j,}.

Let us consider a set of place-dependent probability weights {p;(z)};.s and a
family of parameterized IFS ¥y = {@bf‘} xes- Let us suppose that satisfy (A1),
(A2) and (A4). Then without loss of generality, we can assume that there exist
constants C',¢g > 0 and 0 < # < 1 such that

Ipi(z) — pi(y)| < Clz —y|? and p;(z) > ¢ > 0 for every i € S and z,y € X, (2.2)
and
(M (z) — (D) ()| < Cle —y|? for every 2,y € X, ic Sand AeU. (2.3)

Define the corresponding Ruelle operator Ty : C(X) — C(X), where C(X) is
the set of continuous functions and

k
(Taf)(x) =Y _pi(2) (W (@), (2.4)
i=1

and let T : M(X) — M (X) be the adjoint operator, where M (X) denotes the set
of Borel probability measures on X.

Proposition 2.1 (Fan, Lau). Suppose that {p;(x)},cs satisfies (2.2) and let {wi’\}f:l
be an IFS on X satisfying (A2). Then for every X € U there ezists a unique prob-
ability measure py such that

Txpx = -
Moreover, for every f € C(X), T{f converges uniformly to [ f(x)dux(z).

Proof. The proposition follows from [3, Theorem 1.1]. O

The uniqueness of the measure py implies that it is necessarily in pure type, that
is, the measure p) is either singular or absolutely continuous w.r.t the Lebesgue
measure.

Now we give an important characterization of the measure py. We will show
that py is a push-down measure of a Gibbs measure on the symbolic space. First,
we need the following lemma.

Lemma 2.2. There exist a unique, ergodic, left-shift invariant probability measure
vx on X and a constant ¢ > 1 independent of X such that for everyi € ¥ andn > 1

D)
= T pnbmalom 1) =

Moreover, the entropy h,, of vx satisfies

c

k
oy = — /E ;pim(i))1ogpi<m<i>>dm<i>. (2:6)



IFS WITH PLACE-DEPENDENT PROBABILITIES 5

Proof. Let px(i) :=log pi,(ma(oi)). It is easy to see that
oa(i) = ea(i)] < bal™ for every i,j € 3, (2.7)

with the choose b = max {%, q%} and a = k%, where C, ¢, are from (2.2) and &

is from (A2). Then it follows from [1, Theorem 1.4] that there exists a unique o
invariant prob. measure vy ( which is called the the Gibbs measure of the potential
©x) for one can find constant ¢;(A), ca(A) > 1 and P such that

o )
a(A) < e~ P+ oAt <)

The ergodicity of vy follows from [1, Proposition 1.14]. To prove (2.5) and (2.6),
first let us define the operator Ty : C(X) — C(X)

(T f) (@ Ze%\ i) (41) Zp, ma(i (2.8)

Then it is easy to see that the constant function h(i) = 1 is an eigenfunction
corresponding to the maximal eigenvalue 1. This implies that P = 0, see [1, p. 26].
Then the equation (2.6) is an easy consequence of [1, Theorem 1.22]. Finally, to
get the inequality (2.5) one can check that

c1(N), e2(A) < = e3/070) = egmax{%’q%}/(ling),
see the proof of [1, Theorem 1.16]. O
Lemma 2.3. The measure uy is the push-down measure of vx. That is,

fix = (Ta), va = va oyt

Proof. Let f: X — R continuous. Then

/ F(@)d (m). va ) = / F(ra @) dva (i),
X >

Applying the operator Ty defined in the proof of Lemma 2.2, we have

/f7r>\ ))dva (i) /Zpl (i) £ (ma(id) )dwa (i) =

k
3 mira @) £ ma @) / sz 2)d (7). va(@) =
2 =1
/ (T5f)(@)d (m), va ().
X

In the second equality we used the identity (2.1). This implies that (my), va =
Ty (ma), x- The statement of the lemma follows from Proposition 2.1. O

For the simplicity let us introduce the following notation, for an i € 3 let

f‘ln(:r) = qbz)(‘) o "'owi);,l(x)'
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Lemma 2.4. There exists a constant Cy > 1 such that for everyn > 1,1 € ¥,
AeU and z,y € X we have

¥} ) @

Cyl < ('ni < Oy, 2.9
T o)w 2
Proof. For the proof we refer to [17, Lemma 5.8]. O

Finally, the we prove the continuity of the entropy and Lyapunov exponent.
Proposition 2.5. The maps X +— h,, and X+ x,, are continuous on U.

