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September 1, 2022

1) Department of Mathematics and Statistics, University of Exeter, Harrison Building, North
Park Road, Exeter, EX4 4QF, UK.

Email address: d.d.allen@exeter.ac.uk

2)Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU,
UK

Email address: simonbaker412@gmail.com

3) Department of Stochastics, Institute of Mathematics, Budapest University of Technology and
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Abstract

Let ΣA be a topologically mixing shift of finite type, let σ : ΣA → ΣA be the usual left-shift,
and let µ be the Gibbs measure for a Hölder continuous potential that is not cohomologous
to a constant. In this paper we study recurrence rates for the dynamical system (ΣA, σ) that
hold µ-almost surely. In particular, given a function ψ : N → N we are interested in the
following set

Rψ = {i ∈ ΣA : in+1 . . . in+ψ(n)+1 = i1 . . . iψ(n) for infinitely many n ∈ N}.

We provide sufficient conditions for µ(Rψ) = 1 and sufficient conditions for µ(Rψ) = 0.
As a corollary of these results, we discover a new critical threshold where the measure of Rψ
transitions from zero to one. This threshold was previously unknown even in the special case
of a non-uniform Bernoulli measure defined on the full shift. The proofs of our results combine
ideas from Probability Theory and Thermodynamic Formalism. In our final section we apply
our results to the study of dynamics on self-similar sets.

1 Introduction

The notion of recurrence is fundamental in the study of Dynamical Systems and Ergodic Theory.
The famous Poincaré Recurrence Theorem (see, e.g., [13, Theorem 2.11] or [32, Theorem 1.4])
states that if T : X → X is a measure-preserving transformation on a probability space (X,B, µ),
then for any set A ∈ B satisfying µ(A) > 0, we have that µ-almost every x ∈ A satisfies Tn(x) ∈ A
for infinitely many n ∈ N. Under some modest assumptions this measure theoretic result can be
upgraded to a metric one. Indeed if X is equipped with a metric d so that (X, d) is separable
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and B is the Borel σ-algebra, then Poincaré’s theorem implies that for µ-almost every x ∈ X we
have

lim inf
n→∞

d(Tn(x), x) = 0.

When d is a metric so that (X, d) is separable and B is the Borel σ-algebra, we refer to
(X,B, µ, T, d) as a metric measure-preserving system or a m.m.p.s. It is natural to wonder
whether the conclusion lim infn→∞ d(Tn(x), x) = 0 for µ-almost every x can be strengthened into
something more quantitative. The first result obtained in this direction is the following extremely
general quantitative recurrence result obtained by Boshernitzan in [7, Theorem 1.2].

Theorem 1.1 (Boshernitzan, [7]). Let (X,B, µ, T, d) be a m.m.p.s. Assume that for some α > 0
the α-dimensional Hausdorff measure Hα is σ-finite on (X, d). Then for µ-almost every x ∈ X
we have

lim inf
n→∞

n1/αd(Tn(x), x) <∞.

Moreover, if Hα(X) = 0, then for µ-almost every x ∈ X we have

lim inf
n→∞

n1/αd(Tn(x), x) = 0.

Throughout this paper we denote by Hα(X) the α-dimensional Hausdorff measure of a set
X, and we write dimHX to denote the Hausdorff dimension of X. We refer the reader to [14]
for definitions and further information regarding Hausdorff measures and dimension.

A limitation of Boshernitzan’s theorem is that the recurrence rates it provides do not exhibit
a dependence on the measure µ, which is contrary to what one would expect. It could well be
the case that Theorem 1.1 does not allow us to conclude an optimal recurrence rate that holds
for µ-almost every x. This issue was partly addressed in a paper by Barreira and Saussol [3]. In
particular they proved the following statement which appears as [3, Theorem 3].

Theorem 1.2 (Barreira and Saussol, [3]). If T : X → X is a Borel measurable map on X ⊂ Rd,
and µ is a T -invariant probability measure on X, then for µ-almost every x ∈ X, we have

lim inf
n→∞

n1/αd(Tn(x), x) = 0 for any α > lim inf
r→0

logµ(B(x, r))

log r
.

Following on from these two important results, two separate research streams have arisen.
The first of these streams takes a dynamical system and a recurrence rate, and tries to deter-
mine the Hausdorff dimension of the set of points that satisfy this recurrence rate. This line
of research was pursued by Tan and Wang in [31] where the underlying dynamical system was
the β-transformation. Seuret and Wang obtained similar results in [30] for dynamical systems
arising from the study of self-conformal sets. The second stream is more measure theoretic in
nature. Given a metric measure-preserving system (X,B, µ, T, d) and a function ψ : N→ [0,∞),
this stream seeks to find simple criteria which determine the measure of the set

R(ψ) := {x ∈ X : d(Tn(x), x) ≤ ψ(n) for infinitely many n ∈ N} .

This type of problem has been studied in great depth in the context of so called shrinking target
problems. In the shrinking target framework, instead of studying those x satisfying d(Tn(x), x) ≤
ψ(n) for infinitely many n, we fix a y ∈ X and study those x satisfying d(Tn(x), y) ≤ ψ(n) for
infinitely many n. For more on shrinking target problems we refer the reader to [1, 11, 16, 17, 22,
25] and the references therein. Part of the motivation behind the recent activity in this area is
to bring the quantitative recurrence theory in line with the theory of shrinking targets. Drawing
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an analogy with shrinking target problems, it is reasonable to expect that µ(R(ψ)) should be
determined by some naturally occurring volume sum. In particular, it is reasonable to expect
that there exists a monotone function f : [0,∞)→ [0,∞) for which the following holds

µ(R(ψ)) =

 1 if
∑∞

n=1 f(ψ(n)) =∞,

0 if
∑∞

n=1 f(ψ(n)) <∞.
(1.1)

Typically we might expect f to be of the form f(x) = xγ where γ > 0 is the Hausdorff dimension
of the measure. This principle has been verified in various contexts by several authors. It was
shown to be the case for certain natural maps defined on attractors of iterated function systems
by Chang et al. in [9], and by the second author and Farmer in [2]. Hussain et al. in [18] gave
general conditions for a dynamical system to guarantee that (1.1) holds. This result applies
to many well known dynamical systems including the β-transformation and the Gauss map.
Further refinements were obtained by Kirsebom et al. in [23]. They obtained positive results for
a more general class of dynamical system than was previously considered in [2, 9, 18]. They also
considered a more general notion of recurrence where the function ψ was also allowed to depend
upon the point x. Recently Kleinbock and Zheng proved a general result that implies a zero-one
law for both the shrinking target problem and the quantitative recurrence problem [24]. This
result applies to a general family of expanding dynamical systems satisfying suitable bounded
distortion assumptions and for which the underlying measure satisfies the following property:
there exist constants c1, c2, α > 0 such that for any x ∈ X and r ∈ (0, Diam(X)) we have

c1r
α ≤ µ(B(x, r)) ≤ c2r

α.

Measures satisfying this property are called Ahlfors regular measures. We conclude this overview
of related works by mentioning a paper by Chazottes and Ugalde [10]. Just as we do in this
paper, the authors of [10] study Gibbs measures for shifts of finite type. In their paper they
obtained almost sure bounds for the first time a sequence returns under the left-shift to the
cylinder determined by its first n entries. For certain functions ψ these bounds can be used to
obtain measure statements for R(ψ). However, the class of ψ for which this can be done is quite
restrictive and does not contain many natural choices of ψ one would be interested in. This is
not surprising given that the bounds stated in [10] apply to all first returns, whereas R(ψ) is
defined in terms of a subsequence of returns. In this paper we obtain detailed information on the
measure of the set R(ψ) that goes beyond that which can be derived from [10].

In this paper we study recurrence rates for shifts of finite type that hold µ-almost surely with
respect to a Gibbs measure µ. Of special interest will be the case where the defining potential of
µ has positive variance with respect to µ. For short, we say that µ has positive variance in this
case. This seemingly innocuous assumption leads to a much richer theory and a wider range of
behaviour than was previously observed in [2, 9, 18, 23, 24]. The main results of these papers
each assume that the underlying measure µ satisfies some additional uniformity assumption.
Often this uniformity assumption is that the measure is Ahlfors regular. This assumption is very
useful for technical reasons, and often means that one can study the measure of R(ψ) using a
similar toolkit to that which one would use to study shrinking target problems. However, this
uniformity assumption rules out measures µ with positive variance. These measures are often
highly non-uniform and exhibit strong multifractal behaviour. Importantly, it is precisely this
non-uniformity that leads to the richer theory and the wider range of behaviour mentioned above.
We will properly formalise our results in the next section. For now we state the following result
which illustrates the phenomenon described in this paragraph. This result is a special case of
Theorem 2.4.
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Theorem 1.3. Let (pi)
K
i=1 be a non-uniform1 probability vector and let µ be the corresponding

Bernoulli measure defined on the full shift Σ = {1, . . . ,K}N. Equip Σ with the metric d given by
d(i, j) = K−| i∧ j | where | i∧ j | := inf{n ≥ 0 : in+1 6= jn+1}. Then there exist constants h, ρ > 0
such that the following holds: for ε > 0 let ψ+

ε : N→ N and ψ−ε : N→ N be given by:

ψ+
ε (n) =

⌊
log n

h
+

(1 + ε)

h3/2

√
2ρ log n log log log n

⌋
and

ψ−ε (n) =

⌊
log n

h
+

(1− ε)
h3/2

√
2ρ log n log log log n

⌋
.

