Probability 1 - Practice

Week 2

2.1 Let A, B and C be three events. Use set theory operations to express the following events:
(a) Out of A, B and C, exactly k events occurs $(k=0,1,2)$
(b) Out of A, B and C, at least k events occurs $(k=1,2)$
2.2 Let's prove the following equalities
(a) $A \cap B \backslash C=(A \backslash C) \cap(A \backslash B)$
(b) $A \circ(B \circ C)=(A \circ B) \circ C$

HW
(c) $A \circ C \subset(A \circ B) \cup(B \circ C)$
2.3 How many different outcomes can the experiment have? Identify the sample space of the experiment:
(a) We throw 3 different coins and 2 identical dice.
(b) We throw 3 identical black dice, and 2 identical white dice.
2.4 What has a higher probability? Throwing a die four times, and rolling 6 at least once, or throwing two dice 24 times, and rolling 6 on both together at least once.
2.5 Adam and Eve play ping-pong, and let's assume that they are both equally good at the game. Let A, B be the following events:

$$
\begin{aligned}
& A:=\{\text { Adam wins exactly } 3 \text { matches out of } 4\} \\
& B:=\{\text { Eve wins exactly } 8 \text { matches out of } 5\}
\end{aligned}
$$

Which event has a higher probability? First guess, then calculate the exact probabilities.
2.6 We throw a coin until it lands on the same side twice in a row. Prove that the probability of every n long sequence is 2^{-n}. Write down the probability space for the experiment. What is the probability of the following events?

$$
\begin{aligned}
& A:=\{\text { The experiment ends after less than } 6 \text { throws }\} \\
& B:=\{\text { The experiment ends after an even amount of throws }\}
\end{aligned}
$$

2.7 Show that for any A, B events:

$$
-\frac{1}{4} \leq P(A \cap B)-P(A) P(B) \leq \frac{1}{4}
$$

2.8 (a) Let A and B be two events. If $P(A) \geq 0.8$ and $P(B) \geq 0.5$ then prove the following: $P(A \cap B) \geq 0.3$
(b) Let's prove the following equality for any $A_{1}, A_{2}, \ldots, A_{n}$ events:

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) \geq P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)-(n-1)
$$

HW 2.9 (a) For any A, B and C, prove that:

$$
P(A \circ C) \leq P(A \circ B)+P(B \circ C)
$$

(b) Prove that if $P(A \circ B)=0$, then $P(A)=P(B)$.
2.10 (a) We throw a die 6 times. What is the probability, that $1,2,3,4,5$ and 6 all get thrown?
(b) We throw a dice 10 times. What is the probability that $1,2,3,4,5$ and 6 all get thrown at least once?
2.11 Using the inclusion-exclusion identity, show that:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

2.12 There are 6 red, 6 white, and 7 blue balls in an urn. We draw 5 without repetition. What is the probability that we draw at least one of each color?

HW 2.13 An urn contains 5 red, 6 blue, and 8 green balls. What is the sample space, if a set of 3 balls is randomly selected without repetition? What is the probability that each of the balls will be:
(a) of the same color?
(b) of different colors?

HW 2.14 We throw 3 dice in the air. Dice that are the same color are indistinguishable. How many different outcomes can the experiment have, if:
(a) the dice are all the same color?
(b) two dice are black, and the third is white?
(c) all three are different colors?