Before we prove the proposition we state an auxiliary lemma about the uniform
convergence of the Perron-Frobenius operator on the symbolic space. Let

5= max{ 2 C 2 C

—r0qlogq’ —qr¥logq’ —kOylogy’ K20ylogy
where the constant C, ¢, k,7v,6 are the constants in (A2),(2.2) and (2.3). Further-
more, let By, := e2# Zn=m+1°" and

I:={feC(X): f>0,f(i) < Bnf(j) when iAj=m}.
For brevity, let us introduce the notation vx(f) = f f(D)dva(i).

} and a = k?,

Lemma 2.6. There exist a C' > 0 and 0 < n < 1 universal constants such that
for every f €T

T fG) —va(f)] < C'ua(f)(X —n)" for everyn > 1, i€ ¥ and A € U,
where Ty is the operator defined in (2.8).

To prove the lemma we will apply the so-called cone method which was first
introduced in [1].

Proof. If f € " and i A j = m then
e“”*(ii)f(z'i) < esox(ij)ebam“Bme(ij) < Bme‘“(ij)f(ij),

where b is the constant defined in (2.7). Therefore 7xI' C T
o 8-l -a)
— —«
= dC' :=By+1.
n 2633 an o+
Now, fix an f € I' and suppose that vx(f) = 1. Define f; such that it satisfies
V)‘<f1) =1 and

Taf=n+ 1 —=n)f. (2.10)
We claim that f; € I'. It is enough to see that (Txf—mn)/(1—n) € I'. Since
Taf(i) > Byt > n therefore f; > 0. Moreover, to see that f1(i) < Bmfi(j)

whenever i A j = m it is enough to prove that

)< BuTa I () = Taf ().

B, —1
It follows easily from the definitions that
BuTaf() = TS () - B — Briae™

By, —1 - By, —1
By Lagrange theorem,

m—+1
Bm — Bm+1€

TAfG) =

for every x,y € [0,log Bo|,z > y we have z —y < e — Y < By(x — y).
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Applying Lagrange theorem we get
By, — Bppyret®™ st log B —log B, (28 -Db)(1 - )

> = ;
By, — 1 0 log By, 0 2382

which is exactly the definition of 7. Iterating (2.10) we obtain that for every n > 1
there exists an f, € I' such that vx(f,) = 1 and

TNf=1=0=m"+1=n)"fn
Hence we get that for every f € I' with vx(f) =1
[TX'f(3) = 1] < (1 —n)"(1 + Bo).

This implies the statement of the lemma. ]

Proof of Proposition 2.5. We will only prove that the entropy is continuous, the
proof for the Lyapunov exponent is similar. First, we prove that the function
—pa = —logpi,(ma(oi)) is in T'. From equation (2.7) it follows that for iAj=m
s I m
pali) _ —eal) +ba™ b
—a) —ea() — log gor

Therefore, by applying Lemma 2.6 we get for every A € U

[T (=%a) = va(—=pa)| < C'log k(1 —n)" for every n > 1.

Fix € > 0. Since the function A — T3'(—¢x) is continuous for every n € N one
can choose N > 1 and & > 0 such that C'log k(1 —n)N < &/3 and |A; — Ag| <0 =
|T)\]\17(—<p)\1) — Tg(—cpAQ)‘ < ¢/3. Therefore,

b m-+1
Se—logqaa éBm

‘VA1<_90)\1) - V)\Q(_SO)\Z)’ <
N N N N
‘Vkl(*(pkﬂ - 7;\1 (7@A1)}+’7;1 (*Q0>q) - 7;\2 (7¢A2)|+‘712(780A2) - V>\2(790>\2)‘ <E€.
The statement follows from Lemma 2.3 and the fact that h,, = va(—pa). O

