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BALÁZS BÁRÁNY

Abstract. We investigate properties of the zero of the subadditive pressure

which is a most important tool to estimate the Hausdorff dimension of the

attractor of a non-conformal iterated function system (IFS). Our result is a

generalization of the main results of Miao, Falconer [6] and Manning, Simon [8].

1. Introduction

Since the main goal of this paper is to improve a tool which is used to estimate

the Hausdorff dimension, first we define the Hausdorff measure and Hausdorff di-

mension of a bounded set A ⊂ Rn. Let

Hs
δ = inf

{∑

i

| Ui |s: A ⊂
⋃

i

Ui | Ui |< δ

}
(1.1)

where | U | is the diameter of U . Now we define the s-dimensional Hausdorff

measure of A by

Hs(A) = lim
δ→∞

Hs
δ(A). (1.2)

We call dimH A the Hausdorff dimension of A and

dimH A = inf {s : Hs(A) = 0} . (1.3)

We consider the Hausdorff dimension of the attractors of iterated function sys-

tems (IFS) which are non-conformal. (We say that a map is conformal if the

derivative is a similarity in every point.) The dimension theory of non-conformal

IFS is very difficult and there are only very few results. The most important tool of
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Research of Bárány was supported by the EU FP6 Research Training Network CODY..
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this field is the sub-additive pressure, which was defined by K. Falconer [4] and L.

Barreira [1]. Unfortunately, we know very little about sub-additive pressure itself.

In the conformal case, the sub-additive pressure coincides with the usual topo-

logical pressure, see for example [10, Chapter 9].

The simplest non-conformal situation is the case of self-affine IFS. To study

the dimension of a self-affine attractor we consider the k-th approximation of the

attractor with the so called k-th cylinders which are naturally defined by the k

fold application of the functions of the IFS. To measure the contribution of such

a k cylinder to the covering sum which appears in the definition of the Hausdorff

measure (see (1.1) and (1.2) for each of these k-th cylinders we consider the singular

value function. These are non-negative valued functions defined in a neighborhood

of the attractor. The dimension of the attractor is related to the exponential growth

rate of the sum of the values of these exponentially many singular value functions

in the self affine case (see [2]). To verify this it was essential that this exponential

growth rate is the same wherever we evaluate these singular value functions, since

the singular value functions are constant in the self-affine case.

Falconer [4], Barreira [1] considered the more general situation when the IFS is

no longer self-affine. In this case, using a similar method, it turns out that under

a technical condition (which was named by Barreira as 1-bunched property) the

exponential growth rate of the sum of the value of the singular value functions does

not depend on wherever they are evaluated. We express this phenomenon as the

”insensitivity property holds”.

This is a very important property of the sub-additive pressure and in general we

do not know if it holds or not. The main goal of this paper is to verify this property

in a special case when the 1-bunched property does not hold but the IFS consists

of maps with lower triangular derivative matrices. This paper is a generalization

of the result of K. Simon and A. Manning [8]. They proved the same assertion in

two dimension.

Even the 1-bunched condition is not satisfied, Zhang [11] found that the zero of

the sub-additive pressure is an upper bound for the Hausdorff dimension. As an

application we supply two examples of such IFS which we are able to calculate the

Hausdorff dimension using that the insensibility property holds.
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The main theorem is also a generalization of a recent paper by K. Falconer and

J. Miao [6]. They gave a formula to estimate the Hausdorff dimension of self-

affine fractals generated by upper-triangular matrices. We will show a formula to

estimate the sub-additive pressure in non-conformal case and we will prove that

the sub-additive pressure depends only on the diagonal elements of the derivative

matrices in the case when the derivative matrices are triangular. In this paper we

use the method of K. Falconer’s and J. Miao’s article [6].

2. Definitions

In this section we define our iterated function system and the subadditive pres-

sure.

Throughout this paper we will always assume the following, let M ⊂ Rn be

non-empty, open and bounded set, and let Fi : M 7→ M contractive maps for every

i = 1, ..., l. For an i = i1i2...ik, ij ∈ {1, ..., l}, we write Fi(x) = Fi1 ◦Fi2 ◦ ...◦Fin(x).

