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Abstract. We show that any self-conformal measure µ on R is uniformly scaling and
generates an ergodic fractal distribution. This generalizes existing results by removing
the need for any separation condition. We also obtain applications to the prevalence of
normal numbers in self-conformal sets, to resonance between self-conformal measures
on the line, and to projections of self-affine measures on carpets.

1. Introduction

Taking tangents and studying an object through its small-scale structure is a classical
approach in analysis. Such an idea also finds applications in geometric measure theory:
For a Radon measure µ on Rd, a point x in its support sptµ, and a number t ⩾ 0, let
µx,t be the magnification of µ at x by et, that is, the probability measure on the unit
ball given by

µx,t(A) =
µ(e−tA+ x)

µ(B(x, e−t))

for every Borel set A ⊆ B(0, 1). The family (µx,t)t⩾0 is called the scenery of µ at x. The
statistical properties of the scenery have substantial implications on the local geometry
of µ at x and to capture these statistics, we define the scenery flow of µ at x as the
one-parameter family (⟨µ⟩x,T )T>0, where

⟨µ⟩x,T =
1

T

∫ T

0
δµx,t dt (1.1)

and δν denotes the Dirac mass at ν. The accumulation points of (1.1) in the weak∗-
topology are called tangent distributions of µ at x. If there exists a measure P such
that for µ-almost every x, P is the unique tangent distribution at x, we say that µ is
uniformly scaling and generates P .

The notion of uniform scaling appeared first in a work of Gavish [12], where he
also showed that self-similar measures on Rd with the open set condition are uniformly
scaling. Recall that a measure µ is self-similar if there exist affine, contracting, and angle
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preserving maps f1, . . . , fn and a probability vector (p1, . . . , pn) such that

µ =
n∑

i=1

pif∗µ. (1.2)

The proof given by Gavish relied on the theory of Furstenberg’s CP-chains, and a more
direct ergodic-theoretic proof was introduced by Hochman [13] in his systematic study
of tangent distributions. Later, using a technique similar to that of Gavish, with the
additional machinery developed in [13], Hochman and Shmerkin [15] showed that also self-
conformal measures on R with the open set condition are uniformly scaling. Recall that
a measure is self-conformal if it satisfies (1.2) with fi’s being injective and differentiable
on some bounded open and convex set U ⊂ Rd, with their differentials x 7→ Dfi|x being
Hölder continuous, supx∈U ∥Dfi|x∥ < 1, Dfi|x ̸= 0, and ∥Dfi|x∥−1Dfi|x being orthogonal
for every x ∈ U . In this case, we say that Φ = (fi)i∈Λ is a conformal iterated function
system. In [21], the third author showed that for a self-similar measure to be uniformly
scaling it suffices to assume only the weak separation condition.

Self-affine measures are measures that satisfy (1.2) with fi’s being affine maps. Re-
garding such measures in higher dimensions, Ferguson, Fraser, and Sahlsten [10] have
shown that self-affine measures on Bedford-McMullen carpets in R2 are uniformly scaling.
This more or less amounts to what is currently known of the scenery flow of self-affine
measures. While Kempton [18] showed that self-affine measures with an irreducibility
condition are not necessarily uniformly scaling, the question of general reducible self-affine
measures remains open.

In this work, we obtain a complete resolution to the question of the scaling properties
for all self-conformal measures in Rd, removing the need for any separation conditions
from the assumptions of [12, 15, 21], and establish uniformly scaling property on R.
As a consequence, we obtain applications to the prevalence of normal numbers in self-
conformal sets and to the dimensions of convolutions of self-conformal measures on the
line, both of which are active research topics on their own. Furthermore, we prove that
self-affine measures on any carpet satisfying the strong separation condition are uniformly
scaling and, as a consequence, show that the dimension of every non-principal orthogonal
projection of the self-affine measure is preserved.

Before formulating the main results, let us introduce some notation. Let Λ be a finite
set having at least two elements and let Φ = (fi)i∈Λ be a conformal iterated function
system on Rd with attractor K. A measure µ̄ on ΛN is called quasi-Bernoulli if there
exists C ⩾ 1 such that

C−1µ̄([i])µ̄([j]) ⩽ µ̄([ij]) ⩽ Cµ̄([i])µ̄([j]) (1.3)

for all finite words i and j formed from the elements of Λ. Here [i] denotes the collection
of infinite words with prefix i. If C ⩾ 1 above can be chosen to be 1, then µ̄ is a Bernoulli
measure. Let Π be the canonical projection ΛN → K; see §2.1 for the definition. If µ̄ is
quasi-Bernoulli, then, by slightly abusing notation, we also call the measure µ = Π∗µ̄
on K quasi-Bernoulli. In particular, any self-conformal measure is Bernoulli. For the
definition of an ergodic fractal distribution, see §2.2.
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Theorem 1.1. Let Φ be a conformal iterated function system on Rd with attractor K
and µ be a quasi-Bernoulli measure on K. If d = 1 or Φ consists of similarities, then µ
is uniformly scaling and generates an ergodic fractal distribution.

In higher dimensions, self-conformal measures are in general not uniformly scaling. The
following counter-example is by Fraser and Pollicott [11]: The upper half of the boundary
of the unit circle in R2 is a self-conformal set and the normalized one-dimensional
Lebesgue measure µ on the semi-circle is a self-conformal measure. It is clear that for
any point x on the semi-circle all tangent measures of µ at x are supported on lines
parallel to the tangent to the semi-circle at x. Thus for distinct x and y the collections
of tangent measures of µ at x and y do not intersect and, in particular, the measure µ is
not uniformly scaling. Nevertheless, we can state the following.

Theorem 1.2. Let Φ be a conformal iterated function system on Rd with attractor K and
µ be a quasi-Bernoulli measure on K. Then there exists an ergodic fractal distribution P
such that for µ-almost every x and any tangent distribution Q at x there exists a measure
ζ on the orthogonal group of Rd such that Q =

∫
O∗P dζ(O).

Alternatively, we can prove that for some diffeomorphism h, the measure h∗µ is
uniformly scaling along a subsequence.

Theorem 1.3. Let Φ be a conformal iterated function system on Rd with attractor K and
µ be a quasi-Bernoulli measure on K. Then there exists an ergodic fractal distribution
P , a sequence (nk)k∈N, and a function h ∈ C1+α(Rd) such that

lim
k→∞

1

nk

∫ nk

0
δ(h∗µ)x,t dt = P

for h∗µ-almost all x.

The proofs of Theorems 1.1–1.3 are postponed until §3. We remark that the proofs
are somewhat indirect: Instead of studying the scenery (µx,t)t⩾0 directly, we rely on a
result of Hochman [13] that for any Radon measure µ typical tangent measures, i.e., the
weak∗-accumulation points of the sequence (µx,t)t⩾0 are uniformly scaling and generate
ergodic fractal distributions. When µ is self-conformal, its tangent measures have a very
special structure: they are of the form∫

h∗µ dν(h) (1.4)

for some measure ν in the space of diffeomorphisms Rd → Rd. This is almost the
case for quasi-Bernoulli measures as well, as will be seen in Lemma 3.5. Furthermore,
another general result of Hochman [13] states that many tangent measures have Hausdorff
dimension at most that of µ. The proof is then concluded by the key technical result
of the paper, Proposition 3.4, which states that the sceneries of a measure of the form
(1.4), with dimension close to that of µ, will be asymptotic to the sceneries of µ at many
points. This will allow us to transfer the regularity of local statistics of typical tangent
measures back to the regularity of local statistics of µ.

We will next discuss some applications of Theorem 1.1. For a contracting diffeomor-
phism f : R → R we define the asymptotic contraction ratio of f to be λ(f) = Df |p,
where p is the fixed point of f . Recall that for β > 1 a real number x is called β-normal
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if the sequence (βnx mod 1)n∈N equidistributes for the unique absolutely continuous
×β-invariant measure on the torus. When β ∈ N such an invariant measure is just the
Lebesgue measure. Let us also recall from Hochman and Shmerkin [15] that an iterated
function system Φ = (fi)i∈Λ is said to be totally non-linear if it is not conjugate to a
linear iterated function system via C1 maps, that is, there is no invertible g ∈ C1(R) such
that the iterated function system gΦ = (g ◦ fi ◦ g−1)i∈Λ consists only of linear maps.

Combining Theorem 1.1 with the methods of Hochman and Shmerkin [15], we obtain
the following result on normal numbers in self-conformal sets. The proof of the result
can be found in §4. We say that a conformal iterated function system Φ = (fi)i∈Λ on R
is arithmetically independent of a real number β > 1 if zero is an accumulation point of
the set

{log λ(fi) + n log β : i ∈ Λ∗ and n ∈ N}.
For example, if log λ(fi)

log β ̸∈ Q for some i ∈ Λ, then Φ is arithmetically independent of β.

Recall that a Pisot number is a real algebraic integer greater than 1, all of whose other
Galois conjugates are less than 1 in absolute value.

Theorem 1.4. Let Φ = (fi)i∈Λ be a conformal iterated function system on R with
attractor K, µ be a non-atomic quasi-Bernoulli measure on K, and β > 1 be a Pisot
number. If Φ is arithmetically independent of β, then for any continuously differentiable
diffeomorphism h, h∗µ-almost every x is β-normal. Furthermore, if Φ is totally non-linear
and consists of real analytic maps, then the statement holds for every Pisot number β > 1.

