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Abstract. For a planar self-affine set satisfying the strong separation condition it has
been recently proved that under mild assumptions the Hausdorff dimension equals the
affinity dimension. In this article, we continue this line of research and our objective is
to acquire more refined geometric information. In a large class of non-carpet planar
self-affine sets, we characterize Ahlfors regularity, determine the Assouad dimension
of the set and its projections, and estimate the Hausdorff dimension of slices. We
also demonstrate that the Assouad dimension is not necessarily bounded above by the
affinity dimension.

1. Introduction

Let X ⊂ R2 be a self-affine set associated to a finite number of invertible affine
contractions ϕi on R2. The defining property of X is that it consists of affine copies
ϕi(X) of itself. The strong separation condition requires the sets ϕi(X) to be pairwise
disjoint. We write ϕi(x) = Aix + vi for all x ∈ R2, where Ai ∈ GL2(R) is the linear
part and vi ∈ R2 is the translation vector. To understand geometric properties of X is a
surprisingly difficult problem, even if the elements of the matrices are positive and the
strong separation condition is assumed, and has attained a lot of interest during recent
years; see e.g. Bárány [6], Bárány, Käenmäki, and Koivusalo [9], Hueter and Lalley [37],
Käenmäki and Shmerkin [45], Morris and Shmerkin [52], and Rapaport [56] for results in
dimension, and Bárány and Käenmäki [8] and Falconer and Kempton [17] for results in
projections.

A recent breakthrough is the article of Bárány, Hochman, and Rapaport [7] where
the authors proved that under the strong separation condition and mild assumptions on
the linear parts, the Hausdorff dimension of X equals the affinity dimension, a natural
upper bound stemming from the definition of the self-affine set. The corresponding result
for self-similar sets, a sub-class of self-affine sets where the linear parts are assumed to
be constant times orthogonal matrices, was proved by Hutchinson [38]. He also showed
that the strong separation condition implies the positivity of the Hausdorff measure. A
folklore open question, exclipitly stated in Falconer [19, §2], asks whether there exist a
characterization or even sufficient conditions for the positivity of the Hausdorff measure
of self-affine sets.

Question. Is it possible to characterize the positivity of the Hausdorff measure of a
self-affine set?
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Bárány, Hochman, and Rapaport [7] also improved what the classical Marstrand’s
projection theorem gives for planar self-affine sets by showing that the Hausdorff dimension
of the projection is either preserved for all directions or is equal to one. A complementary
concept to projections is that of slices. The classical Marstrand’s slicing theorem shows
that almost every slice has Hausdorff dimension at most the surplus dimension of the
projection. An immediate question here is whether the slicing theorem on self-affine sets
could also be improved for all slices. Perhaps a bit surprisingly, besides some specific
cases almost nothing is known about this.

Question. Is the Hausdorff dimension of every slice of a self-affine set at most the surplus
dimension of the projection?

In the present article, the main goal is to study these, and related questions on finer
geometry, on a large class of self-affine sets.

The detailed main results will be presented in Section 3 but let us now review some of
their consequences. Recall that a planar self-affine set X is dominated and irreducible
if the linear parts of the defining affine maps of X have positive entries and they do
not share a common invariant line. Assuming the strong separation condition, our main
results reveal that on such an open and dense collection of self-affine sets it is possible
to obtain sharp results analogous to the classical ones known for self-similar sets since
90’s. The following theorem applies these sharp results to completely characterize the
Ahlfors regularity of X. We denote the s-dimensional Hausdorff measure by Hs. Ahlfors
s-regularity of X means that the Hs|X -measure of any ball of radius r centered at X is
uniformly comparable to rs.

Theorem 1.1. If X is a dominated irreducible planar self-affine set satisfying the
strong separation condition, then X is Ahlfors s-regular if and only if 0 6 s 6 1 and
0 < Hs(X) <∞.

We denote the Hausdorff dimension by dimH and the collection of all lines through the
origin by RP1. The classical Marstrand’s projection theorem [49] for Hausdorff dimension
states that, given a Borel set X ⊂ R2, we have

dimH(projV ⊥(X)) = min{1, dimH(X)}
for Lebesgue almost all V ∈ RP1. For a general class of self-affine sets, Bárány, Hochman,
and Rapaport [7] have proved the above result for all V ∈ RP1.

The Assouad dimension dimA is the maximal dimension possible to obtain by looking
at coverings and it serves as an upper bound for the Hausdorff dimension. Orponen [53]
has shown a strong variant of Marstrand’s projection theorem for Assouad dimension. It
states that, given a set X ⊂ R2, we have

dimA(projV ⊥(X)) > min{1,dimA(X)} (1.1)

for all V ∈ RP1 \E, where the set E ⊂ RP1 satisfies dimH(E) = 0. It is worth pointing
out that in general, besides proving the exceptional set E countable, this result cannot
be improved: Fraser and Käenmäki [31] showed that for every upper semi-continuous
function f : RP1 → [0, 1] there exists a compact set X ⊂ R2 with dimA(X) = 0 such
that dimA(projV (X)) = f(V ) for all V ∈ RP1. The following theorem can therefore be
considered as a manifestation of the rigid structure of self-affine sets. The set XF ⊂ RP1
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is the collection of all Furstenberg directions, i.e. the limits of all directions of stronger
contraction, and under the assumptions of the theorem, it satisfies dimH(XF ) > 0.

Theorem 1.2. If X is a dominated irreducible planar self-affine set satisfying the strong
separation condition such that X is not Ahlfors regular, then

dimA(projV ⊥(X)) = min{1, dimA(X)}

for all V ∈ RP1 \E, where the set E ⊂ RP1 satisfies dimH(E) = 0. Furthermore, if X is
Ahlfors regular, then the above holds for all V ∈ XF .

Marstrand’s projection theorem is a strong dimension conservation principle for Haus-
dorff dimension: if dimH(X) 6 1, then the dimension of X is conserved by almost every
projection. If dim(X) > 1, then the same cannot be true, as the projections have dimen-
sion at most one in every direction. This defect is resolved by the classical Marstrand’s
slicing theorem [49]. It shows that almost every fiber of a projection do not store more
dimension than what is the surplus. The theorem states that, given a Borel set X ⊂ R2

and V ∈ RP1, we have

dimH(X ∩ (V + x)) 6 max{0, dimH(X)− 1}

for Lebesgue almost all x ∈ V ⊥. Furstenberg [32] conjectured that for the product
of ×2 and ×3 invariant sets all fibers should be small. In our terminology, such sets
appear as certain dynamically defined subsets of product-type Bedford-McMullen carpets.
Furstenberg’s conjecture was resolved by Shmerkin [59] and Wu [60]. It is therefore
interesting to ask whether the slices are small also on other self-affine sets. For a
Bedford-McMullen carpet X having logarithmically incommensurable contraction ratios,
Algom [1] proved that the Hausdorff dimension of any slice not parallel to the principal
axes is bounded above by max{0, dimA(X)− 1}. Besides the following theorem, we are
not aware of any results of this type for general classes of non-carpet self-affine sets.

Theorem 1.3. If X is a dominated irreducible planar self-affine set satisfying the strong
separation condition such that dimH(X) > 1, then

sup
x∈X

V ∈XF

dimH(X ∩ (V + x)) = dimA(X)− 1 < 1.

The Hausdorff dimension of any self-affine set is bounded above also by the affinity
dimension dimaff , a number which is obtained by looking at the behavior of natural
covers in the construction of the set. Prior the following theorem, it has not been known
how the Assouad dimension compares to the affinity dimension outside self-affine carpets.
It is worth mentioning that on self-similar sets the strong separation condition implies
the equality of the Assouad and affinity dimensions.

Theorem 1.4. If X is a dominated irreducible planar self-affine set satisfying the strong
separation condition such that dimH(X) = s < 1, then either X is Ahlfors regular or
dimaff(X) < 1 6 dimA(X). In particular, parametrized by the translation vectors and
elements of the matrices, there exists a collection with non-empty interior of such planar
Ahlfors s-regular self-affine sets and there exists an uncountable collection of such planar
self-affine sets X for which dimaff(X) < 1 6 dimA(X).
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2. Preliminaries

We introduce rigorous definitions and some preliminaries in this section. The reader
familiar with the recent progress in the topic may skip the preliminaries and go directly
to Section 3 where we exhibit the main results.

2.1. Ahlfors regularity. We say that a Borel measure µ on R2 is Ahlfors s-regular if
there exists a constant C > 1 such that

C−1rs 6 µ(B(x, r)) 6 Crs

for all x ∈ spt(µ) and 0 < r < diam(spt(µ)), where B(x, r) is the closed ball centered
at x with radius r. A compact set X ⊂ R2 is Ahlfors s-regular if it supports an Ahlfors
s-regular measure. We also say that a measure or a set is Ahlfors regular if it is Ahlfors
s-regular for some s > 0. Recall that the s-dimensional Hausdorff measure Hs of a set
X ⊂ R2 is defined by

Hs(X) = lim
δ↓0
Hsδ(X) = sup

δ>0
Hsδ(X),

where

Hsδ(X) = inf

{∑
i

diam(Ui)
s : X ⊂

⋃
i

Ui and diam(Ui) 6 δ

}
is the s-dimensional Hausdorff δ-content of A. By [50, Theorem 6.9], an Ahlfors regular
set X ⊂ R2 has positive and finite s-dimensional Hausdorff measure, 0 < Hs(X) <∞,
when s = dimH(X) = inf{s > 0 : Hs(X) <∞} is the Hausdorff dimension of X. In fact,
a set X ⊂ R2 is Ahlfors s-regular if and only if there exists a constant C > 1 such that

C−1rs 6 Hs(X ∩B(x, r)) 6 Crs

for all x ∈ X and 0 < r < diam(X).
If a Borel measure µ on R2 is Ahlfors s-regular, then we write dim(µ) = s and say

that s is the dimension of µ. More generally, the upper and lower pointwise dimensions
of µ at x ∈ R2 are

dimloc(µ, x) = lim sup
r↓0

logB(x, r)

log r
,

dimloc(µ, x) = lim inf
r↓0

logB(x, r)

log r
,

respectively. For basic properties of pointwise dimensions, we refer to the book of
Falconer [20, §10]. If there exists a constant s such that dimloc(µ, x) = dimloc(µ, x) = s
for µ-almost all x ∈ R2, then we again write dim(µ) = s and say that µ is exact
dimensional. We remark that in general, most measures do not satisfy this property.
But since in the study of self-affine sets, basically all the measures involved are exact
dimensional, we use the convention that writing dim(µ) implicitly means that the measure
µ is known to be exact dimensional; consult [8,23,24,36,46,57] for examples. Dimensions
of measures introduce us with a way to study the Hausdorff dimension of a given Borel
set X: it is well known that

dimH(X) = max{ess sup
x∼µ

dimloc(µ, x) : µ is a finite Borel measure on X}; (2.1)
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for example, see [21, §3]. Often with dynamically defined sets, such as in the case of
self-affine sets, it is desirable for the approximating measures to adhere to some dynamical
properties such as ergodicity and the behavior of entropy and Lyapunov exponents. In
this case, the above formula is called the variational principle; see [39] for its proof in the
self-affine case. Under further assumptions, the approximating measures can be seen to
agree also with other properties; see [52, Theorem 1.1] and [11, Proposition 2.4]. These
properties were crucial in [7] where the authors were able to determine the Hausdorff
dimension of planar self-affine sets in a very general setting; see Theorem 2.16.

2.2. Weak tangents. Let X ⊂ R2 be compact. For each x ∈ X and r > 0 we define
the magnification Mx,r : R2 → R2 by setting

Mx,r(z) =
z − x
r

for all z ∈ R2. We say that a set T intersecting the interior of B(0, 1) is a weak tangent
set of X if there exist sequences (xn)n∈N of points in X and (rn)n∈N of positive real
numbers such that limn→∞ rn = 0 and Mxn,rn(X) ∩B(0, 1)→ T in Hausdorff distance.
We denote the collection of weak tangent sets of X by Tan(X).

The Assouad dimension of a set X ⊂ R2, denoted by dimA(X), is the infimum of all
s > 0 satisfying the following: There exists a constant C > 1 such that for every x ∈ X
and 0 < r < R the set X ∩B(x,R) can be covered by at most C(R/r)s balls of radius r
centered at X. It is easy to see that

dimH(X) 6 dimA(X)

for all sets X ⊂ R2. If X ⊂ R2 is compact, then dimA(X) > dimH(T ) for all T ∈ Tan(X);
see [48, Proposition 6.1.5]. The following result of Käenmäki, Ojala, and Rossi [43,
Proposition 5.7] shows that there exists a weak tangent set whose Hausdorff dimension
attains the maximal possible value. The result introduces a way to calculate the Assouad
dimension of a set by considering its weak tangents.

Lemma 2.1. If X ⊂ R2 is compact, then dimA(X) = max{dimH(T ) : T ∈ Tan(X)}.

We remark that the first result in this direction is by Furstenberg; see [33, Proposition
5.1]. Together with [44, Proposition 3.13] it shows that the Assouad dimension is realized
as a Hausdorff dimension of a weak tangent set or a finite magnification. The above
result is needed to guarantee that the Assouad dimension gets realized on a weak tangent.
This is particularly important detail in the study of self-affine sets as such sets often
undergo a metamorphosis in approaching the weak tangent; see [4, 11,40,43].

Analogously, the lower dimension of a set X ⊂ R2, denoted by dimL(X), is the
supremum of all s > 0 satisfying the following: There exists a constant c > 0 such that
for every x ∈ X and 0 < r < R < diam(X) covering the set X ∩B(x,R) requires at least
c(r/R)−t balls of radius r centered at X. It is easy to see that

dimL(X) 6 dimH(X)

for all X ⊂ R2. If X ⊂ R2 is compact, then dimL(X) 6 dimH(T ) for all T ∈ Tan(X);
see [30, Proposition 2.3]. The following result of Fraser, Howroyd, Käenmäki, and
Yu [43, Theorem 1.1] shows that there exists a weak tangent set whose Hausdorff
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dimension attains the minimal possible value. The result introduces a way to calculate
the lower dimension of a set by considering its weak tangents.

Lemma 2.2. If X ⊂ R2 is compact, then dimL(X) = min{dimH(T ) : T ∈ Tan(X)}.

In the above result, the requirement that the weak tangent set intersects the interior
of the unit ball is essential: without this assumption, the weak tangent can be a single
point in the boundary. It is straightforward to see that if X ⊂ R2 is Ahlfors s-regular,
then dimL(X) = dimA(X) = s; see [41, §3]. The converse does not necessarily hold as
the following example illustrates.

Example 2.3. We construct a set X ⊂ [0, 1] with dimL(X) = dimA(X) and Hs(X) = 0
for s = dimH(X). Let λn = (3n)−1 for all n ∈ N. We start the construction from the
unit interval [0, 1]. First, we cut out the middle part of length λ1. Next, for each of the
two small intervals of length (1− λ1)/2 = 1/3, we cut out their middle parts of length
λ2/3. At step n, we cut out the middle parts of relative length λn. We can perform this
cutting procedure indefinitely and in the end we obtain a compact set X similarly as
with the middle third Cantor set. It is straightforward to see that dimL(X) = 1 and X
has zero Lebesgue measure.

We collect the general implications of Ahlfors regularity in the following lemma:

Lemma 2.4. If X ⊂ R2 is Ahlfors s-regular, then 0 < Hs(X) <∞ where s = dimL(X) =
dimH(X) = dimA(X).

The important observation here is that if the lower and Assouad dimensions of X
differ, then X cannot be Ahlfors regular. For other basic properties of the Assouad and
lower dimensions, we refer to the book of Fraser [28].

2.3. Irreducibility. If A ∈ GL2(R) is an invertible 2× 2-matrix, then we denote the
lengths of the major and minor axis of the ellipse A(B(0, 1)) by α1(A) and α2(A),
respectively. Note that α1(A) = ‖A‖ and α2(A) = ‖A−1‖−1 are the square roots of the
non-negative real eigenvalues of the positive semidefinite matrix A>A. It is also well-
known that | det(A)| = α1(A)α2(A) for all A ∈ GL2(R). Let RP1 be the real projective
line, that is, the set of all lines through the origin in R2. Let us denote the Dirac mass at
V ∈ RP1 by δV .

Lemma 2.5. If (An)n∈N is a sequence of 2×2 matrices such that there exists a non-atomic
measure m on RP1 for which limn→∞(An)∗m = δV in the weak∗ topology, then

α1(A>n )

α2(A>n )
=
α1(An)

α2(An)
→∞

as n→∞,

lim
n→∞

‖A>n |W‖
α1(A>n )

= | cos(^(V,W ))|

for all W ∈ RP1, and

^(A>nW1, A
>
nW2)→ 0

as n→∞ for all W1,W2 ∈ RP1 \ {V ⊥}.
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Proof. Since ‖ det(An)−1/2An‖2 = α1(An)/α2(An) and

|^(A>nW1, A
>
nW2)| = arcsin

(
|A>nw1 ∧A>nw2|
|A>nw1||A>nw2|

)
= arcsin

(
| det(A>n )|

‖A>n |W1‖‖A>n |W2‖
| sin(^(W1,W2))|

)
for all n ∈ N, where w1 ∈ W1 and w2 ∈ W2 are such that |w1| = 1 = |w2|, the lemma
follows from [15, Proposition II.3.1]. �

We are primarily interested in semigroups generated by finite collections of matrices. In
this context, it is rather standard practise to use separate alphabet to index the elements
in the semigroup. Let Σ = {1, . . . , N}N be the collection of all infinite words obtained
from integers {1, . . . , N}. If i = i1i2 · · · ∈ Σ, then we define i|n = i1 · · · in for all n ∈ N.