Our principal assumption about the maps Fi, i = 1, ..., l is that

Fi(x1, ..., xn) =
(
f1

i (x1), f2
i (x1, x2), ..., fn

i (x1, ..., xn)
)
, (2.1)

and Fi(x1, ..., xn) ∈ C1+ε(M) for every i = 1, ..., l. Moreover we require that DxFi

is regular (non-singular matrix) for every x ∈ M and every i ∈ {1, ..., l}. Denote

the elements of DxFi by xij (i, x).

Proposition 2.1. There exists a real constant 0 < C < ∞ such that

C−1 <
|xii (i, x)|∣∣xii

(
i, y

)∣∣ < C (2.2)

for every x, y ∈ M and for every i ∈ {1, ..., l}∗.

Proof. Let G
(m)
i : Rm 7→ Rm for every integer m between 1 and n, be the restriction

of Fi to the first m component, i.e.:

G
(m)
i (x1, ..., xm) :=

(
f1

i (x1), f2
i (x1, x2), ..., fm

i (x1, ..., xm)
)
.

From [9, Page 198; Propostion 20.1 (3)] it follows that for every x, y ∈ M , for every

i ∈ {1, ..., l}∗ finite sequence, and for 1 ≤ m ≤ n there exists a real 0 < Cm < ∞
constant that

C−1
m <

Jac G
(m)
i (x)

Jac G
(m)
i (y)

< Cm.
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Since for every m, the matrix DxG
(m)
i is lower triangular matrix, the Jacobian is

the following

Jac G
(m)
i (x) = |x11(i, x) · · ·xmm(i, x)| .

Therefore for every integer 1 ≤ m < n and for every x, y ∈ M

C−1
m

Cm+1
<

Jac G
(m)
i (x)

Jac G
(m)
i (y)

Jac G
(m+1)
i (x)

Jac G
(m+1)
i (y)

<
Cm

C−1
m+1

and
Jac G

(m)
i (x)

Jac G
(m)
i (y)

Jac G
(m+1)
i (x)

Jac G
(m+1)
i (y)

=

∣∣xm+1m+1

(
i, y

)∣∣
|xm+1m+1 (i, x)| .

Then C := max1≤m<n−1

{
Cm

C−1
m+1

, C1

}
choice completes the proof of the proposition.

¤

The singular values of a linear contraction T are the positive square roots of

the eigenvalues of TT ∗, where T ∗ is the transpose of T . Let αk(DxFi) be the k-

th greatest singular value of the DxFi matrix. The singular value function φs is

defined for 0 ≤ s ≤ n as

φs(DxFi) := α1(DxFi)...αk−1(DxFi)αk(DxFi)s−k+1 (2.3)

where k − 1 < s ≤ k and k is positive integer. We define the maximum and the

minimum of the singular value function as

φ
s(i) := max

x∈M
φs(DxFi) , φs(i) := min

x∈M
φs(DxFi).

We define the sub-additive pressure after K. Falconer 1994 and L. Barreira 1996:

P (s) := lim
k→∞

1
k

log
∑

|i|=k

φ
s(i) (2.4)

and define the lower pressure:

P (s) := lim inf
k→∞

1
k

log
∑

|i|=k

φs(i). (2.5)
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3. Sub-additive pressure for triangular maps

In this section we are going to state and prove the main theorem of the paper.

Namely, the sub-additive pressure is equal to the lower pressure, which implies the

insensitivity property. More precisely, it implies that the exponential growth rate

of the sum of the value of the singular value functions does not depend on wherever

they are evaluated. (see (2.4), (2.5))

Theorem 3.1. Let 0 ≤ s ≤ n. If F1, ..., Fl contractive maps in form (2.1) and

Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = P (s).

In the following we state some linear algebra definitions and lemmas, the proofs

of which can be found in article [6].

The m-dimensional exterior algebra Φm is a vector space spanned by formal

elements v1 ∧ ... ∧ vm with vi ∈ Rn such that v1 ∧ ... ∧ vm = 0 if vi = vj for some

i 6= j, and such that interchanging two different elements reverses the sign, i.e.

v1 ∧ ...vi...vj ...∧ vm = −v1 ∧ ...vj ...vi...∧ vm, if i 6= j. Then Φm has dimension
(

n
m

)

with basis {ej1 ∧ ... ∧ ejm : 1 ≤ j1 < ... < jm ≤ n} where e1, ...en are a given set of

orthonormal vectors in Rn.