3. PROOF OF THEOREM 1.1

During the proof of Theorem 1.1 we follow the method of Simon, Solomyak and
Urbaniski [18] with a relevant modification based on the idea of Persson [13]. The
method introduced by Pollicott and Simon [15] and later extended by Peres and
Solomyak [12] and Simon, Solomyak and Urbaiiski [18] is applied for the push-down
measures of left-shift invariant ergodic measures on the symbolic space. More pre-
cisely, for a fixed ergodic o-invariant measure on the symbolic space, the dimension
of its push-down measure is the minimum of the entropy/Lyapunov exponent and
1, whenever the transversality condition holds. That is, the measure on the sym-
bolic space is independent of the parameters. In our case, the Gibbs measure on
the symbolic space depends on the parameters of the IFS as well. To avoid the
difficulties of this fact we need the following lemma according to [13, Lemma 3].

Lemma 3.1. Leti,j € 3 be such that ig # jo. Then for every r > 0 there exists a
function G,(i,j, X) such that

Ljma@-ma@<ry < Gr(i3, M) (3.1)
and
[ GaiNdza < 26ir (32)
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where 1 denotes the indicator function and Cy is the constant from (A3). Moreover,
the function G.(i,j,X) is constant on cylinders [i|y 1] X [j|y41], where N =

Fog(r/l(fgd;amx)} '

Proof. Let us suppose that i € [ig...ix] and j € [jo...jn]. Let i* := (ip...in1)
and j* := (jo...jn1), where 1 denotes the word (11...). Define G, (i,j, A) as

Grli,d, A) += Tjma (i) ()| <2r)
Then by (2.1) and Lagrange mean value theorem
[mA(®) = A ()] = [7a () = ma (I < [(ma(D) = 7a (1)) = (ma(d) = ma (7)) <

(4,,.) @I - m@] +|(43,.,) (@)

Nt }W)‘(JN—HJ) o ﬂ—)‘(]‘)‘ =<

2diam X kN t1 <.
This implies the inequality (3.1). The other inequality follows from (A3). O

Now we recall some classical result. By Shannon-McMillan-Breiman Theorem,
—%log va([il,]) = hy, for vy a. e. i€,
and by Birkhoft’s Ergodic Theorem
—%bgwmﬂm@m)%wauaaaiéﬂ

Lemma 3.2. For every e > 0 and €1 > 0, €9 > 0 there exist a set J C U and a
constant C > 1 such that Lq(U\J) < €2 and for every XA € U there exists a set
Qx C X such that va(Qy) > 1 — e,

Clehuate) < va(lil,] < Ce ™ hix=2) gnd (3.3)
~ / ~
Cle muate) < ‘(1/1?‘ ) (7T)\(O'n+1i))’ < Ce ™Xux=2) for every n > 1,
AeJandie Qy. (3.4)

Proof. By Egorov’s Theorem, for every € > 0, €1 > 0 and A € U there exists a set
Qx C ¥ such that vx(Qx) > 1 —¢q,

C;le_"(h“A+5) <uwa([i],] < Cxe " hia=2) and

~ / ~

C;le_"(x‘ﬂ“) < ‘(1&?‘ ) <7T)\(Un+li))‘ < Cxe "Xux=) for every n > 1 and
i€ Q.

An application of Lusin’s Theorem shows that for every €2 > 0 there exist a set
J C U and a constant C such that L4(U\J) < g3 and Cy < C forevery A € J. O

Denote vy the restriction of the measure vy to 2y and 1y its push-down measure.
That is,

Uy = V)\|QA and [y := Uy o 7r;1, (3.5)
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where 2 is defined in Lemma 3.2. For a finite length word (lp...l,—1) € S* let
us define

A(lo b)) = {(i,j)EQi:i/\j:nandim:jm:lmforOSmgn—l}.
We note that for an empty word A3 = {(i,j) € Q3 :io # jo -
Frostman’s Theorem, see [2, Theorem 4.13], implies

dimg pux > sup {s >0: / . |z — y|"* dpx(z)dux(y) < oo} : (3.6)
R

Lemma 3.3. For every 0 < s <1 and i,j € ¥ such that ig # jo we have

. o\ |—S > S(?’L+1) o o
lma(i) —ma()° < ZmGdizif;X(laJa)‘)'
n=0

Proof. If |mx(i) — ma(j)| = 0 then the right hand side of the inequality is divergent.
Otherwise, if |mx (i) — 7(j)| > 0 then