If i = i1 · · · in, then we write
←−
i = in · · · i1. The empty word i|0 is denoted by ∅. Define

Σn = {i|n : i ∈ Σ} for all n ∈ N and Σ∗ =
⋃
n∈N Σn ∪ {∅}. Thus Σ∗ is the collection of

all finite words. The length of i ∈ Σ∗ ∪ Σ is denoted by |i|. The concatenation of two
words i ∈ Σ∗ and j ∈ Σ∗ ∪ Σ is denoted by ij and the longest common prefix of i and
j by i ∧ j. Thus j = (i ∧ j)j′ for some j′ ∈ Σ∗ ∪ Σ. If A = (A1, . . . , AN ) ∈ GL2(R)N ,
then we write Ai = Ai1 · · ·Ain and

A>←−
i

= (A←−
i

)> = A>i1 · · ·A
>
in ,

A−1
←−
i

= (A←−
i

)−1 = A−1
i1
· · ·A−1

in

for all i = i1 · · · in ∈ Σn and n ∈ N.
Let σ be the left shift operator defined by σi = i2i3 · · · for all i = i1i2 · · · ∈ Σ.

If i ∈ Σn for some n, then we set [i] = {j ∈ Σ : j|n = i}. The set [i] is called a
cylinder set. The shift space Σ is compact in the topology generated by the cylinder
sets. Moreover, the cylinder sets are open and closed in this topology and they generate
the Borel σ-algebra. Let Mσ(Σ) be the collection of all σ-invariant Borel probability
measures on Σ. We say that a measure µ on Σ is fully supported if every cylinder set has
positive measure, µ([i]) > 0 for all i ∈ Σ∗. If (p1, . . . , pN ) is a probability vector, then
the measure µ ∈Mσ(Σ) for which

µ([i]) = pi1 · · · pin
for all i = i1 · · · in ∈ Σn and n ∈ N is called a Bernoulli measure. Note that a Bernoulli
measure obtained from a probability vector (p1, . . . , pN ) is fully supported if and only if
pi > 0 for all i ∈ {1, . . . , N}.

If A = (A1, . . . , AN ) ∈ GL2(R)N and µ ∈ Mσ(Σ) is a fully supported Bernoulli
measure obtained from a probability vector (p1, . . . , pN ), then the associated Furstenberg
measure is a Borel probability measure µF on RP1 satisfying

µF =

N∑
i=1

pi(A
−1
i )∗µF . (2.2)

We say that A is irreducible if there does not exist V ∈ RP1 such that AiV = V for
all i ∈ {1, . . . , N}; otherwise A is reducible. The tuple A is strongly irreducible if there
does not exist a finite set V ⊂ RP1 such that AiV = V for all i ∈ {1, . . . , N}. A matrix
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A ∈ GL2(R) is called proximal if it has two real eigenvalues with different absolute values.
We say that A is strictly affine if there is i ∈ Σ∗ such that Ai is proximal. If A is strictly
affine, then the set of Furstenberg directions is

XF = {AR2 ∈ RP1 : A ∈ {cA−1
←−
i

: c ∈ R and i ∈ Σ∗}}.

The following lemma demonstrates the connection between the Furstenberg measure and
directions.

Lemma 2.6. If A ∈ GL2(R)N is strictly affine and strongly irreducible and µ ∈Mσ(Σ)
is a fully supported Bernoulli measure, then the associated Furstenberg measure µF is
unique and non-atomic with dim(µF ) > 0, the support of µF is XF , and there exists a
measurable function ϑ2 : Σ→ XF such that µF =

∫
Σ δϑ2(i) dµ(i) = (ϑ2)∗µ and

(A−1
←−
i|n

)∗µF → δϑ2(i)

in the weak∗ topology for µ-almost all i ∈ Σ as n→∞. In particular, for every V ∈ XF

there exists a sequence (nk)k∈N of integers and for each k ∈ N there is a word ik ∈ Σnk

such that

(A−1
←−
ik

)∗µF → δV .

in the weak∗ topology as k →∞.

Proof. By [15, Theorem II.4.1 and Corollary VI.4.2] and [36, Theorem 1.1], the Fursten-
berg measure µF is unique, non-atomic, and satisfies dim(µF ) > 0. The fact that the
support of µF is XF follows from [11, proof of Lemma 2.3] and the existence of the
function ϑ2 : Σ → XF from [15, Proposition II.3.3 and Theorem II.4.1]. To show the
last claim, note that, by the definition of the support, there exists a sequence (ik)k∈N
of words in Σ such that ϑ2(ik)→ V . Let dW be the Wasserstein distance (or any other
metric inducing the weak∗ topology). For each k ∈ N choose nk ∈ N such that

dW ((A−1
←−−−
ik|nk

)∗µF , δϑ2(ik)) <
1

k
,

where ik|nk
∈ Σnk

. Therefore,

dW ((A−1
←−−−
ik|nk

)∗µF , δV ) 6
1

k
+ dW (δϑ2(ik), δV )→ 0

as k →∞. �

Let R : RP1 → RP1 be such that R(V ) = V ⊥ for all V ∈ RP1 and write µ⊥F = R∗µF .
Observe that if A ∈ GL2(R)N is strictly affine and strongly irreducible, µ ∈ Mσ(Σ)
is a fully supported Bernoulli measure. Then Lemma 2.6 together with the facts that
R−1 = R and A>V ⊥ = (A−1V )⊥ for all A ∈ GL2(R)N and V ∈ RP1 implies that

(A>←−
i|n

)∗µ
⊥
F → δϑ2(i)⊥ (2.3)

in the weak∗ topology for µ-almost all i ∈ Σ as n→∞, where ϑ2 is as in Lemma 2.6.
We remark that an explicit definition for the function ϑ2 can be found in [11, §2.3].

Finally, let us analyse the defined reducibility conditions. The following lemma, which
classifies the conditions, follows immediately from [11, proof of Lemma 2.2].
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Lemma 2.7. If A ∈ GL2(R)N is strictly affine, then precisely one of the following
conditions hold:

(1) A is strongly irreducible,
(2) A is irreducible but not strongly, i.e., the matrices in A are simultaneously diagonal

or antidiagonal in some basis so that there is at least one antidiagonal matrix,
(3) A is reducible, i.e., the matrices in A are simultaneously upper triangular in some

basis.

Note that if A consists only of antidiagonal matrices, then their second iterates are
diagonal and hence reducible.

2.4. Domination. We say that A = (A1, . . . , AN ) ∈ GL2(R)N is dominated if there
exist constants C > 0 and 0 < τ < 1 such that

α2(Ai) 6 Cτ
|i|α1(Ai) (2.4)

for all i ∈ Σ∗. By [10, Corollary 2.4], a dominated tuple is strictly affine. We call a
proper subset C ⊂ RP1 a multicone if it is a finite union of closed projective intervals. We
say that C ⊂ RP1 is a strongly invariant multicone for A if it is a multicone and AiC ⊂ Co
for all i ∈ {1, . . . , N}, where Co is the interior of C. For example, the first quadrant
is strongly invariant for any tuple of positive matrices. By [13, Theorem B], A has a
strongly invariant multicone if and only if A is dominated. Furthermore, if C ⊂ RP1 is a

strongly invariant multicone for A, then RP1 \ C and {V ⊥ : V ∈ RP1 \ C} are strongly
invariant multicones for A−1 = (A−1

1 , . . . , A−1
N ) and A> = (A>1 , . . . , A

>
N ), respectively.

Observe that if A is dominated, then the set of Furstenberg directions is the compact
set

XF =

∞⋂
n=1

⋃
i∈Σn

A−1
←−
i
RP1 \ C. (2.5)

If Π: Σ→ RP1 is the canonical projection defined by the relation

{Π(i)} =
∞⋂
n=1

A−1
←−
i|n

RP1 \ C, (2.6)

then it is easy to see that XF =
⋃

i∈Σ Π(i). Note that XF is perfect unless it is a
singleton.

Lemma 2.8. If A ∈ GL2(R)N is dominated, then there exists a constant D > 1 such
that

‖A>i |V ⊥‖ 6 α1(Ai) 6 D‖A>i |V ⊥‖
for all i ∈ Σ∗ and V ∈ XF . Furthermore, if i ∈ Σ and V = Π(i), then

D−1‖A←−
i|n
|V ‖ 6 α2(A←−

i|n
) 6 ‖A←−

i|n
|V ‖

for all n ∈ N.

Proof. To prove the first claim, fix V ∈
⋃N
i=1A

−1
i RP1 \ C and let v ∈ V ⊥ be such that

|v| = 1. Notice that XF ⊂
⋃N
i=1A

−1
i RP1 \ C and A>i {V ⊥ : V ∈ RP1 \ C} ⊂ {V ⊥ : V ∈
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i=1A

−1
i RP1 \ C} for all i ∈ Σ∗ \ {∅}. By [14, Lemma 2.2], there exists a constant

D > 1 such that

‖A>i |V ⊥‖ = |A>i v| > D−1‖Ai‖

for all i ∈ Σ∗.

To show the second claim, let V ∈ RP1 be the only element in
⋂∞
n=1A

−1
←−
i|n

RP1 \ C

and let v ∈ V be such that |v| = 1. Notice that A−1
j RP1 \ C ⊂

⋃N
i=1A

−1
i RP1 \ C for all

j ∈ Σ∗ \ {∅}. Fixing n ∈ N we see that A←−
i|n
v ∈

⋂∞
k=1A

−1
←−−−
σni|k

RP1 \ C ⊂
⋃N
i=1A

−1
i RP1 \ C.

Therefore, again by [14, Lemma 2.2], there exists a constant D > 1 such that

1 = |v| = |A−1
←−
i|n
A←−
i|n
v| > D−1‖A−1

←−
i|n
‖|A←−

i|n
v| = D−1‖A−1

←−
i|n
‖‖A←−

i|n
|V ‖

which finishes the proof. �

If V,W ∈ RP1, then the projection projWV : R2 → V is the linear map such that

projWV |V = Id|V and ker(projWV ) = W . The orthogonal projection projV
⊥

V onto the
subspace V is denoted by projV . Note that (projV A)> = A> projV and hence,

‖A>|V ⊥‖ = ‖projV ⊥ A‖ (2.7)

for all A ∈ GL2(R) and V ∈ RP1. Recall that a 2 × 2-matrix A has rank one if and
only if there exist v, w ∈ R2 \ {(0, 0)} such that A = vw> with im(A) = span(v) and
ker(A) = span(w)⊥. It is easy to see that in such a case,

A =

{
〈v, w〉proj

ker(A)
im(A) , if A is not nilpotent,

|v||w|R projker(A)⊥ , if A is nilpotent,
(2.8)

where R ∈ O(2) is a rotation by an angle π/2. In particular, A(X) is bi-Lipschitz
equivalent to projker(A)⊥(X) for all X ⊂ R2. The following lemma guarantees that
nilpotent matrices do not appear in the dominated case.

Lemma 2.9. If A ∈ GL2(R)N is dominated, then the closure of {cAi : c ∈ R and i ∈ Σ∗}
does not contain non-zero nilpotent elements. In other words, rank one matrices in the
above closure are all projections.

Proof. Let us assume that there exists a non-zero nilpotent matrix P in the closure of
{cAi : c ∈ R and i ∈ Σ∗}. By definitions, P 2 = 0 and there exists sequences (in)n∈N of
finite words in Σ∗ and (cn)n∈N of non-zero real numbers such that cnAin → P as n→∞.
The domination guarantees that, by possibly going through a sub-sequence, Ain/‖Ain‖
converges to a rank one matrix and so limn→∞ cn/‖Ain‖ ∈ R \ {0}. Thus, without loss
of generality, we may assume that cn = ‖Ain‖.

The domination guarantees that, by possibly taking another sub-sequence, also
A2
in/‖A

2
in‖ converges to a rank one matrix Q. By [10, Corollary 2.4], there exists

a constant C > 1 such that ‖A2
in‖ 6 ‖Ain‖2 6 C‖A2

in‖ for all n ∈ N. Hence, A2
in/‖A

2
in‖

must converge to a constant times P 2. Since P 2 = 0, this contradicts for Q being rank
one. �
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A dominated tuple A is not necessarily irreducible and an irreducible tuple A is not
necessarily dominated. For example, consider a tuple of diagonal matrices and a tuple
of diagonal and antidiagonal matrices. The following lemma shows that together the
properties imply strong irreducibility.

Lemma 2.10. If A ∈ GL2(R)N is dominated and irreducible, then A is strongly irre-
ducible.

Proof. Since A is dominated, it contains only proximal elements and is hence strictly
affine; see [10, Corollary 2.4]. Therefore, as A is irreducible, it suffices to show that the
condition (2) in Lemma 2.7 does not hold. Let C ⊂ RP1 be a strongly invariant multicone
for A. If A contains an antidiagonal matrix A, then A2 is a constant times the identity
matrix and A2C = C which is a contradiction. Hence, A is strongly irreducible. �

The following lemma introduces a representation for dominated and reducible tuples
for which the collection of Furstenberg directions is non-trivial.

Lemma 2.11. If A = (A1, . . . , AN ) ∈ GL2(R)N is dominated and reducible such that
XF is not a singleton, then, possibly after a change of basis,

Ai =

(
ai bi
0 di

)
(2.9)

with 0 < |di| < |ai| < 1 for all i ∈ {1, . . . , N}, and the matrices are not simultaneously
diagonalizable.

Proof. If X is reducible, then, by Lemma 2.7(3), the matrices Ai are simultaneously
upper triangular in some basis and are of the form (2.9). If there exists i ∈ {1, . . . , N}
such that |di| > |ai|, then it is easy to see that for any subspace W ∈ RP1, we have
AniW → span(e1) as n→∞, where e1 = (1, 0). Thus, since the matrices are dominated,
any strongly invariant multicone C must contain span(e1) as an interior point. But such
a cone cannot be strongly invariant for matrices of the form (2.9) unless |di| > |ai| for
all i ∈ {1, . . . , N}, which contradicts the assumption that XF is not a singleton. Hence,
|di| < |ai| for all i ∈ {1, . . . , N}. Finally, as XF is not a singleton, the matrices cannot
be simultaneously diagonalisable. �

2.5. Equilibrium states. For each A ∈ GL2(R) and s > 0 we define the singular value
function by setting

ϕs(A) =


‖A‖s = α1(A)s, if 0 6 s 6 1,

‖A‖2−s|det(A)|s−1 = α1(A)α2(A)s−1, if 1 < s 6 2,

|det(A)|s/2 = α1(A)s/2α2(A)s/2, if s > 2.

The value ϕs(A) represents a measurement of the s-dimensional volume of the ellipse
A(B(0, 1)). Since the determinant is multiplicative and the operator norm is sub-
multiplicative, we have ϕs(AB) 6 ϕs(A)ϕs(B) for all A,B ∈ GL2(R) and s > 0. For
each A ∈ GL2(R)N and s > 0 we define the pressure by setting

P (A, s) = lim
n→∞

1

n
log

∑
i∈Σn

ϕs(Ai).
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As the singular value function is sub-multiplicative, the sequence (log
∑

i∈Σn
ϕs(Ai))n∈N

is sub-additive and hence, the limit above exists by Fekete’s lemma. It is also easy to see
that the pressure P (A, s) is continuous and strictly decreasing as a function of s with
P (A, 0) > 0 and lims→∞ P (A, s) = −∞. We may thus define the affinity dimension by
setting dimaff(A) to be the unique s > 0 for which P (A, s) = 0.

Suppose that A ∈ GL2(R)N is dominated. For each s > 0 define a function gs : Σ→ R
by setting

gs(i) =


log ‖A>

i|1 |Π(σi)⊥‖s, if 0 6 s 6 1,

log ‖A>
i|1 |Π(σi)⊥‖2−s|det(Ai|1)|s−1, if 1 < s 6 2,

log | det(Ai|1)|s/2, if s > 2,

for all i ∈ Σ, where Π is as in (2.6). Notice that gs is Hölder continuous. The Perron-
Frobenius operator L for s is the positive linear operator defined by setting

Lf(i) =

N∑
i=1

exp(gs(ii))f(ii)

for all continuous functions f : Σ → R. Observe that, by Lemma 2.8, there exists a
constant D > 1 such that

log ‖Ai|n‖ − logD 6 log ‖A>i|n |Π(σni)⊥‖ =
n−1∑
k=0

log ‖A>σki|1 |Π(σk+1i)⊥‖

and hence, the Birkhoff sum of gs,
∑n−1

k=0 gs(σ
ki), satisfies

logϕs(Ai|n)− logD 6
n−1∑
k=0

gs(σ
ki) 6 logϕs(Ai|n) (2.10)

for all i ∈ Σ and n ∈ N. The following lemma is a simple consequence of the classical
Ruelle’s Perron-Frobenius Theorem.

