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Abstract. We study the dimension of the attractor and quasi-Bernoulli measures of
parametrized families of iterated function systems of non-conformal and non-affine maps.
We introduce a transversality condition under which, relying on a weak Ledrappier-
Young formula, we show that the dimensions equal to the root of the subadditive pressure
and the Lyapunov dimension, respectively, for almost every choice of parameters. We
also exhibit concrete examples satisfying the transversality condition with respect to
the translation parameters.

Contents

1. Introduction 1
1.1. Dimension estimates 3
1.2. Two concrete examples 6
2. Weak Ledrappier-Young formula 8
3. Main theorem 13
3.1. Components of the proof 14
4. Proofs of the propositions 17
5. Verifying the examples 22
5.1. The first example 24
5.2. The second example 26
References 28

1. Introduction

The dimension theory of iterated function systems is a rapidly developing branch of the
geometric measure theory. There are still countless of open questions. One of the main
problems is to determine the dimension of the attractor of typical non-conformal and non-
affine iterated function systems. An iterated function system is a finite tuple Φ = (Fi)

N
i=1

of C1 contractions acting on Rd. Hutchinson [19] showed that there exists a unique
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non-empty compact set X, called the attractor of the Φ, such that X =
⋃N

i=1 Fi(X). In
this generality, the question on the dimension of the set X is wide open.

In the special case, when the maps Fi are similarities of Rd, we call the attractor X
self-similar, and if the strong separation condition holds, i.e., Fi(X)∩Fj(X) = ∅ whenever
i ̸= j, the dimension of X can be easily calculated and expressed by the contraction
ratios; see Hutchinson [19]. The situation is much harder to deal with when there is
no separation condition. The first result considering this problem successfully was by
Pollicott and Simon [27]. In their study, they introduced and used a method which
is nowadays called the transversality method. This method was later generalized, for
example, by Solomyak [36] for Bernoulli convolutions and by Simon, Solomyak, and
Urbański [34, 35] for iterated function systems formed by C1+α maps on R. Building
on these ideas, many breakthrough results have appeared in the dimension theory of
self-similar sets over the past decade; for example, see Hochman [16,17], Shmerkin [31],
and Varjú [37].

Although addressing the dimension theory of iterated function systems formed by
C1+α maps on R is relatively easier, the higher dimensional analogue is difficult as C1+α

maps on Rd are not necessarily conformal. In the non-conformal case, when the maps
Fi are invertible affine transformations, Falconer [9] introduced an upper bound, called
the affinity dimension, for the dimension of the attractor X which in this case is called
the self-affine set. He also proved that this bound is achieved for Lebesgue-almost every
choice of the translation vectors of the affine maps Fi having fixed linear parts with
sufficiently small contraction ratios. A sharp bound for the contraction ratios was found
by Solomyak [36] and the result was extended to measures by Jordan, Pollicott, and
Simon [20]. In all the mentioned works, the main tool was an affine version of the
transversality method. Recently, the dimension of self-affine sets has been calculated in
a deterministic setting under certain separation conditions in R2 and R3; see Bárány,
Hochman, and Rapaport [5], Hochman and Rapaport [18] and Rapaport [28]. One of
the main tools used in these results is the Ledrappier-Young formula introduced by
Ledrappier and Young [23,24] for C2 diffeomorphisms on C∞ compact manifolds. The
formula was later established for self-affine systems by Feng and Hu [12], Bárány and
Käenmäki [6], and Feng [11]. It connects the dimension of an ergodic measure supported
on the self-affine set with the dimension of its projections along sufficient “strongly
contracting” directions.

Surprisingly few results are known on the dimension theory of general non-conformal
and non-affine systems. One example of such an object is the graph of the Weierstrass
function. Let φ : R→ R be a 1-periodic C1 function, b ⩾ 2 an integer, and b−1 < λ < 1.
The Weierstrass function is then W (x) =

∑∞
n=0 λ

nφ(bnx). It is well-known that W
is a nowhere differentiable continuous function. It is also easy to see that the graph
{(x,W (x)) : x ∈ [0, 1]} is the attractor of the iterated function system (Fi)i∈{0,...,b−1},

where Fi : R2 → R2, Fi(x, y) = (x+i
b , λy + φ(x+i

b )). The Ledrappier-Young formula for
such a system was shown by Ledrappier [22], and using that Barański, Bárány, and
Romanowska [2] studied the classical case φ(x) = cos(2πx) and verified Mandelbrot’s

conjecture that the dimension equals to 2 + log b
log λ on a region of parameters. This

result was later extended to the general case by Shen [30]. Both results relied on a
suitable transversality method and the task was to verify the assumptions required by
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Ledrappier [22]. Recently, Ren and Shen [29], by relying on methods more resembling
the methods used in [5], proved a nice dichotomy for the Weierstrass functions: for each

analytic φ, either W is analytic or the graph has dimension 2 + log b
log λ .

The general case of non-conformal and non-affine systems is far from being well
understood. Falconer [10] found an upper bound in terms of a sub-additive pressure
function for the upper Minkowski dimension of the attractor of iterated function system
formed by C2-maps satisfying a technical condition called 1-bunching. This was extended
by Zhang [38] by showing that the sub-additive pressure gives an upper bound for the
Hausdorff dimension of the attractors of iterated function systems formed by C1 maps
without the 1-bunched condition. Only very recently, it was shown by Feng and Simon [14]
that this formula bounds the upper Minkowski dimension also in the case of C1 maps.
So far there have been only a very few cases when the dimension actually equals the
upper bound given by the sub-additive pressure, and usually these cases deal with the
Minkowski dimension under some special conditions; for example, see Falconer [10] and
Barreira [7]. Feng and Simon [15] introduced a non-conformal and non-affine version
of the transversality condition under which the Hausdorff and Minkowski dimension
equal the value given by the sub-additive pressure for almost every choice of parameters.
They verified the result for certain iterated function systems where the functions have
lower-triangular derivative matrices with common strong stable direction. Jurga and
Lee [21] recently proved the Ledrappier-Young formula for such systems. For further
developments, see the recent survey of Feng and Simon [13].

This paper is devoted to complement the result of Feng and Simon [15]. We also
restrict ourselves to functions with lower-triangular derivative matrices and further, we
only consider the planar case. The Ledrappier-Young formula has been crucial in the
development of the self-affine theory and our plan is to use it also here. Furthermore,
we introduce a variant of the transversality condition which depends on the Ledrappier-
Young formula. The difference with the already studied lower-diagonal case is that
instead of having a common strong stable direction, the maps now have a common
weak stable direction. As the projections one has to use in this case come from certain
ordinary differential equations and are non-linear, this setting cannot be studied by
simply applying the existing methods from self-affine sets. Jurga and Lee [21] assumed
that the lower-triangular derivative matrices have a common strong stable direction, so
they were able to use orthogonal projections in their Ledrappier-Young formula.

In our main result, Theorem 3.1, we prove, by using the weak Ledrappier-Young
formula we prove and the transversality condition for the non-linear projections we
introduce, that the Hausdorff and Minkowski dimension of the attractor of a general
parametrized iterated function system with lower-triangular derivative matrices equal
the value given by the sub-additive pressure for almost every choice of parameters. In
Theorems 1.1 and 1.2, we exhibit two concrete classes of non-conformal and non-affine
iterated function systems parametrized by their translation vectors for which the main
theorem applies.

1.1. Dimension estimates. Let us now define the planar non-conformal iterated func-
tion systems we intend to study in details. Let Φ = (Fi)i∈{1,...,N}, where Fi : R2 → R2,
Fi(x, y) = (fi(x), gi(x, y)), be an iterated function system such that
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(G1) Fi ∈ C2([0, 1]2) and Fi([0, 1]
2) ⊆ [0, 1]2 for all i ∈ {1, . . . , N},

(G2) there exist 0 < τ < ρ < 1 such that

τ < |f ′i(x)| < |(gi)′y(x, y)| < ρ

for all (x, y) ∈ [0, 1]2 and i ∈ {1, . . . , N}.
We denote the attractor of Φ by X. Observe that the first coordinates of the maps in Φ
form a C2-conformal IFS on [0, 1]. Let us denote this IFS by ϕ = (fi)i∈{1,...,N}.

We will next recall some standard notation. Let us denote by Σ = {1, . . . , N}N
the symbolic space, i.e., the set of all infinite words formed by the symbols {1, . . . , N}.
The set of n-length words is denoted by Σn = {1, . . . , N}n and the set of finite length
words by Σ∗ =

⋃∞
n=0Σn. We use the convention that Σ0 = {∅}, where ∅ is the

empty word, i.e., the identity element of the free monoid Σ∗. The length of a word
i ∈ Σ∗ is denoted by |i|. For i = i1i2 · · · ∈ Σ, let i|n be the first n coordinates
of i, i.e., i|n = i1 · · · in. We use the convention that i|0 = ∅. For any two words
i, j ∈ Σ ∪ Σ∗, let |i ∧ j| = max{k ⩾ 0 : i|k = jk} be the length of the common part and
let i ∧ j = i||i∧j = j|i∧j be the common part of i and j. For a finite word i ∈ Σ∗, let

us denote by
←−
i the finite word in reversed order. For a finite sequence i = i1 · · · in ∈ Σ∗,

write Fi = Fi1 ◦ · · · ◦ Fin , and denote the first and second coordinates of Fi by fi and gi,
respectively. We use the convention that F∅(x, y) = (x, y), f∅(x) = x and g∅(x, y) = y.
Throughout the paper, we will denote the derivative of the maps gi (and respectively their
iterates gi) with respect to the first coordinate by (gi)

′
x and with respect to the second

coordinate by (gi)
′
y (and respectively (gi)

′
x and (gi)

′
y for higher iterates). Since the first

coordinate of the map Fi depend only on the first variable, we denote the derivative of fi
(and fi) by f ′i (and by f ′i, respectively).

Let π : Σ→ X be the canonical projection defined by

π(i) = lim
n→∞

Fi|n(x, y) (1.1)

for all i ∈ Σ, where the value of π(i) is independent of the choice of (x, y) ∈ [0, 1]2.
Let us denote the first and second coordinates of π(i) by π1(i) and π2(i), respectively.
Observe that π1 is the canonical projection of ϕ, i.e., π1(i) = limn→∞ fi|n(x) for all
i ∈ Σ and x ∈ [0, 1].

For i ∈ Σ∗, let

φs(i, x, y) =


|(gi)′y(x, y)|s, if 0 ⩽ s ⩽ 1,

|(gi)′y(x, y)||(fi)′(x)|s−1, if 1 < s ⩽ 2,

|(gi)′y(x, y)(fi)′(x)|s/2, if s > 2.