We then let Ψ+
ε : N → [0,∞) and Ψ−ε : N → [0,∞) be given by Ψ+

ε (n) = K−ψ
+
ε (n) and

Ψ−ε (n) = K−ψ
−
ε (n). Then for any ε > 0 we have µ(R(Ψ+

ε )) = 0 and µ(R(Ψ−ε )) = 1.

Theorem 1.3 demonstrates a critical threshold which to the best of our knowledge has not
previously been observed in the study of quantitative recurrence or shrinking target problems.
We also emphasise that unlike in [2, 9, 18, 23, 24], the presence of the

√
2ρ log n log log log n term

appearing in Theorem 1.3 means that there is no γ > 0 such that for every ψ : N → N we have
(1.1) for some f of the form f(x) = xγ .

Notation. We end this introductory section by formalising some notation that we will use
throughout. Given two positive real valued functions f, g : S → (0,∞) defined on some set S,
we write f � g if there exists a constant C > 0 such that f(x) ≤ Cg(x) for all x ∈ S. For each
k ∈ N we write log(k) to denote the function that is the k-fold composition of log with itself, e.g.
log(3)(x) = log log log x. To avoid additional notational complexities, we will adopt the convention
throughout that log x = 0 whenever x ≤ 1.

2 Background and statement of results

2.1 Background on Thermodynamic Formalism

Let K ≥ 2 be an integer and let
Σ = {1, . . . ,K}N

be the set of infinite sequences formed by elements of the set {1, . . . ,K}. For integers n ≥ 0, let
us denote by

Σn = {1, . . . ,K}n

the set of words of length n, by convention Σ0 = ∅. We also let

Σ∗ =
∞⋃
n=0

Σn

be the set of all finite words. For i ∈ Σ∗, denote by | i | the length of i. For i, j ∈ Σ∪Σ∗, denote
by i∧ j the common prefix of i and j; that is, let

| i∧ j | := inf{n ≥ 0 : in+1 6= jn+1} and i∧ j = (i1, . . . , i| i∧ j |).

1pi 6= 1/K for some i. This condition ensures positive variance.
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Note that if | i∧ j | = 0 then we define i∧ j as the empty word, and if | i∧ j | = ∞ or | i | =
| j | = | i∧ j | then i∧ j = i = j. We equip Σ with the metric given by

d(i, j) = K−| i∧ j |.

For a finite word i ∈ Σ∗ and for a sequence j ∈ Σ ∪Σ∗, we denote by i j the concatenation of i
and j. Moreover, for i ∈ Σ∗ and B ⊆ Σ∗, let

iB = {i j : j ∈ B}.

For a word i ∈ Σ ∪ Σ∗ and 1 ≤ n ≤ m ≤ | i |, we let

i |mn = (in, . . . , im).

Let σ : Σ 7→ Σ be the left-shift map; that is,

σ(i1, i2, . . .) = (i2, i3, . . .).

Given a K ×K matrix A consisting of zeros and ones we can define the corresponding shift
of finite type as follows:

ΣA :=
{
i ∈ Σ : Ail,il+1

= 1 for all l ∈ N
}
.

Notice that σ is well defined as a map from ΣA to ΣA. Also, note that the full shift corresponds
to the case when the matrix A consists entirely of ones. We will always assume that there exists
M ∈ N such that each entry of AM is strictly positive. This assumption means that the map
σ : ΣA → ΣA is topologically mixing (for the definition of topologically mixing see [21, Definition
1.8.2]). For each n ∈ N we let

ΣA,n :=
{
i ∈ Σn : Ail,il+1

= 1 for all 1 ≤ l ≤ n− 1
}

and write

ΣA,∗ =

∞⋃
n=1

ΣA,n.

For an i ∈ ΣA,∗, let [i] be the corresponding cylinder set of sequences in ΣA that begin with i,
i.e.

[i] := {j ∈ ΣA : i = j1 . . . j| i |}.

For a subset B ⊆ ΣA,∗ we also let [B] :=
⋃

i∈B[i].
We call a map f : ΣA 7→ R Hölder-continuous if there exist constants b > 0 and 0 < α < 1

such that
|f(i)− f(j)| ≤ bα| i∧ j |

for all i, j ∈ ΣA. Let us define the pressure of such an f in the usual way by

P (f) = lim
n→∞

1

n
log

 ∑
i∈ΣA,n

sup
j∈[i]

exp

(
n−1∑
k=0

f(σk j)

) .

By [8, Theorem 1.4, Proposition 1.13, and Theorem 1.16] there exists a unique σ-invariant ergodic
measure µ on ΣA for which there exists a constant C > 1 such that

C−1 ≤ µ([i1, . . . , in])

exp
(
−nP (f) +

∑n−1
k=0 f(σk i)

) ≤ C (2.1)
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for every i ∈ ΣA and n ∈ N. We call µ the Gibbs measure of the potential f . For the purpose of
exposition, we suppress the dependence of µ on f throughout. It can be seen from the definition
of Gibbs measure that there exists a constant C > 1 such that for every i, j ∈ ΣA,∗ satisfying
i j ∈ ΣA,∗, we have

C−1 ≤ µ([i j])

µ([i])µ([j])
≤ C. (2.2)

Without loss of generality, we may assume that the constants in (2.1) and (2.2) are equal.
We define the entropy of a Gibbs measure µ by

hµ := lim
n→∞

−1

n

∑
i∈ΣA,n

µ([i]) logµ([i]).

It can be shown, see [8, Theorem 1.22] for example, that

hµ = P (f)−
∫
f(i)dµ(i). (2.3)

We define the variance of a Gibbs measure µ of some potential f to be

ρµ := lim
n→∞

1

n

∫ (n−1∑
k=0

f(σk i)− n
∫
f(j) dµ(j)

)2

dµ(i).

We emphasise that this limit always exists (see [27]). Clearly ρµ ≥ 0. It is well known that we
have equality here if and only if f is cohomologous to a constant, i.e. there exists a continuous
function g : ΣA → R and c ∈ R such that f = g ◦ σ − g + c. For a proof see [27]. We will often
assume that f is not cohomologous to a constant and therefore that ρµ > 0.

If (pi)
K
i=1 is a probability vector and µ is the corresponding Bernoulli measure on the full

shift Σ, then µ can be realised as the Gibbs measure for the potential f : Σ → R given by
f(i) = log pi1 . We recall here that the Bernoulli measure corresponding to the probability vector
(pi)

K
i=1 is defined by assigning cylinders measure

µ([i]) = pi1pi1 . . . pi| i |

for each i ∈ Σ∗. An important consequence of this definition is that for any two words i, j ∈ Σ∗,
we have

µ([i j]) = µ([i])µ([j]). (2.4)

For further details regarding the definition of Bernoulli measures and some of their properties
we refer the reader to [21, Chapter 4.2] and [32]. We emphasise that when µ is a Bernoulli
measure with corresponding probability vector (pi)

K
i=1, then the entropy and variance of µ take

the following simpler form:

hµ = −
K∑
i=1

pi log pi

and

ρµ =

K∑
i=1

pi(log pi)
2 −

(
K∑
i=1

pi log pi

)2

.

It can be seen that the potential f corresponding to a Bernoulli measure µ is cohomologous to a
constant if and only if f is a constant function. Therefore ρµ > 0 if and only if (pi)

K
i=1 is not the

uniform probability vector.
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2.2 Statement of results

Let ψ : N 7→ N and let Rψ be the set of infinite sequences that return infinitely often to the
neighbourhood determined by ψ when we apply the left shift. That is, let

Rψ := {i ∈ ΣA : d(σn i, i) ≤ K−ψ(n) for infinitely many n ∈ N}. (2.5)

Note that this definition is slightly different to the definition of R(ψ) given earlier. This definition
helps to simplify much of our analysis. In our subsequent proofs we will often make the assumption
that ψ satisfies ψ(n) ≤ n for all n sufficiently large. Under this assumption Rψ has the following
simple formulation

Rψ =
∞⋂
n=1

∞⋃
m=n

⋃
i∈ΣA,ψ(m)

j∈ΣA,m−ψ(m)

i j i∈ΣA,m+ψ(m)

[i j i]. (2.6)

The assumption that ψ satisfies ψ(n) ≤ n for all n sufficiently large is not especially restrictive.
Indeed for any Gibbs measure µ it can be shown using the Borel–Cantelli Lemma (see Lemma 3.5)
and the Shannon–McMillan–Breiman Theorem [28, Chapter 6, Theorem 2.3] that

µ
(
{i ∈ ΣA : d(σk i, i) ≤ K−k for infinitely many k ∈ N}

)
= 0.