Lemma 2.12. If A ∈ GL2(R)N is dominated and L is the Perron-Frobenius operator
for dimaff(A), then there exist a unique continuous function h : Σ→ (0,∞) and a unique
Borel probability measure ν on Σ such that

Lh = h,

∫
Σ
h(i) dν(i) = 1,

and

lim
n→∞

sup
i∈Σ

∣∣∣∣Lnf(i)− h(i)

∫
Σ
f(j) dν(j)

∣∣∣∣ = 0

for all continuous functions f : Σ→ R. Furthermore, if A ∈ GL2(R)N is dominated or
irreducible, then there exist a unique measure µK ∈Mσ(Σ) and a constant C > 1 such
that

C−1ϕs(Ai) 6 µK([i]) 6 Cϕs(Ai)

for all i ∈ Σ∗, where s = dimaff(A).
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Proof. If A is irreducible, then the existence of the claimed measure µK ∈Mσ(Σ) follows
immediately from [25, Proposition 1.2 and §3]. Thus we assume that A is dominated
and write s = dimaff(A). By [16, Theorem 1.7], there exist a unique continuous function
h : Σ→ (0,∞) and a unique Borel probability measure ν on Σ such that

Lh = λh, L∗ν = λν,

∫
Σ
h(i) dν(i) = 1,

and

lim
n→∞

sup
i∈Σ

∣∣∣∣λ−nLnf(i)− h(i)

∫
Σ
f(j) dν(j)

∣∣∣∣ = 0

for all continuous functions f : Σ→ R, where λ = L∗ν(Σ) > 0. By [16, Theorem 1.16],
there exists a constant C > 1 such that the measure µK ∈Mσ(Σ) defined by setting

µK(Γ) =

∫
Γ
h(i) dν(i)

for all Borel sets Γ ⊂ Σ is ergodic and satisfies

C−1λ−n exp

(n−1∑
k=0

gs(σ
ki)

)
6 µK([i|n]) 6 Cλ−n exp

(n−1∑
k=0

gs(σ
ki)

)
for all i ∈ Σ and n ∈ N, where

log λ = lim
n→∞

1

n
log

∑
i∈Σn

exp sup
j∈[i]

(n−1∑
k=1

gs(σ
kj)

)
.

Therefore, by (2.10) and the choice of s, we have λ = exp(P (A, s)) = 1 and hence,

(CD)−1ϕs(Ai) 6 µK([i|n]) 6 Cϕs(Ai)

for all i ∈ Σ∗. The uniqueness of µK is now evident as two different ergodic measures
are mutually singular. �

The measure µK ∈Mσ(Σ) in Lemma 2.12 is called the equilibrium state as its canonical
projection on the self-affine set X is the natural canditate to attain the maximum in (2.1).
Equilibrium states exist also without domination or irreducibility but in this case, they
satisfy sligthly weaker properties than described in Lemma 2.12 and are not necessarily
unique; see [39] and [25].

2.6. Self-affine set. We consider a tuple Φ = (A1 + v1, . . . , AN + vN ) of contractive
invertible affine self-maps on R2, where we have written A+ v to denote the affine map
x 7→ Ax+ v defined on R2 for all 2× 2 matrices A and translation vectors v ∈ R2. Such
a tuple Φ is called an affine iterated function system. We also write ϕi = Ai + vi for all
i ∈ {1, . . . , N} and ϕi = ϕi1 ◦ · · · ◦ ϕin for all i = i1 · · · in ∈ Σn and n ∈ N. Note that
the associated tuple of matrices (A1, . . . , AN ) is an element of GL2(R)N and satisfies
maxi∈{1,...,N} ‖Ai‖ < 1. It is a classical result of Hutchinson [38] that for each affine

iterated function system there exists a unique non-empty compact set X ⊂ R2, called
the self-affine set, such that

X =
N⋃
i=1

ϕi(X). (2.11)
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We use the convention that whenever we speak about a self-affine set X, then it is
automatically accompanied with a tuple of affine maps which defines it. This makes
it possible to write that e.g. “X is dominated” which obviously then means that “the
associated tuple A of matrices is dominated”. Similarly, by dimaff(X) we mean the
affinity dimension dimaff(A) defined in §2.5.

We are interested in understanding the geometry of self-affine sets. Relying on
(2.11), the self-affine set X can naturally be covered by the sets ϕi(B), where B is
a ball containing X. Observe that each ellipse ϕi(B) can be covered by one ball of
radius α1(Ai) diam(B) or by α1(Ai)/α2(Ai) many balls of radius α2(Ai) diam(B). This
motivates us to study the limiting behavior of the sums

∑
i∈Σn

ϕs(Ai) and indeed, it is
straightforward to see that dimH(X) 6 min{2,dimaff(X)}.

Every affine iterated function system is associated with the canonical projection
π : Σ→ X which is defined by πi =

∑∞
n=1Ai|n−1

vin for all i = i1i2 · · · ∈ Σ. It is easy to
see that π is continuous and the image of Σ is the self-affine set, π(Σ) = X. Separation
conditions allow simple interplay between Σ and X. We say that X satisfies the strong
separation condition if ϕi(X) ∩ ϕj(X) = ∅ whenever i 6= j. In this case, we have

δ = min
i 6=j

dist(ϕi(X), ϕj(X)) > 0. (2.12)

As π([i]) = ϕi(X) for all i ∈ Σ∗, the strong separation condition is characterized by the
requirement that the canonical projection is one-to-one. We say that X satisfies the open
set condition if there exists an open set U ⊂ R2 such that ϕi(U) ∩ ϕj(U) = ∅ whenever
i 6= j and ϕi(U) ⊂ U for all i ∈ {1, . . . , N}. If such a set U also intersects X, then we
say that X satisfies the strong open set condition. Observe that the strong separation
condition implies the strong open set condition.

Let us first survey known results for self-similar sets which are a special case of self-
affine sets. If (λ1O1 + v1, . . . , λNON + vN ), where 0 < λi < 1 and Oi ∈ O(2) for all
i ∈ {1, . . . , N}, is a tuple of contractive similarities on R2, then we call the associated
self-affine set X self-similar. In this case, the affinity dimension is called similarity
dimension and we denote it by dimsim(X). Notice that dimsim(X) is the unique s > 0

for which
∑N

i=1 λ
s
i = 1. Let us endow the group of all similitudes with the topology of

pointwise convergence and define

Σ(x, r) = {i ∈ Σ∗ : diam(ϕi(X)) 6 r < diam(ϕi−(X)) and ϕi(X) ∩B(x, r) 6= ∅}

for all x ∈ R2 and r > 0.

Theorem 2.13. If X is a planar self-similar set, then the following conditions are
equivalent:

(1) X satisfies the open set condition,
(2) X satisfies the strong open set condition,
(3) sup{#Σ(x, r) : x ∈ X and r > 0} <∞,
(4) the identity is not in the closure of {ϕ−1

i ◦ ϕj : i, j ∈ Σ∗ such that i 6= j},
(5) there is η > 0 such that |ϕi − ϕj| > η diam(ϕi(X)) for all i, j ∈ Σ∗ with i 6= j,
(6) Hs(X) > 0 where s = dimsim(X),
(7) X is Ahlfors s-regular where s = dimsim(X),
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Proof. Notice that (2) ⇒ (1) is a triviality and (7) ⇒ (6) follows from Lemma 2.4.
Hutchinson [38, §5.3] proved the implication (1) ⇒ (7), Bandt and Graf [3] showed that
(6) ⇔ (4) ⇔ (5), and finally, Schief [58, Theorem 2.1] verified the remaining implication
(6) ⇒ (2). �

Recall that if X is a self-similar set, then, regardless of separation conditions, [18,
Theorem 4] shows that Hs(X) < ∞ where s = dimH(X). We say that X satisfies the
weak separation condition if

sup{#Φ(x, r) : x ∈ X and r > 0} <∞,

where

Φ(x, r) = {ϕi : diam(ϕi(X)) 6 r < diam(ϕi−(X)) and ϕi(X) ∩B(x, r) 6= ∅}

for all x ∈ R2 and r > 0. Note that the open set condition is valid if and only if the weak
separation condition holds and ϕi 6= ϕj for all i, j ∈ Σ∗ with i 6= j.

Theorem 2.14. If X is a planar self-similar set then the following conditions are
equivalent:

(1) X satisfies the weak separation condition,
(2) the identity is not an accumulation point of {ϕ−1

i ◦ϕj : i, j ∈ Σ∗ such that i 6= j},
(3) there is η > 0 such that |ϕi−ϕj| > η diam(ϕi(X)) for all i, j ∈ Σ∗ with ϕi 6= ϕj,

Furthermore, the following conditions follow from the above conditions and, if X is not
contained in a line and dimH(X) 6 1, or alternatively, if dimH(X) < 1, then all the
conditions are equivalent:

(4) Hs(X) > 0 where s = dimH(X),
(5) X is Ahlfors regular.
(6) dimL(X) = dimH(X) = dimA(X).

Proof. It follows from Angelevska, Käenmäki, and Troscheit [2, Theorem 3.2] that
(1) ⇔ (2) ⇔ (3). Furthermore, by [2, Theorem 3.1], we have (4) ⇔ (5). Note also
that [2, Proposition 3.3] verifies the implication (1) ⇒ (4). The implication (5) ⇒ (6)
follows immediately from Lemma 2.4. Finally, Fraser, Henderson, Olson, and Robinson [29,
Theorems 3.1 and 3.2] proved that if X does not satisfy (2), then dimA(X) > 1, and
Garćıa [34, Theorem 1.4] demostrated that if, in addition, X is not contained in a line,
then dimA(X) > 1. Therefore, under the mentioned extra assumptions, we have the
implication (6) ⇒ (2). �

The assumption dimH(X) 6 1 in the above theorem is essential: a slight modification
of [22, Proposition 3.3] shows that for each 1 < s 6 2 there exists a planar Ahlfors
s-regular self-similar set not satisfying the weak separation condition. Furthermore, a
line is an Ahlfors 1-regular set and it can be expressed as a self-similar set not satisfying
the weak separation condition. This shows that none of the conditions in the second
group imply the conditions in the first group without the extra assumption.

Let us next state a dimension results for a special case of self-affine sets, Bedford-
McMullen carpets, which are constructed by affine maps sharing a common diagonal
matrix as a linear part. Let q > p > 2 and N ∈ {2, . . . , pq} be integers, and I ⊂ {0, . . . , p−
1} × {0, . . . , q − 1} a set of N elements. A Bedford-McMullen carpet is the self-affine set
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X ⊂ [0, 1]2 associated to a tuple (ϕ1, . . . , ϕN ) of affine maps which all have the same linear

part diag(1
p ,

1
q ) and the translation part is from the set {( jp ,

k
q ) ∈ [0, 1]2 : (j, k) ∈ I}. We

assume that each map in the tuple appears there only once. Write nj = #{k : (j, k) ∈ I}
to denote the number of sets ϕi([0, 1)2) the vertical line {( jp , y) : y ∈ R} intersects. We

say that the Bedford-McMullen carpet X has uniform vertical fibers if there is n ∈ N
such that nj = n for all j with nj 6= 0.

Theorem 2.15. If X is a Bedford-McMullen carpet, then the following conditions are
equivalent:

(1) X has uniform vertical fibers,
(2) Hs(X) <∞ where s = dimH(X),
(3) X is Ahlfors regular,
(4) dimL(X) = dimH(X) = dimA(X).

Proof. The implication (1) ⇒ (3) follows from McMullen [51]. Lemma 2.4 shows (3) ⇒
(2) and (3) ⇒ (4). Finally, Peres [54, Theorem 1] has shown the implication (2) ⇒ (1)
and Fraser [27, Corollary 2.14], extending the result of Mackay [47, Theorem 1.1], proved
the implication (4) ⇒ (1). �

Let us then turn to the general self-affine case. Recall that the set of all irreducible
tuples A ∈ GL2(R)N is open, dense, and full Lebesgue measure in GL2(R)N . In fact, the
set of all reducible tuples A ∈ GL2(R)N is a finite union of (4N−1)-dimensional algebraic
varieties; see [42, Propositions 3.4 and 3.6]. Recall also that the set of all dominated
tuples A ∈ GL2(R)N is open in GL2(R)N .

Theorem 2.13 shows that on self-similar sets the open set condition and the strong open
set condition are equivalent. On strictly affine strongly irreducible planar self-affine sets,
the open set condition is not a sufficient assumption for any meaningful dimension result;
see [52, Example 5.5]. Nevertheless, the strong open set condition still has a role. The
following breakthrough result is proven by Bárány, Hochman, and Rapaport [7, Theorems
1.1 and 7.1]:

Theorem 2.16. If X is a strictly affine strongly irreducible planar self-affine set satisfying
the strong open set condition, then

dimH(X) = min{2,dimaff(X)},
dimH(projV ⊥(X)) = min{1,dimaff(X)}

for all V ∈ RP1.

Recall that if a planar self-affine set X is dominated, then, by [10, Corollary 2.4], it
is strictly affine. Therefore, by Lemma 2.10, dominated irreducible planar self-affine
sets satisfy the hypothesis of Theorem 2.16. Note that if X is irreducible, then XF is
not a singleton. It turns out that, under domination, the assumption that XF is not a
singleton is enough. Indeed, by recalling Lemma 2.11, we may rely on [7, Proposition
6.6]1 to arrive at the following theorem:

1Note that the formulation of [7, Proposition 6.6] has a typo: the proposition should disallow the span
of (1, 0), not the span of (0, 1).
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Theorem 2.17. If X is a dominated planar self-affine set satisfying the strong open set
condition such that XF is not a singleton, then

dimH(X) = min{2,dimaff(X)},
dimH(projV ⊥(X)) = min{1,dimaff(X)}

for all V ∈ RP1 \ I, where I = {W ∈ RP1 : W is invariant under all the associated
matrices} and contains at most one element.

We remark that Hochman and Rapaport [35] have recently generalized the above
results. They showed that the strong open set condition can be replaced by exponential
separation, a separation condition which allows overlapping. Our standing assumption is
the strong separation condition and therefore Theorems 2.16 and 2.17 suffice for us. We
seek more refined information in the setting of Theorems 2.16 and 2.17 analogously to the
known results in self-similar sets and Bedford-McMullen carpets. Our first observation
in this direction follows immediately from the following lemma.

Lemma 2.18. If X is a dominated or irreducible planar self-affine set, then Hs(X) <∞
where s = dimaff(X).

Proof. To prove the first claim, let B be a closed ball containing X and i ∈ Σ∗. To cover
the ellipsis ϕi(B), we need approximately one ball of radius α1(Ai) or α1(Ai)/α2(Ai)
many balls of radius α2(Ai). Thus, by the definitions of the Hausdorff measure and the
singular value function, there exists a constant c > 0 such that

Hs(X) 6 c lim
n→∞

∑
i∈Σn

ϕs(Ai).

By Lemma 2.12, there exist a measure µK ∈Mσ(Σ) and a constant C > 1 such that

C−1ϕs(Ai) 6 µK([i]) 6 Cϕs(Ai)

for all i ∈ Σ∗. The claim follows. �

3. Main results

Our first result determines the lower dimension of self-affine sets. It will be proved in
Section 4. We emphasize that the result does not require X to be dominated.

Theorem 3.1. If X is a strictly affine strongly irreducible planar self-affine set satisfying
the strong separation condition, then dimL(X) = min{1,dimH(X)}.

We remark that a Bedford-McMullen carpet X with dimH(X) 6 1 not having uniform
vertical fibers serves as a counter-example for the above result in the reducible case; see
Theorem 2.15 and, more precisely, [27, Corollary 2.14]. Recalling Lemma 2.4, it follows
from Theorem 3.1 that if dimH(X) > 1, then X is not Ahlfors regular. As Theorem 2.16
and Lemma 2.18 guarantee finite Hausdorff measure in the dimension, it is natural to ask
if, under the assumptions of Theorem 3.1, s = dimH(X) > 1 implies Hs(X) = 0. Recall
that if a Bedford-McMullen carpet is not Ahlfors regular, then, by Theorem 2.15, it has
infinite Hausdorff measure in the dimension.

Let us next turn to the Assouad dimension of self-affine sets. The following result is
proved in Section 5. It generalizes the result of Bárány, Käenmäki, and Rossi [11, Theorem
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3.2] which uses a projection condition, a very restrictive assumption to guarantee that
the projection of the self-affine set is a line segment for sufficiently many directions, to
overcome several technical difficulties. Recall also the result of Fraser [27, Theorem 2.12]
for self-affine carpets.

Theorem 3.2. If X is a dominated planar self-affine set satisfying the strong separation
condition such that dimH(X) > 1 and XF is not a singleton, then

dimA(X) = 1 + sup
x∈X

V ∈XF

dimH(X ∩ (V + x)) < 2.