(1.2)

We define the subadditive pressure function P : [0,∞) 7→ R by setting

P (s) = lim
n→∞

1

n
log

∑
i∈Σn

φs(i, x, y) (1.3)

for all s ⩾ 0, where the limit exists and is independent of the choice of (x, y) ∈ [0, 1]2

by [4, Theorem 3.1]. This fact strongly relies on the bounded distortion property of
the iterates of the maps: there exists C > 1 such that, for each i ∈ Σ∗ and for every
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(x, y), (x′, y′) ∈ [0, 1]2, we have

C−1 ⩽
|f ′i(x)|
|f ′i(x′)|

⩽ C and C−1 ⩽
|(gi)′y(x, y)|
|(gi)′y(x′, y′)|

⩽ C; (1.4)

see [4, Proposition 2.1]. Relying on (G2), it is easy to see that s 7→ P (s) is a continuous,
strictly decreasing function such that P (0) = logN and lims→∞ P (s) = −∞. Hence,
there exists a unique root of the subadditive pressure function and we denote it by s0. It
follows from a recent general result of Feng and Simon [14, Theorem 1.1] that

dimM(X) ⩽ min{2, s0}, (1.5)

where dimM is the upper Minkowski dimension of a given set.
We denote the collection of all Borel probability measures on Σ byM(Σ), and endow

it with the weak∗ topology. The left shift is a map σ : Σ → Σ defined by setting
σi = σ(i) = i2i3 · · · for all i = i1i2 · · · ∈ Σ. We say that a measure µ ∈ M(Σ) is

σ-invariant if µ([i]) =
∑N

i=1 µ([ii]) for all i ∈ Σ∗ and ergodic if µ(A) = 0 or µ(A) = 1
for every Borel set A ⊆ Σ with σ−1(A) = A. Write

Mσ(Σ) = {µ ∈M(Σ) : µ is σ-invariant}.

Recall that the Kolmogorov-Sinai entropy of µ ∈M(Σ) is

h(µ) = − lim
n→∞

1

n

∑
i∈Σn

µ([i]) logµ([i])

and the Lyapunov exponents of µ are

χ1(µ) = −
∫

log |(gi1)′y(π(σi))| dµ(i),

χ2(µ) = −
∫

log |f ′i1(π
1(σi))| dµ(i).

(1.6)

Feng and Simon [14, Theorem 1.2] have shown that

dimp(π∗µ) ⩽ min

{
2,

h(µ)

χ1(µ)
, 1 +

h(µ)− χ1(µ)

χ2(µ)

}
, (1.7)

where dimp is the upper packing dimension of a given measure. The expression on the
right-hand side of the inequality above is called the Lyapunov dimension of µ and we
denote it by dimL(µ). To infer the dimension result for the attractor, it suffices to work
with a smaller class of invariant measures. We say that µ ∈M(Σ) is quasi-Bernoulli if
there exists a constant C ⩾ 1 such that

C−1µ([i])µ([j]) ⩽ µ([ij]) ⩽ Cµ([i])µ([j])

for all i, j ∈ Σ∗. It is straightforward to see that every quasi-Bernoulli measure is
equivalent to a σ-invariant quasi-Bernoulli measure which furthermore is ergodic.
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Figure 1. The attractor of an iterated function system Φ satisfying the
assumptions (A1)–(A3).

1.2. Two concrete examples. Let us now consider parametrized families of iterated
function systems satisfying (G1) and (G2). A natural way to parametrize such systems
is via the translation parameters.

Our first example is a planar non-conformal iterated function system Φt = (F t
i )i∈{1,...,N},

where F t
i : R2 → R2, F t

i (x, y) = (fi(x) + ti,1, gi(x, y) + ti,2), are C2 maps parametrized
on an open and bounded set U ⊂ R2N such that

(A1) it holds that

0 < τ < f ′i(x) < (gi)
′
y(x, y) < ρ <

1

2
for all (x, y) ∈ [0, 1]2 and i ∈ {1, . . . , N},

(A2) it holds that

(gi)
′′
xy(x, y) ⩽ 0 ⩽ (gi)

′
x(x, y) and (gj)

′′
yy(x, y) ⩾ 0

for all (x, y) ∈ [0, 1]2 and i ∈ {1, . . . , N},
(A3) F t

i ([0, 1]
2) ⊆ [0, 1]2 for all i ∈ {1, . . . , N} and t = ((t1,1, t1,2), . . . , (tN,1, tN,2)) ∈ U .

For example, Φ = (Fi + (ti,1, ti,2))
24
i=1, where

Fi(x, y) =

(
x+ i

25
,
y2 + 2y + 1− xy + 12x3 + 2x

24

)
,

satisfies the assumptions (A1)–(A3) on a sufficiently small neighbourhood of the origin
in R48; see Figure 1. We also remark that the assumption (A2) can be replaced by

(A2’) (gi)
′′
xy(x, y) ⩽ 0, (gi)

′
x(x, y) ⩽ 0, and (gi)

′′
yy(x, y) ⩽ 0 for all (x, y) ∈ [0, 1]2 and

i ∈ {1, . . . , N}.
To emphasize the dependence on the parameter t ∈ U , we denote the the root of the
subadditive pressure (1.3) by s0(t), the Lyapunov exponents of (1.6) by χ1(µ, t) and
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χ2(µ, t), the Lyapunov dimension of (1.7) by dimL(µ, t), the canonical projection of (1.1)
by πt, and the attractor by Xt = πt(Σ). Let Ld be the Lebesgue measure on Rd, dimH

be the Hausdorff dimension of a given set, and dimH be the lower Hausdorff dimension
of a given measure.

Theorem 1.1. Suppose that Φt satisfies the assumptions (A1)–(A3). If µ ∈Mσ(Σ) is
quasi-Bernoulli, then

dimH((πt)∗µ) = dimL(µ, t)

for L2N -almost all t ∈ U and (πt)∗µ≪ L2 for L2N -almost all t ∈ U for which h(µ) >
χ1(µ, t) + χ2(µ, t)}. Furthermore,

dimH(Xt) = dimM(Xt) = min{2, s0(t)}

for L2N -almost all t ∈ U and L2(Xt) > 0 for L2N -almost all t ∈ U with s0(t) > 2.

The second parametrized family is a planar non-conformal iterated function system
Φt = (F t

i )i∈{1,...,N}, where F t
i : R2 → R2, F t

i (x, y) = (fi(x) + ti,1, gi(x, y) + ti,2), are C2

maps parametrized on an open and bounded set U ⊂ R2N such that

(B1) it holds that

0 < 4τ < 4|f ′i(x)| < |(gi)′y(x, y)| <
1

4
for all (x, y) ∈ [0, 1]2 and i ∈ {1, . . . , N},

(B2) it holds that

max
(x,y)∈[0,1]2

i∈{1,...,N}

|(gi)′′xy(x, y)|
|(gi)′y(x, y)|

⩽
1

3

and

max
(x,y)∈[0,1]2

i∈{1,...,N}

|(gi)′x(x, y)|
|(gi)′y(x, y)|

· max
(x,y)∈[0,1]2

j∈{1,...,N}

|(gj)′′yy(x, y)|
|(gj)′y(x, y)|

⩽
1

3

for all (x, y) ∈ [0, 1]2,
(B3) F t

i ([0, 1]
2) ⊆ [0, 1]2 for all i ∈ {1, . . . , N} and t = ((t1,1, t1,2), . . . , (tN,1, tN,2)) ∈ U .

For example, Φ = (Fi + (ti,1, ti,2))
13
i=1, where

Fi(x, y) =

(
e(x−i)/25,

y

5
e(x−i)/25 +

cos(x)

2
+

i− 6

25

)
,

satisfies the assumptions (B1)–(B3) on a sufficiently small neighbourhood of the origin in
R26. The result for this family is precisely the same.

Theorem 1.2. Suppose that Φt satisfies the assumptions (B1)–(B3). If µ ∈Mσ(Σ) is
quasi-Bernoulli, then

dimH((πt)∗µ) = dimL(µ, t)

for L2N -almost all t ∈ U and (πt)∗µ≪ L2 for L2N -almost all t ∈ U for which h(µ) >
χ1(µ, t) + χ2(µ, t)}. Furthermore,

dimH(Xt) = dimM(Xt) = min{2, s0(t)}

for L2N -almost all t ∈ U and L2(Xt) > 0 for L2N -almost all t ∈ U with s0(t) > 2.
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We remark that, by (1.7), the measure (πt)∗µ in both theorems satisfies dimH((πt)∗µ) =
dimp((πt)∗µ) for almost all t ∈ U . If a Borel measure m satisfies such an equality, then
we say that m is exact-dimensional and we denote the common value by dim(m). The
equality also implies that the pointwise dimension of m, dimloc(m,x), exists at almost
every x, is almost everywhere constant, and the value equals dim(m). In other words,

dimloc(m,x) = lim
r↓0

logm(B(x, r))

log r
= dim(m) (1.8)

for m-almost all x ∈ R2. Theorems 1.1 and 1.2 are consequences of a more general
theorem, Theorem 3.1, presented in Section 3. A pivotal assumption in the theorem is
a suitable transversality condition for general planar non-conformal iterated function
systems which we introduce to guarantee that there is no dimension drop for almost
every parameter. In Section 5, we verify that the assumptions (A1)–(A3) and (B1)–(B3)
imply this transversality condition.

2. Weak Ledrappier-Young formula

One of the main tools in the study of the dimension theory of iterated function
systems is the Ledrappier-Young formula. In this section, we do not intend to generalize
the formula in its strongest form. We only give a lower bound for the dimension of
our planar invariant measure by its non-linear projections. Before stating this weak
Ledrappier-Young formula, we go through some preliminaries.

