Advanced mathematics for civil engineers Vector analysis exercises

- 1. Check whether the vector field $\overrightarrow{F}(x, y, z) = (6x + y\cos(xy), 2z + x\cos(xy), 2y)$ has a potential function or not! If there is, determine it!
- 2. Let H be a triangle with vertices A = (0, 0, 1), B = (1, 0, 0) and C = (0, 1, 0). Consider the constant vector field $\overrightarrow{F}(x, y, z) = (1, 2, 3)$. What is $\iint_{H} \overrightarrow{F} d\overrightarrow{A} = ?$
- 3. Let $\overrightarrow{F}(x,y) = (xe^x y^3, \cos(y^2) + x^3)$ and let γ be a circle, centered at the origin with radius 1 and oriented anticlockwise. What is $\int_{\gamma} \overrightarrow{F} d\mathbf{r} = ?$
- 4. Let $\overrightarrow{F}(x, y, z) = (3x^2y^2z, 2x^3yz, x^3y^2)$ and let γ be a curve with endpoints A = (1, 0, 1) and B = (2, 1, -1). Determine $\int_{\gamma} \overrightarrow{F} d\mathbf{r} = ?$
- 5. The surface S looks like a glass upside down. That is, there is the bottom of the glass

$$\{(x, y, z) : x^2 + y^2 \le a^2 \text{ and } z = h\},\$$

and the side of the glass

$$\{(x, y, z) : x^2 + y^2 = a^2 \text{ and } 0 \le z \le h\}.$$

Orientate the surface S with normal vector pointing out. Moreover, let $\overrightarrow{F}(x, y, z) = (z^2, x + 2y + z, 3)$. By applying Gauss' Divergence Theorem, determine $\iint_S \overrightarrow{F} d\overrightarrow{A} = ?$

6. We have the following informations about a vector field \overrightarrow{F} : at the point P = (3, 2, 5), $\operatorname{div}(\overrightarrow{F})(P) = -7$ and $\operatorname{curl}(\overrightarrow{F})(P) = (1, 0, 1)$. Let S be the surface of the small ball centered at P with radius $r = 10^{-3}$, with orient-ation pointing outside. Give an estimate by using these informations for $\iint_S \overrightarrow{F} d\overrightarrow{A}!$

- 7. Let $\overrightarrow{F}(x, y, z) = (6x^2y 4yz^3, 2x^3 4xz^3, -12xyz^2)$. Check that we her the vector field \overrightarrow{F} is conservative or not! If it is, provide the potential function!
- 8. Let γ be a curve with parametrization $\mathbf{r}(t) = (t, t^2, t^3), 0 \le t \le 1$. Moreover, given the vector field $\overrightarrow{F}(x, y, z) = (-x^3 + z, \frac{z-y}{x}, xy)$. Calculate $\int_{\gamma} \overrightarrow{F} d\mathbf{r}$.
- 9. Let \mathcal{F} be the triangle with vertices A = (1, 0, 0), B = (0, 1, 3) and C = (0, 0, 1). Orientate the surface \mathcal{F} upwards. Let $\overrightarrow{F}(x, y, z) = (y, z, x^2)$. What is $\iint_{\mathcal{F}} \overrightarrow{F} d\overrightarrow{A}$?
- 10. Using Stokes' Theorem, calculate $\int_{\gamma} \overrightarrow{F} d\mathbf{r}$, where $\overrightarrow{F}(x, y, z) = (2xy, x^2, z^2)$ and γ is the intersection of the paraboloid $x^2 + y^2 = z$ and the plane z = y, oriented anticlockwise.
- 11. Let $\overrightarrow{F}(x, y, z) = (x, y, z)$ and let $\mathcal{F} = \{(x, y, z) : x^2 + z^2 = 1 \text{ and } -2 \le y \le 1\}$ with normal vector pointing out. What is $\iint_{\mathcal{F}} \overrightarrow{F} d\overrightarrow{A} = ?$
- 12. Using Gauss' Theorem, determine $\iint_{\mathcal{F}} \overrightarrow{F} d\overrightarrow{A}$, where $\overrightarrow{F}(x, y, z) = (x^2 + e^{yz}, y z \arctan(x), x^2y^3)$ and $\mathcal{F} = \{(x, y, z) : x^2 + y^2 = 4 \text{ and } 0 \le z \le 3\}$ with normal vector pointing out.
- 13. Using Green's Theorem, calculate the area of the domain which is surrounded by the curve $\mathbf{r}(t) = (\cos^3(t), \sin^3(t)), \ 0 \le t \le 2\pi$.
- 14. Let γ be the straight line connecting A = (1, 1, 1) and B = (1, 2, 4), and let $\overrightarrow{F}(x, y, z) = (2xyz, x^2z, x^2y)$. What is $\int_{\gamma} \overrightarrow{F} d\mathbf{r} = ?$
- 15. Using the planar version of the Curl-test, provide that the following vector fields are conservative or not. If it is then give the potential function. Give

 $\mathbf{2}$

reasoning if the Curl-test is inconclusive!

(a)
$$\overrightarrow{F}(x,y) = (-y,x),$$
 (b) $\overrightarrow{F}(\mathbf{r}) = \|\mathbf{r}\| \cdot \mathbf{r},$
(c) $\overrightarrow{F}(x,y) = \left(\frac{y}{x^2+y^2}, \frac{-x}{x^2+y^2}\right),$ (d) $\overrightarrow{F}(x,y) = \left(\frac{y}{\sqrt{x^2+y^2}}, \frac{-x}{\sqrt{x^2+y^2}}\right)$

- 16. Let $\overrightarrow{F}(x, y, z) = (x^{-2}, z, y)$. Is it possible to use the Curl-test? Try to guess the potential function! Is the vector field \overrightarrow{F} conservative?
- 17. Let $S = \{(x, y, z) : x^2 + y^2 = 4 \text{ and } 0 \le z \le 2\}$ be cylindrical surface with normal vector pointing in the direction of the axes z. Let $\overrightarrow{F}(x, y, z) = (y+1, x, z^2)$. What is $\iint_{S} \overrightarrow{F} d\overrightarrow{A} = ?$
- 18. Let $\overrightarrow{F}(\mathbf{r}) = \frac{1}{\|\mathbf{r}\|^3} \mathbf{r}$ and let \mathcal{F} the surface of the unit ball with normal vector pointing out. What is $\iint_{\mathcal{F}} \overrightarrow{F} d\overrightarrow{A} = ?$