In the following example, we show that, under the assumptions of Theorem 3.2, it
is possible to have dimL(X) < dimH(X) = dimaff(X) < dimA(X). This observation
answers one of the open questions posed in [28, Question 17.5.2]. The example strongly
relies on known results on Bedford-McMullen carpets and it is currently the sole example
to demonstrate dimaff(X) < dimA(X) in the case dimH(X) > 1. If dimH(X) < 1, then
this phenomenon is studied in more detail in Theorem 1.4.

Example 3.3. Let q > p > 2 and N ∈ {2, . . . , pq} be integers, and I ⊂ {0, . . . , p− 1} ×
{0, . . . , q − 1} a set of N elements. Let A = diag(1

p ,
1
q ) and Bε ∈ GL2(R) be a matrix

with positive entries such that ‖Bε‖ < ε for all ε > 0. It follows that ϕs(Bε) ↓ 0 as ε ↓ 0
for all s > 0. Furthermore, the tuple (A,Bε) ∈ GL2(R)2 is dominated and irreducible
for all ε > 0. Write A = (A, . . . , A) ∈ GL2(R)N and note that P (A, s) = log(Nϕs(A)).
Hence,

dimaff(A) =

{
logN
log p , if N ∈ {2, . . . , p},
1 + logN/p

log q , if N ∈ {p+ 1, . . . , pq}.
Observe also that if Aε = (A, . . . , A,Bε) ∈ GL2(R)N+1, then

P (Aε, s) = lim
n→∞

1

n
log

n∑
k=0

∑
16i1<···<ik6n

Nn−kϕs(Ai1−1BεA
i2−i1−1Bε · · ·BεAn−ik−1)

6 lim
n→∞

1

n
log

n∑
k=0

∑
16i1<···<ik6n

Nn−kϕs(A)n−kϕs(Bε)
k

= log(Nϕs(A) + ϕs(Bε)).

Therefore, if s(ε) is such that log(Nϕs(ε)(A) + ϕs(ε)(Bε)) = 0, we see that dimaff(A) 6
dimaff(Aε) 6 s(ε) for all ε > 0 and s(ε) ↓ dimaff(A) as ε ↓ 0.

Recall that the Bedford-McMullen carpet is the self-affine set X ⊂ [0, 1]2 associated
to a tuple (ϕ1, . . . , ϕN ) of affine maps which all have the same linear part A and the

translation part is from the set {( jp ,
k
q ) ∈ [0, 1]2 : (j, k) ∈ I}. We assume that X satisfies

the strong separation condition. Write nj = #{k : (j, k) ∈ I} to denote the number of

sets ϕi([0, 1)2) the vertical line {( jp , y) : y ∈ R} intersects. By [47, Theorem 1.1], we have

dimA(X) =
log #{j ∈ {1, . . . , p} : nj 6= 0}

log p
+ max
j∈{1,...,p}

log nj
log q

.

For example, if q = 5, p = 4, and N = 5, then, by choosing the translation vectors such
that n1 = 3, n2 = 0, and n3 = 1 = n4, we have 1 < dimaff(A) < dimA(X). Observe that
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several other choices also lead to these strict inequalities. We may now choose ε > 0 such
that s(ε) < dimA(X).

Define a contractive affine map ϕN+1 : R2 → R2 by setting ϕN+1(x) = Bεx+ v, where

v ∈ R2 is chosen such that ϕN+1([0, 1]2) ∩
⋃N
i=1 ϕi([0, 1]2) = ∅. Let X ′ be the dominated

irreducible planar self-affine set satisfying the strong separation condition associated to the
tuple (ϕ1, . . . , ϕN , ϕN+1). By Theorems 2.16 and 3.1, we have dimH(X ′) = dimaff(Aε) >
dimaff(A) > 1 = dimL(X ′). Therefore, as X ⊂ X ′,

dimL(X ′) < dimH(X ′) = dimaff(Aε) 6 s(ε) < dimA(X) 6 dimA(X ′)

as claimed.

Inspired by Theorem 2.13, we say that a strictly affine planar self-affine set X satisfies
a projective open set condition if there is η > 0 such that for every V ∈ XF and i, j ∈ Σ∗
with i 6= j there is x ∈ X such that

|projV ⊥(ϕi(x))− projV ⊥(ϕj(x))| > η diam(projV ⊥(ϕi(X))). (3.1)

One has to be careful with this definition as, for example, a Bedford-McMullen carpet can
be contained in a line parallel to the sole element of XF in which case the right hand-side
in (3.1) is zero. Nevertheless, if X and XF are not singletons, then there always exists
V ∈ XF such that diam(projV ⊥(X)) > 0. In fact, in the proof of Theorem 6.1, we will
see that if X is dominated with at least two points and XF is not a singleton, then the
right hand-side in (3.1) is uniformly bounded away from zero. We also define

Σ(V, x, r) = {i ∈ Σ∗ : diam(projV ⊥(ϕi(X))) < r 6 diam(projV ⊥(ϕi−(X)))

and projV ⊥(ϕi(X)) ∩B(projV ⊥(x), r) 6= ∅}
(3.2)

for all V ∈ XF , x ∈ X, and r > 0. The projective open set condition is characterized
in the following theorem. The result is analogous to Theorems 2.13 and 2.14 in the
self-similar case. Its proof consists of Sections 6 and 7.

Theorem 3.4. If X is a dominated planar self-affine set satisfying the strong separation
condition such that XF is not a singleton and dimH(X) 6 1, then the followings conditions
are equivalent:

(1) X satisfies projective open set condition.
(2) sup{#Σ(V, x, r) : V ∈ XF , x ∈ X, and r > 0} <∞,
(3) Hs(X) > 0 where s = dimH(X),
(4) infV ∈XF

Hs∞(projV ⊥(X)) > 0 where s = dimH(X),
(5) X is Ahlfors regular,
(6) projV ⊥(X) is Ahlfors regular for all V ∈ XF .

Furthermore, if dimH(X) < 1, then the following condition can be added to the list:

(7) dimL(X) = dimH(X) = dimA(X).

If the self-affine set X has positive Hausdorff measure, then Theorem 3.4 guarantees
that there are no exact overlaps in the projections onto orthogonal complements of the
Furstenberg directions. In other words, if under the assumptions of Theorem 3.4 it holds
that Hs(X) > 0 for s = dimH(X), then projV ⊥ ϕi 6= projV ⊥ ϕj for all V ∈ XF and
i, j ∈ Σ∗ with i 6= j.
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Theorem 3.5. If X is a dominated planar self-affine set satisfying the strong separation
condition, but not the projective open set condition, such that XF is not a singleton, then
dimA(X) > 1.

It would be interesting to know if the above theorem can be improved to show
dimA(X) > 1. The theorem would then be analogous to the result of Garćıa [34, Theorem
1.4] in the self-similar case; recall also Theorem 2.14.

Our final result shows that, in a topological sense typical self-affine sets satisfy the
assumptions of Theorem 3.5. The proof of Theorem 3.6 will be postponed until Section
8. Let A = (A1, . . . , AN ) ∈ GL2(R)N and consider the affine iterated function systems
Φv = (A1 + v1, . . . , AN + vN ) parametrized by the translation vector v = (v1, . . . , vN ) ∈
(R2)N . Let πv : Σ→ Xv be the associated canonical projection onto the self-affine set Xv.
If A is strictly affine, fix δ > 0 and define

N (A) = {v ∈ (R2)N : Xv satisfies the strong separation condition

with uniform δ > 0 in (2.12) and there are

V ∈ XF and i, j ∈ Σ with i|1 6= j|1 such

that projV ⊥(πv(i)) = projV ⊥(πv(j))}.

(3.3)

Since δ > 0 above is uniform, it is easy to see that N (A) is complete. Recall that a
residual set is an intersection of countably many sets with dense interiors.

Theorem 3.6. If A ∈ GL2(R)N is strictly affine such that maxi∈{1,...,N} ‖Ai‖ < 1
2 , then

there exists a residual set R(A) ⊂ N (A) such that for each v ∈ R(A) the planar self-affine
set Xv does not satisfy the projective open set condition.

Let us next prove Theorems 1.1–1.4 by relying on the above stated results:

Proof of Theorem 1.1. SinceX is irreducible and dominated, it is also strongly irreducible;
see Lemma 2.10. Therefore, it follows from Theorem 3.1 and Lemma 2.4 that if s =
dimH(X) > 1, then X is not Ahlfors s-regular. Recalling Lemma 2.4, we have thus
proven that if X is Ahlfors s-regular, then 0 6 s 6 1 and 0 < Hs(X) <∞. Conversely,
as X is strongly irreducible and dominated, Theorem 3.4 shows that Hs(X) > 0 where
s = dimH(X) 6 1 implies that X is Ahlfors s-regular. �

Proof of Theorem 1.2. By (1.1), we have dimA(projV ⊥(X)) > min{1, dimA(X)} for all
V ∈ RP1 \ E, where the set E ⊂ RP1 satisfies dimH(E) = 0. If dimA(X) > 1, then, as
dimA(projV ⊥(X)) 6 1 for all V ∈ RP1, the claim is a direct consequence of this result. We
may thus assume that dimH(X) 6 1. If X is not Ahlfors regular, then Theorem 3.4 implies
that X does not satisfy the projective open set condition. Therefore, by Theorem 3.5, we
have dimA(X) > 1 and we have shown the first claim. Furthermore, if X is Ahlfors regular,
then, by Theorem 3.4, projV ⊥(X) is Ahlfors regular for all V ∈ XF . Therefore, Lemma
2.4 and the fact that the Hausdorff dimension cannot increase under Lipschitz maps,
gives dimA(projV ⊥(X)) = dimH(projV ⊥(X)) 6 min{1, dimH(X)} 6 min{1,dimA(X)}
for all V ∈ XF and finishes the proof. �

Proof of Theorem 1.3. This is a direct consequence of Theorem 3.2. �
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Figure 1. Construction of dominated Ahlfors regular self-affine sets.

Proof of Theorem 1.4. Let A ∈ GL2(R)N be dominated such that maxi∈{1,...,N} ‖Ai‖ < 1
2 ,

XF is not a singleton, and dimaff(A) < 1. Let v ∈ (R2)N be a translation vector such
that Xv satisfies the strong separation condition. If Xv satisfies the projective open
set condition, then, by Theorem 3.4, Xv is Ahlfors regular. On the other hand, if Xv

does not satisfy the projective open set condition, then, by Theorem 3.5, dimaff(A) <
1 6 dimA(Xv). By Theorem 3.6, there is a residual set R(A) ⊂ N (A) such that for
every v ∈ R(A) the associated planar self-affine set Xv satisfies the strong separation
condition, but not the projective open set condition. Therefore, dimaff(A) < 1 6
dimA(Xv) for all v ∈ R(A). As R(A) is residual, we see that R(A) =

⋂
q∈NRq(A), where

Rq(A)o is dense in N (A). If R(A) is countable, say R(A) = {v1, v2, . . .}, then we have⋂
q,k∈NRq(A)o ∩ (N (A) \ {vk}) = ∅ contradicting the Baire category theorem. Therefore,

R(A) is uncountable.
It remains to show that such self-affine sets with projective open set condition have

non-empty interior in the set of parameters formed by the translation vectors and elements
of the matrices. Fix a dominated tuple A = (A1, . . . , AN ) ∈ GL2(R)N and let C ⊂ RP1

be a strongly invariant multicone for A. Let us choose the tuple v = (v1, . . . , vN ) of
translation vectors such that vi ∈ B(0, 1)o and span(vi − vj) ∈ Co whenever i 6= j. Thus,
by choosing sufficiently small positive constants c1, . . . , cN and defining ϕi : R2 → R2

by setting ϕi(x) = ciAix+ vi, we have ϕi(B(0, 1)) ⊂ B(0, 1)o for all i ∈ {1, . . . , N} and
ϕi(x)− ϕj(y) ∈ Co for all x, y ∈ B(0, 1) whenever i 6= j. We consider the self-affine set
associated to (ϕ1, . . . , ϕN ). It is evident that the mentioned properties are open in the
set of parameters. Moreover, since XF ⊂ RP1 \ C by compactness, there exists a constant
η > 0 such that

|projV ⊥(ϕi(x))− projV ⊥(ϕj(y))| > η
for all V ∈ XF , i, j ∈ {1, . . . , N} with i 6= j, and x, y ∈ X. The projective open set
condition (3.1) follows. For illustration in the case where all the matrices have positive
entries, see Figure 1. �
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Let us finish this section by formulating precise open problems raising from our work.
Recall that in the introduction, we presented two slightly vague questions for motivation.
The first question asked whether it is possible to characterize when the Hausdorff measure
of a self-affine set is positive. If X is a dominated irreducible planar self-affine set
satisfying the strong separation condition such that dimH(X) 6 1, then Theorem 3.4
offers several characterizations. On the other hand, if s = dimH(X) > 1, then Lemma
2.10, Theorem 3.1, and Lemma 2.4 imply that X is not Ahlfors regular. As Theorem
2.16 and Lemma 2.18 show that Hs(X) <∞, the following question is natural:

Question 3.7. Let X be a strictly affine strongly irreducible self-affine set satisfying
the strong separation condition such that s = dimH(X) > 1. Is it possible to have
Hs(X) > 0?

We remark that Przytycki and Urbański [55, Section 6 and Remark 13] have shown
that the reducible planar self-affine set X associated to ((x, y) 7→ (x/2, λy + 1), (x, y) 7→
((x+ 1)/2, λy − 1)) where λ > 1/2 has Hs(X) > 0 for s = dimH(X) > 1 if the canonical
projection of the equidistributed Bernoulli measure onto the orthogonal complement of
the sole element in XF is absolutely continuous and has L∞-density.

The second question posed in the introduction asked whether all the slices of self-affine
sets are small. If X is a dominated irreducible planar self-affine set satisfying the strong
separation condition such that dimH(X) > 1, then Theorem 3.2 shows that all the
slices parallel to Furstenberg directions are small in terms of the Assouad dimension.
It also shows that the largest such slice has Hausdorff dimension close to the Assouad
dimension minus one. Therefore, one cannot hope to obtain the same upper bound
as in the Marstrand’s slicing theorem for all slices. Indeed, Example 3.3 serves as a
counter-example for this. But since the example strongly relies on the rigid structure of
Bedford-McMullen carpets, a class of self-affine sets which can be considered exceptional
in several ways, the following question is natural:

Question 3.8. For a “typical” strictly affine strongly irreducible self-affine set X
satisfying the strong separation condition, is it true that

sup
x∈X

V ∈RP1

dimH(X ∩ (V + x)) 6 max{0,dimH(X)− 1}?

In particular, is it true that dimA(X) = dimH(X) for a “typical” self-affine set X with
dimH(X) > 1?

We speculate that to address the above question, one is obliged to further develop the
theory of scenery flows introduced by Furstenberg [33] for self-affine sets and possibly
strenghten it by the new methods introduced by Hochman and Rapaport [35]. We
expect that our present work and the machinery we have developed serves as an intrinsic
groundwork in this.

Garćıa [34, Theorem 1.4] proved that if a planar self-similar set X not satisfying the
weak separation condition is not contained in a line, then dimA(X) > 1. Theorem 3.5
shows that if X is a dominated planar self-affine set satisfying the strong separation
condition, but not the projective open set condition, such that XF is not a singleton,
then dimA(X) > 1. Note that if XF is not a singleton, then X is not contained in a line.
Therefore, the following question is natural:
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Question 3.9. Let X be a dominated planar self-affine set satisfying the strong separation
condition, but not the projective open set condition, such that XF is not a singleton and
dimH(X) 6 1. Is dimA(X) > 1?

If for “typical” self-affine sets it is possible to obtain a positive answer in Question 3.9,
then [11, Proposition 2.4 and Theorem 5.2] imply a negative answer to Question 3.8.

4. Lower dimension of self-affine sets

In this section, we prove Theorem 3.1. The proof relies on analysis on weak tangent
sets and it is worth emphasizing that it does not require domination. The upper bound
is done in Proposition 4.4 below. The main idea is to find more and more narrow parts
of the self-affine set which eventually result in a weak tangent set contained in a line.
Proposition 4.6 below gives the lower bound. Since, by Theorem 2.16, the dimension of a
self-affine set is preserved under projections, the task there is to compare weak tangent
sets to projections. Let us denote the convex hull of a set A ⊂ R2 by conv(A) and the
boundary of A by ∂A. We say that a set A ⊂ R2 has positive length if H1(A) > 0.

Lemma 4.1. If X is a planar self-affine set satisfying the strong separation condition,
then ∂ conv(X) contains at most countably many line segments with positive length.

Proof. Write S(V, t) = (V + t) ∩ ∂ conv(X) for all t ∈ V ⊥ and V ∈ RP1. Let

I = {(V, t) ∈ RP1 × R2 : H1(S(V, t)) > 0 and t ∈ V ⊥} (4.1)

and observe that if (V, t) ∈ I, then, by the convexity of conv(X), S(V, t) is a proper line
segment in ∂ conv(X). Let us show that I is a countable set. If W ∈ RP1 is the x-axis,
then, again by the convexity of conv(X), it is easy to see that there are at most two
points t1, t2 ∈ W such that (W⊥, t1) ∈ I and (W⊥, t2) ∈ I. It is thus enough to show
that I ′ = {(V, t) ∈ I : V 6= W⊥} is a countable set.