Let Φ = (Fi)i∈{1,...,N} be an IFS satisfying (G1) and (G2). Let us define the slope of

the strong-stable tangent bundle u : Σ×R2 → R as follows: For each i ∈ Σ and for every
(x, y) ∈ [0, 1]2, let

u(i, x, y) =
∞∑
k=1

−(gik)′x(F←−−−i|k−1
(x, y))f ′←−−−

i|k−1

(x)

(g←−
i|k

)′y(x, y)
. (2.1)

It is easy to see that the series above is absolutely convergent by (G2). The importance
of the mapping u is that it forms an invariant bundle with respect to the derivatives, and
the contraction of the map Fi1 is the “strongest” along lines with slope u(i, · , · ). More
precisely, by the definition (2.1),

u(i, x, y) = −(gi1)
′
x(x, y)

(gi1)
′
y(x, y)

+
f ′i1(x)

(gi1)
′
y(x, y)

u(σi, Fi1(x, y)) (2.2)

and hence,

D(x,y)Fi1

(
1

u(i, x, y)

)
= f ′i1(x)

(
1

u(σi, Fi1(x, y))

)
.

for all i = i1i2 · · · ∈ Σ and (x, y) ∈ [0, 1]2.
Let us next define the strong-stable foliation corresponding to the strong-stable tangent

bundle. In other words, for each i ∈ Σ we partition [0, 1] × R into C1-smooth curves.
By our assumptions, each of these curves can be represented as a graph of a C1 map
x 7→ y(x). More precisely, for each i ∈ Σ and for every (x0, y0) ∈ [0, 1]2 there exists a
unique C1-map denoted by x 7→ y(i, (x0, y0), x) such that its value equals y0 at x = x0
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and its derivative with respect to x corresponds to the slope u(i, x, y(i, (x0, y0), x)), that
is,

(y)′x(i, (x0, y0), x) = u(i, x, y(i, (x0, y0), x)),

y(i, (x0, y0), x0) = y0,
(2.3)

or, alternatively,

y(i, (x0, y0), x) = y0 +

∫ x

x0

u(i, (x0, y0), y(i, (x0, y0), z)) dz.

Hence, for each i ∈ Σ we can define the strong-stable foliation ξi as

ξi(x0, y0) = {(x, y(i, (x0, y0), x)) : x ∈ [0, 1]}.

The importance of this foliation is that it is invariant with respect to Φ.

Lemma 2.1. For each i ∈ Σ and for every (x0, y0) ∈ [0, 1]2 it holds that

gi1(x, y(i, (x0, y0), x)) = y(σi, Fi1(x0, y0), fi1(x))

for all x ∈ [0, 1].

Proof. Let us consider the derivative of the map x 7→ gi1(x, y(i, (x0, y0), x)). By (2.2),
we have

d

dx
gi1(x, y(i, (x0, y0), x)) = (gi1)

′
x(x, y(i, (x0, y0), x))

+ (gi1)
′
y(x, y(i, (x0, y0), x))u(i, x, y(i, (x0, y0), x))

= u(σi, Fi1(x, y(i, (x0, y0), x)))f
′
i1(x)

= u(σi, fi1(x), gi1(x, y(i, (x0, y0), x)))f
′
i1(x).

On the other hand, the derivative of the map x 7→ y(σi, Fi1(x0, y0), fi1(x)) is

d

dx
y(σi, Fi1(x0, y0), fi1(x)) = (y)′x(σi, Fi1(x0, y0), fi1(x)))f

′
i1(x)

= u(σi, fi1(x), y(σi, Fi1(x0, y0), fi1(x)))f
′
i1(x).

Since gi1(x0, y(i, (x0, y0), x0)) = gi1(x0, y0) = y(σi, Fi1(x0, y0), fi1(x0)), the claim follows
by the classical Picard-Lindelöf Theorem; see, for example, [1, Theorem 3.2]. □

For each i ∈ Σ, let us define a non-linear projection proji : Σ→ R by setting

proji(j) = y(i, π(j), 0) (2.4)

for all j ∈ Σ. For the measurable partition {π−1(x, y)}(x,y)∈[0,1]2 of Σ, let {µπ
i}i∈Σ be

the family of conditional measures supported on the partition element π−1(π(i)). Note
that such a family of measures is defined uniquely up to a zero measure set; see, for
example, Simmons [32]. Finally, for each µ ∈Mσ(Σ), let us define the reversed measure
←−µ ∈Mσ(Σ) by setting ←−µ ([i]) = µ([

←−
i ]) for all i ∈ Σ∗ and extending in usual manner.

We are now ready to state and prove the weak Ledrappier-Young formula.
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Theorem 2.2 (Weak Ledrappier-Young formula). Suppose that Φ satisfies the assump-
tions (G1) and (G2). If µ ∈Mσ(Σ) is quasi-Bernoulli, then

dimH(π∗µ) ⩾
h(µ)−H(µ)

χ2(µ)
+

(
1− χ1(µ)

χ2(µ)

)
dim((proji)∗µ) (2.5)

for ←−µ -almost all i, where H(µ) = −
∫
logµπ

j ([j1]) dµ(j).

According to our best knowledge, Theorem 2.2 has not been stated earlier in this
context and it is original contribution within this work. Nevertheless, the proof is a slight
modification of the proofs of [6, Theorem 2.6] and [22, Proposition 2] for quasi-Bernoulli
measures on dominated self-affine systems. For the convenience of the reader, we present
below the necessary changes following [6, Sections 6 and 7].

Sketch of the proof of Theorem 2.2. Let ρ > 0 be such that ρ < 1/N and choose real
numbers t1, . . . , tN such that the IFS {x 7→ ρx + ti}Ni=1 satisfies the strong separation

condition and acts on [0, 1]. Write Φ̂ = (F̂i)i∈{1,...,N}, where F̂i : R3 → R3, F̂i(x, y, z) =

(fi(x), gi(x, y), ρz + ti), lift the maps Fi into R3 and make the system satisfy the strong

separation condition. We denote the attractor of Φ̂ by X̂ and the canonical projection
by Π: Σ→ X̂.

Define a dynamical system T : [0, 1]3 × Σ→ [0, 1]3 × Σ by setting

T (x, i) = (F̂i1(x), σi).

Since Φ̂ satisfies the strong separation condition, the inverse T−1 is well-defined on X̂×Σ.
Let P2 denote the orthogonal projection from [0, 1]3 onto the first two coordinates. Note
that we have P2 ◦Π = π. Let us define three T−1-invariant foliations ξ0, ξ1, and ξ2 of
X̂ × Σ by setting, for each (x, i) ∈ X̂ × Σ,

ξ0(x, i) = X̂ × {i},

ξ1(x, i) = {y ∈ X̂ : y(i, P2(x), 0) = y(i, P2(y), 0)} × {i},

ξ2(x, i) = {y ∈ X̂ : P2(x) = P2(y)} × {i}.

Furthermore, let P(x, i) = F̂j(X̂)×Σ, where j is the unique symbol such that x ∈ F̂j(X̂).
It follows that the foliations ξi, i ∈ {0, 1, 2}, are invariant, i.e.,

ξi ∨ P = Tξi, (2.6)

where (ξi ∨ P)(x, i) = ξi(x, i) ∩ P(x, i) is the common refinement of the partitions ξi

and P and Tξi is the partition (Tξi)(x, i) = T (ξ(T−1(x, i))). The cases i ∈ {0, 2} are
straightforward and the case i = 1 follows by Lemma 2.1. Let us denote by Pn the
refinement of the partition P along the dynamics of T−1, i.e.,

Pn(x, i) = P(x, i) ∩ T (P(T−1(x, i))) ∩ · · · ∩ Tn−1(P(T−(n−1)(x, i))).

We use the convention that P0(x, i) = X̂ × Σ. Finally, let us define the transversal balls
by setting

BT
2 ((x, i), δ) = {(y, j) ∈ ξ1(x, i) : |P2(x)− P2(y)| < δ},

BT
1 ((x, i), δ) = {(y, j) ∈ ξ0(x, i) : |y(i, P2(x), 0)− y(i, P2(y), 0)| < δ}.
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It is easy to see, by the bounded distortion (1.4) and the invariance of the foliations (2.6),
that there exists c > 0 such that

BT
i (T (x, i), c

−1δ) ∩ P(T (x, i)) ⊆ T (BT
i ((x, i), δ))

⊆ BT
i (T (x, i), cδ) ∩ P(T (x, i))

(2.7)

for all (x, i) ∈ X̂ × Σ and δ > 0.
Let µ ∈Mσ(Σ) be a quasi-Bernoulli measure. Recall that µ is automatically ergodic.

Furthermore, there exists a unique ergodic T−1-invariant Borel probability measure ν
such that ν is equivalent to the measure Π∗µ×←−µ on X̂ × Σ. To simplify notation, let

us denote the measure π∗µ by m. Let νξ
i

(x,i) be the family of conditional measures with

respect to the foliation ξi; see [32, Theorem 2.1 and Theorem 2.2]. It follows that νξ
0

(x,i)

is equivalent to Π∗µ and (P2)∗ν
ξ0

(x,i) is equivalent to m for ν-almost all (x, i). For each

i ∈ Σ, let µproj
(j,i) be the family of conditional measures with respect to the planar foliation

{proj−1i (proji(j))}. It is easy to see that (P2)∗ν
ξ1

Π(j),i is equivalent to mproj
(π(j),i) = π∗µ

proj
(j,i)

for µ-almost all j.
By following the argument of [6, Lemma 6.3], one can show, by relying on (2.7) and

the uniqueness of the conditional measures, that

νξ
i

T−1(x,i)
= (T−1)∗ν

ξi∨P
(x,i) (2.8)

for ν-almost all (x, i). By induction, one can also show that

νξ
i

(x,i)

(
BT

i+1

(
(x, i), δ

)
∩ Pn(x, i)

)
νξ

i

(x,i) (Pn(x, i))
= νξ

i

T−n(x,i)

(
T−n

(
BT

i+1

(
(x, i), δ

)))
. (2.9)

for all n ∈ N. By the bounded distortion (1.4), there exists C > 0 such that for each
(j, i) ∈ Σ× Σ we have

BT
1 (T

−n(Π(j), i), C−1δ∥(gj|n)
′
y∥−1) ⊆ T−n(BT

1 ((Π(j), i), δ)) ∩ ξ0(T−n(Π(j), i))

⊆ BT
1 (T

−n(Π(j), i), Cδ∥(gj|n)
′
y∥−1)

and

BT
2 (T

−n(Π(j), i), C−1δ∥(fj|n)
′∥−1) ⊆ T−n(BT

2 ((Π(j), i), δ)) ∩ ξ1(T−n(Π(j), i))

⊆ BT
2 (T

−n(Π(j), i), Cδ∥(fj|n)
′∥−1). (2.10)

for all δ > 0 and n ∈ N. The inclusions that there exists a constant c > 0 such that

B((x, i), cρn) ∩ ξ2(x, i) ⊆ Pn(x, i) ∩ ξ2(x, i)