Let us define a scalar product on Φm in the following way. Let

< v1 ∧ · · · ∧ vm, u1 ∧ · · · ∧ um >Φm= det ((< vi, uj >)i,j=1...m) ,

where < ., . > is the usual scalar product on Rn. One can extend < ., . >Φm to

every element of Φm by the natural way. Then Φm becomes a Hilbert-space. Let

us define the norm ‖.‖ on Φm by < ., . >Φm by the usual way. Then it is easy

to see that ‖v1 ∧ ... ∧ vm‖ is equal to the absolute m-dimensional volume of the

parallelepiped spanned by v1, ...vm, for every v1 ∧ ... ∧ vm, see [7, p. 44].

We may also define an other norm ‖.‖∞ on Φm by
∥∥∥∥∥∥

∑

1≤i1<...<im≤m

λi1...im(ei1 ∧ ... ∧ eim)

∥∥∥∥∥∥
∞

:= max |λi1...im | .

If T : Rn 7→ Rn is linear then there is an induced linear mapping T̃ : Φm 7→ Φm

given by

T̃ (v1 ∧ ... ∧ vm) := (Tv1) ∧ ... ∧ (Tvm).
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The norms on Φm induce norms on the space of linear mappings L(Φm, Φm) in

the usual way by
∥∥∥T̃

∥∥∥ = sup
w∈Φm,w 6=0

∥∥∥T̃w
∥∥∥

‖w‖ .

Then with respect to the norm ‖.‖
∥∥∥T̃

∥∥∥ = φm(T ) (3.1)

and with respect to the ‖.‖∞∥∥∥T̃
∥∥∥
∞

= max
{∣∣∣T (m)

∣∣∣ : T (m) is an m×m minor of T
}

, (3.2)

where T (m) = T
(

r1,...rm

s1,...,sm

)
is the determinant of that m×m minor of n×n matrix

T which is determined by the elements of T in the rows 1 ≤ r1 < ... < rm ≤ n

and columns 1 ≤ s1 < ... < sm ≤ n. The space of linear mappings L(Φm, Φm) is of

finite dimension
(

n
m

)2. Since any two norms on a finite dimensional normed space

are equivalent, there are constants 0 < c1 < c2 < ∞ depending only on n and m

such that

c1

∥∥∥T̃
∥∥∥
∞
≤

∥∥∥T̃
∥∥∥ ≤ c2

∥∥∥T̃
∥∥∥
∞

. (3.3)

Now we notice several lemmas relating to minors of matrices. We will need some

well-known lemmas.

Lemma 3.2. Let xi ≥ 0, i = 1, ..., m and p ∈ R+.

(1) If p > 1, then (xp
1 + ... + xp

m) ≤ (x1 + ... + xm)p ≤ mp−1(xp
1 + ... + xp

m)

(2) If 0 < p ≤ 1, then mp−1(xp
1 + ... + xp

m) ≤ (x1 + ... + xm)p ≤ (xp
1 + ... + xp

m).

Lemma 3.3. Let an a sequence of real numbers such that an+m ≤ an + am. Then

there exists limn→∞ an
n and it equals to infn an

n .

We first look at the expansion of m × m minors of the product of k matrices

A = A1A2 · · ·Ak, where for i = 1, ..., k

Ai =




ai
11 ai

12 ... ai
1n

ai
21 ai

22 ... ai
2n

...
...

. . .
...

ai
n1 ai

n2 ... ai
nn




.
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Lemma 3.4. For 1 ≤ m ≤ n, the m × m minors of A = A1 · · ·Ak have formal

expansions in terms of the entries of the Ai of the form

A

(
r1, ...rm

s1, ..., sm

)
=

∑
c1,...,ck

±a1
1(c1) · · · a1

m(c1)a
2
1(c2) · · · a2

m(c2) · · · ak
1(ck) · · · ak

m(ck)

such that for each i = 1, ..., k, the ai
1(ci)

· · · ai
m(ci)

are distinct entries ai
rs of Ai. In

particular, for each i, 1(ci), ..., m(ci) denote pairs (r, s) corresponding to entries in

m different rows and columns of the ith matrix Ai, and the sum is over all such

entry combinations (c1, ..., ck) with appropriate sign ±.