. s e 2s(ntD)
ITa(i) — ma()|° < :Omﬂ{$<lm(i)—m( ety =
0 9s(n+1) % ps(nt1)
. Dam X {95 <) ma 02585 } = 2o GramXo | {Ima®)-mall< 5}
The statement follows from (3.1). 0

Proposition 3.4. For every Ag € U and € > 0 there exists a § > 0 such that
hy, —2¢
Xpxng T 2¢’

2]

dimp px > min{ 5} for Lebesgue-a.e. X € Bs(Ao), (3.7)

where Bs(Ag) denotes the ball with center at Ao and radius 6.

Proof. Fix an € > 0 and a Ag € U. By Proposition 2.5 let § > 0 be such that if
|A0 — A| <6

‘hu,\o — hyuy| <€ and ‘Xu,\o — Xpa| <E. (3.8)
Let s < min{l —&, Z?;ii} and let e > 0 and J as in Lemma 3.2. For the
23

simplicity, Js(Ag) := Bs(Ao) N J. Since dimpg px > dimpg iy and gy is the push-
down measure of Uy, to prove (3.7) it is enough to show according to (3.6) that

/J6 o) //QQ (i) — 7A()| 7 doa(i)doa(§)dLa(N) < oo.

For the simplicity denote vy x vy by I/A then

-3 % /M //A mal) — ma () R G )dLa(N)

n=07e8"
By (2.9) we have

I<

Z Z /15(A0 //Af‘ < <¢

n=07€8™

—S

3) A )| - Imale™) — ma (o)~ v 3. DdLa().
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By Lemma 3.2(3.4) and (3.8)

<
02026 (Xung F2)s Z / // [T (0™1) — ma (™))~ dvi (i, j)dLa(N).
zesn J Js(Xo) /S AQ
By applying Lemma 3.3 and Fatou’s Lemma we get
<
ciey ey T [ e NBZG LN
lam 1 ) Ij 1’ .
i S5 o diamX Sy a) S ax g (075,01 A
Lemma 3.1 implies that
/A)‘ Gdlgiﬁ“lx(aniv Unj7 A)dVi(i,j) = Z Z Gd‘gir‘gx(ljl]ijZ]W A)Vi([ﬂjl] X [7])72])7
’ T1,J2 €SN (™) lf;f;

where N(m) = {(m + 1)%—‘ according to Lemma 3.1. Therefore,

Z Z Z/ G giamx (1711, pJ21, /\)VA(W]l] [1pJa])dLa(X) <

2m
1EeS" 3 J,eSN(m) L pes Js5(Xo)

SO Y max / o, G (Ll N2 ([5,] % 7] )La(A) =

N(m) 2m
1ES™ 71772681\;(7,”) 1,peS }LLIJIQES
l#p

max GdiamX lﬁll,phgl,)\ V2 Az dﬁd A S
hi1,ha €SN (M) /J(S(AO) o ( )g;n A(AD)dLa(M)

§ 2
Sup v Ai max / GdiamX lhl 1, Z)hQ]_7 A dﬁd A S
AeJ&(AO)EES" A( ) hl,hQESN(m) (}\0) 2m ( ) ( )

201d:ij sup Z Vi(Ai)j
2 )\EJ(S(AO) 1ES™

where we used in the last inequality (3.2). Hence,

>, 2s(m+1) o diam X
<0 i P28 : sup )y vA(4q).
N o e i

Applying Lemma 3.2(3.3) and (3.8) we get
v (4r) < Ce "™ (f])
and this implies that
o
< CQC2C'1d1amX1 sgstl Z (X“'\ +2e)s=(huux, _25) Z o(s=1)m
n=0 m=0

hu>\_
)X>\+2

Since s < min {1 —€ } the right-hand side of the inequality is finite.
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h —2¢e
Moreover, €2 > 0 was arbitrary and therefore dimy py > min {1 —é&, XMO%}
H)\O

for Lebesgue almost every A € Bs(Ag) which was to be proven. O

Proof of Theorem 1.1(1). Since dimp px < Z“—’\ for all X € U by [7, Theorem 1],

BN
we only need to establish the estimate from below.