Observe that projW (S(V, t)) has positive length for all (V, t) ∈ I ′. Thus, for every
(V, t) ∈ I ′ there exists q ∈ Q such that q ∈ projW (S(V, t)). Moreover, using the convexity
of conv(X) and the definition of I ′ once more, for every q ∈ Q there are at most two
(V1, t1), (V2, t2) ∈ I ′ such that q ∈ projW (S(Vj , tj)) for both j ∈ {1, 2}. Hence, #I ′ is
indeed at most countable. �

Lemma 4.2. If X is a planar self-affine set satisfying the strong separation condition,
then for every except possibly countably many V ∈ RP1 there exists y ∈ X such that
(V + y) ∩X = {y} and X \ {y} is contained in one of the open half-planes defined by
V + y.

Proof. Let S = {V ∈ RP1 : (V + t) ∩ ∂ conv(X) has positive length for some t ∈ V ⊥}
and notice that S is at most countable by Lemma 4.1. Fix V ∈ RP1 \ S and let v ∈ V ⊥
be such that |v| = 1. Since the set projV ⊥(X) is compact, there exist unique t1, t2 ∈ R
such that projV ⊥(X) ⊂ {tv : t1 6 t 6 t2} and t1v, t2v ∈ projV ⊥(X). In particular,
{tv : t1 6 t 6 t2} = projV ⊥(conv(X)). To finish the proof, it suffices to show that
proj−1

V ⊥
(t1v) ∩X is a singleton.

Suppose to the contrary that there are x1, x2 ∈ proj−1
V ⊥

(t1v)∩X such that x1 6= x2. But
then x1, x2 ∈ ∂ conv(X) and in particular, the line segment connecting x1, x2 must be also
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V + x

x

ε

δ

Figure 2. Illustration for the set H(x, V, δ, ε).

contained in ∂ conv(X). Since this line segment is parallel to V , this is a contradiction
as V /∈ S. �

For x ∈ R2, V ∈ RP1, v ∈ V such that |v| = 1, and 0 6 δ 6 1, we set

C(x, v, δ) = {y ∈ R2 : (y − x) · v <
√

1− δ2|y − x|},
H(x, V, δ, ε) = C(x+ εv, v, δ) ∪ C(x− εv,−v, δ).

For illustration, see Figure 2. Observe that
⋂
δ>0H(x, V, δ, ε) = (V + x) \B(x, ε).

Lemma 4.3. If X is a planar self-affine set satisfying the strong separation condition
and ε > 0, then for every except possibly countably many V ∈ RP1 there exist y ∈ X and
δ > 0 such that X ⊂ R2 \H(y, V, δ, ε).

Proof. Let S be the at most countable subset of RP1 for which the conclusion of Lemma
4.2 fails. Let us argue by contradiction that there exist ε > 0 and V ∈ RP1 \ S such that
for every y ∈ X and δ > 0 it holds that X ∩H(y, V, δ, ε) 6= ∅. Let y ∈ X be the point
given by Lemma 4.2 such that (V + y) ∩X = {y}. For each n ∈ N let us now choose
a point xn ∈ X ∩H(y, V, 1

n , ε). By the compactness of X, going into a subsequence if
required, the sequence (xn)n∈N converges to a point x ∈ X. As the sequence of sets
(H(y, V, 1

n , ε))n∈N is decreasing, we must have x ∈
⋂
n∈NH(y, V, 1

n , ε) = (V + y) \B(y, ε).
Therefore, y 6= x ∈ (V + y) ∩X which is a contradiction. �

We remark that in general it is not possible to choose ε = 0 above as a planar self-affine
set can be contained for example in a parabola; see [5, 26]. The following proposition
gives the upper bound in Theorem 3.1.

Proposition 4.4. If X is a strictly affine strongly irreducible planar self-affine set
satisfying the strong separation condition, then dimL(X) 6 min{1,dimH(X)}.

Proof. Since dimL(X) 6 dimH(X), it is enough to show that dimL(X) 6 1. Therefore,
by Lemma 2.2, it suffices to show that there exists a weak tangent set T such that
dimH(T ) 6 1. Let µ ∈Mσ(Σ) be a fully supported Bernoulli measure obtained from a
probability vector (p1, . . . , pN ) and µF be the associated Furstenberg measure; see (2.2).

Let S ⊂ RP1 be the at most countable exceptional set of Lemma 4.3. By Lemma 2.6
and (2.3), for µ-almost every i ∈ Σ there exists V ∈ XF \ S such that

(A>←−
i|n

)∗µ
⊥
F → δV ⊥ (4.2)
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in the weak∗ topology as n → ∞. Fix i ∈ Σ and V ∈ RP1 \ S such that the above
convergence holds and let ε > 0. By Lemma 4.3, there exist y ∈ X and δ > 0 such that

X ⊂ R2 \H(y, V, δ, ε).

Relying on the strong separation condition, let d > 0 be as in (2.12) and write

Tn = Mϕ←−
i|n

(y),‖A←−
i|n
|V ‖d(X) ∩B(0, d) ⊂ 1

‖A←−
i|n
|V ‖d

A←−
i|n

(R2 \H(0, V, δ, ε)) (4.3)

for all n ∈ N. Let W1,W2 ∈ RP1 \ {V } be parallel to the lines appearing in ∂H(0, V, δ, ε).
By going into a sub-sequence, if necessary, we see that there is T ∈ Tan(X) such that
Tn → T in Hausdorff distance. By (4.2) and Lemma 2.5, there is W ∈ RP1 such that,
by possibly going into a sub-sequence once more, A←−

i|n
W1 → W and A←−

i|n
W2 → W as

n→∞. Therefore, by (4.3), T is contained in an 2ε
d -neighourhood of W . Letting ε ↓ 0,

it follows that T is contained in a line and dimH(T ) 6 1 as required. �

By a rank of an affine map, we mean the rank of its linear part. We use the same
convention also for the kernel and image. Let us state a useful lemma which is not stated
explicitly but is contained in the proof of [11, Theorem 5.2].

Lemma 4.5. If X is a planar self-affine set satisfying the strong separation condition,
then for every T ∈ Tan(X) there exist affine maps G1, G2 : R2 → R2 having rank at least
one such that G1(X) ⊂ T and G2(T ) ⊂ X.

Proof. Let (ik)k∈N be a sequence of infinite words in Σ and (rk)k∈N be a sequence of
positive real numbers converging to zero such that Mπik,rk(X)∩B(0, 1)→ T in Hausdorff
distance. For each k ∈ N, choose nk ∈ N such that α1(Aik|nk

) 6 rk < α1(Aik|nk−1
). The

affine map G1 is now obtained as an accumulation point of the sequence Mπik,rk ◦ ϕik|nk
.

Similarly, for each k ∈ N, choose mk ∈ N such that α2(Aik|mk
) 6 rk < α2(Aik|mk−1

). The

affine map G2 is now obtained as an accumulation point of the sequence ϕ−1
ik|mk

◦M−1
πik,rk

.

For more details, consult the proof of [11, Theorem 5.2]. �

Finally, the following proposition gives the lower bound in Theorem 3.1.

Proposition 4.6. If X is a strongly irreducible planar self-affine set satisfying the strong
separation condition, then dimL(X) > min{1,dimH(X)}.

Proof. By Theorem 2.16 and Lemma 2.2, it is enough to show that for every T ∈ Tan(X)
there exists V ∈ RP1 such that

dimH(T ) > dimH(projV ⊥(X)).

To that end, fix T ∈ Tan(X). By Lemma 4.5, there exists an affine map G : R2 → R2

with rank(G) > 1 such that G(X) ⊂ T . If rank(G) = 2, then dimH(T ) > dimH(X) >
dimH(projV ⊥(X)) for any V ∈ RP1. If rank(G) = 1, then the linear part of G is a
projection as described in (2.8). In particular, G(X) and projker(G)⊥(X) are bi-Lipschitz

equivalent. Thus, if V = ker(G), then dimH(T ) > dimH(G(X)) = dimH(projV ⊥(X)) also
in this case. �
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5. Assouad dimension of self-affine sets having large Hausdorff dimension

In this section, we prove Theorem 3.2. We begin by an auxiliary lemma which shows
that all the slices of X have dimension strictly smaller than one.

Lemma 5.1. If X is a planar self-affine set satisfying the strong separation condition,
then

sup
x∈X

V ∈RP1

dimH(X ∩ (V + x)) < 1.

Proof. Relying on the strong separation condition, let δ > 0 be as in (2.12) and U be the
open δ

3 -neighbourhood of X. Note that, as X is compact, U has finitely many connected
components. Define

Σn(V, x) = {i ∈ Σn : ϕi(X) ∩ (V + x) 6= ∅}

for all x ∈ X, V ∈ RP1, and n ∈ N. Note that ϕi(U) ∩ (V + x) consists of line segments
where the number of line segments is bounded above by the number of the connected
components of U for all i ∈ Σn(V, x). Fix x ∈ X and V ∈ RP1. It is easy to see that, by
the strong separation condition,

H1(ϕi(U) ∩ (V + x)) >
2δ‖Ai|A−1

i V ‖
3

=
2δ

3‖A−1
i |V ‖

(5.1)

and

H1(ϕi(U) ∩ (V + x)) 6 diam(ϕi(U) ∩ (V + x)) 6
3 diam(X) + 2δ

3‖A−1
i |V ‖

(5.2)

for all i ∈ Σn(V, x). Note that (5.1) and (5.2) together give

H1(ϕi(U) ∩ (V + x)) >
2δ

3 diam(X) + 2δ
diam(ϕi(U) ∩ (V + x)) (5.3)

for all i ∈ Σn(V, x).
Write Mi = #{j ∈ {1, . . . , N} : ij ∈ Σn+1(V, x)} > 1 for all i ∈ Σn(V, x) and notice

that, by the strong separation condition and (5.2),

∑
ij∈Σn+1(V,x)

H1(ϕij(U) ∩ (V + x)) 6 H1(ϕi(U) ∩ (V + x))− (Mi − 1)δ

3‖A−1
i |V ‖

6

(
1− (Mi − 1)δ

3 diam(X) + 2δ

)
H1(ϕi(U) ∩ (V + x))

for all i ∈ Σn(V, x). Observe that

0 < (Mi − 1)δ 6 diam(X) + 2δ < 3 diam(X) + 2δ.
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Therefore, by Hölder’s inequality, we have∑
ij∈Σn+1(V,x)

H1(ϕij(U) ∩ (V + x))s

6M1−s
i

( ∑
ij∈Σn+1(V,x)

H1(ϕij(U) ∩ (V + x))

)s
6M1−s

i

(
1− (Mi − 1)δ

3 diam(X) + 2δ

)s
H1(ϕi(U) ∩ (V + x))s

(5.4)

for all i ∈ Σn(V, x) and 0 6 s 6 1. For each M ∈ {1, . . . , N} define a function
fM : [0, 1]→ R by setting

fM (s) = M1−s
(

1− (M − 1)δ

3 diam(X) + 2δ

)s
.

If M = 1, then fM ≡ 1. If M > 2, then it is easy to see that fM is continuous and strictly
decreasing with fM (0) = M > 2 and fM (1) < 1. Hence for every M ∈ {2, . . . , N} there
exists a unique 0 < sM < 1 such that fM (sM ) = 1.

Choosing now maxM∈{2,...,N} sM 6 s < 1, the estimate (5.4) gives∑
ij∈Σn+1(V,x)

H1(ϕij(U) ∩ (V + x))s 6 H1(ϕi(U) ∩ (V + x))s.

Thus, by induction,∑
j∈Σn+1(V,x)

H1(ϕj(U) ∩ (V + x))s =
∑

i∈Σn(V,x)

∑
ij∈Σn+1(V,x)

H1(ϕij(U) ∩ (V + x))s

6
∑

i∈Σn(V,x)

H1(ϕi(U) ∩ (V + x))s 6 · · · 6
∑

i∈Σ1(V,x)

H1(ϕi(U) ∩ (V + x))s.
(5.5)

So, by considering the natural cover {ϕi(U) ∩ (V + x)}i∈Σn(V,x) of X ∩ (V + x), the
estimates (5.3) and (5.5) yield

Hs(X ∩ (V + x)) 6 lim
n→∞

∑
i∈Σn(V,x)

diam(ϕi(U) ∩ (V + x))s

6

(
1 +

3 diam(X)

2δ

)s
lim
n→∞

∑
i∈Σn(V,x)

H1(ϕi(U) ∩ (V + x))s

6

(
1 +

3 diam(X)

2δ

)s ∑
i∈Σ1(V,x)

H1(ϕi(U) ∩ (V + x))s <∞.

This implies dimH(X ∩ (V + x)) 6 s < 1. As the upper bound s for the dimension does
not depend on x ∈ X or V ∈ RP1, we have finished the proof. �

The following lemma examines the slices of weak tangent sets. This allows us to
determine the dimension of the set.
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Lemma 5.2. If X is a dominated planar self-affine set satisfying the strong separation
condition such that dimH(X) > 1 and XF is not a singleton, then for every x ∈ X and
V ∈ XF there exist T ∈ Tan(X) and W,L ∈ RP1 with W 6= L such that

dimH(T ∩ L) > dimH(X ∩ (V + x)),

dimH(T ∩ (W + y)) = 1

for all y ∈ T .

Proof. Let us first define the weak tangent set T ∈ Tan(X). Let x ∈ X and V ∈ XF . By
(2.6), there exists i ∈ Σ such that Π(i) = V . Write

Tk = Mϕ←−
i|k

(x),‖A←−
i|k
|V ‖ ◦ ϕ←−i|k(X) ∩B(0, 1)

for all k ∈ N. By going into a sub-sequence nk, if necessary, we see that there is
T ∈ Tan(X) such that Tnk

→ T in Hausdorff distance.
Let us then show that there exists L ∈ RP1 such that X∩(V +x) ⊂ T ∩L and for every

y ∈ T there exists W ∈ RP1 such that W 6= L and dimH(T ∩ (W + y)) = 1. Fix y ∈ T
and note that, possibly passing through a sub-sequence, there exists a sequence (jk)k∈N

of words in Σ such that jk ∈ [
←−−
i|nk

] for all k ∈ N and Mϕ←−−
i|nk

(x),‖A←−−
i|nk
|V ‖(π(jk))→ y. Let

mk > nk be the unique integer such that

α1(Ajk|mk
) 6 ‖A←−−

i|nk

|V ‖ 6 α1(Ajk|mk−1
).

Then, possibly passing again through a sub-sequence, there exist L ∈ RP1 and an affine
map P such that

Mϕ←−−
i|nk

(x),‖A←−−
i|nk
|V ‖ ◦ ϕ←−−i|nk

(V + x) = A←−−
i|nk

V → L,

Mϕ←−−
i|nk

(x),‖A←−−
i|nk
|V ‖ ◦ ϕjk|mk

→ P.
(5.6)

Since V ∈ XF , we have L ∈ XF . Also, by compactness, we see that X ∩ (V + x) ⊂ T ∩L
and y ∈ P (X) ⊂ T . Let us show that rank(P ) = 1. Observe that

α2(Ajk|mk
)

α1(Ajk|mk
)
6
‖A←−

ik
|V ‖α1(Aσnkjk|mk

)

α1(Ajk|mk
)

6
(

min
i∈{1,...,N}

α2(Ai)
)−1

α1(Aσnkjk|mk
). (5.7)

If the sequence (|σnkjk|mk
|)k∈N of natural numbers was bounded by some K ∈ N, then

α1(A←−−
i|nk

) min
i
α2(Ai)

K 6 α1(A←−−
i|nk

)α2(Aσnkjk|mk
) 6 α1(A←−−

i|nk

Aσnkjk|mk
)

= α1(Ajk|mk
) 6 ‖A←−−

i|nk

|V ‖ 6 Dα2(A←−−
i|nk

),

where the last inequality follows from Lemma 2.8. As this contradicts with (2.4), the
sequence (|σnkjk|mk

|)k∈N must be unbounded. Therefore, it follows from (5.7) that

α2(Ajk|mk
)

α1(Ajk|mk
)
→ 0

as k → ∞. Hence det(‖A←−−
i|nk

|V ‖−1Ajk|mk
) → 0 as k → ∞ and rank(P ) = 1. By

Lemma 2.9 and (2.8), we see that the linear part of P is a constant times proj
ker(P )
im(P ) . Let

us choose W = im(P ) and show that W 6= L and dimH(T ∩ (W + y)) = 1. Relying on
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domination, let C ⊂ RP1 be a strongly invariant multicone. Fix Q ∈ C and notice that,
as Ajk|mk

C ⊂ Co for all k ∈ N, by going into a sub-sequence, if necessary, Ajk|mk
Q →

im(P ) ∈ Co. Since, by (2.5), C ∩XF = ∅, we see that W 6= L. Furthermore, since P (X)
and projker(P )⊥(X) are bi-Lipschitz equivalent by (2.8), the assumption dimH(X) > 1,

Lemma 2.10, and Theorem 2.17 give dimH(T ∩ (W + y)) > dimH(P (X) ∩ (W + y)) =
dimH(projker(P )⊥(X)) = 1.

