Advanced mathematics for civil engineers Linear Algebra exercises

1. Solve the following system of linear equations with Gauss elimination!

$$
\begin{array}{rlrl}
x_{1}+3 x_{2}-2 x_{3} & +2 x_{5} & =0 \\
2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6} & =-1 \\
5 x_{3}+10 x_{4} & +15 x_{6} & =5 \\
2 x_{1}+6 x_{2} & +8 x_{4}+4 x_{5}+18 x_{6} & =6
\end{array}
$$

2. Is the collection of the following vectors linearly independent?

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right] .
$$

3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.
(a) What are the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}-1 \\ 5\end{array}\right]$ in basis B ? (That is, $[\mathbf{v}]_{B}=?$)
(b) Find the coordinate transformation $P_{N, B}$ (That is, from the natural basis to B)
(c) Find the matrix of the linear transform $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}-x_{2} \\ -x_{1}+3 x_{2}\end{array}\right]$ in the basis B !
4. Draw the points on the plane, which satisfy the equation $5 x^{2}-4 x y+8 y^{2}=$ 36!
5. Let P be the orthogonal projection to line $y=\frac{\sqrt{3}}{2} x$. Find the matrix of P in the natural basis (i.e. $N=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$).

6 . Let L be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
-1 \\
3 \\
2 \\
0
\end{array}\right]
$$

(a) Find a basis of L out of the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$! Give the coordinates of the remaining vectors, which are not contained in this basis, in the basis you have found!
(b) Find an orthonormal basis of L by using the Gram-Schmidt orthogonalisation algoritm!
7. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$. Give a symmetric matrix S and a skew-symmetric matrix G such that $A=S+G!$
8. Let $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right]$. Find $A: B$!
9. Give the spectral decomposition of the matrix $M=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$!
10. Let $P=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right]$. Find the eigenvalues and the eigenvectors of P !
11. Let $A=\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 2 & 0 & 1 & 3 \\ 1 & 3 & 0 & 2 \\ 1 & 7 & -1 & 0\end{array}\right]$
(a) Find the subspaces $\operatorname{row}(A), \operatorname{col}(A), \operatorname{null}(A), \operatorname{null}\left(A^{T} A\right), \operatorname{null}\left(A^{T}\right)$!
(b) Find $\operatorname{nullity}(A), \operatorname{rank}(A)$ and $\operatorname{rank}\left(A^{T} A\right)$!
(c) Check that $\operatorname{row}(A)^{\perp}=\operatorname{null}(A)$ and $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{T}\right)$!
12. Let $B=\frac{1}{9}\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4\end{array}\right]$. Show that there exists a subspace V such that B is the matrix of the orthogonal projection to the subspace V in the natural basis! What is V ?
13. Find the matrix in the natural basis of the orthogonal projection to the plane $V=\{(x, y, z): 2 x-y+3 z=0\}$! By using this matrix, decompose the vector $\mathbf{v}=(2,4,-1)$ into perpendicular and paralell components with respect to V !
14. Let $C=\left[\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & 0 & 1 & 3 \\ 3 & 2 & -1 & 1\end{array}\right]$. Moreover, let P_{r} be the matrix of the orthogonal projection from \mathbb{R}^{4} to $\operatorname{row}(A)$ and let P_{c} be the matrix of the orthogonal projection from \mathbb{R}^{3} to $\operatorname{col}(A)$! Find P_{r} and P_{c} !
15. With the method of smallest squares, find the line, which approximates the points $(2,1),(3,2),(5,3)$ and $(6,4)$ the best!
16. Find the solution with the method of smallest squares of the equation $A \mathrm{x}=$ b, where

$$
A=\left[\begin{array}{cc}
2 & 1 \\
4 & 2 \\
-2 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] .
$$

17. Let $B=\left[\begin{array}{ll}9 & 6 \\ 6 & 9\end{array}\right]$. Show that B is positive definite, and find a matrix C such that $C^{2}=B$.
18. Let $C=\left[\begin{array}{cc}-2 & 2 \\ -1 & 1 \\ 2 & -2\end{array}\right]$. Find the singular value decomposition of C !