As such we can often assume without loss of generality that ψ satisfies ψ(n) ≤ n for all n
sufficiently large.

The goal of this paper is to find “close to optimal” conditions for establishing a “zero-one
law” for the measure of the set Rψ. The following theorem provides sufficient conditions for Rψ
to have measure zero.

Theorem 2.1. Let µ be the Gibbs measure for a Hölder continuous potential that is not coho-
mologous to a constant. Let ψ : N 7→ N be such that there exists ε > 0 for which

∞∑
n=1

e−hµψ(n)+(1+ε)
√

2ρµψ(n) log logψ(n) <∞.

Then µ(Rψ) = 0.

Given ψ : N → N and n ∈ N, let ψ−1(n) = {m ∈ N : ψ(m) = n}. For any set A ⊆ N we
denote the cardinality of A by #A. The following theorem is the main result of this paper. It
gives sufficient conditions for µ(Rψ) = 1.

Theorem 2.2. Let µ be the Gibbs measure for a Hölder continuous potential that is not coho-
mologous to a constant. Let ψ : N 7→ N be such that ψ(n) ≤ n for all n sufficiently large and
limn→∞ ψ(n) = ∞. Suppose that there exists an increasing sequence (nk)

∞
k=1 and a function

g : N 7→ [1,∞) satisfying lim
n→∞

g(n)
g(n+1) = 1, such that

µ

({
i ∈ ΣA : lim sup

k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

> 1

})
= 1 (2.7)

and
lim
k→∞

#ψ−1(nk)e
−hµnk+

√
2ρµnkg(nk) =∞. (2.8)
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Then

µ
({
i ∈ ΣA : d(σp i, i) ≤ K−nk for some p ∈ ψ−1(nk) for infinitely many k ∈ N

})
= 1.

Moreover, µ(Rψ) = 1.

We emphasise that Theorem 2.2 also holds without the assumption limn→∞ ψ(n) =∞. It can
be shown using the arguments given in this paper that whenever lim infn→∞ ψ(n) <∞ we have
µ(Rψ) = 1. Theorem 2.2 implies the following corollary.

Corollary 2.3. Let µ be the Gibbs measure for a Hölder continuous potential that is not coho-
mologous to a constant. Let ψ : N 7→ N be such that ψ(n) ≤ n for all n sufficiently large and
limn→∞ ψ(n) =∞. Suppose that there exists ε > 0 for which⌈

ehµn−(1−ε)
√

2ρµn log logn
⌉
� #ψ−1(n) (2.9)

for all n sufficiently large. Then µ(Rψ) = 1.

Proof. We take (nk)
∞
k=1 = (k)∞k=1 and g(n) = (1− ε/2)

√
log log n. Then, by (2.9), we have that

#ψ−1(nk)e
−hµnk+

√
2ρµnkg(nk) � exp

(ε
2

√
2ρµk log log k

)
for all k sufficiently large and so (2.8) follows readily. The fact assumption (2.7) holds is a
consequence of the Law of the Iterated Logarithm for Gibbs measures, see Theorem 3.2 below.
By Theorem 2.2 we now have µ(Rψ) = 1.

One case our analysis does not cover is when ψ only satisfies the weaker assumption that⌈
ehµn−

√
2ρµn log logn

⌉
� #ψ−1(n)

for all n sufficiently large. It seems to be a challenging problem to determine µ(Rψ) under this
assumption.

Combining Theorem 2.1 and Corollary 2.3 we obtain the following result. It identifies a critical
threshold for the measure of Rψ. This result implies Theorem 1.3 stated in the introduction.

Theorem 2.4. Let µ be the Gibbs measure for a Hölder continuous potential that is not coho-
mologous to a constant. For ε > 0 let ψ+

ε : N→ N and ψ−ε : N→ N be given by:

ψ+
ε (n) =

⌊
log n

hµ
+

(1 + ε)

h
3/2
µ

√
2ρµ log n log log log n

⌋

and

ψ−ε (n) =

⌊
log n

hµ
+

(1− ε)
h

3/2
µ

√
2ρµ log n log log log n

⌋
.

Then for any ε > 0 we have µ(Rψ+
ε

) = 0 and µ(Rψ−ε ) = 1.

Proof. This result is a consequence of Theorem 2.1 and Corollary 2.3. We split our proof into
two parts.
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Proof that µ(Rψ+
ε

) = 0. Fix ε > 0. We begin by noting that for all n sufficiently large we have

ψ+
ε (n) =

⌊
log n

hµ
+

(1 + ε)

h
3/2
µ

√
2ρµ log n log log log n

⌋
≤
(

1 +
ε

2

)2/3 log n

hµ
(2.10)

and

log log

((
1 +

ε

2

)2/3 log n

hµ

)
≤
(

1 +
ε

2

)2/3
log log log n. (2.11)

Writing e(x) = ex, it follows from the definition of ψ+
ε that

∞∑
n=1

e−hµψ
+
ε (n)+(1+ε/2)1/3

√
2ρµψ

+
ε (n) log logψ+

ε (n)

�
∞∑
n=1

1

n
e

(
−(1 + ε)

h
1/2
µ

√
2ρµ log n log(3) n+

(
1 +

ε

2

)1/3
√

2ρµψ
+
ε (n) log(2) ψ+

ε (n)

)
.

Next, (2.10) gives us that

∞∑
n=1

e−hµψ
+
ε (n)+(1+ε/2)1/3

√
2ρµψ

+
ε (n) log logψ+

ε (n)

�
∞∑
n=1

1

n
e

(
−(1 + ε)

h
1/2
µ

√
2ρµ log n log(3) n+

(
1 +

ε

2

)1/3

√
2ρµ

(
1 +

ε

2

)2/3 log n

hµ
log(2)

((
1 +

ε

2

)2/3 log n

hµ

))
.

Finally, it follows from (2.11) that

∞∑
n=1

e−hµψ
+
ε (n)+(1+ε/2)1/3

√
2ρµψ

+
ε (n) log logψ+

ε (n)

(2.11)
�

∞∑
n=1

1

n
e

(
−(1 + ε)

h
1/2
µ

√
2ρµ log n log(3) n+

(1 + ε/2)

h
1/2
µ

√
2ρµ log n log(3) n

)

=

∞∑
n=1

1

n
e

(
− ε/2
h

1/2
µ

√
2ρµ log n log(3) n

)
<∞.

Therefore by Theorem 2.1 we have that µ(Rψ+
ε

) = 0.

Proof that µ(Rψ−ε ) = 1. Fix 0 < ε < 1. Define ψ̃−ε : [0,∞)→ [0,∞) by

ψ̃−ε (x) =
log x

hµ
+

(1− ε)
h

3/2
µ

√
2ρµ log x log(3) x.

Note that bψ̃−ε (n)c = ψ−ε (n) for all n ∈ N. It is a straightforward albeit tedious calculation to
verify that there exist constants C1, C2 > 0 such that

C1

x
≤ (ψ̃−ε )′(x) ≤ C2

x
(2.12)

for all x sufficiently large. It can also be shown that (ψ̃−ε )′ : [0,∞) → [0,∞) is decreasing. We
define m(n) ∈ [0,∞) implicitly as the unique solution to the equation ψ̃−ε (m(n)) = n. Using the
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Mean Value Theorem together with (2.12) and the fact that (ψ̃−ε )′ is decreasing, we may deduce
the following

#(ψ−ε )−1(n) = #{m ∈ N : ψ̃−ε (m) ∈ [n, n+ 1)} � |m(n+ 1)−m(n)|
≥ ((ψ̃−ε )′(m(n)))−1

� m(n)

C2
.

It follows from the above that to obtain the cardinality bounds required by Corollary 2.3, it is
sufficient to obtain a good lower bound for m(n). By the definition of m(n) and using the fact
that ψ̃−ε is increasing, it follows that to obtain the desired bound it is sufficient to show that

ψ̃−ε (ehµn−(1− ε
2

)
√

2ρµn log(2) n) < n

for all n sufficiently large. This we do below.
The following holds for all n sufficiently large:

ψ̃−ε (ehµn−(1− ε
2

)
√

2ρµn log(2) n)

=n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− ε)
h

3/2
µ

√
2ρµ log

(
ehµn−(1− ε

2
)
√

2ρµn log(2) n
)

log(3)
(
ehµn−(1− ε

2
)
√

2ρµn log(2) n
)

=n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− ε)
h

3/2
µ

√
2ρµ

(
hµn−

(
1− ε

2

)√
2ρµn log(2) n

)
log(3)

(
ehµn−(1− ε

2
)
√

2ρµn log(2) n
)

≤n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− ε)
h

3/2
µ

√
2ρµhµn log(3)

(
ehµn−(1− ε

2
)
√

2ρµn log(2) n
)

=n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− ε)
hµ

√
2ρµn log(3)

(
ehµn−(1− ε

2
)
√

2ρµn log(2) n
)

≤n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− ε)
hµ

√
2ρµn log(3)

(
ehµn

)
=n−

(1− ε
2)

hµ

√
2ρµn log(2) n+

(1− ε)
hµ

√
2ρµn log(2) hµn

≤n−
(1− ε

2)

hµ

√
2ρµn log(2) n+

(1− 3ε
4 )

hµ

√
2ρµn log(2) n

=n−
ε
4

hµ

√
2ρµn log(2) n

<n.