Let us argue by contradiction. Suppose that there exist an € > 0 and a positive
measure set U of parameters such that

h ~
dimg px < min {1, = } — ¢ for almost every A € U.
Xpa

Let Ag be a density point of U. Then there exists a dg > 0 such that for every
0<d<dy

h
Ly <)\ € Bs(Ag) : dimpg px < min {1, X“" } — €> > 0.
DN

Using the continuity of the entropy and the Lyapunov exponent (Proposition 2.5)
we get for sufficiently small § > 0

. . h,uA g
Lq| A€ Bs(Ag) : dimpy py < min ¢ 1, o5 ——1]>0.
XHAO 2

This contradicts to Proposition 3.4. U

Proof of Theorem 1.1(2). Let U' = U N {)\ eU: —QZ'\ > 1}, which is by Proposi-
A
tion 2.5 open. Fix an arbitrary Ag € U’.

)
Let € > 0 be such that XZAO +2i > 1. By Proposition 2.5 let § > 0 be such that
o
if [Adg—Al < 9§
‘hu,\o — huy| <€ and ‘Xu,\o — Xpa| <E. (3.9)

Let £1,e2 > 0 and let J and 2y as in Lemma 3.2 and J5(Ag) := Bs(Ag) N J.
We are going to prove that iy is absolutely continuous for Lebesgue almost every
A € Js(Xg) with density in L2 Letting e — 0 we get that fiy is absolutely
continuous for Lebesgue-a. e. A € Bs(Ag) with density in L2, then letting 1 — 0
along a countable set we get that py is abs. cont. for almost every Bs(Ao), but
the L? property may disappear.

Let

~ R TI ﬁ)\((ZE—T,ZE‘i‘T))
D(pix,x) := Ilggf 5 .
the lower density of the measure ) at the point x. By [10, Theorem 2.12], if
D(pin, x) < oo for fix-a.e. z then the measure is absolutely continuous. To prove
that it is sufficient to show

J = /Jso‘o)/RD(ﬂA,x)dﬁA(fU)dﬁd(A) < 0.

Applying (3.5) and Fubini’s Lemma we get

.1 . .
J < hmlnf2/ // Ly (i) —ma () <r} WA (1)) dL(N),
r J(g()\o) Qi

r—0
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where yi = vy X Ux. Then

|
J < hglélffz /]5 oo //]l{m —ma@) <y VX (1, 5)dLa(N),

n=07e8"
and by (2.9), (3.4) and (3.9)

j<hm1nf— / // oy dry (1, )dLa(A
r=0 Z Z J5(Xo) 7 |7FA(Un1)—7TA(J" )‘<CzCre Xy +2 )} A( ']) d( )

n 0zesS™

Applying Lemma 3.1 we get
T <

hf}g%lf o Z Z Z Z /J(; @&J““M v20) (1711, 7oL, N ([l % [1p72]) dLa(N),

n=01€S" pleS 7, 7,eSN(n,7)
p#l

=~ n(X,u)\ .
where N(n,r) = | leC2Cre logoﬂ / 2d1amx-‘ according to Lemma 3.1. Similarly,

as in the proof of Proposition 3.4 one can get

Y / G ntauy, 20 (11, 0301, MR ([17,] % [1p7a] ) dLa(N) <
J&(}\O) CQC’I‘E 0

7eES™ p],)l;zs J1,J2 €SN (n,7)

QCngéren(X“’\O +2¢) sup Z Vi(Ag)
AEJs ()\0) esn

and
sup Z vi(4A;) < Ce” n(fang =29),
)‘EJ‘s(AO)EGS"

Therefore,

o0
J < 2010262 Z en(X”AO _h’”\o +4E)'
n=0
Since Xy, —hus, +4€ < 0 the right-hand side is finite. This completes the proof. [

4. AN EXAMPLE: PLACE-DEPENDENT BERNOULLI CONVOLUTIONS

In this section we show an application for our main theorem. Let 0 < p <
and 0.5 < A < 1 and let us consider the following function f : [—1,1] x [0, 1]

[—1,1] x [0,1]
f(wy)z{ (M= (=N, 597)  if0<y<g+px

Az + (1= X), 22220) it f+pr<y<l.