We remark that Theorem 1.4 generalizes the recent result of Algom, Baker, and
Shmerkin [1] into the self-conformal setting. In the case when µ is self-conformal, β
is an integer, and Φ has certain non-linearity, the conclusion of Theorem 1.4 can be
alternatively obtained by combining the results in [2–4] on Fourier decay of self-conformal
measures with the Davenport-Erdős-LeVeque criterion for pointwise normality. We note
that the Fourier decay results in [2–4] rely on µ being the projection of a Bernoulli
measure on ΛN, and do not seem to have applications on β-normal numbers when β is
non-integer.

Combining Theorem 1.1 with a version of the local entropy averages of Hochman and
Shmerkin [14] found in [13], we obtain the following result on the resonance between
quasi-Bernoulli measures on self-conformal sets. We say that two exact-dimensional
probability measures µ and ν on R resonate, if

dim(µ ∗ ν) < min{1,dimµ+ dim ν};
otherwise they are said to dissonate. Two conformal iterated function systems Ψ = (fi)i∈Γ
and Φ = (gj)j∈Λ on R are called independent if zero is an accumulation point of the set

{log λ(fi)− log λ(gj) : i ∈ Γ∗ and j ∈ Λ∗}.

For instance, if log λ(fi)
log λ(gj)

̸∈ Q for some (i, j) ∈ Γ× Λ, then Ψ and Φ are independent.

Theorem 1.5. Let Ψ = (fi)i∈Γ and Φ = (gj)j∈Λ be conformal iterated function systems
on R with attractors KΨ and KΦ, respectively. If Ψ and Φ are independent, then for any
quasi-Bernoulli measures µ on KΨ and ν on KΦ we have

dim(µ ∗ ν) = min{1,dimµ+ dim ν},
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that is, µ and ν dissonate.

The proof of Theorem 1.5 is postponed until §5. The question of resonance between
dynamically defined sets and measures has a long history, dating back to Furstenberg’s
conjecture on sums of ×2 and ×3-invariant sets from the 1960s: In a sense, the general
idea is that two dynamically defined objects should not resonate unless the objects
or the defining dynamics are arithmetically similar. Analogues of Theorem 1.5 have
been verified for various classes of dynamically defined sets and measures; for example,
see [8, 14,19, 20]. Very recently, Bruce and Jin [7] proved a version of Theorem 1.5 for a
rich class of dynamically defined measures on homogeneous self-similar sets, containing
canonical projections of ergodic measures. We remark that Theorem 1.5 does not easily
extend to ergodic measures, while the results of [7] do not appear to be extendable to
measures on self-conformal sets. Previously, Theorem 1.5 was known for self-conformal
measures only under the strong separation condition; see [13, Theorem 1.39]. It is also
an interesting question whether an analog of Theorem 1.5 holds in higher dimensions.
Very recently, the third author showed in [22] that this is the case for a class of planar
self-affine measures.

Finally, let us assume that the maps fi : R2 → R2, fi(x) = Aix+ ai, are affine such
that

Ai =

(
ρi 0
0 λi

)
for all i ∈ Λ. In this case, we say that Φ = (fi)i∈Λ is a diagonal iterated function
system. The following projection theorem generalizes that of Ferguson, Fraser, and
Sahlsten [10] for measures with no grid structure, i.e., without any assumption on the
translation vectors ai. We say that Φ satisfies the rectangular strong separation condition
if fi([−1, 1]2) ∩ fj([−1, 1]2) = ∅ whenever i ̸= j. A diagonal iterated function system Φ
has independent eigenvalues if zero is an accumulation point of the set

{log λi − log ρj : i, j ∈ Λ∗}.

For instance, if log λi

log ρi
̸∈ Q for some i ∈ Λ, then Φ has independent eigenvalues.

Theorem 1.6. Let Φ be a diagonal iterated function system on R2 with attractor K
satisfying the rectangular strong separation condition. If Φ has independent eigenvalues,
then for any self-affine measure µ on K with simple Lyapunov spectrum, we have

dimπ∗µ = min{1,dimµ}
for all non-principal orthogonal projections π.

The rest of the paper is organized as follows. In §2, we collect some preliminaries and
introduce notation. The proofs of Theorems 1.1–1.3 are given in §3, and the applications
to normal numbers and resonance, Theorems 1.4 and 1.5, are proven in §4 and in §5,
respectively. Finally, in §6, we show that self-affine measures on attractors of diagonal
iterated function systems are uniformly scaling and conclude the proof of Theorem 1.6.

2. Preliminaries

For α ⩾ 0 we denote by C1+α(Rd) the family of functions f for which there exists a
bounded open and convex set U ⊆ Rd such that f : U → Rd is differentiable, injective, its
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differential x 7→ Df |x is α-Hölder continuous on U , Df |x ≠ 0 for all x ∈ U , ∥Df |x∥−1Df |x
is orthogonal for all x ∈ U , and supx∈U ∥Df |x∥ < 1. Such functions are called conformal
or, when d = 1, simply C1+α-functions.

The collection of all Borel probability measures on a metric space X is denoted by
P(X). For µ, ν ∈ P(X) we use the Lévy-Prokhorov metric to measure their distance:

dLP(µ, ν) = inf{ε > 0 : µ(A) ⩽ ν(Aε) + ε for all Borel sets A},
where Aε is the ε-neighborhood of A in X. Note that if X is separable, then the
convergence in Lévy-Prokhorov metric is equivalent to the weak convergence and also
the space (P(X), dLP) is separable. Given a measure µ and a measurable function f , we
denote the push-forward measure by f∗µ = µ◦f−1. We let Dn(Rd) be the partition of Rd

to dyadic cubes of side length 2−n homothetic to [0, 1)d such that the origin is a vertex.
We denote the unique element of Dn(Rd) containing x ∈ Rd by Dn(x). For µ ∈ P(Rd)
and x ∈ sptµ we define the dyadic magnification of µ at x by

µDn(x) =
1

µ(Dn(x))
(fDn(x))∗(µ|Dn(x)), (2.1)

where µ|Dn(x) is the restriction of µ to Dn(x) and fDn(x) is the unique homothety sending

Dn(x) to [0, 1)d. For Radon measures µ and ν and C ⩾ 1 we write µ ∼C ν to indicate

that C−1 ⩽ dµ
dν ⩽ C, where dµ

dν is the Radon-Nikodym derivative.

2.1. Symbolic space. Let Λ be a finite set with #Λ ⩾ 2. Let Λ∗ =
⋃

n∈NΛn be the
set of finite words and for each i ∈ Λ∗ write |i| to denote the unique integer for which

i ∈ Λ|i|. For a finite word i = i1 · · · in−1in ∈ Λn, write i− = i1 · · · in−1 ∈ Λn−1. For
an infinite word j ∈ ΛN and k ∈ N let j|k ∈ Λk be the projection of j onto the first k
coordinates. Let σ : ΛN → ΛN be the left shift defined by σj = j2j3 · · · for all j = j1j2 · · · .
We equip ΛN with the topology generated by the cylinder sets:

[i] = {j ∈ ΛN : j||i| = i}
for all i ∈ Λ∗. Given an iterated function system Φ = (fi)i∈Λ with attractor K, the
canonical projection Π: ΛN → K is defined by setting

Π(i) = lim
n→∞

fi1 ◦ · · · ◦ fin(0)

for all i = i1i2i3 · · · ∈ ΛN. Note that Π is a continuous surjection. To simplify notation
we write fi = fi1 ◦ · · · ◦ fin and, if pi ∈ R for all i ∈ Λ, also pi = pi1 · · · pin for all finite
words i = i1 . . . in ∈ Λ∗.

2.2. Tangent distributions. We recall some of the theory of tangent distributions
developed by Hochman in [13]. Let (St)t⩾0 be the flow in the space {µ ∈ P(Rd) : 0 ∈
sptµ} defined by

Stµ = µ0,t.

Given µ ∈ P(Rd) and x ∈ sptµ, the scenery of µ at x can thus be viewed as the orbit of
(Tx)∗µ under the flow (St)t⩾0 as µx,t = St(Tx)∗µ for all t ⩾ 0, where Tx is the translation
y 7→ y − x.

Let P be a Borel probability measure on P(B(0, 1)). We say that P is a fractal
distribution if it is invariant under (St)t⩾0 and if for any A ⊆ P(B(0, 1)) with P (A) = 1,
for almost every µ ∈ A, also µx,t ∈ A for µ-almost all x ∈ B(0, 1) and every t ⩾ 0 for
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which B(x, e−t) ⊆ B(0, 1). Although the flow (St)t⩾0 is not continuous and the defining
property of the fractal distribution is not closed, the family FD of all fractal distributions
is closed in the weak∗-topology; see [17, Theorem 1.1]. Furthermore, we say that P is an
ergodic fractal distribution if it is a fractal distribution and ergodic under (St)t⩾0. The
set of ergodic fractal distributions is dense in FD; see [17, Theorem 1.2].