The proof of this Lemma can be found on [6, Lemmma 2.2]. Now we consider

lower triangular matrices. For i = 1, ..., k, let

Ui =




ui
1 0 ... 0

ui
21 ui

2 ... 0
...

...
. . .

...

ui
n1 ui

n2 ... ui
n




.

We consider the product

U = U1 · · ·Uk =




u1 0 ... 0

u21 u2 ... 0
...

...
. . .

...

un1 un2 ... un




.

We note that

urs =
∑

r≥r1≥...≥rk−1≥s

u1
rr1

u2
r1r2

· · ·uk
rk−1s 1 ≤ r ≤ s ≤ n (3.4)

since all other products are 0.

Lemma 3.5. With notations as in above, let U1, ..., Uk be lower triangular matrices

and U = U1 · · ·Uk. Then

(1) If r < s, urs = 0

(2) If r = s, urs ≡ ur = u1
r · · ·uk

r

(3) If r > s, then the sum (3.4) for urs has at most kr−s ≤ kn−1 non-zero

terms. Moreover, each non-zero summand u1
rr1

u2
r1r2

· · ·uk
rk−1s has at most

n−1 non-diagonal terms in the product, i.e. terms with r 6= r1 or ri 6= ri+1

or rk−1 6= s.
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The proof can also be found in [6, Lemma 2.3] for upper-triangular matrices.

Now we extend the estimate of Lemma 3.5 to minors.

Lemma 3.6. Let U1, ..., Uk and U be lower triangular matrices as in above. Then

each m×m minor of U has an expansion of the form

U

(
r1, ...rm

s1, ..., sm

)
=

∑
c1,...,ck

±u1
1(c1)u

2
1(c2) · · ·uk

1(ck) · · ·u1
m(c1)u

2
m(c2) · · ·uk

m(ck)

where 1(ci), ..., m(ci) are as in Lemma 3.4 and

(1) there are at most m!km(n−1) terms in the sum which are non-zero,

(2) each summand contains at most (n − 1)m non-diagonal elements in the

product.

The proof is equivalent to the proof of [6, Lemma 2.4]. Before we prove the

Theorem 3.1, we define two sums.

H(s, r) = max
j1,...,jm−1

j′1,...,j′m

∑

|i|=r

(dj1j1(i) · · · djm−1jm−1(i))
m−s(dj′1j′1(i) · · · dj′mj′m(i))s−m+1

(3.5)

where m− 1 < s ≤ m and djj(i) = infx |xjj (i, x)|. Moreover

T (s, r) = max
j1,...,jm−1

j′1,...,j′m

∑

|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1

(3.6)

where m−1 < s ≤ m and tjj(i) = supx |xjj (i, x)|. It is easy to see from Proposition

2.1 and the definition of the two sums that

H(s, r) ≤ T (s, r) ≤ CsH(s, r). (3.7)

Lemma 3.7. For every positive integers r, z, T (s, r+z) ≤ T (s, r)T (s, z). Moreover

limr→∞
log T (s,r)

r exists and equal with infr
log T (s,r)

r .
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Proof of Lemma 3.7. From the definition T (s, r) it follows

T (s, r + z) = max
j1,...,jm−1

j′1,...,j′m

∑

|i|=r+z

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1 ≤

≤ max
j1,...,jm−1

j′1,...,j′m

(
∑

|i|=r

∑

|h|=z

((tj1j1(i)tj1j1(h) · · · tjm−1jm−1(i)tjm−1jm−1(h))m−s×

× (tj′1j′1(i)tj′1j′1(h) · · · tj′mj′m(i)tj′mj′m(h))s−m+1) =

= max
j1,...,jm−1

j′1,...,j′m

(
∑

|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1×

×
∑

|h|=z

(tj1j1(h) · · · tjm−1jm−1(h))m−s(tj′1j′1(h) · · · tj′mj′m(h))s−m+1)) ≤

≤ T (s, r)T (s, z).

The existence of the limit follows from Lemma 3.3. ¤

The proof of Theorem 3.1 follows the line of the proof of [6, Theorem 2.5], but our

Theorem is not a consequence of [6, Theorem 2.5]. The most important alteration

is that some of the functions in [6] are affine. So the derivatives in our case are not

constant matrices. To control the consequences of this phenomenon in our proof,

we have to state a Lemma.