It follows from the above that

m(n) ≥ ehµn−(1−ε/2)
√

2ρµn log logn

for all n sufficiently large. This in turn implies that

#(ψ−ε )−1(n)� ehµn−(1−ε/2)
√

2ρµn log logn

for all n sufficiently large. Therefore the function ψ−ε satisfies the bound (2.9) and by Corollary 2.3
we may conclude that µ(Rψ−ε ) = 1.
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The following result gives a divergence condition in the form of (1.1) which guarantees that
Rψ has full measure.

Corollary 2.5. Let µ be the Gibbs measure for a Hölder continuous potential that is not cohomol-
ogous to a constant. Let ψ : N 7→ N be such that ψ(n) ≤ n for all n ∈ N and limn→∞ ψ(n) =∞.
Suppose that there exists a constant K > 0 for which

∞∑
n=1

e−hµψ(n)+K
√

2ρµψ(n) =∞.

Then µ(Rψ) = 1.

Proof. By our divergence assumption we have

∞∑
n=1

#ψ−1(n)e−hµn+K
√

2ρµn =
∞∑
n=1

e−hµψ(n)+K
√

2ρµψ(n) =∞.

Hence, there exists a sequence (nk)
∞
k=1 such that

#ψ−1(nk)e
−hµnk+K

√
2ρµnk > n−2

k (2.13)

holds for all k ∈ N. Consider the set

B :=

{
i ∈ ΣA : lim sup

k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnk

=∞

}
.

Appealing to the fact that µ satisfies (2.2), it can be shown that being an element of B is
independent of any initial string of digits. Therefore B is a tail event, i.e. B belongs to the tail
σ-algebra given by

⋂∞
n=0 σ

−n B+ where B+ is the Borel σ-algebra on ΣA,∗. It is well known that
Gibbs measures for shifts of finite type are exact, i.e. the tail σ-algebra is the trivial σ-algebra
(see [27, Remark 3, Page 29]). It follows from exactness that either µ(B) = 0 or µ(B) = 1. Let
us suppose that µ(B) = 0. Then there exists M ∈ R sufficiently large for which

BM =

{
i ∈ ΣA : lim sup

k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnk

≤M

}

has positive measure. Importantly BM is also a tail event. This can also be shown using (2.2).
Therefore by exactness we must have µ(BM ) = 1. However this contradicts the Central Limit
Theorem for Gibbs measures, see Theorem 3.1. Therefore we must have µ(B) = 1.

Now fix an arbitrary K ′ ∈ N with K ′ > K and define g : N → N according to the rule
g(n) = K ′. Using the fact that µ(B) = 1 we may conclude that (2.7) from Theorem 2.2 is
satisfied for this choice of g. Using (2.13) we have that

#ψ−1(nk)e
−hµnk+K′

√
2ρµnk >

e(K′−K)
√

2ρµnk

n2
k

→∞ as k →∞.

Therefore (2.8) from Theorem 2.2 is satisfied. Our result now follows from Theorem 2.2.
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Observe that the negation of (2.8) from Theorem 2.2 is

lim sup
n→∞

#ψ−1(n)e−hµn+
√

2ρµng(n) <∞.

Unfortunately, this condition does not correspond to the convergent series condition given in
Theorem 2.1. Therefore we cannot use this condition to obtain a simple criterion for determining
the measure of Rψ.

After examining Theorem 2.1 and recalling the analogy made earlier with works on shrink-
ing targets where formulas of the form (1.1) play an important role, a natural candidate for a
divergence criterion for ensuring Rψ will have full measure is

∞∑
n=1

e−hµψ(n)+
√

2ρµψ(n) log logψ(n) =∞.

The next theorem demonstrates that this intuitive guess is incorrect and that this divergence
criterion alone is insufficient for determining the measure of Rψ.

Theorem 2.6. Let µ be a non-uniform Bernoulli measure and let g : N 7→ [1,∞) be a function

satisfying lim sup
n→∞

g(n)√
log log(n)

≤ 1 and lim
n→∞

g(n) = ∞. Then there exists a monotone increasing

function ψ : N 7→ N such that ψ(n) ≤ n for all n ∈ N and

∞∑
n=1

e−hµψ(n)+
√

2ρµψ(n)g(ψ(n)) =∞

but µ(Rψ) = 0.

If we take g(n) =
√

log logn in Theorem 2.6, we see that it is in conflict with the prediction
made just before the statement of this theorem and thus this prediction cannot be correct.

What remains of the paper is organised as follows. In Section 3 we recall some useful results
from Probability Theory. In Sections 4 and 5 we prove Theorems 2.1 and 2.2 respectively. In
Section 6 we prove Theorem 2.6. Last of all, in Section 7 we apply our results to the study of
dynamics on self-similar sets.

3 Probabilistic tools

In this section we recall some probabilistic results relating to Gibbs measures. The following
two statements are the Central Limit Theorem and the Law of the Iterated Logarithm for Gibbs
measures. These statements follow from [12, Corollary 1 and Corollary 2] and (2.1). We also
refer the reader to [20, Proposition 2.1 and Proposition 2.2] where these results are stated in our
language.

Theorem 3.1 (Central Limit Theorem). Let µ be the Gibbs measure for a Hölder continuous
potential that is not cohomologous to a constant. Then we have

lim
n→∞

µ

({
i ∈ ΣA :

logµ([i |n1 ]) + hµn√
n

≤ t
})

=
1√

2πρ2
µ

∫ t

−∞
e−x

2/2ρ2
µ dx

12



Theorem 3.2 (Law of the Iterated Logarithm). Let µ be the Gibbs measure for a Hölder con-
tinuous potential that is not cohomologous to a constant. Then we have

lim sup
n→∞

logµ([i |n1 ]) + hµn√
2ρµn log log n

= 1 for µ-almost every i ∈ ΣA.

We will also use the following well known property of Gibbs measures for Hölder continuous
potentials which states that they have exponential decay of correlations. A proof of the following
statement is contained within the proof of [8, Proposition 1.14].

Theorem 3.3 (Exponential Decay of Correlations). Let µ be the Gibbs measure for a Hölder
continuous potential. Then there exist constants D > 0 and 0 < γ < 1 such that for every
i, j ∈ ΣA,∗ and n ≥ | i | we have∣∣µ([i] ∩ σ−n[j])− µ([i])µ([j])

∣∣ ≤ Dγn−| i |µ([i])µ([j]).

In the special case of Bernoulli measures, we will make use of the following more sophisti-
cated estimate in the Central Limit Theorem. A proof of this statement can be found in [6,
Theorem 9.4].

Theorem 3.4. Let µ be a non-uniform Bernoulli measure and let (an)∞n=1 be a sequence of real
numbers such that limn→∞ an =∞ and limn→∞

an√
n

= 0. Then

µ

({
i ∈ Σ :

logµ([i |n1 ]) + hµn√
ρµ

≥ an
√
n

})
= e−a

2
n(1+ζn)/2,

for some sequence of real numbers (ζn)∞n=1 satisfying limn→∞ ζn = 0.

Finally, from time-to-time, we will also call upon the first Borel–Cantelli Lemma, see for
example [15, Lemma 1.2].

Lemma 3.5. Let (X,B, µ) be a measure space. Let (Aj)
∞
j=1 be a collection of measurable subsets

of X. If
∞∑
j=1

µ(Aj) <∞,

then
µ ({x ∈ X : x ∈ Aj for infinitely many j ∈ N}) = 0.

4 Proof of Theorem 2.1

In this section we prove Theorem 2.1.

Proof. Let ψ : N 7→ N be a function satisfying

∞∑
n=1

e−hµψ(n)+(1+ε)
√

2ρµψ(n) log logψ(n) <∞ (4.1)

for some ε > 0. Define ψ̃ : N→ N according to the rule

ψ̃(n) =

 ψ(n) if ψ(n) ≤ n,

n if ψ(n) > n.
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Notice that ψ̃(n) ≤ ψ(n) for all n ∈ N. This implies Rψ ⊂ Rψ̃. We also have

∞∑
n=1

e−hµψ̃(n)+(1+ε)
√

2ρµψ̃(n) log log ψ̃(n)

≤
∞∑
n=1

e−hµψ(n)+(1+ε)
√

2ρµψ(n) log logψ(n) +
∞∑
n=1

e−hµn+(1+ε)
√

2ρµn log logn

<∞.