Recall that tangent distributions of µ at x are the accumulation points of the scenery
flow (⟨µ⟩x,T )T>0 in the weak∗-topology. In addition, µ is uniformly scaling and generates
P if P is the unique tangent distribution of µ at µ-almost all x. The following result of
Hochman [13, Theorem 1.6] shows that typical measures drawn from fractal distributions
are much more structured than arbitrary measures.

Theorem 2.1. Let P be a fractal distribution. Then P -almost every ν is uniformly
scaling and generates the ergodic component of P into which it belongs.

In fact, every fractal distribution is generated by some uniformly scaling measure;
see [17, Theorem 1.3]. In the other direction, Hochman [13, Theorem 1.7] has shown that
tangent distributions of any Radon measure have the structure of a fractal distribution.

Theorem 2.2. Let µ be a Radon measure. Then for µ-almost every x, every tangent
distribution of µ at x is a fractal distribution.

We also recall the result of Hochman [13, Proposition 1.9] on the effect of pushing
measures forward under diffeomorphisms on the generated distributions.

Proposition 2.3. Let µ be a Radon measure on Rd. Then for any diffeomorphism
f : Rd → Rd we have

lim
n→∞

dLP

(
1

n

∫ n

0
(Df |x)∗δµx,t dt,

1

n

∫ n

0
δ(f∗µ)f(x),t dt

)
= 0

for µ-almost all x.

For a Radon measure µ the upper and lower pointwise dimensions of µ at x ∈ Rd are

dimloc(µ, x) = lim sup
r→0

logµ(B(x, r))

log r
,

dimloc(µ, x) = lim inf
r→0

logµ(B(x, r))

log r
,

respectively. For a given measure, the pointwise dimensions naturally introduce four
different dimensions. For example, the lower Hausdorff dimension of µ is dimH µ =
ess infx∼µ dimloc(µ, x). If there exists a constant s such that dimloc(µ, x) = dimloc(µ, x) =

s for µ-almost all x ∈ Rd, then we write dimµ = s and say that µ is exact-dimensional.
For example, quasi-Bernoulli measures on self-conformal sets are exact-dimensional; see
Feng and Hu [9, Theorem 2.8]. Hochman [13, Lemma 1.18] showed that if P is a fractal
distribution, then P -almost every measure is exact-dimensional. This allows us to define
the dimension of a fractal distribution P to be

dimP =

∫
dim ν dP (ν) =

∫
log ν(B(0, r))

log r
dP (ν)

for all 0 < r < 1. Although dimensions of measures are usually highly discontinuous, the
function P 7→ dimP defined on FD is continuous; see [16, Lemma 3.20]. Furthermore,
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Hochman [13, Proposition 1.19] (see also the remark after [16, Theorem 3.21]) showed
that tangent distributions encode all information on dimensions:

Proposition 2.4. Let µ be a Radon measure. Then

dimloc(µ, x) = sup{dimP : P ∈ FD is a tangent distribution of µ at x},
dimloc(µ, x) = inf{dimP : P ∈ FD is a tangent distribution of µ at x},

for µ-almost all x ∈ Rd. In particular, if µ is uniformly scaling and generates P ∈ FD,
then µ is exact-dimensional and dimµ = dimP .

3. Self-conformal measures are uniformly scaling

In this section, we prove Theorems 1.1–1.3. Let µ ∈ P(X) and A be a finite partition
of X. The Shannon entropy of µ with respect to A is

H(µ,A) = −
∑
A∈A

µ(A) logµ(A).

If, in addition, ν ∈ P(X) is such that ν(A) = 0 implies µ(A) = 0 for all A ∈ A, then the
Kullback–Leibler divergence between ν and µ with respect to A is

DKL(µ ∥ ν,A) = −
∑
A∈A

µ(A) log
ν(A)

µ(A)
.

If the partition in use is clear from the context, then we omit it in notation. We recall
the classical Gibbs’ inequality.

Lemma 3.1 (Gibbs’ inequality). Let I be a finite set, and (pi)i∈I and (qi)i∈I probability
vectors such that qi = 0 implies pi = 0. Then

(1) DKL((pi)i∈I ∥ (qi)i∈I) ⩾ 0,
(2) DKL((pi)i∈I ∥ (qi)i∈I) < ε implies

∑
i∈I |pi − qi| <

√
2ε#I for all ε > 0.

Proof. It is well known that − log(1− x) ⩾ x+ x2

2max{1,1−x} for all x < 1. Hence,

DKL((pi)i∈I ∥ (qi)i∈I) ⩾
∑
i∈I

pi

(
pi − qi
pi

+

(pi−qi
pi

)2
2max

{
1, 1− pi−qi

pi

})

=
∑
i∈I

(pi − qi)
2

2max{pi, qi}
⩾

1

2

∑
i∈I

(pi − qi)
2,

which implies the claims of the lemma. □

If (pi)i∈I and (qi)i∈I are probability vectors, then we write

dist((pi)i∈I , (qi)i∈I) =
∑
i∈I

|pi − qi|

and observe that

dist((µ(I))I∈Dℓ
, (ν(I))I∈Dℓ

) ⩽ 2−ℓ ⇒ dLP(µ, ν) ⩽ 2−ℓ (3.1)

for all ℓ ∈ N. Let us next state two technical lemmas.
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Lemma 3.2. Let η be a Radon measure with dimH η > 0. Then for η-almost every x
and every ε > 0 there is ρ > 0 such that

lim sup
N→∞

1

N

N−1∑
k=0

sup
ρ⩽r⩽1

ηx,k(B(0, r + ρ) \B(0, r − ρ)) < ε. (3.2)

Proof. Let us argue by contradiction: for some ε > 0 and any ρ > 0, we find a sequence
(Nρ

k )k∈N along which the left-hand side of (3.2) exists as a limit, is at least ε, and that

the sequence 1
Nρ

k

∑Nρ
k−1

k=0 δηx,k converges to a tangent distribution P ρ. Furthermore, by

adapting [13, proof of Proposition 5.5(3)], we see that
∫ 1
0 StP

ρ dt is a fractal distribution

and, by applying Markov’s inequality, it gives mass at least ε2 to measures which further
give mass at least ε2 to the ρ-neigbourhood of the boundary of a closed ball centered
at the origin. Let P be a weak∗ accumulation point of P ρ as ρ → 0 and notice that,
by [17, Theorem 1.1], P is a fractal distribution. Moreover,

dimP =

∫∫ 1

0

logStζ(B(0, 2−1))

log 2−1
dt dP (ζ)

= lim
ρ→0

∫∫ 1

0

logStζ(B(0, 2−1))

log 2−1
dt dP ρ(ζ) ⩾ dimH η > 0

since the inner Lebesgue integral is a continuous function of ζ. Recalling that P is
supported on measures which give positive mass to a boundary of a ball, we see that this
is impossible by [16, Theorem 3.22]. □

If µ is a Radon measure on Rd and A ⊆ Rd is a Borel set with 0 < µ(A) < ∞, then
we write µA = µ(A)−1µ|A.

Lemma 3.3. For any r, τ > 0 the following holds for all small enough ε′ ⩾ ρ > 0: If η
and λ are Borel probability measures on [−1, 1]d and B = B(x, r) is a closed ball such
that

dLP(η, λ) < ρ,

λ(B(x, r + ρ)) ⩽ λ(B(x, r − ρ)) + ε′,

min{η(B), λ(B)} ⩾ τ,

then

dLP(ηB, λB) < O(ε′/τ).

Proof. For any measurable set A, the assumptions on η and λ imply

ηB(A) = η(B)−1η(B ∩A)

⩽ (λ(B(x, r − ρ))− ρ)−1(λ(Bρ ∩Aρ) + ρ)

⩽ (λ(B)− 2ε′)−1λ(B ∩Aρ) + 2ε′(λ(B)− 2ε′)−1

⩽
1

1− 2ε′/τ
λ(B)−1λ(B ∩Aρ) +

3ε′

τ

⩽ λB(A
O(ε′/τ)) +O(ε′/τ)
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and, similarly,

λB(A) ⩽ ηB(A
O(ε′/τ)) +O(ε′/τ)

which verifies the claim. □

The main ingredient in the proofs of Theorems 1.1–1.3 is the following proposition. We
remark that the proposition does not assume any condition on the smallness of entropy
or dimension of ν. Write

ν · µ =

∫
h∗µdν(h)

for all Borel probability measures µ on [−1, 1]d and ν supported on µ-measurable Rd → Rd

functions.