Lemma 3.8. Let X compact subset of Rn and let {fi} be finitely many continuous,

real valued functions. Then

sup
x∈X

max
i

fi(x) = max
i

sup
x∈X

fi(x).

Proof of Lemma 3.8. Since X is compact, we have xi ∈ X such that fi(xi) =

supx fi(x). Therefore

sup
x

max
i

fi(x) ≤ max
i

sup
x

fi(x) = max
i

fi(xi) = max
i,j

fi(xj) = max
j

max
i

fi(xj)

≤ sup
x

max
i

fi(x),

which was to be proved. ¤

Moreover, in the proof of [6, Theorem 2.5], the singular value functions and the

minors of the derivative matrices were compared. During the proof of Theorem 3.1

we will do this as well, however, we have to introduce in the proof a new IFS, which

will be the r-th iteration of the original IFS, to take separation between the growth
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rate of the non-zero and the non-diagonal terms of the minors of the derivative

matrices.

Proof of Theorem 3.1. Let

{Gh}lr

h=1 = {Fi1...ir}l,...,l
i1=1,...,ir=1 . (3.8)

In this case a h index is suit a i ∈ {1, ..., l}r finite sequence, length r. Let us define

φ′s(h) = sup
x

φs(DxGh),

φ′s(h) = inf
x

φs(DxGh)

for h ∈ {1, ..., lr}∗, corresponding to IFS {Gh}lr

h=1, see (2.3).

It is easy to see that

∑

|i|=kr

φs(DxFi) =
∑

|h|=k

φs(DxGh). (3.9)

where i ∈ {1, ..., l}kr and h ∈ {1, ..., lr}k. The elements of DxGh, denoted by

yij (h, x), are equal with xij (i, x) for a suit finite sequence i, length r. It is very

simple to see that

φs(DxGh) = (φm−1(DxGh))m−s(φm(DxGh))s−m+1, where m − 1 < s ≤ m. By

using relations (3.1), (3.2) and (3.3) it follows that

φm(DxGh) ≥ c2 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
.

The maximum m×m minor of DxGh is at least the largest product of m distinct

diagonal elements of DxGh, since such products are themselves minors of triangular

matrices. Therefore

φ′s(h) ≥

cs
2

(
inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣
)m−s (

inf
x

∣∣∣yj′1j′1 (h, x) · · · yj′mj′m (h, x)
∣∣∣
)s−m+1

for every j1, ..., jm−1, j
′
1, ..., j

′
m.

By the chain rule DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 · · ·DxGhk
,

yjj (h, x) = yjj (h1, Gh2...hk
(x)) yjj (h2, Gh3...hk

(x)) · · · yjj (hk, x). It follows with the
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notation infx |yjj (h, x)| = d′jj(h) that

inf
x

∣∣yj1j1 (h, x) · · · yjm−1jm−1 (h, x)
∣∣m−s inf

x

∣∣∣yj′1j′1 (h, x) · · · yj′mj′m (h, x)
∣∣∣
s−m+1

≥

≥ (d′j1j1(h1) · · · d′j1j1(hk)d′j2j2(h1) · · · d′jm−1jm−1
(h1) · · · d′jm−1jm−1

(hk))m−s×

× (d′j′1j′1
(h1) · · · d′j′1j′1

(hk)d′j′2j′2
(h1) · · · d′j′mj′m(h1) · · · d′j′mj′m(hk))s−m+1.

The next inequality follows from the rearrangement of the product
∑

|h|=k

φ′s(h) ≥

cs
2

∑

|h|=k

(d′j1j1(h1) · · · d′jm−1jm−1
(h1))m−s(d′j′1j′1

(h1) · · · d′j′mj′m(h1))s−m+1 · · ·

· · · (d′j1j1(hk) · · · d′jm−1jm−1
(hk))m−s(d′j′1j′1

(hk) · · · d′j′mj′m(hk))s−m+1 =

= cs
2((d

′
j1j1(1) · · · d′jm−1jm−1

(1))m−s(d′j′1j′1
(1) · · · d′j′mj′m(1))s−m+1 + · · ·

· · ·+ (d′j1j1(l
r) · · · d′jm−1jm−1

(lr))m−s(d′j′1j′1
(lr) · · · d′j′mj′m(lr))s−m+1)k.