⊆ B((x, i), c−1ρn) ∩ ξ2(x, i)
(2.11)

for all n ∈ N are straightforward by the strong separation condition of Φ̂.
Adapting the modifications explained above, one can now repeat the arguments

of [6, Lemma 7.4, Proposition 7.3, and Theorems 7.2 and 7.1] to obtain the claim.
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Nevertheless, let us go through the main steps of the proof. By using (2.11) and (2.8),
we have

log νξ
2

(x,i)(B(x, ρn))

n log ρ
≈

log νξ
2

(x,i)(P
n(x, i))

n log ρ
=

1

n log ρ

n−1∑
k=0

log
νξ

2
(Pk+1(x, i))

νξ2(Pk(x, i))

=
1

n log ρ

n−1∑
k=0

log νξ
2

T−k(x,i)
(P(T−k(x, i)))

→

∫
log νξ

2

(y,j)(P(y, j))dν(y, i)
log ρ

as n→∞ for ν-almost all (x, i). Then for every n ∈ N, by using (2.7), (2.9), (2.10), and
Maker’s ergodic theorem, we have

log νξ
1

(Π(j),i)(B
T
2 ((Π(j), i), ∥f ′j|k∥)

log ∥f ′
j|k∥

=
1

log ∥f ′
j|k∥

k−1∑
ℓ=0

log
νξ

1

T−ℓ(Π(j),i)
(T−ℓ(BT

2 ((Π(j), i), ∥f ′j|k∥)))

νξ
1

T−(ℓ+1)(Π(j),i)
(T−(ℓ+1)(BT

2 ((Π(j), i), ∥f ′j|k∥)))

≈ 1

log ∥f ′
j|k∥

k−1∑
ℓ=0

log
νξ

1

T−ℓ(Π(j),i)
(BT

2 (T
−ℓ(Π(j), i), ∥f ′

σℓj|k−ℓ
∥)

νξ
1

T−(ℓ+1)(Π(j),i)
(T−n(BT

2 (T
−ℓ(Π(j), i), ∥f ′

σℓj|k−ℓ
∥)

=
1

log ∥f ′
j|k∥

k−1∑
ℓ=0

(
log

νξ
1

T−ℓ(Π(j),i)
(BT

2 (T
−ℓ(Π(j), i), ∥f ′

σℓj|k−ℓ
∥)

νξ
1

T−ℓ(Π(j),i)
(BT

2 (T
−ℓ(Π(j), i), ∥f ′

σℓj|k−ℓ
∥) ∩ P(T−ℓ(Π(j), i)))

+ log
νξ

1

T−ℓ(Π(j),i)
(P(T−ℓ(Π(j), i)))

νξ
1

T−ℓ(Π(j),i)
(BT

2 (T
−ℓ(Π(j), i), ∥f ′

σℓj|k−ℓ
∥) ∩ P(T−ℓ(Π(j), i)))

)

→
−
∫
log νξ

1

(y,i)(P(y, i)) dν(y, i) +
∫
log νξ

2

(y,i)(P(y, i)) dν(y, i)
χ2(µ)

as k →∞ for ν-almost all (Π(j), i). One can show similarly that

log νξ
0

(Π(j),i)(B
T
1 ((Π(j), i), ∥(gj|k)

′
y∥)

log ∥(gj|k)′y∥

→
−
∫
log νξ

0

(y,i) (P(y, i)) dν(y, i) +
∫
log νξ

1

(y,i) (P(y, i)) dν(y, i)
χ1(µ)

as k →∞ for ν-almost every (Π(j), i). It is easy to see that

−
∫

log νξ
0

(y,i)(P(y, i)) dν(y, i) = h(µ)
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and

−
∫

log νξ
2

(y,i)(P(y, i)) dν(y, i) = H(µ).

Recalling that the measures (P2)∗ν
ξ0

(x,i) and m are equivalent as also the measures

(P2)∗ν
ξ1

(x,i) and mproj
(P2(x),i)

, we see that

dim(mproj
(x,i)) = dimloc(m

proj
(x,i), x) =

−
∫
log νξ

1

(y,i)(P(y, i)) dν(y, i)−H(µ)

χ2(µ)

and

dim((proji)∗µ) = dimloc((proji)∗m,proji(x)) =
h(µ) +

∫
log νξ

1

(y,i)(P(y, i)) dν(y, i)
χ1(µ)

for m×←−µ -almost all (x, i). Applying [24, Lemma 11.3.1], we conclude that

dimH(m) ⩾ dim(mproj
(x,i)) + dim((proji)∗µ)

=
h(µ)−H(µ)

χ2(µ)
+

(
1− χ1(µ)

χ2(µ)

)h(µ) +
∫
log νξ

1

(y,i)(P(y, i)) dν(y, i)
χ1(µ)

=
h(µ)−H(µ)

χ2(µ)
+

(
1− χ1(µ)

χ2(µ)

)
dim((proji)∗µ)

for m×←−µ -almost all (x, i). This is what we wanted to prove. □

3. Main theorem

In this section, we introduce a general parametrized iterated function system satisfying
(G1) and (G2) and state the main theorem for it. Fix d,m ∈ N and let V and W be
open and bounded subsets of Rd and Rm, respectively. For each v ∈ V , w ∈ W , and
i ∈ {1, . . . , N}, let fv

i : [0, 1]→ [0, 1] and gwi : [0, 1]2 → [0, 1] be such that

(T1) the maps x 7→ fv
i (x) and (x, y) 7→ gwi (x, y) are two times continuously differen-

tiable and there exists a constant C > 0 such that

max{|(gwi )′x(x, y)|, |(gwi )′′xy(x, y)|, |(gwi )′′yy(x, y)|} < C

for all (x, y) ∈ [0, 1]2 and w ∈W ,
(T2) there exist ρ, γ, τ ∈ (0, 1) such that

τ < γ−1|(fv
i )
′(x)| < |(gwi )′y(x, y)| < ρ

for all (x, y) ∈ [0, 1]2 and (v,w) ∈ V ×W ,
(T3) for each (x, y) ∈ [0, 1]2, the maps v 7→ fv

i (x) and w 7→ gwi (x, y) are continuous
on V and W , respectively.

Define a parametrized family of planar iterated function systems by setting Φt =
(Fv,w

i )i∈{1,...,N}, where Fv,w
i : R2 → R2, Fv,w

i (x, y) = (fv
i (x), g

w
i (x, y)) and t = (v,w) ∈

V ×W . Note that the conditions (T1)–(T3) imply (G1) and (G2). Furthermore, observe
that all the iterates of the first coordinates of Fv,w

i depend only on v while the second
coordinates of Fv,w

i when |i| ⩾ 2 depend on both v and w. Hence, we denote the iterates
of the coordinate functions by fv

i and gv,wi , respectively.
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We assume that Φt satisfies also the following assertions (T4)–(T7).

(T4) for every t0 = (v0,w0) ∈ V ×W and ε > 0 there exists δ > 0 such that

e−ε|i| ⩽
|(gti)′y(x, y)|
|(gt0i )′y(x, y)|

⩽ eε|i|

for all i ∈ Σ∗, t ∈ B(t0, δ), and (x, y) ∈ [0, 1]2,
(T5) for every v0 ∈ V there exists C(v0) > 0 such that the following transversality

condition holds

Lm({w ∈W : |projv0,w
k (i)− projv0,w

k (j)| < r}) ⩽ C(v0)r

for all i, j, k ∈ Σ with i1 ̸= j1,
(T6) for every ε > 0 and v0 ∈ V there exists δ > 0 such that

e−ε|i| ⩽
|(fv

i )
′(x)|

|(fv0
i )′(x)|

⩽ eε|i|

for all i ∈ Σ∗, v ∈ B
(
v0, δ

)
, and x ∈ [0, 1],

(T7) there exists C > 0 such that

Ld ({v ∈ V : |πv
1 (i)− πv

1 (j)| < r}) ⩽ Cr

for all i, j ∈ Σ with i1 ̸= j1.

Let s0(t) be the unique root of the subadditive pressure function Pt defined in (1.3) and
recall that the Lyapunov dimension defined in (1.7) is

dimL(µ, t) = min

{
2,

h(µ)

χ1(µ, t)
, 1 +

h(µ)− χ1(µ, t)

χ2(µ,v)

}
,

where we have emphasized the dependence on the parameter t = (v,w) ∈ V ×W .

Theorem 3.1. Suppose that Φt satisfies the assumptions (T1)–(T7). If µ ∈Mσ(Σ) is
quasi-Bernoulli, then

dim((πt)∗µ) = dimL(µ, t)

for Ld+m-almost all t ∈ V ×W and (πt)∗µ ≪ L2 for Ld+m-almost all t ∈ V ×W for
which h(µ) > χ1(µ, t) + χ2(µ,v)}. Furthermore,

dimH(Xt) = dimM(Xt) = min{2, s0(t)}

for Ld+m-almost all t ∈ V ×W and L2(Xt) > 0 for Ld+m-almost all t ∈ V ×W with
s0(t) > 2.

3.1. Components of the proof. The proof of the main theorem, Theorem 3.1, can
be decomposed to the proof of the following three propositions which together with the
weak Ledrappier-Young formula, Theorem 2.2, then imply the claim.

Proposition 3.2. Suppose that Φt satisfies the assumptions (T1)–(T6). If µ ∈Mσ(Σ),
then

dimH((proj
(v0,w)
i )∗µ) ⩾ min

{
1,

h(µ)

χ1(µ, (v0,w))

}
for all v0 ∈ V , for Lm-almost all w ∈W and for ←−µ -almost all i ∈ Σ.
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Proposition 3.3. Suppose that Φt satisfies the assumptions (T1)–(T5). If µ ∈Mσ(Σ)
and there exists v0 ∈ V such that

dimH((π
1
v0
)∗µ) >

h(µ)− χ1(µ, (v0,w))

χ2(µ,v0)

for all w ∈W , then
Hv0,w(µ) = 0

for Lm-almost all w ∈W , where Ht(µ) = −
∫
logµπt

j ([j1]) dµ(j).

Proposition 3.4. Suppose that Φt satisfies the assumptions (T1)–(T5). If µ ∈Mσ(Σ)
and there exists v0 ∈ V such that

(π1
v0
)∗µ≪ L1,

then

(π2
(v0,w))∗µ

π1
v0

i ≪ L1

for Lm-almost all w ∈W and for µ-almost all i ∈ Σ, where {µ
π1
v0

i }i∈Σ is the family of
conditional measures supported on the partition element (π1

v0
)−1(π1

v0
(i)).

Let us next demonstrate how Theorem 3.1 follows from Propositions 3.2–3.4 and the
weak Ledrappier-Young formula, Theorem 2.2. To that end, we require the following
lemma.