Proposition 3.4. Let µ and ν be Borel probability measures such that µ is supported on
[−1, 1]d and ν supported on µ-measurable Rd → Rd functions. For any ε > 0 there exist
N ∈ N and δ > 0 such that the following holds for all n ⩾ N : If

(1) h∗µ({x : 1
n

∑n
k=1H((h∗µ)

Dk(x),D1) ⩾ α}) ⩾ 1− δ for ν-almost all h,
(2) H(ν · µ,Dn) ⩽ n(α+ δ),
(3) dimH ν · µ > 0,

for some α ⩾ 0, then∫∫
1

n

∫ n

1
dLP((ν · µ)y,t, (h∗µ)y,t) dt d(h∗µ)(y) dν(h) < ε. (3.3)

Proof. By elementary properties of entropy, we can write

H(η,Dn) = −
n−1∑
k=0

∑
Ik∈Dk

∑
Ik+1∈Dk+1
Ik+1⊂Ik

η(Ik+1) log
η(Ik+1)

η(Ik)
(3.4)

for all η ∈ P(Rd). Applying (3.4) to ν · µ, we get

H(ν · µ,Dn) = −
n−1∑
k=0

∑
Ik∈Dk

∑
Ik+1∈Dk+1
Ik+1⊂Ik

∫ (
h∗µ(Ik+1) log

ν · µ(Ik+1)

ν · µ(Ik)

)
dν(h)

= −
n−1∑
k=0

∑
Ik∈Dk

∫ (
h∗µ(Ik)

∑
Ik+1∈Dk+1
Ik+1⊂Ik

h∗µ(Ik+1)

h∗µ(Ik)
log

ν · µ(Ik+1)

ν · µ(Ik)

)
dν(h)

= −
n−1∑
k=0

∫∫ (∑
I∈D1

(h∗µ)
Dk(x)(I) log(ν · µ)Dk(x)(I)

)
d(h∗µ)(x) dν(h)

= −
∫∫ n−1∑

k=0

(∑
I∈D1

(h∗µ)
Dk(x)(I) log(ν · µ)Dk(x)(I)

)
d(h∗µ)(x) dν(h).

For simplicity, write

phk,ℓ(x) = ((h∗µ)
Dk(x)(I))I∈Dℓ

,

qk,ℓ(x) = ((ν · µ)Dk(x)(I))I∈Dℓ
,
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in which case

H(phk,1(x)) = −
∑
I∈D1

(h∗µ)
Dk(x)(I) log(h∗µ)

Dk(x)(I),

DKL(p
h
k,1(x) ∥ qk,1(x)) = −

∑
I∈D1

(h∗µ)
Dk(x)(I) log

(ν · µ)Dk(x)(I)

(h∗µ)Dk(x)(I)
.

This allows us to rewrite

H(ν · µ,Dn) =

∫∫ n−1∑
k=0

H(phk,1(x)) d(h∗µ)(x) dν(h)

+

∫∫ n−1∑
k=0

DKL(p
h
k,1(x) ∥ qk,1(x)) d(h∗µ)(x) dν(h).

(3.5)

Recall that, by Gibbs’ inequality Lemma 3.1(1), we have

DKL(p
h
k,1(x) ∥ qk,1(x)) ⩾ 0.

Since, by the assumption (1),∫ n−1∑
k=0

H(phk,1(x)) d(h∗µ)(x) ⩾ n(α− oδ(1)), (3.6)

we get, by combining (3.5) with the assumption (2),∫∫ n−1∑
k=0

DKL(p
h
k,1(x) ∥ qk,1(x)) d(h∗µ)(x) dν(h)

= H(ν · µ,Dn)−
∫∫ n−1∑

k=0

H(phk,1(x)) d(h∗µ)(x) dν(h) ⩽ oδ(1)n.

(3.7)

To simplify notation, write

E( · ) =
∫∫

1

n

n−1∑
k=0

· d(h∗µ)(x) dν(h).

Combining (3.7) and Gibbs’ inequality Lemma 3.1(2) with Markov’s inequality, we get

E(dist(phk,1(x), qk,1(x)))

= E(dist(phk,1(x), qk,1(x))1{DKL(p
h
k,1(x) ∥ qk,1(x)) >

√
oδ(1)})

+ E(dist(phk,1(x), qk,1(x))1{DKL(p
h
k,1(x) ∥ qk,1(x)) ⩽

√
oδ(1)})

⩽ 2E(1{DKL(p
h
k,1(x) ∥ qk,1(x)) >

√
oδ(1)}) + 2d/2

√
2oδ(1)

⩽
2E(DKL(p

h
k,1(x) ∥ qk,1(x)))√
oδ(1)

+ 2d/2
√
2oδ(1)

⩽ (2 + 2d/2
√
2)
√
oδ(1),

(3.8)
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where 1A is the indicator function of a set A ⊆ Rd. Write o′δ(1) = (2 + 2d/2
√
2)
√
oδ(1)

and notice that o′δ(1) → 0 as δ → 0. Simple calculations show that∫∫
dist(phk,ℓ(x), qk,ℓ(x)) d(h∗µ) dν(h)

⩽
ℓ−1∑
m=0

∫∫
dist(phk+m,1(x), qk+m,1(x)) d(h∗µ) dν(h)

for all ℓ ∈ N. Hence, for every n ⩾ ℓ large enough, (3.8) implies

n−1∑
k=0

∫∫
dist(phk,ℓ(x), qk,ℓ(x)) d(h∗µ) dν(h)

⩽ ℓ

n+ℓ−1∑
k=0

∫∫
dist(phk,1(x), qk,1(x)) d(h∗µ) dν(h) ⩽ 2o′δ(1)ℓn.

Choose ℓ ∈ N such that 2−(ℓ+1) <
√

2o′δ(1) ⩽ 2−ℓ and combine the above inequality with
(3.1) and Markov’s inequality to obtain

E(dLP((h∗µ)Dk(y), (ν · µ)Dk(y)))

= E(dLP((h∗µ)Dk(y), (ν · µ)Dk(y))1{dist(phk,ℓ(x), qk,ℓ(x)) > 2−ℓ})

+ E(dLP((h∗µ)Dk(y), (ν · µ)Dk(y))1{dist(phk,ℓ(x), qk,ℓ(x)) ⩽ 2−ℓ})

⩽ 2ℓE(dist(phk,ℓ(x), qk,ℓ(x))) + 2−ℓ ⩽ 2ℓℓ2o′δ(1) + 2−ℓ

⩽ −
√

2o′δ(1) log2

√
2o′δ(1) +

√
2o′δ(1).

In other words, denoting the above upper bound by o′′δ (1), we have obtained∫∫
1

n

n∑
k=1

dLP((ν · µ)Dk(y), (h∗µ)
Dk(y)) d(h∗µ)(y) dν(h) < o′′δ (1), (3.9)

where o′′δ (1) → 0 as δ → 0. To conclude (3.3), it therefore remains to transition from
dyadic magnifications to magnifications along balls.

To finish the proof, let us show how (3.9) implies (3.3). Fix δ > 0 and m ∈ N. By
randomly translating ν · µ with respect to the Lebesgue measure, we may assume that
ν · µ-almost every y equidistributes for the Lebesgue measure under the map

F : Rd → Rd, F (x1, . . . , xd) = (2x1 mod 1, . . . , 2xd mod 1).

In particular, for ν · µ-almost every y, there exists a set Nδ ⊆ N such that

lim inf
n→∞

1

n
#(Nδ ∩ [0, n]) ⩾ 1− δ

and B(F ky, 2−m+1) ⊆ [0, 1]d or, equivalently,

B(y, 2−k−m+1) ⊆ Dk(y) (3.10)
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for all k ∈ Nδ. For any Borel measure η and η-almost every y, it follows from Proposition
2.4 that

lim sup
n→∞

1

n

n∑
k=1

log ηy,k(B(0, 2−m))

m
⩽ dimloc(η, y).

Applying this inequality, we see that for ν-almost every h and for h∗µ-almost every y there
exists a number c > 0 and a set N ′

δ ⊆ N such that lim infn→∞
1
n#(N ′

δ ∩ [0, n]) ⩾ 1− δ
and

c ⩽
η(B(y, 2−k−m))

η(B(y, 2−k))
⩽ 1

for all k ∈ N ′
δ and for both η ∈ {ν · µ, h∗µ}. In particular, for each k ∈ Nδ ∩N ′

δ, we have

c ⩽
η(B(y, 2−k−m))

η(Dk(y))
⩽ 1 (3.11)

for both η ∈ {ν · µ, h∗µ}.
Let ε′ > 0. By the assumption (3) and Lemma 3.2, there exists ρ > 0 such that for ν ·µ-

almost every y, there exists a set N ′′
δ ⊆ N such that lim infn→∞

1
n#(N ′′

δ ∩ [0, n]) ⩾ 1− δ
and

sup
ρ⩽r⩽1

(ν · µ)y,k(B(0, r + ρ) \B(0, r − ρ)) < ε′ (3.12)

for all k ∈ N ′′
δ . Replacing ρ by a smaller number, if necessary, and applying Lemma 3.3,

we conclude that for every y and k satisfying (3.10), (3.11), (3.12), and

dLP((ν · µ)Dk(y), (h∗µ)
Dk(y)) < ρ,

we have ∫ 1

0
dLP((ν · µ)y,k+m−1+t, (h∗µ)y,k+m−1+t) dt < O(ε′/c)

for every 0 ⩽ t ⩽ 1. Choosing ε′ small enough, the quantity O(ε′/c) can be taken
arbitrarily small independently of ε. In particular, if we choose δ small enough, then we
have the implication

1

n

n∑
k=1

dLP((ν · µ)Dk(y), (h∗µ)
Dk(y)) < ρ2 ⇒ 1

n

∫ n+m

m
dLP((ν · µ)y,t, (h∗µ)y,t) dt < ε

for all large enough n. Since this implication holds for ν-almost every h and h∗µ-almost
every y, the claim (3.3) follows from the already established (3.9). □

We will use Proposition 3.4 to show that a quasi-Bernoulli measure µ shares the same
tangential behaviour with its tangent measures, that is, its weak∗-accumulation points of
the scenery (µx,t)t⩾0. To that end, we will show in the following lemma that the tangents
of a quasi-Bernoulli measure µ are equivalent with convex combinations of conformal
images of µ itself.