1
2
—

For the action of f on the rectangle [—1, 1] x [0, 1] see Figure 1.
It follows by [14] that there exists an f-invariant measure pugspr which is called
as the SBR-measure such that
1 n—1
- 222 o f7F — ugpr weakly,
k=0
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1
> Xp+ =
yoXp+sg

|
=<V

" 0 1% \ ]

A

FIGURE 1. The map f acting on the rectangle [—1,1] x [0, 1].

where L5 is the normalized Lebesgue measure to the rectangle. Our aim to find a
set of parameters such that uspr << L. It is easy to see that

duspr(x,y) = dux p(x)dL1(y),

where 1) , is the place-dependent invariant measure of the IFS

0 = {8 @) = Ae = (1= X} (@) = Ao + (1= V)]

with probabilities {po(a:) = % + px,p1(z) = % - pa;}. Then the property uspr <
Lo is equivalent to uy, < Lq. It was proven by Peres and Solomyak [11] that
if p = 0 then p) is absolutely continuous w.r.t Lebesgue measure for Leb-a.e.
A€ (0.5,1).

According to (1.3) and (1.4) we have

Xpy, = — log A and
hus,y = = J (3 + p2) log (3 + p2) + (5 = p) log (3 — pz) dpin ().
To simplify the entropy let us observe that [2pz| < 1, therefore

(e o]

1 sz) >
hmzlog2+2/(1+2px Z + (1 — 2px) Z
R n=1 n=1

logZ—;%((ZQZ)_nl)/sznduA7p(x). (4.1)

For brevity, let Fj, = [, 2?"dp, ,(z). Using (2.4) one can write an inductive formula
for the series {F},},~ . Precisely,

- _ _1(2n A 2p(1 =)
Fn: 1_A2n 9 1_)\271 ZmAle A Fm
1= +mzl m(1=A) om) \2m ~ 2m—-2m+1)™

and therefore

dﬂ)\p ):

(1—X)>"
1+ X2n=1(4np(1 — X) = N)

’il 2m(1 = A2 (o (A 20010
A= 1+ A dnp(1 = A) = A)\2m/ \2m  2n —2m+1 "

Fy =

+
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abs.cont.

L Il L L L
0.55 0.60 0.65

FIGURE 2. The singularity and absolute continuity region of the
measure [y ,-.

For example,

_ (1-X)?
B = T+ A[dp(I—N)—N)’
_ (1-1)*4 2(1-N)*A(BA—4p(1-1X))
= T8 Ep——n T (1+>\3(8p(1—>\)—)\))(1+p)\(4p(1—)\)—)\))’ etc.
It follows from (4.1) that for every N > 1
2 )2n (2p)N+1 N 2n

log2— n— <h <log2— F,.
©8 Z on(2n — 1) " (2N 1 2)2N + 1)(1 — (2p)2) = e =8 nz::l on( 2n )

(4.2)
Theorem 4.1. For every0 < p < 0.5 and Lebesgue almost every A € (0.5,0.6684755)

20°(1-0)2 _ p? log 2 — —2p2(1=0)?
THA@p(I—N—N)  3(1-4p%) < dimpy s, < 08 THA(dp(1—A)—N)
—log A = o’ = —log A '

log2 —

Moreover, i, is absolutely continuous for Lebesgue almost every

2p°(1 = \)? p’
A€ A€ (0.5,0.6684755) : log2 — — > —log\p.
{ (05, )il = o T T =) 30— 47 °8
We note that if 0 < A < 0.5 then the attractor of the IFS is a Cantor set
with dimension strictly less than one. Moreover, it satisfies the open set condition
trivially, therefore without loss of generality we may assume that A > 0.5.

Proof. The system ¥y and the probabilities {% + px, % — pa:} satisfy the conditions
(A1),(A2) and (A4) trivially.

It follows from [12, Section 5] and [16, Theorem 2.6] that W) satisfies the condi-
tion (A3) on the interval (0.5,0.6684755). The theorem now is an easy consequence
of Theorem 1.1 and the bound (4.2) with N = 1. O

For more precise characterization of the measure p, ,, see Figure 2.
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