Advanced mathematics for civil engineers Linear Algebra exercises

1. Solve the following system of linear equations with Gauss elimination!

2. Is the collection of the following vectors linearly independent?

$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1\\0\\5 \end{bmatrix}.$$

3. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and let $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of \mathbb{R}^2 .

- (a) What are the coordinates of the vector $\mathbf{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ in basis *B*? (That is, $[\mathbf{v}]_B = ?$)
- (b) Find the coordinate transformation $P_{N,B}$ (That is, from the natural basis to B)
- (c) Find the matrix of the linear transform $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 2x_1 x_2 \\ -x_1 + 3x_2 \end{bmatrix}$ in the basis B!
- 4. Draw the points on the plane, which satisfy the equation $5x^2 4xy + 8y^2 = 36!$
- 5. Let *P* be the orthogonal projection to line $y = \frac{\sqrt{3}}{2}x$. Find the matrix of *P* in the natural basis (i.e. $N = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$).

6. Let L be the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 1\\0\\3\\7 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \ \mathbf{v}_{4} = \begin{bmatrix} -1\\3\\2\\0 \end{bmatrix}.$$

- (a) Find a basis of L out of the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}!$ Give the coordinates of the remaining vectors, which are not contained in this basis, in the basis you have found!
- (b) Find an orthonormal basis of L by using the Gram-Schmidt orthogonalisation algoritm!

7. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Give a symmetric matrix S and a skew-symmetric matrix G such that $A = S + G!$
8. Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}$. Find $A : B!$

8. Let $A = \begin{bmatrix} 4 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 8 & 9 \end{bmatrix}$. Find A : B!9. Give the spectral decomposition of the matrix $M = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}!$ 10. Let $P = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$. Find the eigenvalues and the eigenvectors of P!11. Let $A = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 0 & 1 & 3 \\ 1 & 3 & 0 & 2 \\ 1 & 7 & -1 & 0 \end{bmatrix}$

- (a) Find the subspaces row(A), col(A), null(A), $null(A^TA)$, $null(A^T)!$
- (b) Find nullity(A), rank(A) and rank($A^{T}A$)!
- (c) Check that $row(A)^{\perp} = null(A)$ and $col(A)^{\perp} = null(A^T)!$

 $\mathbf{2}$

12. Let $B = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}$. Show that there exists a subspace V such that B is the matrix of the orthogonal projection to the subspace V in the natural

basis! What is V?

13. Find the matrix in the natural basis of the orthogonal projection to the plane $V = \{(x, y, z) : 2x - y + 3z = 0\}!$ By using this matrix, decompose the vector $\mathbf{v} = (2, 4, -1)$ into perpendicular and paralell components with respect to V!

14. Let
$$C = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 0 & 1 & 3 \\ 3 & 2 & -1 & 1 \end{bmatrix}$$
. Moreover, let P_r be the matrix of the orthogonal

projection from \mathbb{R}^4 to $\operatorname{row}(A)$ and let P_c be the matrix of the orthogonal projection from \mathbb{R}^3 to $\operatorname{col}(A)$! Find P_r and P_c !

- 15. With the method of smallest squares, find the line, which approximates the points (2, 1), (3, 2), (5, 3) and (6, 4) the best!
- 16. Find the solution with the method of smallest squares of the equation $A\mathbf{x} =$ **b**, where

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ -2 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

17. Let $B = \begin{bmatrix} 9 & 6 \\ 6 & 9 \end{bmatrix}$. Show that B is positive definite, and find a matrix C such that $C^2 = B$. 18. Let $C = \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 2 & -2 \end{bmatrix}$. Find the singular value decomposition of C!