Lemma 3.5. Let Φ be a conformal iterated function system on Rd with attractor K
and µ be a quasi-Bernoulli measure on K. For µ-almost every x and every tangent
distribution P at x, for P -almost every η there exists a measure ν ∈ P(C1+α(Rd)) such
that η ∼C (ν · µ)B(0,1), where C > 0 is as in (1.3).
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Proof. Write Φ = (fi)i∈Λ and let µ̄ be a quasi-Bernoulli measure on ΛN such that Π∗µ̄ = µ.
Define

C1+α
ρ,M (B(0, 1)) = {f ∈ C1+α(Rd) : M−1∥Df |y∥ ⩽ ∥Df |x∥ ⩽ M∥Df |y∥

and ∥Df |x∥ ⩾ ρ for all x, y ∈ Dom(f),

and f(B(0, 1)) ∩B(0, 1) ̸= ∅}

for all ρ > 0 and M ⩾ 1. For the rest of the proof, fix ρ > 0 and M ⩾ 1 such that
C1+α
ρ,M (B(0, 1)) contains the functions fi of the iterated function system Φ and furthermore,

relying on the bounded distortion property, C1+α
0,M (B(0, 1)) contains all the compositions

of fi. We remark that, by the Arzelá-Ascoli theorem, the set C1+α
ρ,M (B(0, 1)) is compact in

the topology induced by the norm ∥f∥C1 = ∥f∥∞ + ∥Df∥∞.
Define

Λ(x, t) = {i ∈ Λ∗ : diam(fi(B(0, 1))) ⩽ 2−t < diam(fi−(B(0, 1)))

and fi(B(0, 1)) ∩B(x, 2−t) ̸= ∅}

for all x ∈ sptµ and t > 0. It follows from the quasi-Bernoulli property (1.3) that

µ|B(x,2−t) ∼C

∑
i∈Λ(x,t)

µ̄([i])(fi)∗µ|B(x,2−t), (3.13)

where C > 0 is as in (1.3). Let gx,t be the affine map y 7→ 2t(y − x) and write

ν(x, t) = C(x, t)−1
∑

i∈Λ(x,t)

µ̄([i])δgx,t◦fi ∈ P(C1+α
ρ,M (Rd)),

where C(x, t) =
∑

i∈Λ(x,t) µ̄([i]). Notice that, by (3.13), we have µx,t ∼C (ν(x, t) ·µ)B(0,1).

Define

E = {η ∈ P(B(0, 1)) : η ∼C (ν · µ)B(0,1) for some ν ∈ P(C1+α
ρ,M (B(0, 1)))},

Er = {η ∈ P(B(0, 1)) : ν · µ(B(0, 1)) ⩾ r and

η ∼C (ν · µ)B(0,1) for some ν ∈ P(C1+α
ρ,M (B(0, 1)))}

for all r > 0 and note that µx,t ∈ E for all x ∈ sptµ and t ⩾ 0. Recall that our aim is to
show that for µ-almost every x and any tangent distribution P at x, we have P (E) = 1.
Notice that P (E) = P (

⋃
r>0Er) since P -almost every measure is supported on B(0, 1).

We claim that the set Er is closed for all r > 0. Let (ηn)n be a converging sequence in
Er, with limit η. Using the compactness of P(C1+α

ρ,M (B(0, 1))) and by possibly passing

to a subsequence, we find a converging sequence (νn)n in P(C1+α
ρ,M (B(0, 1))) such that

ηn ∼C (νn · µ)B(0,1) and νn · µ(B(0, 1)) ⩾ r; let ν be the limit of this sequence. It follows
from Lemma 3.3 and the continuity of the map ν 7→ ν ·µ that (νn ·µ)B(0,1) → (ν ·µ)B(0,1).
It is readily verified that ν · µ(B(0, 1)) ⩾ r and that η ∼C (ν · µ)B(0,1), whence η ∈ Er.
Thus Er is closed.

By (3.13), we have

ν(x, t) · µ(B(0, 1)) =
µ(B(x, 2−t))

C(x, t)
. (3.14)
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On the other hand, by the definition of Λ(x, t) and the choice of ρ, we have

C(x, t) ⩽ µ(B(x, ρ−12−t))

and, by Proposition 2.4,

lim sup
n→∞

1

n

∫ n

0
− log

µ(B(x, 2−t))

µ(B(x, ρ−12−t))
dt ⩽ dimµ

for µ-almost every x. In particular, for µ-almost every x and any δ > 0, there exists
r > 0 and an open set Iδ ⊆ R such that lim infn→∞

1
nL

1(Iδ ∩ [0, n]) ⩾ 1− δ, where L1 is
the Lebesgue measure on R, and

µ(B(x, 2−t))

C(x, t)
⩾

µ(B(x, 2−t))

µ(B(x, ρ−12−t))
⩾ r

for all t ∈ Iδ. Now, for µ-almost every x and any tangent distribution P at x, we have

P (E) ⩾ P (Er) ⩾ lim sup
n→∞

1

n

∫ n

0
δµx,t(Er) dt

⩾ lim inf
n→∞

1

n

∫
Iδ∩[0,n]

δµx,t(Er) dt ⩾ 1− δ

as Er is closed and µx,t ∈ Er for each t ∈ Iδ. By letting δ → 0, this concludes the
proof. □

If the conformal iterated function system satisfies the open set condition (or more
generally, the weak separation condition), then the measure ν in Lemma 3.5 is a finite
sum of Dirac masses. In general, this need not be the case and ν may even be non-atomic.

As indicated by Theorems 2.1 and 2.2, tangent measures of µ possess much more regular
local statistics than µ itself. The advantage of the representation given by Lemma 3.5 is
that using Proposition 3.4, we are able to transfer this regularity back to µ. Combining
Theorems 2.1 and 2.2, Lemma 3.5, and the Lebesgue-Besicovitch differentiation theorem,
we deduce that for some η ∈ P(C1+α(Rd)), the measure η · µ is uniformly scaling and
generates an ergodic fractal distribution. In order to apply Proposition 3.4 to deduce that
also µ is uniformly scaling, we have to know that convolving µ with η does not increase its
entropy. However, this is ensured by Proposition 2.4 together with exact-dimensionality
of µ.

We are ready to prove Theorems 1.1 and 1.2, beginning with the latter and afterwards
restricting to the more special setting of the former. The proof of Theorem 1.3 is contained
in the proof of Theorem 1.2.

Proof of Theorems 1.2 and 1.3. We assume that dimµ > 0; otherwise µ is uniformly
scaling and generates the distribution δδ0 by [13, Corollary 6.6]. Let P1 and P2 be
ergodic components of tangent distributions of µ, both of which satisfy the conclusion
of Lemma 3.5. Applying Theorem 2.1 and Lemma 3.5 to P1 and P2, we find measures
ν1, ν2 ∈ P(C1+α(Rd)) such that (νi · µ)B(0,1) is uniformly scaling and generates Pi for
both i ∈ {1, 2}. In particular, by the dominated convergence theorem,

lim
n→∞

∫∫
h−1(B(0,1))

dLP

(
Pi,

1

n

∫ n

0
δ(νi·µ)h(x),t dt

)
dµ(x) dνi(h) = 0. (3.15)
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By Proposition 2.4, the measures ν1 and ν2 can be chosen such that (νi ·µ)B(0,1) are exact-

dimensional and limn→∞
1
nH((νi ·µ)B(0,1),Dn) = dimµ > 0 for both i ∈ {1, 2}. Moreover,

by e.g. [13, Lemma 6.7], we have lim infn→∞
1
n

∑n
k=1H((h∗µ)

Dk(x),D1) = dimµ for νi-
almost all h and h∗µ-almost all x, for both i ∈ {1, 2}. In particular, the measures νi and
µ satisfy the conditions of Proposition 3.4, and, by relying on that proposition, we see
that for any ε > 0 and for all large enough n, we have∫∫

dLP

(
1

n

∫ n

0
δ(νi·µ)h(x),t dt,

1

n

∫ n

0
δ(h∗µ)h(x),t dt

)
dµ(x) dνi(h) < ε. (3.16)

Combining (3.15) and (3.16) and applying the triangle inequality, we obtain

lim
n→∞

∫∫
h−1(B(0,1))

dLP

(
Pi,

1

n

∫ n

0
δ(h∗µ)h(x),t dt

)
dµ(x) dνi(h) = 0 (3.17)

for both i ∈ {1, 2}. Choosing here a subsequence so that the integrand tends to 0
pointwise proves Theorem 1.3.