The inequality above is true for every j1, ..., jm−1, j
′
1, ..., j

′
m, therefore we obtain

the maximum. From the definition of {Gh}lr

h=1 and H(s, r), see (3.5) and (3.8), it

follows ∑

|h|=k

φ′s(h) ≥ cs
2H(s, r)k. (3.10)

By using relations (3.1), (3.2) and (3.3) it follows similarly that

φm(DxGh) ≤ c1 max
{∣∣∣DxG

(m)
h

∣∣∣ : DxG
(m)
h is an m×m minor of DxGh

}
.

Therefore
∑

|h|=k

φ′s(i) ≤

c2
1

∑

|h|=k

(
sup

x
max

m−1×m−1 minor

∣∣∣DxG
(m−1)
h

∣∣∣
)m−s (

sup
x

max
m×m minor

∣∣∣DxG
(m)
h

∣∣∣
)s−m+1

.

By Lemma 3.8, the order of the supremum and the maximum can be changed

in this situation and we can estimate the sum with

C max{
r1,...,rm−1
s1,...,sm−1

} max



r′1,...,r′m
s′1,...,s′m





∑

|h|=k

(
sup

x

∣∣∣DxG
(m−1)
h

∣∣∣
)m−s (

sup
x

∣∣∣DxG
(m)
h

∣∣∣
)s−m+1
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where r1, ..., rm−1 are the rows and s1, ..., sm−1 are the columns of the (m− 1) ×
(m− 1) minor, and r′1, ..., r

′
m are the rows and s′1, ..., s

′
m are the columns of m×m

minor, moreover C = c2
1

(
n
m

)2( n
m−1

)2. By the chain rule

DxGh = DGh2...hk
(x)Gh1DGh3...hk

(x)Gh2 ...DxGhk
, we obtain

DxGh

(
r1, ..., rm

s1, ..., sm

)
=

∑
c1,...,ck

±y1(c1)(h1, Gh2...hk
(x))...y1(ck)(hk, x)...ym(c1)(h1, Gh2...hk

(x))×

× ym(c2)(h2, Gh3...hk
(x))...ym(ck)(hk, x).

(3.11)

Therefore

sup
x

∣∣∣DxG
(m)
h

∣∣∣ ≤
∑

c1,...,ck

sup
x

∣∣y1(c1)(h1, x)
∣∣ ... sup

x

∣∣y1(ck)(hk, x)
∣∣ ... sup

x

∣∣ym(c1)(h1, x)
∣∣×

× sup
x

∣∣ym(c2)(h2, x)
∣∣ ... sup

x

∣∣ym(ck)(hk, x)
∣∣ .

(3.12)

Denote by t′kl(h) := supx |ykl(h, x)| the suprema. It follows from the inequality

(3.12) and the Lemma 3.2

∑

|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣
m−s

sup
x

∣∣∣DxG
(m)
h

∣∣∣
s−m+1

≤

∑
c1,...,ck
c′1,...,c′k

((t′1(c1)(1)...t′m−1(c1)(1))m−s(t′1(c′1)(1)...t′m(c′1)(1))s−m+1+

... + (t′1(c1)(l
r)...t′m−1(c1)(l

r))m−s(t′1(c′1)(l
r)...t′m(c′1)(l

r))s−m+1)×

...× ((t′1(ck)(1)...t′m−1(ck)(1))m−s(t′1(c′k)(1)...t′m(c′k)(1))s−m+1+

... + (t′1(ck)(l
r)...t′m−1(ck)(l

r))m−s(t′1(c′k)(l
r)...t′m(c′k)(l

r))s−m+1).

(3.13)

Lemma 3.6 implies that each non-zero term of the sum above has at most 2(n −
1)m = b of the indices 1(c1), ..., m− 1(c1), ..., 1(ck), ...,m− 1(ck),

1(c′1), ..., m(c′1), ..., 1(c′k), ..., m(c′k) that are non-diagonal terms. Thus, for each set

of indices (c1, ..., ck, c
′
1, ..., c

′
k), we have at least k − b of these indices such that
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1(cr), ...,m− 1(cr), 1(c′r), ..., m(c′r) are all diagonal entries. For such cr and c′r

((t′1(cr)(1)...t′m−1(cr)(1))m−s(t′1(c′r)(1)...t′m(c′r)(1))s−m+1 + ...