Lemma 3.5. Suppose that Φt satisfies the assumptions (T1)–(T4) and (T6). If µ ∈
Mσ(Σ), then the maps t 7→ s0(t), t 7→ χ1(µ, t), and v 7→ χ2(µ,v) are continuous. In
particular, the map t 7→ dimL(µ, t) is continuous.

Proof. Although the proof is straightforward, we present it for completeness. Fix t0 =
(v0,w0) ∈ V ×W . Then, by (T4) and (T6), for every ε > 0 there exists δ > 0 such that

e−snε ⩽

∑
i∈Σn

φs
t(i, x, y)∑

i∈Σn
φs
t0
(i, x, y)

⩽ esnε

for all t ∈ B(t0, δ) and s ∈ [0,∞), where φs
t(i, x, y) is defined in (1.2). It follows that

|Pt(s)− Pt0(s)| < sε. On the other hand, (T2) implies that |Pt(s)− Pt(s
′)| ⩾ L|s− s′|

for every t ∈ V ×W , where L = − log ρ. Therefore,

0 = |Pt(s0(t))− Pt0(s0(t0))|
⩾ |Pt(s0(t))− Pt(s0(t0))| − |Pt(s0(t0))− Pt0(s0(t0))|
⩾ L|s0(t)− s(t0)| − s0(t0)ε,

which proves the continuity of t 7→ s0(t).
The continuity of the Lyapunov exponents follows by the continuity of the map

t 7→ πt(i) and the dominated convergence theorem, which can be applied by (T2). The
continuity of t 7→ πt(i) follows from (T1)–(T3). Indeed, notice first that v 7→ π1

v(i) is
continuous by [35, proof of Lemma 4.1] and

|π2
t (i)− π2

t0(i)| = |g
w
i1 (πt(σi))− gw0

i1
(πt0(σi))|

= |gwi1 (πt(σi))− gwi1 (πt0(σi)) + gwi1 (πt0(σi))− gw0
i1

(πt0(σi))|
⩽ C|π1

v(σi)− π1
v0
(σi)|+ |gwi1 (πt0(σi))− gw0

i1
(πt0(σi))|
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+ ρ|π2
t (σi)− π2

t0(σi)|.
Hence, by the induction,

|π2
t (i)− π2

t0(i)| ⩽
∞∑
k=1

(C|π1
v(σ

ki)− π1
v0
(σki)|+ |gwik(πt0(σ

ki))− gw0
ik

(πt0(σ
ki))|)ρk−1,

which can be rendered arbitrary small by the continuity of v 7→ π1
v(i) and (T2). □

Observe that for every t0 ∈ V ×W , there exists a unique quasi-Bernoulli µt0 ∈Mσ(Σ)
such that

s0(t0) = dimL(µt0 , t0). (3.1)

This follows by considering a Hölder-continuous potential i 7→ logφs(t0)(i1, πt0(σi)) and
invoking [8, Theorem 1.22]. We are now ready to prove the main theorem.

Proof of Theorem 3.1. Let us first prove the claims for the quasi-Bernoulli measure.
By [35, Theorem 7.2], assuming (T1)–(T4) and (T7), there exists Ṽ ⊆ V such that

Ld(V \ Ṽ ) = 0 and, in particular, dimH((π
1
v)∗µ) = min{1, h(µ)

χ2(µ,v)
} for all v ∈ Ṽ and

(π1
v)∗µ≪ L for all v ∈ Ṽ for which h(µ) > χ2(µ,v). By (1.7) and Fubini’s Theorem, it

is enough to show that, for each v0 ∈ Ṽ , we have

dimH((πv0,w)∗µ) ⩾ dimL(µ, (v0,w)) (3.2)

for Lm-almost every w ∈ W . Fix v0 ∈ Ṽ . It is easy to see that on the region of W ,
where dimL(µ, (v0,w)) ⩽ 1, we have

dimL(µ, (v0,w)) = min

{
1,

h(µ)

χ1(µ, (v0,w))

}
.

Hence, the claim (3.2) follows from Proposition 3.2 and the fact that dimH(proj
v0,w
i )∗µ ⩽

dimH(πv0,w)∗µ. On the region of W , where 1 ⩽ dimL(µ, (v0,w)) < 2, simple algebraic

manipulations show that min{1, h(µ)
χ2(µ,v0)

} > h(µ)−χ1(µ,(v0,w))
χ2(µ,v0)

and hence, (3.2) follows by

Theorem 2.2, Proposition 3.2, and Proposition 3.3. Finally, on the region of W , where
dimL(µ, (v0,w)) > 2, we have

h(µ) > χ1(µ, (v0,w)) + χ2(µ,v0) > χ2(µ,v0)

and so, by Proposition 3.4, we see that (π2
v0,w)∗µ

π1
v0,w

i ≪ L1 for Lm-almost all w ∈W .
Since

(πv0,w)∗µ =

∫
(πv0,w)∗µ

π1
v0

i dµ(i)

=

∫
δπ1

v0
(i) × (π2

v0,w)∗µ
π1
v0

i dµ(i) =

∫
δi × (π2

v0,w)∗µ
π1
v0

i d(π1
v0
)∗µ(i),

we get, by Fubini’s Theorem, that (πv0,w)∗µ≪ L2 for Lm-almost all w ∈W . Applying

Fubini’s Theorem once more, we conclude that (πt)∗µ ≪ L2 for Ld+m-almost all t ∈
V ×W .

Let us then prove the claims for the attractor. They basically follow by the continuity
properties of Lemma 3.5 for the measure µt0 defined in (3.1). Let us first assume that
s0(t) ⩽ 2 for all t ∈ V ×W . Recalling (1.5), let us argue by contradiction and suppose
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that Ld+m({t ∈ V ×W : dimH(Xt) < s0(t)}) > 0. Then there exists n ∈ N such that
Ld+m({t ∈ V ×W : dimH(Xt) < s0(t)− 1/n}) > 0. Let t0 be a Lebesgue density point
of that set. Hence, for Ld+m-almost every t ∈ {t ∈ V ×W : dimH(Xt) < s0(t)− 1/n},
we have

s0(t)− 1/n > dimH(Xt) ⩾ dim((πt)∗µt0) = dimL(µt0 , t).

But by Lemma 3.5, dimL(µt0 , t)→ s(t0) as t→ t0, which contradicts to the continuity
of t 7→ s0(t) at t0. Recalling (1.5), this shows that dimH(Xt) = dimM(Xt) = s0(t) for
Ld+m-almost all t ∈ V ×W provided that s0(t) ⩽ 2 for all t ∈ V ×W . If s(t0) > 2
then again by Lemma 3.5, we have dimL(µt0 , t) > 2 in a sufficiently small neighbourhood
of t0 and therefore, (πt)∗µt0 ≪ L2 and L2(Xt) > 0 for Ld+m-almost every t in this
neighborhood completing the proof. □

4. Proofs of the propositions

In this section, we prove Propositions 3.2–3.4 and hence, finish the proof of Theorem
3.1. Let Φt be a parametrized planar iterated function system as described in Section 3.
Before going into the proofs, we study the non-linear projection (2.4) in more detail. We
denote the strong-stable tangent bundle (2.1) by ut and the strong-stable foliation (2.3)
by vt. It is easy to see that

(ut)
′
y(i, x, y) =

∞∑
k=1

(−(gwik)′′xy(F t←−−−
i|k−1

(x, y))(fv←−−−
i|k−1

)′(x)

(gt←−
i|k

)′y(x, y)
(gt←−−−

i|k−1

)′y(x, y)

+
k∑

ℓ=1

(gwik)
′
x(F

t←−−−
i|k−1

(x, y))(fv←−−−
i|k−1

)′(x)

(gt←−
i|k

)′y(x, y)

·
(gwiℓ )

′′
yy(F

t←−−−
i|ℓ−1

(x, y))

(gwiℓ )
′
y(F

t←−−−
i|ℓ−1

(x, y))
(gt←−−−

i|ℓ−1

)′y(x, y)

)
.

(4.1)

By (T1) and (T2), there exists a constant C > 0 such that

|(ut)′y(i, x, y)| ⩽ C (4.2)

for all (x, y) ∈ [0, 1]2, i ∈ Σ, and t ∈ V ×W .

Lemma 4.1. There exists C > 0 such that

|yt(i, (x0, y0), x)− yt(i, (x1, y1), x)| ⩽ C|yt(i, (x0, y0), 0)− yt(i, (x1, y1), 0)|
for all i ∈ Σ, (x0, y0), (x1, y1) ∈ [0, 1]2, x ∈ [0, 1], and t ∈ V ×W .

Proof. By the uniqueness of the solution of the differential equation (2.3), either

yt(i, (x0, y0), x) ≡ yt(i, (x1, y1), x)

or
yt(i, (x0, y0), x) ̸= yt(i, (x1, y1), x)

for all x ∈ [0, 1]. In the first case, the claim of the lemma is trivial. In the second case,
without loss of generality, we may assume that

yt(i, (x0, y0), x) > yt(i, (x1, y1), x)
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for all x ∈ [0, 1]. By Lagrange’s Mean Value Theorem, for each x ∈ [0, 1] there exists ξ
(which might also depend on i, t, (x0, y0), and (x1, y1)) such that

y′t(i, (x0, y0), x)− y′t(i, (x1, y1), x) = ut(i, x, yt(i, (x0, y0), x))− ut(i, x, yt(i, (x1, y1), x))

= (ut)
′
y(i, x, ξ) · (yt(i, (x0, y0), x)− yt(i, (x1, y1), x))

⩽ C(yt(i, (x0, y0), x)− yt(i, (x1, y1), x)),

where in the last inequality we applied (4.2). Hence, by Grönwall’s inequality (see, for
example, [26, Theorem 1.2.1]), we have

yt(i, (x0, y0), x)− yt(i, (x1, y1), x) ⩽ (yt(i, (x0, y0), 0)− yt(i, (x1, y1), 0))e
Cx.

The claim follows as x ∈ [0, 1]. □

Since the first parameter-coordinate v0 ∈ V will be fixed throughout the proofs, with
a slight abuse of notation, we denote gv0,w

i by gwi and fv0
i by fi for all i ∈ Σ∗. Similarly,

the canonical projection πv0,w is denoted by πw = (π1, π2
w) and the non-linear projection

projv0,w
i by projwi for all i ∈ Σ.

