Advanced mathematics for civil engineers Vector analysis exercises

1. Check whether the vector field $\vec{F}(x, y, z)=(6 x+y \cos (x y), 2 z+x \cos (x y), 2 y)$ has a potential function or not! If there is, determine it!
2. Let H be a triangle with vertices $A=(0,0,1), B=(1,0,0)$ and $C=$ $(0,1,0)$. Consider the constant vector field $\vec{F}(x, y, z)=(1,2,3)$. What is $\iint_{H} \vec{F} d \vec{A}=$?
3. Let $\vec{F}(x, y)=\left(x e^{x}-y^{3}, \cos \left(y^{2}\right)+x^{3}\right)$ and let γ be a circle, centered at the origin with radius 1 and oriented anticlockwise. What is $\int_{\gamma} \vec{F} d \mathbf{r}=$?
4. Let $\vec{F}(x, y, z)=\left(3 x^{2} y^{2} z, 2 x^{3} y z, x^{3} y^{2}\right)$ and let γ be a curve with endpoints $A=(1,0,1)$ and $B=(2,1,-1)$. Determine $\int_{\gamma} \vec{F} d \mathbf{r}=$?
5. The surface S looks like a glass upside down. That is, there is the bottom of the glass

$$
\left\{(x, y, z): x^{2}+y^{2} \leq a^{2} \text { and } z=h\right\}
$$

and the side of the glass

$$
\left\{(x, y, z): x^{2}+y^{2}=a^{2} \text { and } 0 \leq z \leq h\right\}
$$

Orientate the surface S with normal vector pointing out. Moreover, let $\vec{F}(x, y, z)=\left(z^{2}, x+2 y+z, 3\right)$. By applying Gauss' Divergence Theorem, determine $\iint_{S} \vec{F} d \vec{A}=$?
6. We have the following informations about a vector field \vec{F} : at the point $P=(3,2,5), \operatorname{div}(\vec{F})(P)=-7$ and $\operatorname{curl}(\vec{F})(P)=(1,0,1)$. Let S be the surface of the small ball centered at P with radius $r=10^{-3}$, with orientation pointing outside. Give an estimate by using these informations for $\iint_{S} \vec{F} d \vec{A}$!
7. Let $\vec{F}(x, y, z)=\left(6 x^{2} y-4 y z^{3}, 2 x^{3}-4 x z^{3},-12 x y z^{2}\right)$. Check that wether the vector field \vec{F} is conservative or not! If it is, provide the potential function!
8. Let γ be a curve with parametrization $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 1$. Moreover, given the vector field $\vec{F}(x, y, z)=\left(-x^{3}+z, \frac{z-y}{x}, x y\right)$. Calculate $\int_{\gamma} \vec{F} d \mathbf{r}$.
9. Let \mathcal{F} be the triangle with vertices $A=(1,0,0), B=(0,1,3)$ and $C=$ $(0,0,1)$. Orientate the surface \mathcal{F} upwards. Let $\vec{F}(x, y, z)=\left(y, z, x^{2}\right)$. What is $\iint_{\mathcal{F}} \vec{F} d \vec{A}$?
10. Using Stokes' Theorem, calculate $\int_{\gamma} \vec{F} d \mathbf{r}$, where $\vec{F}(x, y, z)=\left(2 x y, x^{2}, z^{2}\right)$ and γ is the intersection of the paraboloid $x^{2}+y^{2}=z$ and the plane $z=y$, oriented anticlockwise.
11. Let $\vec{F}(x, y, z)=(x, y, z)$ and let $\mathcal{F}=\left\{(x, y, z): x^{2}+z^{2}=1\right.$ and $-2 \leq y \leq$ $1\}$ with normal vector pointing out. What is $\iint_{\mathcal{F}} \vec{F} d \vec{A}=$?
12. Using Gauss' Theorem, determine $\iint_{\mathcal{F}} \vec{F} d \vec{A}$, where $\vec{F}(x, y, z)=\left(x^{2}+\right.$ $\left.e^{y z}, y-z \arctan (x), x^{2} y^{3}\right)$ and $\mathcal{F}=\left\{(x, y, z): x^{2}+y^{2}=4\right.$ and $\left.0 \leq z \leq 3\right\}$ with normal vector pointing out.
13. Using Green's Theorem, calculate the area of the domain which is surrounded by the curve $\mathbf{r}(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right), 0 \leq t \leq 2 \pi$.
14. Let γ be the straight line connecting $A=(1,1,1)$ and $B=(1,2,4)$, and let $\vec{F}(x, y, z)=\left(2 x y z, x^{2} z, x^{2} y\right)$. What is $\int_{\gamma} \vec{F} d \mathbf{r}=$?
15. Using the planar version of the Curl-test, provide that the following vector fields are conservative or not. If it is then give the potential function. Give
reasoning if the Curl-test is inconclusive!
(a) $\vec{F}(x, y)=(-y, x)$,
(b) $\vec{F}(\mathbf{r})=\|\mathbf{r}\| \cdot \mathbf{r}$,
(c) $\vec{F}(x, y)=\left(\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}\right)$,
(d) $\vec{F}(x, y)=\left(\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{-x}{\sqrt{x^{2}+y^{2}}}\right)$.
16. Let $\vec{F}(x, y, z)=\left(x^{-2}, z, y\right)$. Is it possible to use the Curl-test? Try to guess the potential function! Is the vector field \vec{F} conservative?
17. Let $\mathcal{S}=\left\{(x, y, z): x^{2}+y^{2}=4\right.$ and $\left.0 \leq z \leq 2\right\}$ be cylindrical surface with normal vector pointing in the direction of the axes z. Let $\vec{F}(x, y, z)=$ $\left(y+1, x, z^{2}\right)$. What is $\iint_{\mathcal{S}} \vec{F} d \vec{A}=$?
18. Let $\vec{F}(\mathbf{r})=\frac{1}{\|\mathbf{r}\|^{3}} \mathbf{r}$ and let \mathcal{F} the surface of the unit ball with normal vector pointing out. What is $\iint_{\mathcal{F}} \vec{F} d \vec{A}=$?