Continuing with the proof of Theorem 1.2, we may combine (3.17) with Proposition
2.3 and the dominated convergence theorem to we obtain

lim
n→∞

∫∫
h−1(B(0,1))

dLP

(
(Dh|x)−1

∗ Pi,
1

n

∫ n

0
δµx,t dt

)
dµ(x) dνi(h) = 0 (3.18)

for both i ∈ {1, 2}. It can be seen from the proof of Lemma 3.5 that both ν1 and ν2 give
positive measure to functions h with h(B(0, 1)) ⊆ B(0, 1). In particular, for νi-almost
every h for which h(B(0, 1)) ⊆ B(0, 1) there is a subsequence (nk)k∈N such that

lim
k→∞

dLP

(
(Dh|x)−1

∗ P1,
1

nk

∫ nk

0
δµx,t dt

)
= 0

for µ-almost all x, for both i ∈ {1, 2}. Finally, an application of the triangle inequality
yields that, for ν1×ν2-almost every (h, g) for which h(B(0, 1)) ⊆ B(0, 1) and g(B(0, 1)) ⊆
B(0, 1), we have

dLP((Dh|x)−1
∗ P1, (Dg|x)−1

∗ P2)

⩽ lim
k→∞

dLP

(
(Dh|x)−1

∗ P1,
1

nk

∫ nk

0
δµx,t dt

)
+ lim

k→∞
dLP

(
(Dg|x)−1

∗ P2,
1

nk

∫ nk

0
δµx,t dt

)
= 0

or, equivalently,

P1 = (Dh|x(Dg|x)−1)∗P2. (3.19)

Let now Q be a tangent distribution of µ which is also a fractal distribution, and let
Q =

∫
P (ω) dQ′(ω) be its ergodic decomposition. By (3.19), for Q′-almost every ω

there exists an orthogonal matrix O(ω) such that P (ω) = O(ω)∗P2. This induces a
Q′-measurable function ω 7→ O(ω), and if we let ζ be the push-forward of Q′ under this
map, we have obtained Q =

∫
O∗P2 dζ(O) which is what we set out to prove. □

The proof of Theorem 1.1 is built upon the above arguments.
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Proof of Theorem 1.1. Let us first assume that d = 1. Since in this case h and g are
(orientation-preserving) real functions, we have Dh|x = S− log h′(x) and (Dg|x)−1 =
Slog g′(x). Thus, by (3.19) and the (St)t⩾0-invariance of tangent distributions, P1 = P2

and µ is uniformly scaling.
Suppose then that d ⩾ 2 and Φ consists of similarities. Then it is clear from the proof

of Lemma 3.5 that the measures ν1 and ν2 in the proof of Theorem 1.2 are supported on
functions of the form h(x) = rOh(x) + a for some contraction r > 0, a translation vector
a ∈ Rd, and an orthogonal matrix Oh ∈ O, where O is the topological group generated
by the orthogonal parts of the similarities in Φ. In particular, if P1 and P2 are ergodic
components of tangent distributions of µ outside a set of zero µ-measure, then

P1 = (OhO
−1
g )∗P2 (3.20)

by (3.19).
To conclude that µ is uniformly scaling we reason as follows: Let ε > 0 and let Λ′ ⊆ Λ∗

be such that {[i] : i ∈ Λ′} is a partition of ΛN, and the orthogonal parts of fi, i ∈ Λ′, are ε-
dense inO. Using the quasi-Bernoulli property of µ to write νi·µ ∼C νi·(

∑
i∈Λ′ µ̄([i])δfi ·µ)

and “absorbing” the measure
∑

i∈Λ′ µ̄([i])δfi into νi, we may suppose that (νi · µ)B(0,1)

still generates Pi and that the set {Oh : h ∈ spt νi, h(B(0, 1)) ⊆ B(0, 1)} is ε-dense in
O. Thus, in (3.20), we can choose h and g so that ∥OhO

−1
g − Id∥ < ε and, consequently,

dLP(P1, P2) < 2ε. Letting ε → 0 completes the proof. □

4. Normal numbers in self-conformal sets

In this section, we prove Theorem 1.4. We begin by recalling some of the definitions
and results of Hochman and Shmerkin [15] which are used to study spectral properties
of generated distributions. As in the proof of [15, Theorem 1.4], Theorem 1.4 is proven
through an application of [15, Theorem 1.1] combined with an analysis of the pure-point
spectrum of the generated distribution. Let P be a distribution invariant under (St)t⩾0

and write e(x) = e2πix ∈ C for all x ∈ R. We call a number α ⩾ 0 an eigenvalue of P if
there exists a non-trivial measurable function φ : P(Rd) → C such that

φ(Stµ) = e(tα)φ(µ)

for every t ⩾ 0 and for P -almost all µ. Such a function φ is called an eigenfunction for
the eigenvalue α. The collection of all eigenvalues of P is called its pure-point spectrum.
Given a Radon measure µ and t0 > 0, we say that µ t0-generates a distribution Q at x if

Q = lim
n→∞

1

n

n∑
k=1

δµx,kt0
.

We recall the following property of fractal distributions from [15, Lemma 4.9 and Propo-
sition 4.15].

Lemma 4.1. If P is a fractal distribution, then for any t0 > 0, P -almost every η
t0-generates an St0-ergodic distribution Px at η-almost every x. Furthermore, if φ is an
eigenfunction of P for some eigenvalue k/t0, then there exists c ∈ C such that φ(ζ) = c
for η-almost every x and Px-almost all ζ.
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We are now ready to prove Theorem 1.4. We will use Proposition 3.4 to relate the
sceneries of µ and its tangent measures, and otherwise proceed exactly as in [15, proof of
Theorem 1.4]

Proof of Theorem 1.4. Let P be the tangent distribution generated by µ almost every-
where. Let β > 1 be a Pisot number such that Φ is arithmetically independent of β.
We will show that k

log β does not belong to the pure-point spectrum of P for any integer

k ̸= 0. By [15, Proposition 4.1], this is equivalent to P being ergodic under the map
Slog β. The proof is then concluded by [15, Theorem 1.1 and Theorem 1.2].

Suppose for a contradiction that k
log β does belong to the pure-point spectrum of P

for some k ̸= 0. Write t0 for the eigenvalue k
log β and let φ : P(Rd) → C be an associated

eigenfunction. By Lemma 4.1, there exists a constant c such that, for P -almost every
η and for η-almost every x, η t0-generates a distribution Px such that φ(ζ) = c for
Px-almost all ζ. Since, by Lemma 3.5, we can choose η so that η ∼C (ν ·µ)B(0,1) for some

ν ∈ P(C1+α(Rd)), we see, arguing similarly as in the proof of Theorem 1.3, that for some
h ∈ C1+α(Rd), there exists a sequence (nk)k∈N such that

lim
k→∞

1

nk

nk∑
k=1

δ(h∗µ)h(x),kt0
= Ph(x)

for µ-almost all x. In particular, along the subsequence (nk)k∈N, h∗µ t0-generates almost
everywhere a distribution for which φ ≡ c almost surely. Since h∗µ is a quasi-Bernoulli
measure for the conjugated conformal iterated function system hΦ = {h◦fi◦h−1 : i ∈ Λ}
for which λ(h ◦ fi ◦ h−1) = λ(fi), without loss of generality, by switching the iterated
function system in the beginning, we may assume that this is the case for µ, that is,

lim
k→∞

1

nk

nk∑
k=1

δµx,kt0
= Px

for µ-almost every x.
We now proceed to conclude the proof by relying on the assumption that Φ is arith-

metically independent of β. Recall that t0 =
k

log β . Using the independence assumption,

we find n ∈ N and i ∈ Λ∗ such that 0 < | log λ(fi) + n log β| < 1/t0. Equivalently,
0 < |t0 log λ(fi) + kn| < 1. In particular, t0 log λ(fi) is not an integer, whence

e(−t0 log λ(fi)) ̸= 1. (4.1)

Let x0 be the fixed point of f1 and let U be a small interval centered at x0. Since µU ≪ µ
and (fi)∗µU ≪ µ, it follows from the Lebesgue-Besicovitch differentiation theorem that
also µU and (fi)∗µU t0-generate the distribution Px along the sequence (nk)k∈N, for
µ-almost all x. On the other hand, by Proposition 2.3 (more precisely, see [15, Lemma
4.16] for the version for t0-generated distributions), the distribution t0-generated by
(fi)∗µU along the subsequence (nk)k∈N at fi(y) is S− log f ′

i(y)
Py. In particular,

c =
1

µ(U)

∫
fi(U)

∫
φ(ζ) dPy(ζ) d(fi)∗µ(y)

=
1

µ(U)

∫
U

∫
φ(S− log f ′

i(y)
ζ) dPy(ζ) dµ(y)
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=
1

µ(U)

∫
U

∫
e(−t0 log f

′
i(y))ϕ(ζ) dPy(ζ) dµ(y)

→ e(−t0 log λ(fi))c

as diam(U) → 0. In light of (4.1), this is a contradiction. With the same modifications,
the proof in the case that Φ is totally non-linear goes through exactly as in [15, proof of
Theorem 1.5]. □

5. Dissonance of quasi-Bernoulli measures

In this section, we prove Theorem 1.5. Write Πd,k for the set of linear maps from Rd

to Rk. If P is a fractal distribution, then, by [13, Theorem 1.22], for every π ∈ Πd,k and
for P -almost every µ, the push-forward measure π∗µ is exact-dimensional. This allows
us to define

EP (π) =

∫
dimπ∗µ dP (µ)

for all fractal distributions P and linear maps π ∈ Πd,k. We denote the general linear
group of degree k by GLk(R). Notice that there is an action of GLd(R) on Πd,k given
by U such that π 7→ π ◦ U−1 and an action of GLk(R) on Πd,k given by V such that
π 7→ V ◦π. These actions commute and hence, introduce an action on GLk(R)×GLd(R).
If A ⊆ GLd(R) is a group of invertible linear maps, then A induces an action on measures
and hence also an action on distributions, which we keep denoting by A. We say that a
fractal distribution is non-singular with respect to the group A, if a∗P ∼ P for all a ∈ A.