Proof of Proposition 3.2. Fix v0 ∈ V . Standard calculations show that for every ε > 0
there exists δ > 0 such that, for every w ∈ B(w0, δ), i ∈ Σ, and n ⩾ 1, we have

e−nε ⩽
(gw0

i|n)
′
y(πw0(σ

ni))

(gw
i|n)
′
y(πw(σ

ni))
⩽ enε, (4.3)

by the condition (T4). We will show that for every ε > 0 there exists a δ > 0 such that,
for any w0 ∈W and Lm ×←−µ -almost every (w, i) ∈ B(w0, δ)× Σ, we have

dimH(proj
w
i )∗µ ⩾ min

{
1− ε,

h(µ)− ε

χ1(µ, (v0,w0)) + 2ε

}
. (4.4)

From this, using the continuity of the Lyapunov exponent given by Lemma 3.5, one can
show, by a standard density argument, that

dimH(proj
w
i )∗µ ⩾ min

{
1,

h(µ)

χ1(µ, (v0,w))

}
for Lm ×←−µ -almost all (w, i). For details, see Simon, Solomyak, and Urbański [35, proof
of Theorem 2.3(i)].

We define E =
⋂

ε>0

⋃∞
M=1EM,ε, where

EM,ε = {i ∈ Σ : e−n(χ1(µ,t0)+ε) ⩽ (gw0

i|n)
′
y(πw0(σ

ni)) ⩽ e−n(χ1(µ,t0)−ε) and

e−n(h(µ)+ε) ⩽ µ([i|n]) ⩽ e−n(h(µ)−ε) for all n ⩾ M}.
(4.5)

Notice that, by Birkhoff’s Ergodic Theorem and Shannon-McMillan-Breiman Theorem,
we have µ(E) = 1. Fix w0 ∈W and let

s < min

{
1− ε,

h(µ)− ε

χ1(µ,v0,w0) + 2ε

}
.
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Choose M ⩾ 1 such that µ(EM,ε) > 1− ε. Let An = {(i, j) ∈ Σ× Eε,M : |i ∧ j| = n}
and observe that∫

B(w0,δ)

∫∫∫
Σ×Eε,M

dµ(j) dµ(h) d←−µ (i) dLm(w)

|projwi (j)− projwi (h)|s

=
∞∑
n=0

∫
B(w0,δ)

∫∫∫
An

dµ(j)dµ(h) d←−µ (i) dLm(w)

|projwi (j)− projwi (h)|s

=

∞∑
n=0

∫∫∫
An

∫
B(w0,δ)

dLm(w) dµ(j) dµ(h) d←−µ (i)

| projwi (j)− projwi (h)|s

⩽
∞∑
n=0

∫∫∫
An

∫ ∞
0
Lm({w ∈ B(w0, δ) : | projwi (j)

− projwi (h)| < r−1/s}) dr dµ(j) dµ(h) d←−µ (i).

By Lemma 2.1 and Lemma 4.1, we have

|projwi (j)− projwi (h)| ⩾ C−1|yw(i, πw(j), fj∧h(0))− yw(i, πw(h), fj∧h(0))|
= C−1|gwj∧h(0,projw←−−j∧hi(σ

nj))− gwj∧h(0, proj
w←−−
j∧hi(σ

nh))|

⩾ C−1 inf
ξ∈[0,1]

|(gwj∧h)′y(0, ξ)||projw←−−j∧hi(σ
nj)− projw←−−

j∧hi(σ
nh)|

and, by (1.4) and (4.3),

⩾ C ′−1 inf
ξ∈[0,1]

|(gw0
j∧h)

′
y(0, 0)|e−nε|projw←−−j∧hi(σ

nj)− projw←−−
j∧hi(σ

nh)|

⩾ C ′−1e−(χ1(µ,t0)+2ε)n| projw←−−
j∧hi(σ

nj)− projw←−−
j∧hi(σ

nh)|

for all n ⩾ M , (j, h) ∈ An, and i ∈ Σ, where in the last inequality we applied the
definition of the set EM,ε. Thus, by the transversality condition (T5),

Lm({w ∈ B(w0, δ) : | projwi (j)− projwi (h)| < r−1/s})

⩽ Lm({w ∈ B(w0, δ) : |projw←−−j∧hi(σ
nj)− projw←−−

j∧hi(σ
nh)| < en(χ1(µ,t0)+2ε)C ′r−1/s})

⩽ C ′′min{Lm(B(w0, δ)), e
n(χ1(µ,t0)+2ε)r−1/s}

for all (j, h) ∈ An, i ∈ Σ, and r > 0. Therefore, we have∫
B(w0,δ)

∫∫∫
Σ×Eε,M

dµ(j) dµ(h) d←−µ (i) dLm(w)

| projwi (j)− projwi (h)|s

⩽
∞∑
n=0

∫∫∫
An

∫ ∞
0

C ′′min{Lm(B(w0, δ)),

en(χ1(µ,t0)+2ε)r−1/s}dr dµ(j) dµ(h) d←−µ (i)

⩽
∞∑
n=0

∫∫
An

C̃ens(χ1(µ,t0)+2ε) dµ(j) dµ(h)
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⩽
∞∑
n=0

∑
i∈Σn

C̃en(s(χ1(µ,t0)+2ε)−h(µ)+ε)µ([i]) <∞

⩽
∞∑
n=0

C̃en(s(χ1(µ,t0)+2ε)−h(µ)+ε) <∞,

which implies (4.4). □

To prove Proposition 3.3, we utilize the method of Barański, Gutman, and Śpiewak [3,
proof of Theorem 1.12(i)].

Proof of Proposition 3.3. Let v0 ∈ V be as in the assumption. Write α = h(µ) −
χ2(µ) dimH(π

1)∗µ and fix w0 ∈ W . Choose ε > 0 such that χ1(µ, t0) > α + 3ε, where
t0 = (v0,w0). It is enough to show that for Lm-almost every w there exists Ωw ⊂ Σ
such that πw|Ωw is injective, and so µπw

i = δi for µ-almost every i. In order to do so, we
will show that

Lm × µ(A) = 0,

where

A = {(w, i) ∈W × Σ : there is j ∈ Σ \ {i} such that πw(i) = πw(j)}.
For each ε > 0 let δ > 0 be such that (4.3) holds. Moreover, Let the sets EM,ε and E be
as in (4.5). Relying on the disintegration, it is enough to show that

Lm × µπ1

h (A) = 0,

for µ-almost every h. Let Ωh be such that µπ1

h (Ωh) = 1 and htop(Ωh) ⩽ α+ ε. That is,
for every η > 0 and every M ⩾ 1 there exists a countable family Cδ,M of cylinders such

that |i| ⩾ N for all i ∈ Cδ,M , Ωh ⊂
⋃

i∈Cδ,M [i], and
∑

i∈Cδ,M e−|i|(α+ε) < η. For each

w ∈ B(w0, δ) define

Aw,n,M = {i ∈ Ωh ∩ Eε,M : there is j ∈ Ωh ∩ Eε,M \ {i}
such that |j ∧ i| ⩽ n and π2

w(i) = π2
w(j)}

and for every i ∈ Ωh ∩ Eε,M let

Ai,n,M = {w ∈ B(w0, δ) : there is j ∈ Ωh ∩ Eε,M \ {i}
such that |j ∧ i| ⩽ n and π2

w(i) = π2
w(j)}.

If π2
w(i) = π2

w(j) for some j ∈ Aw,n,M then, for every k ∈ Σ∗ such that |k| ⩾ M and
j ∈ [k], we have

|π2
w(i)− gwk (π1(σ|k|j), 0)| ⩽ |(gwk )′y(π

1(σ|k|j), ξ)| ⩽ e−|k|(χ1(µ,t0)−2ε).

for all w ∈ B(w0, δ). Hence, for every i ∈ Ωh ∩ Eε,M

Ai,n,M ⊆
⋃

k∈Cδ,M

{w ∈ B(w0, δ) : |π2
w(i)− gwk (π1(σ|k|j(k)), 0)| ⩽ e−|k|(χ1(µ,t0)−2ε)},

where j(k) ∈ Ωh ∩ Eε,M ∩ [k] is arbitrary.
By the transversality condition (T5), there exists C > 0 such that

Lm({w ∈ B(w0, δ) : |π2
w(i)− gwk (π1(σ|k|j(k)), 0)| ⩽ e−|k|(χ1(µ,t0)−2ε)})
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⩽ τ−nLm(B(w0, δ))Ce−|k|(χ1(µ,t0)−2ε)

for all k ∈ Cδ,M , where τ < infx,y |(gi)′y(x, y)|. Hence,

Lm(Ai,n,M ) ⩽ τ−nLm(B(w0, δ))C
∑

k∈Cδ,M

e−|k|(χ1(µ,t0)−2ε)

⩽ τ−nLm(B(w0, δ))C
∑

k∈Cδ,M

e−|k|(α+ε)

⩽ τ−nLm(B(w0, δ))Cη.

Since η > 0 was arbitrary, we see that Lm(Ai,n,M ) = 0 for all n,M ⩾ 1 and for every
i ∈ Ωh ∩ Eε,M . Thus,

Lm × µπ1

h (A) = Lm × µπ1

h (A ∩ Ωh) =

∫
Lm
( ∞⋃

n=1

∞⋃
M=1

Ai,n,M

)
dµπ1

h (i) = 0

as wished. □

Let us finish this section by proving Proposition 3.4.

Proof of Proposition 3.4. Fix w0 ∈ V and choose ε > 0 such that h(µ) − χ2(µ) −
χ1(µ,w0)− 3ε > 0. Let Ak = {(i, j) ∈ Σ×Σ : i∧ j = k} for all k ∈ Σ∗ and EM,ε be the
set defined in (4.5). To prove absolute continuity, it is enough to show that for every
ε > 0 and M ⩾ 1 we have

(π2
w)∗µ

π1

h ≪ L
for µ-almost all h ∈ Eε,M and L-almost all w ∈ B(w0, δ). To verify this, by [25,

Theorem 2.12], it suffices to show that D((π2
w)∗µ

π1

h , x) <∞ for (π2
w)∗µ

π1

h |EM,ε
-almost all

x, where

D((π2
w)∗µ

π1

h , x) = lim inf
r↓0

(π2
w)∗µ

π1

h (B(x, r))

2r
.