To finish the proof, let us show that W ∈ RP1 does not depend on the choice of
y ∈ T . Suppose to the contrary that there exist y1, y2 ∈ T such that the associated lines
W1,W2 ∈ RP1 satisfy W1 6= W2. Let P1 and P2 be the affine maps associated to y1 and
y2 defined in (5.6), respectively. By Lemma 4.5, there exists an affine map G : R2 → R2

such that rank(G) > 1 and G(T ) ⊂ X. If rank(G) = 2, then

dimH(X ∩ (GWi +Gyi)) > dimH(GPi(X) ∩ (GWi +Gyi))

= dimH(G projWi
(X)) = 1

(5.8)

for both i ∈ {1, 2}. If rank(G) = 1, then G is bi-Lipschitz equivalent with projker(G)⊥ . If

i ∈ {1, 2} is such that Wi 6= ker(G), then (5.8) holds for this i. In any case, there exists
a slice of X with dimension one, which is impossible by Lemma 5.1. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. It suffices to prove the lower bound for dimA(X) as the upper
bound follows from [11, Proposition 2.4 and Theorem 5.2]. The fact that the upper
bound is strictly smaller than 2 follows immediately from Lemma 5.1. Fix ε > 0 and
choose x ∈ X and V ∈ XF be such that

dimH(X ∩ (V + x)) > sup
z∈X

W∈XF

dimH(X ∩ (W + z))− ε. (5.9)

By Lemma 5.2, there exist T ∈ Tan(X) and W,L ∈ RP1 with W 6= L such that

dimH(T ∩ L) > dimH(X ∩ (V + x)),

dimH(T ∩ (W + y)) = 1

for all y ∈ T . Notice that if dimH(T ∩L) = 0, then trivially dimH(T ) > 1 = 1+dimH(X∩
(V + x)). Let us therefore assume that 0 < s < dimH(T ∩ L). Relying on Frostman’s
lemma, see e.g. [50, Theorem 8.8], let µ be a Borel probability measure on T ∩ L such
that for some constant C > 1 it holds that µ(B(y, r)) 6 Crs for all y ∈ T ∩ L and r > 0.
Now Marstrand’s slicing theorem [12, Theorem 3.3.1] implies that

1 = dimH(T ∩ (W + y)) 6 dimH(T )− s

for µ-almost all y ∈ T ∩ L. Therefore, by letting s ↑ dimH(T ∩ L), we get

dimH(T ) > 1 + dimH(T ∩ L) > 1 + dimH(X ∩ (V + x)). (5.10)

By Lemma 2.1, (5.10), and (5.9), we thus have

dimA(X) > dimH(T ) > 1 + sup
z∈X

W∈XF

dimH(X ∩ (W + z))− ε

and the lower bound for dimA(X) follows by letting ε ↓ 0. �
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6. Assouad dimension of self-affine sets having small Hausdorff dimension

In this section, we show that the conditions (1), (2), (5), and (7) in Theorem 3.4 are
equivalent and prove Theorem 3.5. The implication (1) ⇒ (2) is shown in Theorem 6.1
below and, by recalling Theorem 2.17, Theorem 6.2 verifies the implication (2) ⇒ (5).
The implication (5) ⇒ (7) follows from Lemma 2.4. Finally, Theorem 6.5 below proves
Theorem 3.5 and also the implication (7) ⇒ (1).

Theorem 6.1. If X is a dominated planar self-affine set satisfying the projective open
set condition, then there exists a constant C > 1 such that

sup{#Σ(V, x, r) : x ∈ X and r > 0} 6 C exp(diam(projV ⊥(X))−2)

diam(projV ⊥(X))
(6.1)

for all V ∈ XF with diam(projV ⊥(X)) > 0, where Σ(V, x, r) is as in (3.2). In particular,
if XF is not a singleton, then sup{#Σ(V, x, r) : V ∈ XF , x ∈ X, and r > 0} <∞.

Proof. Let us first assume that V ∈ XF is such that diam(projV ⊥(X)) > 0. Recall that,
by (2.7), ‖ projV ⊥ Ai‖ = ‖A>i |V ⊥‖ for all i ∈ Σ∗. By the projective open set condition
(3.1), there is η > 0 such that for every V ∈ XF , x ∈ X, r > 0, and j, k ∈ Σ(V, x, r) with
j 6= k there is z ∈ X such that

| projV ⊥(ϕj(z)− ϕk(z))| > η diam(projV ⊥(X))‖A>j |V ⊥‖. (6.2)

As A is dominated, Lemma 2.8 shows that there exists a constant D > 1 such that

‖A>i |V ⊥‖ 6 α1(Ai) 6 D‖A>i |V ⊥‖ (6.3)

for all i ∈ Σ∗ and V ∈ XF .
Fix x ∈ X and r > 0. Let j, k ∈ Σ(V, x, r) with j 6= k and z ∈ X be such that

(6.2) holds, and choose y ∈ B(z, γ diam(projV ⊥(X))), where γ = κη/6D and κ =
mini∈{1,...,N} α2(Ai). Observe that, by (6.3), ‖A>j |V ⊥‖ > D−1α1(Aj) > κD−1α1(Aj−) >
κD−1‖A>

j− |V
⊥‖ and hence, by (6.2), the triangle inequality, and (3.2),

|projV ⊥(ϕj(y)− ϕk(y))| > |projV ⊥(ϕj(z)− ϕk(z))| − | projV ⊥(Aj −Ak)(z − y)|

> η diam(projV ⊥(X))‖A>j |V ⊥‖ − (‖A>j |V ⊥‖+ ‖A>k |V ⊥‖)|z − y|
> (κD−1η − 2γ)r = 4γr.

(6.4)

As X is compact, there are finitely many points z1, . . . , zk ∈ X such that

X ⊂
k⋃
i=1

B(zi, γ diam(projV ⊥(X))).

By a simple volume argument, the points can be chosen such that

k 6 C

(
diam(X)

γ diam(projV ⊥(X))

)2

,

where C > 1 does not depend on V . Therefore, for every j, k ∈ Σ(V, x, r) with j 6=
k and the associated z ∈ X satisfying (6.2) there is i ∈ {1, . . . , k} such that zi ∈
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B(x, γ diam(projV ⊥(X))). Writing ξl = (projV ⊥(ϕl(z1)), . . . ,projV ⊥(ϕl(zk))) ∈ (R2)k

for all l ∈ Σ∗, we see that (6.4) gives |ξj − ξk| > 4γr and hence,

B(ξj, γr) ∩B(ξk, γr) = ∅ (6.5)

for all j, k ∈ Σ(V, x, r) with j 6= k. On the other hand, if j ∈ Σ(V, x, r), then

|projV ⊥(x)− projV ⊥(ϕj(z))| 6 2r

for all z ∈ X, and so |projV ⊥(x)− ξj| 6 2
√
kr. It follows that⋃

j∈Σ(V,x,r)

B(ξj, γr) ⊂ B((projV ⊥(x), . . . ,projV ⊥(x)), 2
√
kr). (6.6)

Therefore, by (6.5) and (6.6), we see that

#Σ(V, x, r) 6

(
2
√
k

γ

)2k

=

(
12
√
kD

κη

)2k

.

As the upper bound does not depend on x ∈ X nor r > 0, we have shown (6.1).
To show the second claim, let us assume that XF is not a singleton. By (6.1), it

suffices to show that
inf

V ∈XF

diam(projV ⊥(X)) > 0.

If this was not the case, then, by the continuity of V 7→ diam(projV ⊥(X)) and the
compactness of XF , there is V ∈ XF such that diam(projV ⊥(X)) = 0. It follows
that there exist x, y ∈ X such that X ⊂ V + x and y 6= x. Furthermore, since
XF is not a singleton, there exists i ∈ {1, . . . , N} such that A−1

i V 6= V . Note that
ϕi(x) 6= ϕi(y) and since ϕi(X) ⊂ X ⊂ V + x, we have ϕi(x) − ϕi(y) ∈ V . But then
x− y = A−1

i (ϕi(x)− ϕi(y)) /∈ V , which is a contradiction. �

Theorem 6.2. If X is a dominated planar self-affine set such that s = dimaff(X) 6 1
and sup{#Σ(V, x, r) : x ∈ X and r > 0} < ∞ for some V ∈ XF , then X is Ahlfors
s-regular.

Proof. By Lemma 2.12, there exist a measure µK ∈Mσ(Σ) and a constant C > 1 such
that

C−1α1(Ai)
s 6 µK([i]) 6 Cα1(Ai)

s (6.7)

for all i ∈ Σ∗. Let V ∈ XF be such that sup{#Σ(V, x, r) : x ∈ X and r > 0} <∞. By
Lemma 2.8, there exists a constant D > 1 such that

‖A>i |V ⊥‖ 6 α1(Ai) 6 D‖A>i |V ⊥‖ (6.8)

for all i ∈ Σ∗.
Fix x ∈ X and 0 < r < diam(X). Let i ∈ Σ be such that πi = x and choose n ∈ N

such that ϕi|n(X) ⊂ B(x, r) but ϕi|n(X) \B(x, r) 6= ∅. Note that

κr 6 κdiam(ϕi|n−1
(X)) = κα1(Ai|n−1

) diam(X) 6 diam(ϕi|n(X)) 6 2r.

Therefore, by (6.7),

π∗µK(B(x, r)) > π∗µK(ϕi|n(X)) > µK([i|n])

> C−1α1(Ai|n)s > C−1 min
i∈{1,...,N}

α2(Ai)
s diam(X)−srs (6.9)
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and, by (6.8),

π∗µK(B(x, r)) 6 π∗µK(proj−1
V ⊥

(projV ⊥(B(x, r)))) 6
∑

j∈Σ(V,x,r)

µK([j])

6 C
∑

j∈Σ(V,x,r)

α1(Aj)
s 6 CDs

∑
j∈Σ(V,x,r)

‖ projV ⊥ Ai‖s

6 CDs sup{#Σ(V, x, r) : x ∈ X and r > 0}λ−srs.
The measure π∗µK is thus Ahlfors s-regular. As (6.7) guarantees that the support of
π∗µK is X, Lemma 2.4 finishes the proof. �

Before proving Theorem 6.5, let us exhibit two auxiliary lemmas. The first one shows
the existence of distinct maps whose projections are arbitrarily close to each other in the
relative scale. Relying on the strong separation condition, let δ > 0 be as in (2.12). If
the self-affine set X is not contained in a line, let z1, z2, z3 ∈ X be in a general position
such that X ∩ conv({z1, z2, z3})o 6= ∅ and |zi − zj | 6 δ

3 whenever i 6= j. Write

Z = conv({z1, z2, z3}) (6.10)

and bear in mind that if X and XF are not singletons, then X is not contained in a line.

Lemma 6.3. If X is a dominated planar self-affine set satisfying the strong separation
condition, but not projective open set condition, such that XF is not a singleton, then
there are η0 > 0 and C > 1 such that for every 0 < η < η0 there exist V ∈ XF and
i, j ∈ Σ∗ with i|1 6= j|1 such that

C−1η‖A>i |V ⊥‖ 6 |projV ⊥(ϕi(x)− ϕj(x))| 6 Cη‖A>i |V ⊥‖
for all x ∈ Z, where Z is as in (6.10).

Proof. Define η0 = 1
6 diam(X)−1δ, where δ is as in (2.12), and choose 0 < η < η0. Since

the projective open set condition (3.1) is not satisfied, there exist L ∈ XF and h, k ∈ Σ∗
with h 6= k such that

|projA>h∧kL⊥(ϕi(x)− ϕj(x))|‖A>h∧k|L⊥‖ = |projL⊥(ϕh(x)− ϕk(x))|

6 η diam(projL⊥(X))‖A>h |L⊥‖,

where i = σ|h∧k|(h) and j = σ|h∧k|(k), and

| projA>h∧kL⊥(ϕi(x)− ϕj(x))| 6 η diam(projL⊥(X))‖A>i |A>h∧kL⊥‖
6 η diam(X)α1(Ai)

for all x ∈ X. Since Z is the convex hull of z1, z2, z3 ∈ X we see that for any x ∈ Z there
is a probability vector (p1, p2, p3) such that x =

∑
i pizi. Hence,

|projA>h∧kL⊥(ϕi(x)− ϕj(x))| =
∣∣∣∣∑
i

pi projA>h∧kL⊥(ϕi(zi)− ϕj(zi))

∣∣∣∣
6 η diam(X)α1(Ai)

(6.11)

for all x ∈ Z. Moreover, since diam(Z) 6 δ
3 we have

|ϕi(x)− ϕj(x)| > δ

3
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for every x ∈ Z. Since

| projA>h∧kL⊥(ϕi(x)− ϕj(x))| = |ϕi(x)− ϕj(x)|| cos(^(A>h∧kL
⊥, ϕi(x)− ϕj(x)))|

>
δ

3
| cos(^(A>h∧kL

⊥, ϕi(x)− ϕj(x)))|,

the estimate (6.11) implies

| cos(^(A>h∧kL
⊥, ϕi(x)− ϕj(x)))| 6 η3δ−1 diam(X)α1(Ai) (6.12)

for all x ∈ Z.
Write W = A−1

h∧kL ∈ XF and notice that W⊥ = A>h∧kL
⊥. Recall that since A is

dominated, Lemma 2.8 implies that there exists a constant D > 1 such that α1(Ai) 6
D‖A>i |V ⊥‖ for all V ∈ XF . Recalling that XF is compact and perfect, let P,Q ∈ XF be
such that | sin(^(P,Q))| = diam(XF ) > 0 and write

K =
24D3

| sin(^(P,Q))|mini∈{1,...,N} α2(Ai)
.

Then, by (6.11), for any V ∈ XF with | sin(^(W,V ))| 6 Kηδ−1 diam(X)α1(Ai) we have

|projV ⊥(ϕi(x)− ϕj(x))| = |ϕi(x)− ϕj(x)|| cos(^(V ⊥, ϕi(x)− ϕj(x))|

= |ϕi(x)− ϕj(x)|| cos(^(W⊥, ϕi(x)− ϕj(x)) cos(^(W,V ))

± sin(^(W⊥, ϕi(x)− ϕj(x)) sin(^(W,V ))|
6 |projW⊥(ϕi(x)− ϕj(x))|+ |ϕi(x)− ϕj(x)|| sin(^(W,V ))|
6 η diam(X)α1(Ai) +Kηδ−1 diam(X)(diam(X) + δ/3)α1(Ai)

6 (1 +Kδ−1(diam(X) + δ/3)) diam(X)Dη‖A>i |V ⊥‖

(6.13)

for all x ∈ Z giving the claimed upper bound for any such V .
Let us then show the lower bound. Since

| sin(^(A−1
l P,A−1

l Q))| = |A
−1
l v ∧A−1

l w|
|A−1

l v||A−1
l w|

=
| det(A−1

l )|
‖A−1

l |P‖‖A−1
l |Q‖

| sin(^(P,Q))|,

where v ∈ P and w ∈ Q such that |v| = 1 = |w|, we see that

α2(Al)

α1(Al)
| sin(^(P,Q))| 6 | sin(^(A−1

l P,A−1
l Q))|

6 D2 | det(A−1
l )|

α1(A−1
l )2

= D2α2(Al)

α1(Al)

(6.14)

for all l ∈ Σ∗. Let l ∈ [h ∧ k] ⊂ Σ be such that W ∈ A−1
l|nXF for all n ∈ N. Fix n ∈ N

such that

D2α2(Al|n)

α1(Al|n)
6 Kηδ−1 diam(X)α1(Ai) < D2α2(Al|n−1

)

α1(Al|n−1
)

(6.15)
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and observe that, by the fact that | sin(^(A−1
l|nP,A

−1
l|nQ))| = diam(A−1

l|nXF ), the estimates

(6.14) and (6.15) show that there exists V ∈ {A−1
l|nP,A

−1
l|nQ} ⊂ A

−1
l|nXF such that

1

2

α2(Al|n)

α1(Al|n)
| sin(^(P,Q))| 6 | sin(^(W,V ))| 6 Kηδ−1 diam(X)α1(Ai). (6.16)

It follows that the upper bound found in (6.13) is valid for this V ∈ XF . As 0 < η < η0,

we have
√

1− (η3δ−1 diam(X)α1(Ai))2 > 1
2 . Therefore, by (6.12), (6.16), (6.11), and

(6.15),

|projV ⊥(ϕi(x)− ϕj(x))| = |ϕi(x)− ϕj(x)|| cos(^(W⊥, ϕi(x)− ϕj(x)) cos(^(W,V ))

± sin(^(W⊥, ϕi(x)− ϕj(x)) sin(^(W,V ))|

> |ϕi(x)− ϕj(x)|| sin(^(W⊥, ϕi(x)− ϕj(x))|| sin(^(W,V ))|
− | projW⊥(ϕi(x)− ϕj(x))|| cos(^(W,V ))|

>
δ

3

√
1− (η3δ−1 diam(X)α1(Ai))2

1

2

α2(Al|n)

α1(Al|n)
| sin(^(P,Q))|

− η diam(X)α1(Ai)

>

(
K mini∈{1,...,N} α2(Ai)| sin(^(P,Q))|

12D2
−D

)
diam(X)η‖A>i |V ⊥‖.