In this section, we are dealing with product measures and it is therefore convenient to
equip the Euclidean space with the maximum metric. In this metric, for measures µ and
ν on R, we have (µ× ν)(x,y),r = µx,r × νy,r. For t, s ⩾ 0, we let (St, Ss) denote the maps

(x, y) 7→ (2tx, 2sy) and µ × ν 7→ Stµ × Ssν. Let us next recall some facts from [13] on
pushing fractal distributions forward under linear or diffeomorphic maps. The first result
is [13, Proposition 1.38].

Proposition 5.1. Let P be an ergodic fractal distribution which is non-singular with
respect to a group A ⊆ GLd(R). Then EP ( · ) is constant on A-orbits of Πd,k, where A

denotes the topological closure of A. In particular, if an orbit O ⊆ Πd,k of GLk(R)×A
has non-empty interior, then

EP (π) = min{k, dimP}
for all π ∈ O.

The next theorem is a consequence of [14, Theorem 1.10] and, translated to the
language of fractal distributions, it can be found at [13, Theorem 1.23].

Theorem 5.2. Let µ be a Radon measure on Rd which generates an ergodic fractal
distribution P along a subsequence. Then

dimπ∗µ ⩾ EP (π)

for all π ∈ Πd,k.

Before going into the proof of Theorem 1.5, we show that for any quasi-Bernoulli
measures µ and ν on the line, their product µ×ν generates an ergodic fractal distribution
almost everywhere, along a subsequence.
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Lemma 5.3. Let Φ and Ψ be conformal iterated function systems on R, and let µ and
ν be quasi-Bernoulli measures associated to Φ and Ψ, respectively. Then there exists a
sequence (nk)k∈N and an ergodic fractal distribution P with dimP ⩾ dim(µ × ν) such
that

lim
k→∞

1

nk

∫ nk

0
δ(µ×ν)(x,y),t dt = P

for µ× ν-almost all (x, y).

Proof. Since (µ × ν)(x,y),t = µx,t × νy,t, an application of Proposition 2.4 and Lemma
3.5 shows that there exists an ergodic fractal distribution P with dimP ⩾ dim(µ× ν)
and measures ζ1, ζ2 ∈ P(C1+α(R)) such that the measure (ζ1 · µ)B(0,1) × (ζ2 · ν)B(0,1) is
uniformly scaling and generates the distribution P . Arguing similarly as in the proof of
Theorem 1.2, we see that for some (h, g) ∈ C1+α(R) there is a subsequence (nk)k∈N such
that

lim
k→∞

1

nk

∫ nk

0
δ(h∗µ×g∗ν)(h(x),g(y)),t dt = P (5.1)

for µ× ν-almost all (x, y). On the other hand, by Proposition 2.3, we have

lim
n→∞

dLP

(
1

n

∫ n

0
δ(h∗µ×g∗ν)(h(x),g(y)),t dt,

1

n

∫ n

0
(S− log h′(x), S− log g′(y))∗δ(µ×ν)(x,y),t dt

)
= 0

for µ× ν-almost all (x, y). Combining the above with (5.1) and (St, St)-invariance of P ,
we see that

lim
k→∞

1

nk

∫ nk

0
δ(µ×ν)(x,y),t dt = (Sm+log h′(x), Sm+log g′(y))∗P

for µ× ν-almost all (x, y) and for every m ⩾ max{− log h′(x),− log g′(y)}. Since linear
maps take ergodic fractal distributions to ergodic fractal distributions by [13, Proposition
1.8], this completes the proof. □

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let P be the ergodic fractal distribution given by Lemma 5.3.
Let i ∈ Γ∗ and j ∈ Λ∗. For any open intervals U and V with µ(U) > 0 and ν(V ) > 0,
we have

(fi)∗µU × (gj)∗νV ≪ µ× ν.

In particular, by the Lebesgue-Besicovitch differentiation theorem, also (fi)∗µU × (gj)∗νV
generates P . On the other hand, since µU×νV = ((fi)

−1, (gj)
−1)∗((fi)∗µU×(gj)∗νV ), the

measure µU×νU generates at almost every (x, y) the distribution (Slog(fi)′(x), Slog(gj)′(y))∗P

by Proposition 2.3. In particular, P is invariant under (Slog(fi)′(x), Slog(gj)′(y)) for all

i ∈ Γ∗, j ∈ Λ∗ and (x, y) ∈ (fi)(U)× (gj)(V ).
Let now U and V be small open intervals centered at the fixed points of fi and gj,

respectively. Taking diam(U),diam(V ) → 0 and using the (St, St)-invariance of P and
continuity of (t, s) 7→ (St, Ss)∗P , we see that P is invariant under (Slog λ(fi)−log λ(gj), Id)

for all i ∈ Γ∗, j ∈ Λ∗ . Write D = {log λ(fi) − log λ(gj) : i ∈ Γ∗, j ∈ Λ∗}. Recall our
assumption that for any ε > 0, there exist i ∈ Γ∗, j ∈ Λ∗ such that 0 < | log λ(fi) −
log λ(gj)| < ε. Using this, and the relation λ(f ◦ f) = λ(f)λ(f), we deduce that the set
D is dense either in [0,+∞) or in (−∞, 0]. Without loss of generality, let us suppose that
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D is dense in [0,+∞). Let D′ = D∩ [0,+∞) and A = {(St, Id) : t ∈ D′}. Write π for the
map (x, y) 7→ x+ y. Since the orbit of π under GL1(R)×A is {(x, y) 7→ α(2tx+ y) : α >
0 and t ⩾ 0} which has nonempty interior and contains π, Proposition 5.1 asserts that
EP (π) = min{1, dimP}. Since dimP ⩾ dim(µ× ν) = dimµ+ dim ν by the choice of P
and exact-dimensionality of µ and ν, and dim(µ ∗ ν) = dimπ∗µ ⩾ EP (π) by Theorem
5.2, we have completed the proof. □

6. Self-affine measures

In this section, we prove Theorem 1.6. Recall that if Φ = (fi)i∈Λ is a diagonal iterated
function system, then the maps fi : R2 → R2, fi(x) = Aix+ ai, are affine such that

Ai =

(
ρi 0
0 λi

)
for all i ∈ Λ.

Proposition 6.1. Let Φ be a diagonal iterated function system on R2 with attractor K
satisfying the rectangular strong separation condition. Then any self-affine measure µ on
K is uniformly scaling and generates an ergodic fractal distribution. Furthermore, if µ
has simple Lyapunov spectrum, then P = (S− log ρi , S− log λj)∗P for all i, j ∈ Λ∗.

Relying on Proposition 6.1, the proof of Theorem 1.6 is essentially identical to the last
paragraph of the proof of Theorem 1.5.

Proof of Theorem 1.6. Let µ be a self-affine measure on the attractor of Φ with simple
Lyapunov spectrum, and let P be the ergodic fractal distribution generated by µ given
by Proposition 6.1. Let π ∈ Π2,1 be a non-principal orthogonal projection and write
π(x, y) = ax+ by where we assume a, b > 0; the case a, b < 0 is identical. Choose N large
enough so that 2−N ⩽ a, b ⩽ 2N . Recall our assumption that for any ε > 0, there exist
i, j ∈ Λ∗ such that 0 < | log ρi − log λj| < ε. It follows that set D = {− log ρi + log λj :
i, j ∈ Λ∗} is dense either in [0, N ] or in [−N, 0]. Without loss of generality, we suppose
that D is dense in [0, N ]. Let A = {(St, Id) : t ∈ D∩ [0, N ]}. Since µ has simple Lyapunov
spectrum, it follows from Proposition 6.1 that P is invariant under every map in A. On
the other hand, the orbit of π under GL1(R)×A contains π and has non-empty interior,
whence EP (π) = min{1, dimP} = min{1, dimµ} by Propositions 5.1 and 2.4. The proof
is now finished as, by Theorem 5.2, we have dimπ∗µ ⩾ EP (π). □

The rest of the section is devoted to the proof of Proposition 6.1. By [13, §4.3], the
first statement is known when the Lyapunov exponents of µ coincide and we may thus
assume that µ has simple Lyapunov spectrum throughout the proof. Without loss of
generality, we assume y-axis to be the major asymptotic contracting direction. It follows
that for µ̄-almost every i ∈ ΛN and every large enough n (depending on i), we have
λi|n < ρi|n . Recall that µ̄ is the Bernoulli measure whose canonical projection is µ.