Therefore ψ̃ also satisfies (4.1). This means that without loss of generality we may assume
that our original ψ satisfies ψ(n) ≤ n for all n ∈ N. The rest of our proof is given under this
assumption.

By Theorem 3.2, µ (
⋃∞
N=1EN ) = 1, where

EN =
{
i ∈ ΣA : µ([i |n1 ]) ≤ e−hµn+(1+ε)

√
2ρµn log logn for all n ≥ N

}
.

Thus, to prove µ(Rψ) = 0 it is enough to show that µ(EN ∩ Rψ) = 0 for every N ∈ N. This we
do below. In what follows N ∈ N is fixed.

For each n ∈ N let

FA,n = {i ∈ ΣA,n : µ([i]) ≤ e−hµn+(1+ε)
√

2ρµn log logn}.

We also let
M(N) := max{k ≥ 1 : ψ(k) < N}+ 1.

By the expression for Rψ given in (2.6), we know that

EN ∩Rψ =
∞⋂
n=1

∞⋃
k=n

⋃
i∈ΣA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

EN ∩ [i j i].

Therefore to prove µ(Rψ) = 0, by the first Borel–Cantelli Lemma (Lemma 3.5) it is sufficient to
show that

∞∑
k=1

∑
i∈ΣA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

µ(EN ∩ [i j i]) <∞. (4.2)

This we do presently. We begin by observing that

∞∑
k=1

∑
i∈ΣA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

µ(EN ∩ [i j i]) ≤M(N) +
∞∑

k=M(N)+1

∑
i∈ΣA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

µ(EN ∩ [i j i])

≤M(N) +

∞∑
k=M(N)+1

∑
i∈FA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

µ([i j i]).
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Using (2.2) and the definition of FA,ψ(k), it follows that

∞∑
k=1

∑
i∈ΣA,ψ(k)

j∈ΣA,k−ψ(k)

i j i∈ΣA,k+ψ(k)

µ(EN ∩ [i j i])

≤M(N) + C
∞∑

k=M(N)+1

∑
i∈FA,ψ(k)

j∈ΣA,k−ψ(k)

i j∈ΣA,k

µ([i j])e−hµψ(k)+(1+ε)
√

2ρµψ(k) log logψ(k)

≤M(N) + C

∞∑
k=M(N)+1

e−hµψ(k)+(1+ε)
√

2ρµψ(k) log logψ(k)

<∞.

In the final line we have used (4.1). Thus we have shown that (4.2) holds and this completes our
proof.

5 Proof of Theorem 2.2

In this section we prove Theorem 2.2. We now fix µ, ψ, (nk)
∞
k=1, and g so that the assumptions

of this theorem are satisfied. Let

Sψ,(nk) :=
{
i ∈ ΣA : d(σp i, i) ≤ K−nk for some p ∈ ψ−1(nk) for infinitely many k ∈ N

}
.

By changing the values that ψ takes for at most finitely many natural numbers we may ensure
that ψ(n) ≤ n for all n ∈ N. This assumption does not change the set Sψ,(nk) or any of our
underlying assumptions. As such, without loss of generality we can give our proof under this
assumption.

To prove that µ(Sψ,(nk)) = 1, we will show that there exists a constant c > 0 such that for
any i ∈ ΣA,∗ we have

µ([i] ∩ Sψ,(nk)) ≥ cµ([i]). (5.1)

It then follows from [4, Lemma 6] that µ(Sψ,(nk)) = 1. We can think of [4, Lemma 6] as essentially
providing us with an analogue of the classical Lebesgue Density Theorem (see, for example, [26,
Corollary 2.14]) that holds for more general measures. Since Sψ,(nk) ⊂ Rψ we also immediately
have that µ(Rψ) = 1. Therefore to complete the proof of Theorem 2.2 it remains to show that
(5.1) holds. We split our proof of (5.1) into three parts below.

Part 1. Construction of the auxiliary sets.
It follows from (2.2) that the set{

i ∈ ΣA : lim sup
k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

> 1 + ε

}
is σ-invariant for every ε > 0. Using the fact that µ is ergodic together with (2.7), we may
conclude that there exists ε > 0 such that

µ

({
i ∈ ΣA : lim sup

k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

> 1 + ε

})
= 1. (5.2)
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For the rest of our proof ε > 0 is fixed so that (5.2) is satisfied.
Without loss of generality, we may assume that our sequence (nk)

∞
k=1 is such that

eε
√

2nkρµg(nk)/4

1 + nk + d−hµlog γ e · nk
≥ D + 1 (5.3)

for every k ∈ N. Here and throughout our proof, γ ∈ (0, 1) and D > 0 are as in Theorem 3.3.
Given δ > 0 we let a1(δ) ∈ N be such that for every nk ≥ a1(δ) we have

exp
(
−#ψ−1(nk)e

−hµnk+
√

2ρµnkg(nk)
)
≤ δ. (5.4)

The fact a1(δ) always exists is a consequence of (2.8).
For simplicity, we let

F := min
i∈ΣA

f(i)− P (f).

For δ > 0 and m ∈ N, let a(m, δ) > max{m, a1(δ)} be such that for every n ≥ a(m, δ) we have∣∣∣∣∣−2 logC +m(F + hµ)√
2ρµng(n)

∣∣∣∣∣ < ε/4 and

√
n−mg(n−m)√

ng(n)
≥ 1 + ε/2

1 + 3ε/4
. (5.5)

The latter inequality is possible because of our assumption that limn→∞
g(n)
g(n+1) = 1. Here C is

the constant appearing in (2.1) and (2.2). The equations (2.1), (2.2) and (5.5) imply the following
estimate.

Lemma 5.1. For every i ∈ ΣA,∗, if j ∈ ΣA,∗ satisfies | j | > a(| i |, δ), i j ∈ ΣA,∗, and

logµ([j]) + hµ| j |√
2ρµ| j |g(| j |)

≥ 1 +
3ε

4
,

then
logµ([i j]) + hµ| i j |√

2ρµ| i j |g(| i j |)
≥ 1 +

ε

4
.

Proof. First, we note that it follows from (2.2) that

logµ([i j]) + hµ| i j |√
2ρµ| i j |g(| i j |)

≥ − logC + logµ([i]) + hµ| i |√
2ρµ| i j |g(| i j |)

+
logµ([j]) + hµ| j |√

2ρµ| i j |g(| i j |)
.

It then follows from (2.1) that

logµ([i j]) + hµ| i j |√
2ρµ| i j |g(| i j |)

≥
−2 logC +

∑| i |−1
k=0 f(σk i)− | i |P (f) + hµ| i |√

2ρµ| i j |g(| i j |)
+

logµ([j]) + hµ| j |√
2ρµ| i j |g(| i j |)

≥ −2 logC + | i |(F + hµ)√
2ρµ| i j |g(| i j |)

+
logµ([j]) + hµ| j |√

2ρµ| i j |g(| i j |)
.

Next we rewrite the fraction on the far right-hand side and then apply the second inequality of
(5.5) and the assumption of the lemma to obtain

logµ([i j]) + hµ| i j |√
2ρµ| i j |g(| i j |)

≥ −2 logC + | i |(F + hµ)√
2ρµ| i j |g(| i j |)

+

(
logµ([j]) + hµ| j |√

2ρµ| j |g(| j |)

)( √
2ρµ| j |g(| j |)√

2ρµ| i j |g(| i j |)

)

≥ −2 logC + | i |(F + hµ)√
2ρµ| i j |g(| i j |)

+
(

1 +
ε

2

)
.

Finally, the claimed bound is now obtained by applying the first inequality of (5.5).
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For every δ > 0, and m ∈ N, we define b(m, δ) to be a sufficiently large natural number for
which the set

Gh,m,δ :=

{
j ∈ [h] : there exists nk ∈ [a(m, δ), b(m, δ)] such that

logµ([j |nk−m1 ]) + hµ(nk −m)√
2ρµ(nk −m)g(nk −m)

≥ 1 +
3ε

4

}
satisfies

µ (Gh,m,δ) ≥ (1− δ)µ([h]) (5.6)

for all h ∈ {1, . . . ,K}. The existence of b(m, δ) follows from (5.2) and an application of (2.1),
(2.2), and our assumptions on g. By definition we have

Gh,m,δ ∩Gh′,m,δ = ∅ for h 6= h′. (5.7)

We can partition each Gh,m,δ into a disjoint collection of cylinders as follows. For each ` ∈ N
such that n` ∈ [a(m, δ), b(m, δ)] let

G
(`)
h,m,δ =

{
j ∈ ΣA,n`−m : j1 = h,

logµ([j |n`−m1 ]) + hµ(n` −m)√
2ρµ(n` −m)g(n` −m)

≥ 1 +
3ε

4

but
logµ([j |nk−m1 ]) + hµ(nk −m)√

2ρµ(nk −m)g(nk −m)
< 1 +

3ε

4
for all nk ∈ [a(m, δ), n` − 1]

}
.