The choice of K guarantees that the coefficient obtained in the end is positive and
therefore, the claimed lower bound holds for this V ∈ XF . �

If X is dominated and C ⊂ RP1 is a strongly invariant multicone, then, by (2.5), we
have C ∩XF = ∅. Fix

L ∈
∞⋂
n=1

⋃
i∈Σn

AiC ⊂ C (6.17)

and notice that L is uniformly transverse to every V ∈ XF .

Lemma 6.4. If X is dominated planar self-affine set satisfying the strong separation
condition, but not projective open set condition, such that XF is not a singleton, then
there exist x0 ∈ X and C > 1 so that for each k ∈ N there are Vk ∈ XF , a natural number
nk > k, and finite words k0, . . . , knk

∈ Σ∗ such that

C−1 ‖A
>
k0
|V ⊥k ‖
nk

6 | projV ⊥k
(ϕki−1(x0)− ϕki(x0))| 6 C

‖A>k0
|V ⊥k ‖
nk

for all i ∈ {1, . . . , nk}. Furthermore, the set {projV ⊥k
(ϕki−1(x0) − ϕki(x0)) : i ∈

{1, . . . , nk}} is completely contained in one of the two halfplanes determined by L⊥,
where L ∈ RP1 is as in (6.17).

Proof. Let Z be as in (6.10). Recalling that X ∩ Zo 6= ∅, we choose x0 ∈ X ∩ Zo and let
f ∈ Σ be such that π(f) = x0. By Lemma 6.3, there exist n0 ∈ N and C > 1 such that
for every n > n0 there exist Vn ∈ XF and in, jn ∈ Σ∗ with in|1 6= jn|1 such that

C−1 ‖A>in |V
⊥
n ‖

n
6 |projV ⊥n (ϕin(x)− ϕjn(x))| 6 C

‖A>in |V
⊥
n ‖

n
(6.18)
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for all x ∈ Z. Notice also that for every n ∈ N, by the continuity of the projection
V 7→ projV ⊥(ϕin(x)− ϕjn(x)) and the compactness of Z, there exists rn > 0 such that

1

2
6
|projV ⊥n (ϕin(x)− ϕjn(x))|
|projW⊥(ϕin(x)− ϕjn(x))|

6 2 (6.19)

for all x ∈ Z and W ∈ B(Vn, rn).
Recalling (2.6), let dn ∈ Σ∗ be such that

A−1
dn

(XF ) ⊂ B(Vn, rn).

Since Z is connected, projV ⊥n (ϕin(x)− ϕjn(x)) is contained in the same halfplane deter-

mined by L⊥ for all x ∈ Z. Hence, there exists a strictly increasing sequence (nk)k∈N
of natural numbers such that the points projV ⊥nk

(ϕink
(x) − ϕjnk

(x)) are contained in

the same halfplane determined by L⊥ for all x ∈ Z and k ∈ N. Fix K ∈ N and write
M = nK . Let k1, . . . , kM ∈ N and l2, . . . , lM ∈ N be arbitrary. We will specify these
numbers later. Let us define words k0, . . . , kM ∈ Σ∗ by setting

k0 = dnkM
inkM

f|lM · · · dnk2
ink2

f|l2dnk1
ink1

,

...

ki = dnkM
inkM

f|lM · · · dnki+1
inki+1

f|li+1
dnki

jnki
f|li · · · dnk1

jnk1
,

...

kM = dnkM
jnkM

f|lM · · · dnk2
jnk2

f|l2dnk1
jnk1

.

To simplify notation, write

li = dnkK
inkM

f|lM · · · dnki+1
inki+1

f|li+1
dnki

,

hi = inki
f|li · · · dnk1

jnk1
,

gi = jnki
f|li · · · dnk1

jnk1
,

and observe that then

| projV ⊥nK
(ϕki−1(x0)− ϕki(x0))| = | projA>liV

⊥
nK

(ϕhi(x0)− ϕgi(x0))|‖A>li |V
⊥
nK
‖ (6.20)

for all i ∈ {1, . . . ,M}. Without loss of generality, we may assume that A>li |V
⊥
nK

is orienta-
tion preserving. Indeed, adding an extra symbol in the front of dnki

leaves the properties

of dnki
defined above unchanged but may change the orientation of A>li |V

⊥
nK

if neces-

sary. Thus, projV ⊥nK
(ϕki−1(x0)− ϕki(x0)) is in the same halfplane determined by L⊥ as

projA>liV
⊥
nK

(ϕhi(x0)−ϕgi(x0)). Furthermore, since A>li = A>dnki

A>dnkM
inkM

f···dnki+1
inki+1

f,

we have A>liV
⊥
nK
∈ B(V ⊥nki

, rnki
). Therefore, if ϕf|li ···dnk1

jnk1
(x0) ∈ Z, then, by (6.20),
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(6.19), and (6.18),

(2C)−1
‖A>inki

|V ⊥nki
‖‖A>li |V

⊥
nK
‖

nki
6 |projV ⊥nK

(ϕki−1(x0)− ϕki(x0))|

6 2C
‖A>inki

|V ⊥nki
‖‖A>li |V

⊥
nK
‖

nki

for all i ∈ {1, . . . ,M}. Hence, to finish the proof, it suffices to recall Lemma 2.8 and
choose the numbers k1, . . . , kM ∈ N such that

c1

α1(Af|lidnki−1
jnki−1

f|li−1
···dnk1

jnk1
)

nK
6

1

nki

6 c2

α1(Af|lidnki−1
jnki−1

f|li−1
···dnk1

jnk1
)

nK

(6.21)

for some constants c1, c2 > 0 and the numbers l2, . . . , lM ∈ N such that the points
ϕf|li ···dnk1

jnk1
(x0) are in Z.

Let us give the precise definition for the numbers k1, k2, . . . , kM and l2, . . . , lM . Let
k1 = K and choose l2 to be the smallest integer such that ϕf|l2 (X) ⊂ Z and[

α1(A>
f|l2+1dnk1

jnk1

)

nK
,
α1(A>

f|l2dnk1
jnk1

)

nK

)
∩ {n−1

k1+1, n
−1
k1+2, . . .} 6= ∅,

and choose k2 such that nk2 is the largest element of the above set. We continue
inductively. If ki and li has been defined for i ∈ {2, . . . ,M − 1}, then let li+1 be the
smallest integer such that ϕf|li+1

(X) ⊂ Z and the intersection[
α1(A>

f|li+1+1dnki
jnki

f|li ···dnk1
jnk1

)

nK
,
α1(A>

f|li+1
dnki

jnki
f|li ···dnk1

jnk1

)

nK

)
∩ {n−1

ki+1, n
−1
ki+2, . . .}

is non-empty, and choose ki+1 such that nki+1
is the largest element of the above set. As

these choices clearly satisfy (6.21), we have finished the proof. �

Theorem 6.5. If X is a dominated planar self-affine set satisfying the strong separation
condition, but not the projective open set condition, such that XF is not a singleton, then
dimA(X) > 1.

Proof. Let x0 ∈ X and C > 1 be as in Lemma 6.4. Fix k ∈ N and let Vk ∈ XF , nk > k,
and k0, . . . , knk

∈ Σ∗ be as in Lemma 6.4. Write Bk = {ϕk0(x0), . . . , ϕknk
(x0)} and let L

be as in (6.17). Let aLi ∈ L and aVi ∈ Vk be such that aLi + aVi = ϕki(x0)− ϕki−1(x0) for
all i ∈ {1, . . . , nk}. Recalling (2.6), let lk ∈ Σ be such that Vk = Π(lk). Let D > 1 be as
in Lemma 2.8. Relying on the definition of domination, choose mk to be the smallest
integer for which

Dα2(A←−−−−
lk|mk

) diam(X) 6
1

n2
k

α1(A←−−−−
lk|mk

)‖A>k0
|V ⊥k ‖. (6.22)



FINER GEOMETRY OF PLANAR SELF-AFFINE SETS 37

By Lemma 2.8,

|A←−−−−
lk|mk

aVi | = ‖A←−−−−lk|mk

|Vk‖|aVi | 6 Dα2(A←−−−−
lk|mk

) diam(X). (6.23)

Therefore, by (6.23) and (6.22), we have∣∣∣∣ i∑
j=1

A←−−−−
lk|mk

aVj

∣∣∣∣ 6 1

nk
α1(A←−−−−

lk|mk

)‖A>k0
|V ⊥k ‖ (6.24)

for all i ∈ {1, . . . , nk}. Clearly, each A←−−−−
lk|mk

aLi is contained in the subspace A←−−−−
lk|mk

L and

hence, by (6.24),

dist(ϕ←−−−−
lk|mk

(ϕki(x0))− ϕ←−−−−
lk|mk

(ϕk0(x0)), A←−−−−
lk|mk

L)

6

∣∣∣∣ϕ←−−−−lk|mk

(ϕki(x0))− ϕ←−−−−
lk|mk

(ϕk0(x0))−
i∑

j=1

A←−−−−
lk|mk

aLj

∣∣∣∣
=

∣∣∣∣ i∑
j=1

A←−−−−
lk|mk

(ϕkj (x0)− ϕkj−1(x0))−
i∑

j=1

A←−−−−
lk|mk

aLj

∣∣∣∣
=

∣∣∣∣ i∑
j=1

A←−−−−
lk|mk

aVj

∣∣∣∣ 6 1

nk
α1(A←−−−−

lk|mk

)‖A>k0
|V ⊥k ‖.

(6.25)

Thus, ϕ←−−−
lk|m

(Bk) is in the 1
nk
α1(A←−−−−

lk|mk

)‖A>k0
|Vk‖-neighbourhood of the line A←−−−−

lk|mk

L +

ϕ←−−−−
lk|mk

(ϕk0(x0)).

By Lemma 6.4,

C−1 ‖A
>
k0
|V ⊥k ‖
nk

6 | projV ⊥k
(ϕki−1(x0)− ϕki(x0))| 6 C

‖A>k0
|V ⊥k ‖
nk

for all i ∈ {1, . . . , nk}. Since L is uniformly transverse to every V ∈ XF , we may, by
possibly adjusting the constant C, replace |projV ⊥k

(ϕki−1(x0) − ϕki(x0))| in the above

estimate by |aLi |. Therefore, by Lemma 2.8,

(CD)−1
α1(A←−−−−

lk|mk

)‖A>k0
|V ⊥k ‖

nk
6 |A←−−−−

lk|mk

aLi | 6 C
α1(A←−−−−

lk|mk

)‖A>k0
|V ⊥k ‖

nk
(6.26)

for all i ∈ {1, . . . , nk}. Let

Tk = Mϕ←−−−−
lk|mk

(ϕk0 (x0)),α1(A←−−−−
lk|mk

)‖A>k0 |Vk‖
(X) ∩B(0, 1)

⊃Mϕ←−−−−
lk|mk

(ϕk0 (x0)),α1(A←−−−−
lk|mk

)‖A>k0 |Vk‖
(ϕ←−−−−

lk|mk

(Bk)) ∩B(0, 1).

Since the vectors aLi are contained in the same halfplane determined by L⊥, there exists,
by possibly going through a subsequence, a weak tangent set T such that Tk → T as
k →∞ in Hausdorff distance such that, by (6.25) and (6.26), T contains a line segment
of length at least (CD)−1. The claim follows now from Lemma 2.1. �
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7. Hausdorff measure of self-affine sets having small Hausdorff dimension

In this section, we conclude the proof of Theorem 3.4. In Section 6, we proved that the
conditions (1), (5), and (7) are equivalent. Recall that (5)⇒ (3) by Lemma 2.4. Recalling
Theorem 2.17, Theorem 7.2 below verifies the implication (3) ⇒ (4) and Theorem 7.3
shows the implication (4) ⇒ (6) ⇒ (5). Before proving the aforementioned theorems, we
verify a technical lemma. Let X be a dominated planar self-affine set, s = dimaff(X) 6 1,
and define a function H : Σ→ [0,∞) by setting

H(i) = Hs∞(projΠ(i)⊥(X))

for all i ∈ Σ. The function H measures the s-dimensional Hausdorff content of the
projection in different directions. The fact that H takes finite values follows from Lemma
2.18. Recall that the Perron-Frobenius operator L for s is the positive linear operator
defined by setting

Lf(i) =
N∑
i=1

‖A>i |Π(i)⊥‖sf(ii)

for all continuous functions f : Σ→ R. Let the continuous function h : Σ→ (0,∞) and
the Borel probability measure ν on Σ be as in Lemma 2.12. Although omitted in notation,
bear in mind that H, L, h, and ν depend on s.

Lemma 7.1. If X is a dominated planar self-affine set with s = dimaff(X) 6 1, then

H(i) = h(i)

∫
Σ
H(j) dν(j)

for all i ∈ Σ. In particular, either maxi∈ΣH(i) = 0 or infi∈ΣH(i) > 0.

Proof. Let us first show that H is upper semi-continuous. Fix j ∈ Σ and choose ε > 0.
By the definition of the Hausdorff content, there exists a countable open cover {Ui}i of
projΠ(j)⊥(X) such that ∑

i

diam(Ui)
s 6 H(j) + ε.

Since projΠ(j)⊥(X) is compact, we may assume that the cover {Ui}i is finite. Write

% = dist(projΠ(j)⊥(X),R \
⋃
i Ui) > 0 and r = arcsin(%/ diam(X)). Hence, for every

i ∈ Σ with ^(Π(i),Π(j)) < r, we have | projΠ(i)⊥(x)− projΠ(j)⊥(x)| < % for all x ∈ X.

This means that {Ui}i covers each such projΠ(i)⊥(X) and consequently,

sup
^(Π(j),Π(i))<r

H(i) 6
∑
i

diam(Ui)
s 6 H(j) + ε.

The claim follows now by letting % ↓ 0, in which case also r ↓ 0, and then ε ↓ 0.
As H is upper semi-continuous, a standard measure-theoretical argument applying

Urysohn’s lemma shows that for each n ∈ N there exists a continuous function fn : Σ→ R
such that fn > H and ∫

Σ
fn(i) dν(i) 6

∫
Σ
H(i) dν(i) +

1

n
. (7.1)
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Since projV (Ax+ y) = ±‖A>|V ‖ projA>V (x) + projV (y) for all V ∈ RP1, A ∈ GL2(R),
and x, y ∈ R2, where ± indicates that the equality holds with one of the signs, we have

H(i) = Hs∞
( N⋃
i=1

projΠ(i)⊥(ϕi(X))

)
6

N∑
i=1

‖A>i |Π(i)⊥‖sH(ii) = LH(i) (7.2)

for all i ∈ Σ. Applying (7.2), Lemma 2.12, and (7.1), we see that

H(i) 6 LkH(i) 6 Lkfn(i)→ h(i)

∫
Σ
fn(j) dν(j) 6 h(i)

(∫
Σ
H(j) dν(j) +

1

n

)
uniformly as k →∞ for all i ∈ Σ and n ∈ N. By letting n→∞, it follows that

H(i) 6 h(i)

∫
Σ
H(j) dν(j) (7.3)

for all i ∈ Σ. To show the equality, write

Γn =

{
i ∈ Σ : H(i) 6 h(i)

∫
Σ
H(j) dν(j)− 1

n

}
for all n ∈ N and observe that, by the definition of Γn, (7.3), and Lemma 2.12,∫

Σ
H(i) dν(i) =

∫
Γn

H(i) dν(i) +

∫
Σ\Γn

H(i) dν(i)

6
∫

Γn

h(i) dν(i)

∫
Σ
H(j) dν(j)− ν(Γn)

n
+

∫
Σ\Γn

h(i) dν(i)

∫
Σ
H(j) dν(j)

=

∫
Σ
h(i) dν(i)

∫
Σ
H(j) dν(j)− ν(Γn)

n
=

∫
Σ
H(j) dν(j)− ν(Γn)

n
.

It follows that ν(Γn) = 0 for all n ∈ N and consequently,

ν

({
i ∈ Σ : H(i) < h(i)

∫
Σ
H(j) dν(j)

})
= ν

(⋃
n∈N

Γn

)
6
∑
n∈N

ν(Γn) = 0.

Therefore, by (7.3),

H(i) = h(i)

∫
Σ
H(j) dν(j) (7.4)

for ν-almost all i ∈ Σ. To see that this holds for all words, fix i ∈ Σ. Since ν is fully
supported, there exists a sequence (jn)n∈N of words in Σ converging to i such that (7.4)
is holds for each jn. Thus, by the continuity of h, (7.4), the upper semi-continuity of H,
and (7.3),

h(i)

∫
Σ
H(j) dν(j) = lim

n→∞
h(jn)

∫
Σ
H(j) dν(j)

= lim
n→∞

H(jn) 6 H(i) 6 h(i)

∫
Σ
H(j) dν(j)

which finishes the proof of the first claim. Since h(i) > 0 for all i ∈ Σ, the dichotomy in
the last claim follows immediately from the first claim. �
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Theorem 7.2. If X is a dominated planar self-affine set with s = dimaff(X) 6 1, then
there exists a constant c > 0 such that

Hs(X) 6 cmax
i∈Σ

H(i).

In particular, if Hs(X) > 0, then infi∈ΣH(i) > 0.