... + (t′1(cr)(l
r)...t′m−1(c1)(l))

m−s(t′1(c′r)(l
r)...t′m(c′r)(l

r))s−m+1) ≤

≤ max
{j1,...,jm−1},{j′1,...,j′m}

((t′j1j1(1)...t′jm−1jm−1
(1))m−s(t′j′1(1)...t′j′m(1))s−m+1 + ...

... + (t′j1j1(l
r)...t′jm−1jm−1

(lr))m−s(t′j′1(l
r)...t′j′mj′m(lr))s−m+1) = T (s, r).

The last equality follows from definition of {Gh}lr

h=1 and T (s, r). Hence from (3.13)
∑

|h|=k

sup
x

∣∣∣DxG
(m−1)
h

∣∣∣
m−s

sup
x

∣∣∣DxG
(m)
h

∣∣∣
s−m+1

≤

≤
∑

c1,...,ck
c′1,...,c′k

(
T (s, r)k−b(lr)b

)
≤ c′′kqlrbT (s, r)k−b,

(3.14)

where, using Lemma 3.6, c′′ = m!(m− 1)! and q = (2m− 1)(n− 1).

By using (3.7), (3.9), (3.10) and (3.14)
∑

|i|=kr

φ
s(i) =

∑

|h|=k

φ′s(h) ≤ c′′kqlrbT (s, r)k−b ≤ c′′(Cs)kkqlrbT (s, r)−bH(s, r)k ≤

≤ c′′′(Cs)kkqlrbT (s, r)−b
∑

|h|=k

φ′s(h) = c′′′kqlrbT (s, r)−b
∑

|i|=kr

φs(i).

(3.15)

We take the logarithm of both sides of the inequality and we divide by kr, then

log
∑
|i|=kr φ

s(i)

kr
≤

≤ log c′′′

kr
+

q log k

kr
+

rb log l

kr
+

(kb) log(Cs)
kr

+
−b log T (s, r)

kr
+

log
∑
|i|=kr φs(i)

kr
(3.16)

is true for every positive k, r integer. We take limit inferior of both sides. The limit

exists in the left-hand side of the inequality and in the right-hand side the limit of

every term exists and equals zero except the last term. Therefore

P (s) ≤ P (s)

While the opposite relation is trivial this completes the proof. ¤

The next corollary is a consequence of the previous proof.
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Corollary 3.9. For 0 ≤ s ≤ n. If F1, ..., Fl contractive maps in form (2.1) and

Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = lim
r→∞

1
r

log( max
j1,...,jm−1

j′1,...,j′m

∑

|i|=r

(|xj1j1 (i, x)| ... ∣∣xjm−1jm−1 (i, x)
∣∣)m−s×

×
(∣∣∣xj′1j′1 (i, x)

∣∣∣ ...
∣∣xj′mj′m (i, x)

∣∣
)s−m+1

)

(3.17)

for every x ∈ M .

Proof. It follows from inequality (3.7) that the limr→∞
log H(s,r)

r exists and

lim
r→∞

log H(s, r)
r

= lim
r→∞

log T (s, r)
r

.

It is clear by (3.15) that limr→∞
log T (s,r)

r = P (s). Because of the definition

H(s, r), T (s, r), this is exactly what we want to prove. ¤

4. Some applications

In this section we compute the Hausdorff dimension of some non-conformal IFS

by using Corollary 3.9. It follows from [11] that the Hausdorff dimension is less

than or equal to s0 where P (s0) = 0. We will show some examples where the root

is exactly the dimension.

4.1. Example 1. The easiest example is the non-linear modified Sierpinski-triangular.

Let

T =

[
1
3 0

0 1
3

]

and Tix = Tx + vi for i = 1, 2, 3, where v1 =
(
0
0

)
, v2 =

( 2
3
0

)
, v3 =

( 1
3
2
3

)
. We call the

attractor of this IFS as modified Sierpinski-triangular. Clearly, the Hausdorff and

box dimension is ln 3
ln 3 = 1.