(5.8)

Then
Gh,m,δ =

⋃
`:n`∈[a(m,δ),b(m,δ)]

[G
(`)
h,m,δ] and [G

(`1)
h,m,δ] ∩ [G

(`2)
h,m,δ] = ∅

for `1 6= `2.
Now we define two sets of words whose corresponding elements of ΣA either satisfy or fail a

recurrence property defined in terms of a cylinder of length n`. Given m ∈ N and δ > 0 let

c(m, δ) := max


b(m,δ)⋃
k=1

ψ−1(k)

+ b(m, δ).

This significance of the quantity c(m, δ) is seen as follows. Given i ∈ ΣA,∗ and δ > 0, using
the fact that ψ(n) ≤ n for all n ∈ N and the definition of c(| i |, δ), it follows that for any
n` ∈ [a(| i |, δ), b(| i |, δ)] we have

ψ−1(n`) ⊂ [n`, c(| i |, δ)− n`]. (5.9)

This means that if we are interested in sequences satisfying d(σp j, j) ≤ K−n` for some n` ∈
[a(| i |, δ), b(| i |, δ)] and p ∈ ψ−1(n`), then it is sufficient to know only the first c(| i |, δ) entries

in j. This fact underpins the definitions of B
(`)
i,δ and C

(`)
i,δ below.

For a word i ∈ ΣA,∗, δ > 0 and l ∈ N such that n` ∈ [a(| i |, δ), b(| i |, δ)], let

B
(`)
i,δ :=

{
j ∈ ΣA,c(| i |,δ)−| i | : j |

n`−| i |
1 ∈

⋃
h:ih∈ΣA,∗

G
(`)
h,| i |,δ and j |p−| i |+n`p−| i |+1 = (i j)|n`1

for some p ∈ ψ−1(n`)

}
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and

C
(`)
i,δ :=

{
j ∈ ΣA,c(| i |,δ)−| i | : j |

n`−| i |
1 ∈

⋃
h:ih∈ΣA,∗

G
(`)
h,| i |,δ and j |p−| i |+n`p−| i |+1 6= (i j)|n`1

for every p ∈ ψ−1(n`)

}
.

We also let
Bi,δ :=

⋃
`:n`∈[a(| i |,δ),b(| i |,δ)]

B
(`)
i,δ.

An important consequence of the definition of B
(`)
i,δ is that if j′ ∈ iB

(`)
i,δ then

d(σp j′, j′) ≤ K−n` (5.10)

for some p ∈ ψ−1(n`).

Part 2. Measure properties of our auxiliary sets.

Lemma 5.2. For every i ∈ ΣA,∗, δ > 0, and ` ∈ N such that n` ∈ [a(| i |, δ), b(| i |, δ)], we have

µ([iC
(`)
i,δ ]) ≤ Cδ

∑
h:ih∈ΣA,∗

µ([iG
(`)
h,| i |,δ]).

Proof. Let r` = d−hµlog γ e · n`. Let S denote the (n` + r`)-separated subset of ψ−1(n`) defined

inductively as follows. Let S1 = {minψ−1(n`)} and for k ≥ 2 let

Sk = Sk−1 ∪
{

minψ−1(n`) ∩ [maxSk−1 + n` + r` + 1,∞)
}
.

We then let S =
⋃
k Sk. Clearly,

#ψ−1(n`)

n` + r` + 1
≤ #S ≤ #ψ−1(n`). (5.11)

By (5.9) we know that S ⊂ [n`, c(i, δ)− n`]. It follows now from the definition of C
(`)
i,δ and (5.7)

that

µ([iC
(`)
i,δ ])

≤µ

j ∈ ΣA : j || i |1 = i, j |n`| i |+1 ∈
⋃

h:ih∈ΣA,∗

G
(`)
h,| i |,δ and j |p+n`p+1 6= j |n`1 for every p ∈ S




=
∑

h:ih∈ΣA,∗

∑
j∈G(`)

h,| i |,δ

µ

[i j] ∩

⋂
p∈S

σ−p[i j]c

 .

Combining the above with Theorem 3.3 and (2.2), we have

µ([iC
(`)
i,δ ]) ≤ C

∑
h:ih∈ΣA,∗

∑
j∈G(`)

h,| i |,δ

µ([i j]) (1 +Dγr`)#S (1− µ([i j]))#S .

18



Now using the fact that 1 + x ≤ ex for all x ∈ R together with (5.11), it follows that

µ([iC
(`)
i,δ ]) ≤ C

∑
h:ih∈ΣA,∗

∑
j∈G(`)

h,| i |,δ

µ([i j]) exp (#SDγr`) exp (−#Sµ([i j]))

≤ C
∑

h:ih∈ΣA,∗

∑
j∈G(`)

h,| i |,δ

µ([i j]) exp

(
Dγr`#ψ−1(n`)− µ([i j])

#ψ−1(n`)

n` + r` + 1

)
.

By definition, see (5.8), any word j ∈ G(`)
h,| i |,δ has | j | = n` − | i |. Furthermore, it also follows

directly from the definition of G
(`)
h,| i |,δ that the hypothesis of Lemma 5.1 holds, and so we have

µ([i j]) ≥ exp

(
−hµ| i j |+

√
2ρµ| i j |g(| i j |)(1 + ε/4)

)
.

Putting this all together, we conclude that

µ([iC
(`)
i,δ ])

≤C
∑

h:ih∈ΣA,∗

∑
j∈G(`)

h,| i |,δ

µ([i j]) exp

(
Dγr`#ψ−1(n`)−

#ψ−1(n`)

n` + r` + 1
e−hµ| i j |+

√
2ρµ| i j |g(| i j |)(1+ε/4)

)

≤C
∑

h:ih∈ΣA,∗

µ([iG
(`)
h,| i |,δ]) exp

(
Dγr`#ψ−1(n`)−

#ψ−1(n`)

n` + r` + 1
e−hµn`+

√
2ρµn`g(n`)(1+ε/4)

)
.

By equation (5.3) and the definition of r` we have

e−hµn`+
√

2ρµn`g(n`)

(
eε
√

2ρµn`g(n`)/4

n` + r` + 1
− 1

)
≥ Dγr` .

Thus, it follows that

µ([iC
(`)
i,δ ]) ≤ C

∑
h:ih∈ΣA,∗

µ([iG
(`)
h,| i |,δ]) exp

(
−#ψ−1(n`)e

−hµn`+
√

2ρµn`g(n`)
)
.

Finally, from the definition of a(| i |, δ) and (5.4), we see that

µ([iC
(`)
i,δ ]) ≤ Cδ

∑
h:ih∈ΣA,∗

µ([iG
(`)
h,| i |,δ]),

which completes our proof.

Part 3. Proof of (5.1).
Let us fix now an arbitrary i ∈ ΣA,∗ and set about proving (5.1). Recall that we defined

Sψ,(nk) :=
{
i ∈ ΣA : d(σp i, i) ≤ K−nk for some p ∈ ψ−1(nk) for infinitely many k ∈ N

}
.

We now define a subset of Sψ,(nk) by induction as follows. First, let k1 be such that Dγk1 < 1
and let

D1(i) :=
⋃

k∈ΣA,1+k1
i k∈ΣA,∗

[i kBi k,2−1/C ].

19



By the definition of D1(i), and noting that each Bi k,2−1/C is a finite union of cylinders, we may
choose a finite set of words W1(i) ⊂ ΣA,∗ such that

D1(i) =
⋃

j∈W1(i)

[j] and [j1] ∩ [j2] = ∅ for j1 6= j2 .

Now suppose Dk(i) ⊂ ΣA and Wk(i) ⊂ ΣA,∗ are defined for some k ≥ 1. We then define

Dk+1(i) =
⋃

j∈Wk(i)

⋃
k∈ΣA,k+1+k1

j k∈ΣA,∗

[j kBj k,2−k−1/C ].

We also let Wk+1(i) ⊂ ΣA,∗ be a finite set of words such that

Dk+1(i) =
⋃

j∈Wk+1(i)

[j] and [j1] ∩ [j2] = ∅ for j1 6= j2 .

Proceeding inductively we define Dk(i) and Wk(i) for all k ∈ N. We observe that

Dk+1(i) ⊂ Dk(i) (5.12)

for all k ≥ 1, and
∞⋂
k=1

Dk(i) ⊂ [i] ∩ Sψ,(nk). (5.13)

This last inclusion follows from (5.10). Therefore to prove (5.1) it is sufficient to obtain lower
bounds for the measure of ∩∞k=1Dk(i). The following lemma allows us to do this and bounds how
much measure is lost as we pass from Dk(i) to Dk+1(i).

Lemma 5.3. For every k ≥ 2 we have

µ(Dk(i)) ≥ µ(Dk−1(i))(1−Dγk+k1)(1− 2−k)(1− 2−k/C),

and in the case when k = 1 we have

µ(D1(i)) ≥ µ([i])(1−Dγk1)(1− 2−1)(1− 2−1/C).