Proof. In the proof of Lemma 7.1, we showed H upper semi-continuous. This ensures the
existence of the maximum maxi∈ΣH(i). Furthermore, if the claimed inequality holds
and Hs(X) > 0, then there is i ∈ Σ such that H(i) > 0. By Lemma 7.1, this implies
infi∈ΣH(i) > 0.

Let us then prove the claimed inequality. Fix ε > 0 and notice that for every V ∈ XF

there exists an open cover UV of projV ⊥(X) such that∑
U∈UV

diam(U)s 6 Hs∞(projV ⊥(X)) + ε. (7.5)

Since projV ⊥(X) is compact, we may assume that UV is finite and maxU∈UV diam(U) 6
diam(X). Write %V = minU∈UV diam(U) > 0. Note that there is a constant c > 0 such
that ‖ projV −projW ‖ 6 c^(V,W ) for all V,W ∈ RP1. Since XF is compact, there exist
m ∈ N and V1, . . . , Vm ∈ XF such that

XF ⊂
m⋃
i=1

B(Vi, %Vi/c).

Thus, for every V ∈ XF there exists i ∈ {1, . . . ,m} such that V ∈ B(Vi, %Vi/c) and, in
particular,

projV ⊥(X) ⊂
⋃

U∈UVi

U.

Let P (V ) to denote this Vi and write % = mini∈{1,...,m} %Vi .
Define

Σ(r) = {i ∈ Σ∗ : α2(Ai) diam(X) < %α1(Ai) and α1(Ai) diam(X) < r

but α2(Ai−) diam(X) > %α1(Ai−) or α1(Ai−) diam(X) > r}

for all r > 0. Note that {[i] : i ∈ Σ(r)} is a partition of Σ for all r > 0. Fix r > 0 and

for each i ∈ Σ(r) choose i′ ∈ Σ such that i′ =
←−
i j for some j ∈ Σ. Hence,⋃

i∈Σ(r)

⋃
U∈UP (Π(i′))

ϕi(X ∩ (projΠ(i′)⊥)−1(U))

is clearly a cover of X. Observe that

diam(ϕi(X ∩ (projΠ(i′)⊥)−1(U)))

6 ‖Ai|Π(i′)‖ diam(X) + ‖Ai|Π(i′)⊥‖ diam(U)

6 α1(Ai)(c%+ diam(U)) 6 2cα1(Ai) diam(U) 6 2cr

(7.6)

for all i ∈ Σ(r). Recall also that, by Lemma 2.12, there exist a measure µK ∈ Mσ(Σ)
and a constant C > 1 such that

C−1α1(Ai)
s 6 µK([i]) 6 Cα1(Ai)

s (7.7)
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for all i ∈ Σ∗. Therefore, by (7.6), (7.5), and (7.7),

Hs2cr(X) 6
∑

i∈Σ(r)

∑
U∈UP (Π(i′))

diam(ϕi(X ∩ (projΠ(i′)⊥)−1(U)))s

6 (2c)s
∑

i∈Σ(r)

∑
U∈UP (Π(i′))

α1(Ai)
s diam(U)s

6 (2c)s
∑

i∈Σ(r)

α1(Ai)
s(Hs∞(projP (Π(i′))⊥(X)) + ε)

6 C(2c)s(max
k∈Σ

H(k) + ε)
∑

i∈Σ(r)

µK([i])

= C(2c)s(max
k∈Σ

H(k) + ε).

The claim follows by letting r ↓ 0 and then ε ↓ 0. �

Theorem 7.3. If X is a dominated planar self-affine set with s = dimaff(X) 6 1 and
infi∈ΣH(i) > 0, then X and projV ⊥(X) are Ahlfors s-regular for all V ∈ XF . In fact,
X is Ahlfors s-regular if and only if projV ⊥(X) is Ahlfors s-regular for all V ∈ XF .

Proof. Fix δ > 0 and choose n ∈ N such that diam(ϕj(X)) < δ for all j ∈ Σn. By
Lemmas 7.1 and 2.12, we have

Hsδ(projΠ(i)⊥(X)) = Hsδ
( ⋃
j∈Σn

projΠ(i)⊥(ϕj(X))

)
6
∑
j∈Σn

Hs∞(projΠ(i)⊥(ϕj(X)))

=
∑
j∈Σn

‖A>j |Π(i)⊥‖sH(
←−
j i)

= LnH(i) = Lnh(i)

∫
Σ
H(j) dν(j)

= h(i)

∫
Σ
H(j) dν(j) = H(i).

(7.8)

By letting δ ↓ 0, we see that

Hs(projΠ(i)⊥(X)) = H(i) (7.9)

for all i ∈ Σ. In particular, it follows from (7.9) that

Hs(projΠ(i)⊥(X) ∩B(projΠ(i)⊥(x), r))

= Hs(projΠ(i)⊥(X))−Hs(projΠ(i)⊥(X) \B(projΠ(i)⊥(x), r))

6 H(i)−Hs∞(projΠ(i)⊥(X) \B(projΠ(i)⊥(x), r))

6 Hs∞(projΠ(i)⊥(X) ∩B(projΠ(i)⊥(x), r)) 6 (2r)s

(7.10)

for all x ∈ X, r > 0, and i ∈ Σ. Furthermore, fix h, k ∈ Σ∗ such that [h] ∩ [k] = ∅ and
write n = max{|h|, |k|}. Let Σ′n = {h, k} ∪ {j ∈ Σn : [j] ∩ [h] = ∅ and [j] ∩ [k] = ∅}.
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Relying on (7.9) and (7.8), we get

Hs(projΠ(i)⊥(X)) = Hs
( ⋃
j∈Σ′n

projΠ(i)⊥(ϕj(X))

)
6
∑
j∈Σ′n

Hs(projΠ(i)⊥(ϕj(X)))−Hs(projΠ(i)⊥(ϕh(X)) ∩ projΠ(i)⊥(ϕk(X)))

6 LnH(i)−Hs(projΠ(i)⊥(ϕh(X)) ∩ projΠ(i)⊥(ϕk(X)))

= Hs(projΠ(i)⊥(X))−Hs(projΠ(i)⊥(ϕh(X)) ∩ projΠ(i)⊥(ϕk(X))).

It follows that

Hs(projΠ(i)⊥(ϕh(X)) ∩ projΠ(i)⊥(ϕk(X))) = 0 (7.11)

for all h, k ∈ Σ∗ with [h] ∩ [k] = ∅ and i ∈ Σ.
To prove the claim, it suffices to show that π∗µK and Hs|proj

V⊥ (X) are simultaneously

Ahlfors s-regular for all V ∈ XF . Recall that, by Lemma 2.12, there exist a measure
µK ∈Mσ(Σ) and a constant C > 1 such that

C−1α1(Ai)
s 6 µK([i]) 6 Cα1(Ai)

s (7.12)

for all i ∈ Σ∗. Fix V ∈ XF and notice first that, by (6.9) and (7.10), there exists a
constant c > 0 such that

π∗µK(B(x, r)) > crs and Hs|proj
V⊥ (X)(B(x, r)) 6 2srs (7.13)

for all x ∈ X and 0 < r < diam(X). To show the other inequalities, let Σ(V, x, r) be as
in (3.2) for all x ∈ X and r > 0. Observe that, by (7.13), (7.12), Lemma 2.8, (7.9), and
(7.10), we have

c inf
k∈Σ

H(k)rs 6 inf
k∈Σ

H(k)π∗µK(B(x, r))

6 inf
k∈Σ

H(k)
∑

j∈Σ(V,x,r)

µK([j]) 6 C inf
k∈Σ

H(k)
∑

j∈Σ(V,x,r)

‖Aj‖s

6 CDs inf
k∈Σ

H(k)
∑

j∈Σ(V,x,r)

‖A>j |V ⊥‖s

6 CDs
∑

j∈Σ(V,x,r)

‖A>j |V ⊥‖sHs(projA>j V ⊥(X))

6 CDs
∑

j∈Σ(V,x,r)

Hs(projA>j V ⊥(ϕj(X)))

= CDsHs
( ⋃
j∈Σ(V,x,r)

projA>j V ⊥(ϕj(X))

)
6 CDsHs(projV ⊥(X) ∩B(projV ⊥(x), 2r)) 6 C(4D)srs

for all x ∈ X and 0 < r < diam(X). Since infk∈ΣH(k) > 0, we have finished the
proof. �
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8. Assouad and affinity dimensions of self-affine sets

In this section, we prove Theorem 3.6. We begin by a technical lemma whose proof
is a standard transversality argument. The lemma investigates how, for a given affine
iterated function system Φv, the projection of πv+θ⊗w behaves locally in a given direction
w ∈ S1 for all θ = (θ1, . . . , θN ) ∈ RN . Recall that θ ⊗ w = (θ1w, . . . , θNw) ∈ (R2)N is
the Kronecker product.

Lemma 8.1. If A = (A1, . . . , AN ) ∈ GL2(R)N is strictly affine such that max{1,...,N} ‖Ai‖ <
1
2 , v = (v1, . . . , vN ) ∈ (R2)N , and w ∈ S1, then there exists δ > 0 such that

d

dτi|1
|projspan(w)⊥(πv+τ⊗w(i))− projspan(w)⊥(πv+τ⊗w(j))|

∣∣∣
τ=θ

> δ

for all θ = (θ1, . . . , θN ) ∈ RN and i, j ∈ Σ with i|1 6= j|1.

Proof. Write W = span(w) ∈ RP1 and i = i1i2 · · · and j = j1j2 · · · . It is easy to see
that

projW⊥(πv+θ⊗w(i)) = projW⊥

( ∞∑
n=1

Ai|n−1
(vin + θinw)

)

= θi1 + projW⊥(vi1) +

∞∑
n=1

‖A>i|n−1
|W⊥‖ projA>

i|n−1
W⊥(vin + θinw)

Hence,

d

dθj
projW⊥(πv+θ⊗w(i)) = δi1,j +

∞∑
n=1

‖A>i|n−1
|W⊥‖projA>

i|n−1
W⊥(w)δin,j

for all j ∈ {1, . . . , N}, where δi,j = 1, if i = j, and δi,j = 0, if i 6= j. Since
max{1,...,N} ‖Ai‖ < 1

2 , it follows that

d

dτi1
|projW⊥(πv+τ⊗w(i))− projW⊥(πv+τ⊗w(j))|

∣∣∣
τ=θ

=

∣∣∣∣ ∞∑
n=1

‖A>i|n−1
|W⊥‖projA>

i|n−1
W⊥(w)δin,j

−
∞∑
n=1

‖A>j|n−1
|W⊥‖ projA>

j|n−1
W⊥(w)δin,j

∣∣∣∣
> 1−

∞∑
n=1

‖A>i|n−1
‖ −

∞∑
n=1

‖A>j|n−1
‖ > 1− 2 maxi ‖Ai‖

1−maxi ‖Ai‖
> 0

as claimed. �

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. To simplify notation, we assume that X ⊂ B(0, 1). Let N (A) be
as in (3.3). For each v = (v1, . . . , vN ) ∈ (R2)N we write ϕv

i = Ai+vi and ϕv
i = ϕv

i1
◦· · ·◦ϕv

in
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for all i = i1 · · · in ∈ Σn and n ∈ N. It is easy to see that, for every q ∈ N, W ∈ XF , and
i, j ∈ Σ∗ with i|1 6= j|1, the set

{v ∈ N (A) : max
x∈B(0,1)

|projW⊥(ϕv
i(x)− ϕv

j(x))| < 5q−1‖A>i |W⊥‖}

is an open subset of N (A). Therefore, the set

Rq(A) =
⋃

W∈XF

⋃
i,j∈Σ∗
i|1 6=j|1

{v ∈ N (A) : max
x∈B(0,1)

|projW⊥(ϕv
i(x)− ϕv

j(x))| < 5q−1‖A>i |W⊥‖}

is open and, recalling the definition of the projective open set condition (3.1), it is enough
to show that Rq(A) is dense in N (A) for all q ∈ N since then the set R(A) =

⋂
q∈NRq(A)

is residual.
Fix v ∈ N (A) and ε > 0. By the definition of N (A), there are W ∈ XF and

h, l ∈ Σ with h|1 6= l|1 such that projW⊥(πv(h)) = projW⊥(πv(l)). We may thus
choose n ∈ N large enough so that dH(projW⊥(ϕv

h|n(X)),projW⊥(ϕv
l|n(X))) < ε, where

dH denotes the Hausdorff distance. Note that there is a constant c > 0 such that
min{|x − y|, |x + y|} 6 c^(span(x), span(y)) for all x, y ∈ S1. Following (6.14) and
recalling the definition of domination, we see that there are constants D,C > 1 and
0 < τ < 1 such that

max
x∈B(0,1)

| projA>←−
k
W⊥(x)− projA>←−

k
V ⊥(x)| 6 ‖ projA>←−

k
W⊥ −projA>←−

k
V ⊥ ‖

6 c^(A>←−
k
W⊥, A>←−

k
V ⊥) 6 cD

α2(A←−
k

)

α1(A←−
k

)
6 cDCτ |k|.

(8.1)

for all k ∈ Σ∗ and V ∈ XF . Recalling (2.6), let f ∈ Σ be such that W = Π(f). Fix q ∈ N,
choose m ∈ N large enough so that max{1 + cDCτm, (1 + cD2Cτm)/(1− cD2Cτm)} <
1 + q−1, and write k =

←−
f|m. Observe also that

|‖Ag|W‖ − ‖Ag|V ‖| 6 c‖Ag‖^(V,W )

and hence, by Lemma 2.8,∣∣∣∣‖Ag|W‖
‖Ag|V ‖

− 1

∣∣∣∣ 6 c‖Ag‖^(V,W )

‖Ag|V ‖
6 cD^(V,W ). (8.2)

for all g ∈ Σ∗ and V ∈ XF . Writing i = h|nkl|nk and j = l|nkh|nk, let yi and yj be the
fixed points of ϕv

i and ϕv
j, respectively, and vi = (Id−Ai)yi and vj = (Id−Aj)yj be the

translation vectors of ϕv
i and ϕv

j, respectively. Simple algebraic manipulations show that

projW⊥(ϕw
i (x)− ϕw

j (x)) = ‖A>i |W⊥‖(projA>i W⊥(x)− projA>j W⊥(x))

+ ‖A>i |W⊥‖
(

1−
‖A>j |W⊥‖
‖A>i |W⊥‖

)
projA>j W⊥(x)

+ projW⊥(wi)− projW⊥(wj)

(8.3)

for all w = (w1, . . . , wN ) ∈ (R2)N and x ∈ B(0, 1), where wi =
∑|i|

k=1Ai|k−1
wik and

wj =
∑|j|

k=1Aj|k−1
wjk are the translation vectors of ϕw

i and ϕw
j , respectively. Furthermore,
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by using (8.2), (8.1), and recalling the choice of m,

‖A>j |W⊥‖
‖A>i |W⊥‖

=
‖A>k A>h|n |A

>
k A
>
l|nW

⊥‖‖A>k A>l|n |W
⊥‖

‖A>k A>l|n |A
>
k A
>
h|nW

⊥‖‖A>k A>h|n |W
⊥‖

6
1 + cD^(W⊥, A>k A

>
l|nW

⊥)

1− cD^(W⊥, A>k A
>
h|nW

⊥)
6

1 + cD2Cτm

1− cD2Cτm
< 1 + q−1.

(8.4)

Let δ > 0 be as in Lemma 8.1. By Lemma 8.1, there exists w = (w1, . . . , wN ) ∈ (R2)N in
the εδ−1-neighborhood of v ∈ N (A) such that

projW⊥(zi) = projW⊥(zj),

where zi and zj are the fixed points of ϕw
i and ϕw

j , respectively, and wi = (Id−Ai)zi
and wj = (Id−Aj)zj are the translation vectors of ϕw

i and ϕw
j , respectively. Hence, by

(8.1) and (8.4),

| projW⊥(wi)− projW⊥(wj)|

= |‖A>i |W⊥‖ projA>i W⊥(zi)− ‖A>j |W⊥‖projA>j W⊥(zj)|

6 (‖A>i |W⊥‖+ ‖A>j |W⊥‖)cDCτm

+ |‖A>i |W⊥‖ projW⊥(zi)− ‖A>j |W⊥‖ projW⊥(zj)|

6 ‖A>i |W⊥‖
((

1 +
‖A>j |W⊥‖
‖A>i |W⊥‖

)
cDCτm +

∣∣∣∣1− ‖A>j |W⊥‖‖A>i |W⊥‖

∣∣∣∣)
6 3q−1‖A>i |W⊥‖.

(8.5)

Thus, by (8.1), (8.3), and (8.5), we see that

max
x∈B(0,1)

|projW⊥(ϕw
i (x)− ϕw

j (x))| < 5q−1‖A>i |W⊥‖

and consequently, w ∈ Rq(A). �
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[40] A. Käenmäki, H. Koivusalo, and E. Rossi. Self-affine sets with fibred tangents. Ergodic Theory

Dynam. Systems, 37(6):1915–1934, 2017.
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[44] A. Käenmäki and E. Rossi. Weak separation condition, Assouad dimension, and Furstenberg

homogeneity. Ann. Acad. Sci. Fenn. Math., 41(1):465–490, 2016.
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