Similarly to the proof of Proposition 3.2, we have

Lm({w ∈ B(w0, δ) : |π2
w(i)− π2

w(j)| < r})

⩽ Lm({w ∈ B(w0, δ) : |π2
w(σ

|k|i)− π2
w(σ

|k|j)| < Ce|k|(χ1(µ,w0)+2ε)r})

⩽ C ′e|k|(χ1(µ,w0)+2ε)r

for all r > 0 and (i, j) ∈ Ak ∩Σ×Eε,M with |k| ⩾ M . Thus, by applying Fatou’s lemma,
we get ∫∫

D((π2
w)∗µ

π1

h , x) d(π2
w)∗µ

π1

h |Eε,M
(x) dw

⩽ lim inf
r→0

1

2r

∫∫
Lm({w ∈ B(w0, δ) :

|π2
w(i)− π2

w(j)| < r}) dµπ1

h (i) dµπ1

h |Eε,M
(j)

= lim inf
r→0

1

2r

∞∑
n=0

∑
k∈Σn

∫∫
Ak

Lm({w ∈ B(w0, δ) :
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|π2
w(i)− π2

w(j)| < r}) dµπ1

h (i) dµπ1

h |Eε,M
(j)

⩽
∞∑
n=0

∑
k∈Σn

C ′en(χ1(µ,w0)+2ε)µπ1

h × (µπ1

h |Eε,M
)(Ak)

⩽
∞∑
n=0

∑
k∈Σn

C ′en(χ1(µ,w0)+2ε)e−n(hµ−χ2(µ)−ε)µπ1

h ([k])

⩽
∞∑
n=0

C ′e−n(hµ−χ2(µ)−χ1(µ,w0)−3ε) <∞,

which completes the proof. □

5. Verifying the examples

In this section, we verify that the parametrized iterated function systems given in
Section 1.2 satisfy the assumptions (T1)–(T7). Theorems 1.1 and 1.2 follow then
immediately from Theorem 3.1. Let us first demonstrate that, besides the transversality
condition (T5), all the other conditions hold almost automatically.

Proposition 5.1. Suppose that Φt satisfies the assumptions (G1)–(G2) with ρ < 1/2
on the open and bounded sets V,W ⊂ RN such that v = (t1,1, . . . , tN,1) ∈ V and
w = (t1,2, . . . , tN,2) ∈W . Then Φt satisfies (T1)–(T4) and (T6)–(T7).

Proof. The conditions (T1)-(T3) hold trivially by the compactness of [0, 1]2. Furthermore,
(T6) follows by Simon and Solomyak [33, Lemma 3.1] and (T7) follows by [33, Lemma 3.3].
The proof of (T4) is similar to the proof of (T6) but we give the details for completeness.
Observe that

|fv
i (x)− fv0

i (x)| ⩽ |v − v0|
1− ρ

for all i ∈ Σ∗, x ∈ [0, 1], and v,v0 ∈ V . Furthermore, for every (x, y) ∈ [0, 1]2 and
t, t0 ∈ V ×W , we have

|gti(x, y)− gt0i (x, y)| ⩽ |ti1,2 − t′i1,2|+ sup |(gi1)′x||fv
σi(x)− fv0

σi (x)|
+ sup |(gi1)′y||gtσi(x, y)− gt0σi(x, y)|

and hence, by the induction,

|gti(x, y)− gt0i (x, y)| ⩽ |w −w0|(1− ρ) + C|v − v0|
(1− ρ)2

.

Therefore,

log
|(gti)′y(x, y)|
|(gt0i )′y(x, y)|

=

|i|∑
k=1

log
|(gik)′y(F t

σki
(x, y))|

|(gik)′y(F
t0
σki

(x, y))|

=

|i|∑
k=1

log
|(gik)′y(fv

σki
(x), gt

σki
(x, y))|

|(gik)′y(fv
σki

(x), gt0
σki

(x, y))|
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+ log
|(gik)′y(fv

σki
(x), gt0

σki
(x, y))|

|(gik)′y(f
v0

σki
(x), gt0

σki
(x, y))|

=

|i|∑
k=1

|(gik)′′yy(fv
σki

(x), ξ)|
|(gik)′y(fv

σki
(x), ξ)|

|gtσki(x, y)− gt0
σki

(x, y)|

+

|i|∑
k=1

|(gik)′′yx(ζ, g
t0
σki

(x, y))|
|(gik)′y(ζ, g

t0
σki

(x, y))|
|fv

σki(x)− fv0

σki
(x)|

⩽ |i|C ′(|v − v0|+ |w −w0|),

which had to be proven. □

In view of Proposition 5.1, it is enough to verify that both the conditions (A1)–(A3)
and (B1)–(B3) imply the transversality condition (T5). The following general lemma
highlights that to show the transversality, it suffices to study derivatives. The proof we
present is standard, and is similar to [33, proof of Lemma 3.3].

Lemma 5.2. Suppose that X is a compact metric space and f : U × X → R is a
continuous map such that t 7→ f(t, x) is continuously differentiable on an open and
bounded set U ⊂ Rd. If for every x ∈ X there exists i ∈ {1, . . . , d} such that

f(t0, x) = 0 ⇒ ∂

∂ti
f(t, x)

∣∣∣
t=t0

> 0,

then for every compact set K ⊂ U there exist C > 0 such that

Ld({t ∈ K : |f(t, x)| ⩽ r}) ⩽ Cr

for all x ∈ X and all r > 0.

Proof. Let K ⊂ U be a compact set. Let us first show that there exists δ > 0 such that
for every x ∈ X and t ∈ K there is i ∈ {1, . . . , d} with

|f(t, x)| < δ ⇒
∣∣∣ ∂
∂ti

f(t, x)
∣∣∣ ⩾ δ. (5.1)

Let us argue by contradiction. That is, for every n ∈ N there exists xn ∈ N and tn ∈ K
such that for every i ∈ {1, . . . , d}

|f(tn, xn)| ⩽
1

n
and

∣∣∣ ∂
∂ti

f(tn, xn)
∣∣∣ < 1

n
.

By using the compactness and continuity, there exists a sequence (nk)k, x ∈ X, and
t ∈ K such that x = limk→∞ xnk

, t = limk→∞ tnk
, and

|f(t, x)| =
∣∣∣ ∂
∂ti

f(t, x)
∣∣∣ = 0

for all i ∈ {1, . . . , d}, which contradicts our assumption.
Fix x ∈ X and for every i ∈ {1, . . . , d}, let Qi ⊂ K be the closed subset for which (5.1)

holds for i. Let us define a map Ti : Rd → Rd by setting

Ti(t1, . . . , td) = (t1, . . . , ti−1, f(t1, . . . , td, x), ti+1, . . . , td)
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Furthermore, let Ai = Ri−1 × [−r, r] × Rd−i and Πi : Rd 7→ Rd−1 be the orthogonal
projection along the ith coordinate axis. By (5.1), Ti is a smooth and invertible map on
{t ∈ K : |f(t, x)| < δ} as | det(DtTi)| = | ∂∂ti f(t, x)| ⩾ δ. Therefore,

Ld({t ∈ Qi : |f(t, x)| < r}) = Ld(T−1i (Ai) ∩Qi)

⩽ max
t∈Qi

| det(DtT
−1
i )|Ld(Ai ∩ Ti(K))

⩽ δ−1Ld−1(Πi(Ti(K)))2r

for all r < δ and

Ld({t ∈ K : |f(t, x)| < r}) ⩽ Ld(K)δ−1r

for all r ⩾ δ. This completes the proof. □

Throughout the remaining part of the section, we fix v0 = (t1,1, . . . , tN,1) and, as in
Section 4, we denote π1

v0
simply by π1.

5.1. The first example. In this subsection, we assume that Φt satisfies the assumptions
(A1)–(A3) and prove the transversality condition (T5). We will see that it follows from
the following proposition.

Proposition 5.3. Suppose that Φt satisfies the assumptions (A1)–(A3). Then there
exists δ > 0 such that for every i, j, h ∈ Σ with j1 ̸= h1 and π1(j) ⩽ π1(h) the following
holds: if yt(i, πt(j), x) ≡ yt(i, πt(h), x) as the function of x, then

∂

∂tj1,2
(yt(i, πt(j), x)− yt(i, πt(h), x)) > δ

for all x ∈ [0, 1] and t = (v0,w) ∈ V ×W .

Indeed, the transversality condition (T5) follows from Proposition 5.3 by applying
Lemma 5.2 for the map f(t, (j, h, x)) = yt(i, πt(j), x)− yt(i, πt(h), x) together with the
fact given by Lemma 4.1 that there exists a constant C > 0 such that

L2N ({t : |projti(j)− projti(h)| ⩽ r}) ⩽ L2N ({t : |yt(i, πt(j), x)− yt(i, πt(h), x)| ⩽ Cr})

for all x ∈ [0, 1], i ∈ Σ, and j, h ∈ Σ with j1 ̸= h1.
Let us begin preparations for the proof of Proposition 5.3. At first, we observe that

∂

∂tj,2
gti(x, y) ⩾ 0 (5.2)

for all i ∈ Σ∗, j ∈ {1, . . . , N}, and t ∈ V ×W . In particular,

0 ⩽
∂

∂tj,2
π2
t (j) ⩽

1

1− ρ
(5.3)

for all j ∈ Σ, j ∈ {1, . . . , N}, and t ∈ V ×W . Indeed,

∂

∂tj,2
π2
t (j) = δjj1 + (gj1)

′
y(πt(σj))

∂

∂tj,2
π2
t (σj) =

∞∑
k=1

δjjk(g
t
j|k−1

)′y(πt(σ
kj)), (5.4)
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where δji = 1 if i = j and 0 otherwise. Hence, (5.3) follows from (A1). Similarly, (5.2)
follows from (A1) and (5.4) but with considering finite sums. Furthermore, it follows
from (5.4) that for every j, h ∈ Σ with h1 ̸= j1

∂

∂tj1,2
(π2

t (j)− π2
t (h)) ⩾ 1− ρ

1− ρ
> 0 (5.5)

for all t ∈ V ×W .

Lemma 5.4. Suppose that Φt satisfies the assumptions (A1) and (A2). Then

∂

∂tj,2
ut(i, x, y) ⩾ 0 and (ut)

′
y(i, x, y) ⩾ 0

for all i ∈ Σ, j ∈ {1, . . . , N}, (x, y) ∈ [0, 1]2, and t = (v0,w) ∈ V ×W .