Let R = [a, b] × [c, d] be a rectangle. Recall that, if µ is a measure such that
0 < µ(R) < ∞, then µR = µ(R)−1µ|R. With a slight abuse of notation, let µR = H∗µR,

where H(x, y) = (2x−(b+a)
b−a , 2y−(c+d)

d−c ) is the linear map translating and rescaling R onto

[−1, 1]2. From now on, let π ∈ Π2,1 be the orthogonal projection onto the x-axis. Let
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µ =
∫
δx×µx dπ∗µ(x) be the disintegration of µ with respect to π, where µx is a measure

on R for each x. We also write µi = µπ(Π(i)) for all i ∈ ΛN.

Lemma 6.2. Let µ be a Borel probability measure on R2. Then, for π∗µ-almost every x,
we have

dLP(µ
π−1(B(x,2−r)), (π∗µ)x,r × µx) → 0

as r → ∞.

Proof. By Lusin’s theorem, for every n ∈ N there exists a set En ⊆ R with π∗µ(En) ⩾
1 − 1/n such that x 7→ µx is continuous on En. On the other hand, by the Lebesgue-
Besicovitch density point theorem, there is a set E′

n ⊆ En such that π∗µ(E
′
n) = π∗µ(En)

and
π∗µ(E

′
n ∩B(x, 2−r))

π∗µ(B(x, 2−r))
→ 1

as r → ∞ for all x ∈ E′
n. Fix n ∈ N and x ∈ E′

n. If Hr denotes the affine map which
translates and rescales π−1(B(x, 2−r)) ∩ R× [−1, 1] onto [−1, 1]2, we have

dLP(µ
π−1(B(x,2−r)), (π∗µ)x,r × µx) = dLP

(∫
B(x,2−r)

Hr(δy × µy) d(π∗µ)x,r(y),∫
B(x,2−r)

Hr(δy × µx) d(π∗µ)x,r(y)

)
→ 0

as r → ∞, since dLP(µy, µx) = o(r) for y ∈ E′
n ∩ B(x, 2−r). Since π∗µ(

⋃∞
n=1E

′
n) = 1,

this concludes the proof. □

Combining Lemma 6.2 with the self-affinity of µ, we deduce that outside a negligible
set of scales, magnifications of µ also have a product-structure.

Lemma 6.3. Let Φ be a diagonal iterated function system on R2 with attractor K
satisfying the rectangular strong separation condition and µ be a self-affine measure on
K. Then there exists c > 0 such that, for µ̄-almost every i ∈ ΛN, we have

1

n

n−1∑
k=0

dLP(µΠ(i),− log λi|k+c, ScTΠ(σki)((π∗µ)π(Π(σki)),log ρi|k−log λi|k
× µσki)) → 0

as n → ∞.

Proof. Let c = max{− log dist(φi([−1, 1]2), φj([−1, 1]2) : i, j ∈ Λ such that i ̸= j} and
recall that, for µ̄-almost every i and every large enough n, we have λi|n < ρi|n . By the

choice of c, the ball B(Π(i), 2log λi|n−c) only intersects φi|n([−1, 1]2). Writing

Ri,n = φ−1
i|nB(Π(i), 2log λi|n−c),

we see that Ri,n is the rectangle [−2log λi|n−log ρi|n−c, 2log λi|n−log ρi|n−c] × [−2−c, 2−c]
translated so that its centre is at Π(σni). Hence, by the self-affinity,

µΠ(i),− log λi|n+c = µRi,n .

Let ε > 0 and notice that, by Egorov’s theorem and Lemma 6.2, there exists a set A ⊂ ΛN

and N ⩾ 1 such that µ̄(A) > 1− ε and

dLP(µ
π−1(B(Π(i),2−r)), (π∗µ)Π(i),r × µi) < ε
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for all i ∈ A and r ⩾ N . Thus,

dLP(µ
Ri,k , Sc(TΠ(σki))∗((π∗µ)π(Π(σki)),log ρi|k−log λi|k

× µσki)) < ε

for every k sufficiently large such that σki ∈ A. Therefore,

1

n

n−1∑
k=0

dLP(µ
Ri,k , Sc(TΠ(σki))∗((π∗µ)π(Π(σki)),log ρi|k−log λi|k

× µσki))

⩽
1

n

n−1∑
k=0

(1{σki ∈ A}ε+ 1{σki /∈ A}) + 2N

n

⩽ ε+
1

n

n−1∑
k=0

1{σki /∈ A}+ 2N

n
→ ε+ µ̄(ΛN \A) ⩽ 2ε

as n → ∞. Since ε > 0 was arbitrary, the claim follows. □

We prove Proposition 6.1 by first showing that the product measures π∗µ × µi are
uniformly scaling along a subsequence for µ̄-almost every i ∈ ΛN, and then apply Lemma
6.3 to transfer the property to the measure µ.

Lemma 6.4. Let Φ be a diagonal iterated function system on R2 with attractor K
satisfying the rectangular strong separation condition and µ be a self-affine measure on K.
Then there exists an ergodic fractal distribution P with dimP ⩾ dimµ and a sequence
(nk)k∈N such that

lim
k→∞

1

nk

∫ nk

0
δ(π∗µ×µi)(x,y),t dt = P (6.1)

for µ̄-almost all i ∈ ΛN and π∗µ× µi-almost all (x, y). Furthermore,

P = (S− log ρi , S− log λj)∗P

for all i, j ∈ Λ∗.

Proof. Let π′ ∈ Π2,1 be the orthogonal projection onto the y-axis. Standard arguments
(see also [18, Theorem 4.2] for a more general result) using the relation

(µi)π′(Π(i)),t = (µσ(i))π′(Π(σ(i))),t+log λi|1
(6.2)

for all large enough t show that, for µ̄-almost every i, the measure µi is uniformly scaling
and generates the ergodic fractal distribution∫

ΛN

∫ − log λi|1

0
St(Tπ′(Π(i)))∗µi dt dµ̄(i).

Since π∗µ is a self-similar measure on R and dimπ∗µ× µi = dimµ for µ̄-almost every i

by [5, Theorem 2.7] (see also [6]), the rest of the proof of (6.1) is analogous to the proof
of Proposition 5.3. The final claim is easy to see by using (6.2), self-similarity of π∗µ,
and the Lebesgue-Besicovitch density point theorem. □

We are now ready to prove Proposition 6.1. Since the ideas in the proof have already
appeared in the proof of Theorem 1.2, we will only provide a sketch.
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Proof of Proposition 6.1. Let Q be an ergodic component of a tangent distribution of µ.
Combining Lemma 6.2 with a minor modification of Lemma 3.5, we see that outside a
set of zero µ-measure, Q-almost every measure is uniformly scaling, generates Q and is
of the form

((ν · π∗µ)× µi)(x,y),t

for some i ∈ ΛN, (x, y) ∈ R2, t ⩾ 0, and ν supported on the space of linear maps
h : R → R, h(y) = rhy + ah. It follows from Lemma 6.2 that rh is in the closure of
{ρiλ−1

j : i, j ∈ Λ∗}. Similarly as in the proof of Theorem 1.2, Propositions 2.3 and 3.4
together assert that

lim
n→∞

∫∫
dLP

(
Q,

1

n

∫ n

0
(S− log rh , Id)∗δ(π∗µ×µi)(x,y),t dt

)
dπ∗µ× µi(x, y) dν(h) = 0

On the other hand, if P is the fractal distribution of Lemma 6.4, combining the above
with the dominated convergence theorem and applying the triangle inequality, we see
that

Q = (S− log rh , Id)∗P = P,

where the last equality follows since rh ∈ {ρiλ−1
j : i, j ∈ Λ∗}. □
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[6] B. Bárány and A. Käenmäki. Ledrappier-Young formula and exact dimensionality of self-affine
measures. Adv. Math., 318:88–129, 2017.

[7] C. Bruce and X. Jin. Furstenberg sumset conjecture and Mandelbrot percolations. Preprint, available
at arXiv:2211.16410, 2022.

[8] C. G. T. de A. Moreira. Sums of regular Cantor sets, dynamics and applications to number theory.
volume 37, pages 55–63. 1998. International Conference on Dimension and Dynamics (Miskolc, 1998).

[9] D.-J. Feng and H. Hu. Dimension theory of iterated function systems. Comm. Pure Appl. Math.,
62(11):1435–1500, 2009.

[10] A. Ferguson, J. M. Fraser, and T. Sahlsten. Scaling scenery of (×m,×n) invariant measures. Adv.
Math., 268:564–602, 2015.

[11] J. M. Fraser and M. Pollicott. Micromeasure distributions and applications for conformally generated
fractals. Math. Proc. Cambridge Philos. Soc., 159(3):547–566, 2015.

[12] M. Gavish. Measures with uniform scaling scenery. Ergodic Theory Dynam. Systems, 31(1):33–48,
2011.

[13] M. Hochman. Dynamics on fractals and fractal distributions. Preprint, available at arXiv:1008.3731,
2010.

[14] M. Hochman and P. Shmerkin. Local entropy averages and projections of fractal measures. Ann. of
Math. (2), 175(3):1001–1059, 2012.



SCALING LIMITS OF SELF-CONFORMAL MEASURES 25

[15] M. Hochman and P. Shmerkin. Equidistribution from fractal measures. Invent. Math., 202(1):427–479,
2015.
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