Proof. Let k ≥ 2. By the definition of Dk(i), and recalling the definitions of Bi,δ, B
(`)
i,δ, and

C
(`)
i,δ as well as noting that for different values of ` the sets G

(`)

h,| j |+k+k1,2−k/C
are disjoint by

construction, we have

µ(Dk(i))

=
∑

j∈Wk−1(i)

∑
k∈ΣA,k+k1
j k∈ΣA,∗

µ([j kBj k,2−k/C ])

=
∑

j∈Wk−1(i)

∑
k∈ΣA,k+k1
j k∈ΣA,∗

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

µ([j kB
(`)

j k,2−k/C
])

=
∑

j∈Wk−1(i)

∑
k∈ΣA,k+k1
j k∈ΣA,∗

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

∑
h:j kh∈ΣA,∗

µ([j kG
(`)

h,| j |+k+k1,2−k/C
])

−
∑

j∈Wk−1(i)

∑
k∈ΣA,k+k1
j k∈ΣA,∗

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

µ([j kC
(`)

j k,2−k/C
]).
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Now using Lemma 5.2 in the above we see that

µ(Dk(i))

≥
∑

j∈Wk−1(i)

∑
k∈ΣA,k+k1
j k∈ΣA,∗

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

∑
h:j kh∈ΣA,∗

µ([j kG
(`)

h,| j |+k+k1,2−k/C
])(1− 2−k)

=
∑

j∈Wk−1(i)

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

∑
h∈{1,...,K}

∑
k∈ΣA,k+k1
j kh∈ΣA,∗

µ([j kG
(`)

h,| j |+k+k1,2−k/C
])(1− 2−k)

=
∑

j∈Wk−1(i)

∑
`:n`∈[a(| j |+k+k1,2−K/C),b(| j |+k+k1,2−K/C)]

∑
h∈{1,...,K}

µ([j] ∩ σ−| j |−k−k1 [G
(`)

h,| j |+k+k1,2−k/C
])(1− 2−k).

Next, by Theorem 3.3 we have

µ(Dk(i))

≥
∑

j∈Wk−1(i)

∑
`:n`∈[a(| j |+k+k1,2−k/C),b(| j |+k+k1,2−k/C)]

∑
h∈{1,...,K}

µ([j])µ([G
(`)

h,| j |+k+k1,2−k/C
])(1−Dγk+k1)(1− 2−k)

=
∑

j∈Wk−1(i)

∑
h∈{1,...,K}

µ([j])µ(Gh,| j |+k+k1,2−k/C)(1−Dγk+k1)(1− 2−k).

Now using (5.6) in the above we see that

µ(Dk(i)) ≥
∑

j∈Wk−1(i)

∑
h∈{1,...,K}

µ([j])µ([h])(1−Dγk+k1)(1− 2−k)(1− 2−k/C)

=
∑

j∈Wk−1(i)

µ([j])(1−Dγk+k1)(1− 2−k)(1− 2−k/C)

= µ(Dk−1(i))(1−Dγk+k1)(1− 2−k)(1− 2−k/C).

The proof of the second claim is similar.

It now follows from (5.12), (5.13), and Lemma 5.3 that

µ([i] ∩ Sψ,(nk)) ≥ µ

( ∞⋂
k=1

Dk(i)

)
= lim

k→∞
µ(Dk(i))

≥ µ([i])

∞∏
k=k1

(1−Dγk)
∞∏
k=1

(1− 2−k)

∞∏
k=1

(1− 2−k/C).

Since the series
∑∞

k=k1
Dγk and

∑∞
k=1 2−k are convergent we can take

c =
∞∏

k=k1

(1−Dγk)
∞∏
k=1

(1− 2−k)
∞∏
k=1

(1− 2−k/C)

and (5.1) holds (recall that 0 < γ < 1 and that k1 ∈ N was chosen such that Dγk1 < 1). This
completes our proof.
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6 Proof of Theorem 2.6

We begin our proof of Theorem 2.6 by showing that for every function g : N 7→ [1,∞) satisfying

lim sup
n→∞

g(n)√
log logn

≤ 1 and lim
n→∞

g(n) = ∞, there exists a sequence (nk)
∞
k=1 such that for a typical

i ∈ Σ the quantity log µ([i |nk1 ]) + hµnk eventually satisfies a useful upper bound formulated in
terms of our function g.

Lemma 6.1. Let µ be a non-uniform Bernoulli measure and let g : N 7→ [1,∞) be a function such

that lim sup
n→∞

g(n)√
log logn

≤ 1 and lim
n→∞

g(n) = ∞. Then there exists a sequence of positive integers

(nk)
∞
k=1 such that

µ

({
i ∈ Σ : lim sup

k→∞

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

≤ 1

2

})
= 1.

Proof. We define the sequence (nk) via the equation nk = max{n ≥ 1 : g(n)2 < k}+ 1. Let the

sequence (ζn)∞n=1 be as in Theorem 3.4 with (an)∞n=1 = (
√

2g(n)
2 )∞n=1. Now applying Theorem 3.4

and using the fact that limn→∞ ζn = 0 we have

∞∑
k=1

µ

({
i ∈ Σ :

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

≥ 1

2

})
=
∞∑
k=1

e
−g(nk)2(1+ζnk

)

4

�
∞∑
k=1

e−k/5

<∞.

Our claim now follows by the Borel–Cantelli Lemma (Lemma 3.5).

Equipped with Lemma 6.1 we are now in a position to prove Theorem 2.6.

Proof of Theorem 2.6. Let G = {nk : k ≥ 1} ⊆ N, where (nk)
∞
k=1 is the sequence defined in

Lemma 6.1. Let (an)∞n=1 be the sequence of natural numbers defined as follows

an :=


⌈
ehµn−

√
2ρµng(n)

⌉
if n ∈ G,⌊

n−2ehµn−
5
4

√
2ρµn log logn

⌋
if n /∈ G.

Then let ψ(n) := max{k ≥ 1 :
∑k−1

m=1 am ≤ n}. Notice that #ψ−1(n) = an for all n ∈ N.
Thus,

∞∑
n=1

e−hµψ(n)+
√

2ρµψ(n)g(ψ(n)) =

∞∑
n=1

#ψ−1(n)e−hµn+
√

2ρµng(n)

≥
∞∑
k=1

#ψ−1(nk)e
−hµnk+

√
2ρµnkg(nk)

≥
∞∑
k=1

1 =∞.

22



For each N ∈ N we let

E
(1)
N =

{
i ∈ Σ :

logµ([i |nk1 ]) + hµnk√
2ρµnkg(nk)

<
3

4
for every nk ≥ N

}
and

E
(2)
N =

{
i ∈ Σ :

logµ([i |n1 ]) + hµn√
2ρµn log log n

<
5

4
for every n ≥ N

}
.

By Theorem 3.2 and Lemma 6.1 we have µ(
⋃∞
N=1E

(1)
N ∩ E

(2)
N ) = 1.

Let us also define

Q(n) =


e−hµn+ 3

4

√
2ρµng(n) if n ∈ G,

e−hµn+ 5
4

√
2ρµn log logn if n /∈ G.

It follows from the above that if j ∈ ∪∞n=NΣn satisfies [j] ∩ E(1)
N ∩ E

(2)
N 6= ∅ then we have

µ([j]) ≤ Q(| j |). (6.1)

We will now show that µ
(
E

(1)
N ∩ E

(2)
N ∩Rψ

)
= 0 for any N ≥ 1. Since µ(

⋃∞
N=1E

(1)
N ∩E

(2)
N ) = 1,

this will complete our proof.
Let us now fix N ≥ 1. By the first Borel–Cantelli Lemma (Lemma 3.5), to show that

µ
(
E

(1)
N ∩ E

(2)
N ∩Rψ

)
= 0, it suffices to show that

∞∑
n=1

µ
({

i ∈ E(1)
N ∩ E

(2)
N : σn i ∈ [i |ψ(n)

1 ]
})

<∞. (6.2)

Let us start by defining MN ∈ N to be sufficiently such that for all n ≥MN we have ψ(n) ≥ N .
We now show that (6.2) holds. We first note that it follows from (2.6) and the fact that µ is a
Bernoulli measure, so (2.4) holds, that

∞∑
n=1

µ
({

i ∈ E(1)
N ∩ E

(2)
N : σn i ∈ [i |ψ(n)

1 ]
})
≤MN +

∞∑
n=MN

∑
j∈Σψ(n)

i∈Σn−ψ(n)

[j]∩E(1)
N ∩E

(2)
N 6=∅

µ([j i j])

= MN +
∞∑

n=MN

∑
j∈Σψ(n)

i∈Σn−ψ(n)

[j]∩E(1)
N ∩E

(2)
N 6=∅

µ([j])µ([i])µ([j])

≤MN +

∞∑
n=MN

∑
j∈Σψ(n)

[j]∩E(1)
N ∩E

(2)
N 6=∅

µ([j])2.