Proof. Simple calculations show that

∂

∂tj,2
ut(i, x, y) =

∞∑
k=1

(−(gik)′′xy(F t←−−−
i|k−1

(x, y))f ′←−−−
i|k−1

(x)

(gt←−
i|k

)′y(x, y)

∂

∂tj,2
gt←−−−
i|k−1

(x, y) (5.6)

+
k∑

ℓ=1

(gik)
′
x(F

t←−−−
i|k−1

(x, y))f ′←−−−
i|k−1

(x)

(gt←−
i|k

)′y(x, y)

(giℓ)
′′
yy(F

t←−−−
i|ℓ−1

(x, y))

(giℓ)
′
y(F

t←−−−
i|ℓ−1

(x, y))

∂

∂tj,2
gt←−−−
i|ℓ−1

(x, y)

)
,

where the series converges by (A1). Hence, the first claim follows from (A2) and (5.2).
The second claim follows from (4.1) by a similar manner. □

Let us next write (2.3) in the integral equation form. That is, for every i, j ∈ Σ,
t ∈ V ×W , and x ∈ [0, 1], we have

yt(i, πt(j), x) = π2
t (j) +

∫ x

π1(j)
ut(i, z, yt(i, πt(j), z)) dz.

Thus,

∂

∂th,2
yt(i, πt(j), x) =

∂

∂th,2
π2
t (j) +

∫ x

π1(j)

(
∂

∂th,2
ut

)
(i, z, yt(i, πt(j), z))

+ (ut)
′
y(i, z, yt(i, πt(j), z))

∂

∂th,2
yt(i, πt(j), z) dz

for all h ∈ {1, . . . , N}. To simplicity notation, we write y(x) = yt(i, πt(j), x). Recalling
how to solve linear nonhomogeneous ordinary differential equations (see, for example, [1,
Section 2.3]), we can write

∂

∂th,2
yt(i,πt(j), x) =

∂

∂th,2
π2
t (j) exp

(∫ x

π1(j)
(ut)

′
y(i, z, y(z)) dz

)
+

∫ x

π1(j)
exp

(∫ x

w
(ut)

′
y(i, z, y(z)) dz

)(
∂

∂th,2
ut

)
(i, w, y(w)) dw.

(5.7)

We are now ready to prove Proposition 5.3.
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Proof of Proposition 5.3. To simplify notation, write y(x) = yt(i, πt(j), x) ≡ yt(i, πt(h), x).
Applying (5.7) for both ∂

∂tj1,2
yt(i, πt(j), x) and

∂
∂tj1,2

yt(i, πt(h), x), we get

∂

∂tj1,2
yt(i, πt(j), x)−

∂

∂tj1,2
yt(i, πt(h), x)

=
∂

∂tj1,2
π2
t (j) exp

(∫ x

π1(j)
(ut)

′
y(i, z, y(z)) dz

)
− ∂

∂tj1,2
π2
t (h) exp

(∫ x

π1(h)
(ut)

′
y(i, z, y(z)) dz

)
+

∫ π1(h)

π1(j)
exp

(∫ x

w
(ut)

′
y(i, z, y(z)) dz

)(
∂

∂tj1,2
ut

)
(i, w, y(w)) dw.

Since

−
∫ π1(h)

π1(j)
exp

(∫ x

w
(ut)

′
y(i, z, y(z)) dz

)
(ut)

′
y(i, w, y(w)) dw

= exp

(∫ x

π1(h)
(ut)

′
y(i, z, y(z)) dz

)
− exp

(∫ x

π1(j)
(ut)

′
y(i, z, y(z)) dz

)
,

we get

∂

∂tj1,2
yt(i, πt(j), x)−

∂

∂tj1,2
yt(i, πt(h), x)

=

(
∂

∂tj1,2
π2
t (j)−

∂

∂tj1,2
π2
t (h)

)
exp

(∫ x

π1(h)
(ut)

′
y(i, z, y(z)) dz

)
+

∫ π1(h)

π1(j)
exp

(∫ x

w
(ut)

′
y(i, z, y(z)) dz

)((
∂

∂tj1,2
ut

)
(i, w, y(w))

+
∂

∂tj1,2
π2
t (j)(ut)

′
y(i, w, y(w))

)
dw.

Therefore, by (4.2), (5.5), and Lemma 5.4, there exists C ⩾ 0 such that

∂

∂tj1,2
yt(i, πt(j), x)−

∂

∂tj1,2
yt(i, πt(h), x) ⩾

(
1− ρ

1− ρ

)
e−C > 0

which is what we wanted to prove. □

5.2. The second example. In this subsection, we assume that Φt satisfies the assump-
tions (B1)–(B3) and prove the transversality condition (T5). As with the first example,
we will see that it follows from the following proposition.

Proposition 5.5. Suppose that Φt satisfies the assumptions (B1)–(B3). Then there exists
δ > 0 such that for every i, j, h ∈ Σ with j1 ̸= h1 and π1(j) ⩽ π1(h) the following holds:
if yt(i, πt(j), x) ≡ yt(i, πt(h), x) as a function of x, then there exists k ∈ {1, . . . , N}
such that ∣∣∣∣ ∂

∂tk,2
(yt(i, πt(j), x)− yt(i, πt(h), x))

∣∣∣∣ > δ,

where x = (π1(h) + π1(j))/2.
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Before we prove the proposition, we need some more delicate analysis on the bounds
of the derivatives on the tangent bundle ut(i, x, y).

Lemma 5.6. Under the assumptions of Proposition 5.5,

|(ut)′y(i, x, y)| ⩽
112

135

for all i ∈ Σ, t = (v0,w) ∈ V ×W , and (x, y) ∈ [0, 1]2. Furthermore,∣∣∣∣ ∂

∂tj,2
ut(i, x, y)−

∂

∂th,2
ut(i, x, y)

∣∣∣∣ ⩽ 28

81
. (5.8)

for all j, h ∈ {1, . . . , N} with j ̸= h.

Proof. The first claim follows from (4.1) and the assumptions, since

|(ut)′y(i, x, y)| ⩽
∞∑
k=1

(1
3

(1
4

)k−1(1
4

)k−1
+

k∑
ℓ=1

1

3

(1
4

)k−1(1
4

)ℓ−1)
=

112

135
.

Let us show the second claim. By using (5.4), it is easy to see that∣∣∣∣ ∂

∂tj,2
gti(x, y)−

∂

∂th,2
gti(x, y)

∣∣∣∣ ⩽ |i|−1∑
k=0

(1
4

)k
⩽

4

3

for all i ∈ Σ∗. Observe that in both sums in (5.6), the first terms are zero, and so

∂

∂tj,2
ut(i, x, y)−

∂

∂th,2
ut(i, x, y)

=
∞∑
k=2

(−(gik)′′xy(F t←−−−
i|k−1

(x, y))f ′←−−−
i|k−1

(x)

(gt←−
i|k

)′y(x, y)

(
∂

∂tj,2
gt←−−−
i|k−1

(x, y)− ∂

∂th,2
gt←−−−
i|k−1

(x, y)

)

+
k∑

ℓ=2

(gik)
′
x(F

t←−−−
i|k−1

(x, y))f ′←−−−
i|k−1

(x)

(gt←−
i|k

)′y(x, y)

(giℓ)
′′
yy(F

t←−−−
i|ℓ−1

(x, y))

(giℓ)
′
y(F

t←−−−
i|ℓ−1

(x, y))

·
(

∂

∂tj,2
gt←−−−
i|ℓ−1

(x, y)− ∂

∂th,2
gt←−−−
i|ℓ−1

(x, y)

))

=
∞∑
k=2

(
∂

∂tj,2
gt←−−−
i|k−1

(x, y)− ∂

∂th,2
gt←−−−
i|k−1

(x, y)

)(−(gik)′′xy(F t←−−−
i|k−1

(x, y))f ′←−−−
i|k−1

(x)

(gt←−
i|k

)′y(x, y)

+
(gik)

′′
yy(F

t←−−−
i|k−1

(x, y))

(gik)
′
y(F

t←−−−
i|k−1

(x, y))

∞∑
ℓ=k

(giℓ)
′
x(F

t←−−−
i|ℓ−1

(x, y))f ′←−−−
i|ℓ−1

(x)

(gt←−
i|ℓ
)′y(x, y)

)
.

Thus, by the assumptions,∣∣∣∣ ∂

∂tj,2
ut(i, x, y)−

∂

∂th,2
ut(i, x, y)

∣∣∣∣ ⩽ ∞∑
k=2

4

3

(1
3
·
(1
4

)k−1
+

1

3
·
∞∑
ℓ=k

(1
4

)ℓ−1)
=

28

81

as claimed. □
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Proof of Proposition 5.5. To simplify notation, let y(x) = yt(i, πt(j), x) ≡ yt(i, πt(h), x).
By applying (5.7), we get(

∂

∂tj1,2
yt(i, πt(j), x)−

∂

∂tj1,2
yt(i, πt(h), x)

)
−
(

∂

∂th1,2
yt(i, πt(j), x)−

∂

∂th1,2
yt(i, πt(h), x)

)
=

(
∂

∂tj1,2
π2
t (j)−

∂

∂th1,2
π2
t (j)

)
exp

(∫ x

π1(j)
(ut)

′
y(i, z, y(z)) dz

)
+

(
∂

∂th1,2
π2
t (h)−

∂

∂tj1,2
π2
t (h)

)
exp

(∫ x

π1(h)
(ut)

′
y(i, z, y(z)) dz

)
+

∫ π1(h)

π1(j)
exp

(∫ x

w
(ut)

′
y(i, z, y(z)) dz

)((
∂

∂tj1,2
ut

)
(i, w, y(w))

−
(

∂

∂th1,2
ut

)
(i, w, y(w))

)
dw.

By (5.5) and Lemma 5.6, we can estimate the above from below by

⩾
2

3
exp
(
−112

135
(x− π1(j))

)
+

2

3
exp
(
−112

135
(π1(h)− x)

)
− 56

81

∫ π1(h)

π1(i)
exp
(112
135
|x− w|

)
dw

=
2

3
exp
(
−112

135
(x− π1(j))

)
+

2

3
exp
(
−112

135
(π1(h)− x)

)
− 5

6

(
exp
(112
135

(x− π1(j))
)
+ exp

(112
135

(π1(h)− x)
)
− 2
)
.

Writing x = (π1(j) + π1(h))/2 and z = x − π1(j) = π1(h) − x, we can continue the
estimation by

=
(4
3
− 5

6
exp
(224
135

z
)
+

5

3
exp
(112
135

z
))

exp
(
−112

135
z
)

⩾
(4
3
− 5

6
exp
(224
135

)
+

5

3
exp
(112
135

))
e−

112
135 > 0,

where the last two inequalities follow by simple calculus. The claim then holds for either
k = j1 or k = h1 with the choice δ = (23 −

5
12 exp(

224
135) +

5
6 exp(

112
135)) exp(−

112
135). □
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