Let fi : [0, 1] 7→ [0, 1] functions for i = 1, 2, 3 in C1+ε such that

Fi

(
x

y

)
=

( x
3 + vi

y/3 + fi(x) + wi

)

are contractions where
(

v1

w1

)
=

(
0
0

)
,
(

v2

w2

)
=

( 2
3
0

)
,
(

v3

w3

)
=

( 1
3
1
2

)
. We can consider the

attractor as a non-linear Sierpinski-triangular.
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Figure 1. The image of the modified and the non-linear modified

Sierpinski-triangular for fi(x) = sin(πx)/6 for every i.

We prove that the Hausdorff dimension of the non-linear modified Sierpinski-

triangular is equal to 1, assuming that for i = 1, 2, 3 we have fi ∈ C1+ε and

(f ′i(x))2+ | f ′i(x) |
√

(f ′i(x))2 +
4
9

<
16
9

.

We need this assumption to provide that the {F1, F2, F3} is contracting.

From the definition in this case it is easy to see that x11 (i, x) = x22 (i, x) = 1
3

|i|.
We can suppose that 1 ≤ s < 2. Then by using Corollary 3.9

P (s) = lim
r→∞

1
r

log


max

j1,

j′1,j′2

∑

|i|=r

(|xj1j1 (i, x)|)2−s ×
(∣∣∣xj′1j′1 (i, x)

∣∣∣
∣∣∣xj′2j′2 (i, x)

∣∣∣
)s−2+1


 =

lim
r→∞

1
r

log


∑

|i|=r

(
1
3

|i|)2−s (
1
3

|i| 1
3

|i|)s−1

 = lim

r→∞
1
r

log
(

3r 1
3

sr
)

= log 3− s log 3.

It is easy to see that P (s) = 0 if and only if s = 1, which is the upper bound of the

Hausdorff dimension of the modified non-linear attractor, this follows from [11]. To

get a lower bound it is enough to project it onto the x axis and we get the [0, 1]

interval.
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Figure 2. The images of the attractors in case c1 = 1
2 , c2 = 1

4 ,

f0(x) = (1− c2) sin(πx), f1(x) = −c2 sin(πx)

4.2. Example 2. The next example is a non-linear perturbation of a self-affine

IFS. Let c1, c2 ∈ (0, 1). Consider the following self-affine IFS

g0(x) =

[
c1 0

0 c2

]
x, g1(x) =

[
1− c1 0

0 1− c2

]
x +

[
c1

c2

]
.

It is easy to see that the attractor of this IFS has Hausdorff dimension 1 since it is

a graph of a strictly monotone function. We perturb this IFS as follows, let {g̃0, g̃1}
the following

g̃0(x, y) =

[
c1x

c2y + f0(x)

]
, g̃1(x, y) =

[
(1− c1)x + c1

(1− c2)y + c2 + f1(x)

]
.

where f0, f1 ∈ C1+ε and fi are periodic with period 1. Moreover we suppose that

g̃0, g̃1 are contractions, namely the following inequalities hold

c2
1 + (f ′0(x))2 + c2

2 +
√

(c2
1 + (f ′0(x))2 + c2

2)2 − 4c2
1c

2
2 < 2

(1− c1)2 + (f ′1(x))2 + (1− c2)2

+
√

((1− c1)2 + (f ′1(x))2 + (1− c2)2)2 − 4(1− c1)2(1− c2)2 < 2.

In this case the Hausdorff dimension of the modified attractor is greater than

or equal to 1 since the projection to the x axis is the [0, 1] interval. To get an

upper bound we have to use the sub-additive pressure and Corollary 3.9. For every
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i ∈ {0, 1}∗ we have x11 (i, x) = c]0i
1 (1 − c1)]1i and x22 (i, x) = c]0i

2 (1 − c2)]1i where

]ji is the number of js in i. Then

max
j

∑

|i|=r

xjj (i, x)2−s (x11 (i, x) x22 (i, x))s−2+1 =

max
j

∑

|i|=r

c
(2−s)]0i
j (1− cj)(2−s)]1ic

(s−1)]0i
1 (1− c1)(s−1)]1ic

(s−1)]0i
2 (1− c2)(s−1)]1i =

max
{
(c1c

s−1
2 + (1− c1)(1− c2)s−1)r, (c2c

s−1
1 + (1− c2)(1− c1)s−1)r

}
.

Therefore by formula (3.17) we have P (1) = 0, and by [11] 1 is an upper bound for

Hausdorff dimension, so the Hausdorff dimension is exactly 1.
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