Next, from (6.1) and the fact that ψ(n) ≥ N for all n ≥MN , we see that

∞∑
n=1

µ
({

i ∈ E(1)
N ∩ E

(2)
N : σn i ∈ [i |ψ(n)

1 ]
})
≤MN + C

∞∑
n=MN

∑
j∈Σψ(n)

[j]∩E(1)
N ∩E

(2)
N 6=∅

Q(ψ(n))µ([j]).
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Finally, recalling the definitions of Q(n), an, and the fact that #ψ−1(n) = an for all n ∈ N, we
observe that

∞∑
n=MN

∑
j∈Σψ(n)

[j]∩E(1)
N ∩E

(2)
N 6=∅

Q(ψ(n))µ([j])

≤
∞∑
n=1

#ψ−1(n)Q(n)

=
∑
n∈G

⌈
ehµn−

√
2ρµng(n)

⌉
e−hµn+ 3

4

√
2ρµng(n) +

∑
n/∈G

⌊
n−2ehµn−

5
4

√
2ρµn log log(n)

⌋
e−hµn+ 5

4

√
2ρµn log logn

�
∞∑
n=1

e−
1
4

√
2ρµng(n) +

∞∑
n=1

n−2 <∞.

Thus it follows that (6.2) holds and our proof is complete.

7 Applications to dynamics on self-similar sets

In this section we apply our results to the study of dynamics on self-similar sets. Before that
it is necessary to define some preliminary notions. We call a map ϕ : Rd → Rd a contracting
similarity if there exists r ∈ (0, 1) such that

‖ϕ(x)− ϕ(y)‖ = r‖x− y‖ for all x, y ∈ Rd.

In this section, we define an iterated function system, or IFS for short, to be a finite set of
contracting similarities Φ := {ϕi}Ki=1. When each similarity in an IFS has the same contraction
ratio the IFS is said to be homogeneous. A well known result due to Hutchinson [19] states that
for any IFS there exists a unique, non-empty, compact set X ⊂ Rd satisfying

K⋃
i=1

ϕi(X) = X.

The set X is called the self-similar set or attractor of Φ. Self-similar sets are important and well
studied objects in the field of Fractal Geometry. For more on these sets we refer the reader to
Falconer’s book [14]. Self-similar sets can be viewed as the image of Σ = {1, . . . ,K}N under an
appropriate map. Let π : Σ→ X be given by

π(i) = lim
n→∞

(ϕi1 ◦ · · · ◦ ϕin) (0).

The map π is continuous and surjective. Importantly π allows us to take measures defined on
Σ, most notably Gibbs measures, and to project them forward on to X. The measures defined
on X as pushforwards under π are an important and well studied class. The most well studied
measures amongst this class are the self-similar measures which are the pushforwards of Bernoulli
measures.

If Φ satisfies the additional assumption that

ϕi(X) ∩ ϕj(X) = ∅ for all i 6= j
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then Φ is said to satisfy the strong separation condition. This condition is equivalent to the
map π being a bijection. If an IFS satisfies the strong separation condition we can define a map
T : X → X according to the rule

T (x) = ϕ−1
i (x) if x ∈ ϕi(X).

Because X =
⋃K
i=1 ϕi(X) and this union is disjoint, the map T is well defined.

Given a homogeneous IFS with common contraction ratio r which satisfies the strong sepa-
ration condition and a function ψ : N→ [0,∞), we can define a recurrence set as follows:

R̃ψ :=
{
x ∈ X : ‖Tn(x)− x‖ ≤ rψ(n) for infinitely many n ∈ N

}
.

Here ‖ · ‖ denotes the Euclidean norm. This family of recurrence sets was studied previously
in [2] and [9]. Combining these papers with the mass transference principle of Beresnevich and
Velani [5], it is possible to obtain a detailed description of the metric properties of R̃ψ in terms
of Hausdorff measure. As we will see, the results of the current paper allow us to prove new
statements on the π∗µ measure of R̃ψ. Here π∗µ denotes the pushforward of some Gibbs measure
µ under the map π; that is, π∗µ = µ ◦ π−1. The key proposition that allows us to translate our
previous results for Rψ (recall the definition in (2.5)) into statements for R̃ψ is the following:

Proposition 7.1. Let Φ be a homogeneous IFS satisfying the strong separation condition with
associated self-similar set X and let ψ : N→ [0,∞). There exists N ∈ N depending only upon Φ
such that we have the following inclusions:

π(Rbψc+N ) ⊆ R̃ψ ⊆ π(Rbψc−N ).

Proof. This follows from the observation that π(σ i) = T (π i) together with the following fact
from Fractal Geometry.

Fact: Let x, y ∈ X and i, j ∈ Σ be such that π(i) = x and π(j) = y. Then there exists N ∈ N
such that:

if ‖x− y‖ ≤ rψ(n) then | i∧ j | ≥ bψ(n)c −N (7.1)

and
if | i∧ j | ≥ bψ(n)c+N then ‖x− y‖ ≤ rψ(n). (7.2)

We include a proof of this fact for completion.

Let N ∈ N be sufficiently large that

inf
i,j:i 6=j

d(ϕi(X), ϕj(X)) ≥ rN and rN−1 ·Diam(X) < 1.

Here d is the Euclidean metric. Note that infi,j:i 6=j d(ϕi(X), ϕj(X)) > 0 because of the strong
separation condition. Therefore N is well defined. We now prove that this N satisfies the desired
properties.

Let x, y ∈ X be such that ‖x− y‖ ≤ rψ(n). By considering inverses and the maximal common
prefix i∧ j, we see that

r−| i∧ j |‖x− y‖ = ‖(ϕi1 ◦ · · · ◦ ϕi| i∧ j |)
−1(x)− (ϕj1 ◦ · · · ◦ ϕj| i∧ j |)

−1(y)‖ ≥ rN .
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Therefore ‖x− y‖ ≥ rN+| i∧ j | and we have ψ(n) ≤ N + | i∧ j |. Taking integer parts we see that
| i∧ j | ≥ bψ(n)c −N and (7.1) holds.

Now suppose | i∧ j | ≥ bψ(n)c+N. Then

‖x− y‖ ≤ Diam((ϕi1 ◦ · · · ◦ ϕi| i∧ j |)(X))

≤ r| i∧ j | ·Diam(X)

≤ rbψ(n)c+N ·Diam(X)

≤ rψ(n)−1+N ·Diam(X)

≤ rψ(n).

Therefore (7.2) holds and our proof is complete.

Equipped with Proposition 7.1, it is possible to translate Theorems 2.1, 2.2, 2.4, and 2.6
into the setting of dynamics on self-similar sets and pushforwards of Gibbs measures. The key
point that allows us to establish these analogues is that the parameter N, whose existence is
asserted by Proposition 7.1, only depends upon the underlying IFS. As such, if ψ : N → [0,∞)
satisfies some appropriate hypothesis analogous to that given in one of the theorems listed above,
then the functions bψ(n)c −N and bψ(n)c+N will also satisfy the hypothesis formulated in the
original theorem. Using this observation together with the inclusions given in Proposition 7.1,
we may prove appropriate analogues of Theorems 2.1, 2.2, 2.4, and 2.6 in this setting. For the
sake of brevity we do not give the statement of each of these analogues here. We instead content
ourselves with the following analogue of Theorem 2.4.

Theorem 7.2. Let Φ be a homogeneous IFS satisfying the strong separation condition and let
µ be the Gibbs measure of a Hölder continuous potential that is not cohomologous to a constant.
For ε > 0 let ψ+

ε : N→ [0,∞) and ψ−ε : N→ [0,∞) be given by

ψ+
ε (n) =

log n

hµ
+

(1 + ε)

h
3/2
µ

√
2ρµ log n log log log n

and

ψ−ε (n) =
log n

hµ
+

(1− ε)
h

3/2
µ

√
2ρµ log n log log log n.

Then for any ε > 0 we have π∗µ(R̃ψ+
ε

) = 0 and π∗µ(R̃ψ−ε ) = 1.

Theorem 7.2 demonstrates that the critical threshold observed for Gibbs measures and shifts
of finite type persists in the setting of dynamics on self-similar sets. Theorem 7.2 also yields some
interesting metric properties for the sets R̃ψ−ε that do not follow from [2] or [9].It is well known
that for any Gibbs measure µ for which the defining potential is not cohomologous to a constant
we have hµ < logK, and so by a covering argument, HdimH X(R̃ψ−ε ) = 0 for any ε ∈ (0, 1).
Here dimHX is the Hausdorff dimension of the self-similar set X. Moreover, using the mass
transference principle of Beresnevich and Velani [5], it is possible to show that dimH (R̃ψ−ε ) =

dimHX for any ε > 0. Therefore, despite being null in terms of the dimH (R̃ψ−ε )-dimensional

Hausdorff measure, Theorem 7.2 tells us that R̃ψ−ε is large in terms of µ for any ε > 0.
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