$\sin ^{2} x+\cos ^{2} x=1$
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \cdot \tan y}$
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\sin ^{2} x=\frac{1-\cos 2 x}{2}, \quad \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}$
$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
$\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
$\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$
$\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$\sin x \sin y=-\frac{1}{2}[\cos (x+y)-\cos (x-y)]$
$\sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, \quad \cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$
$\cosh ^{2} x-\sinh ^{2} x=1$
$\sinh 2 x=2 \sinh x \cosh x$
$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\cosh ^{2} x=\frac{\cosh 2 x+1}{2}, \quad \sinh ^{2} x=\frac{\cosh 2 x-1}{2}$

Notable derivatives

$(\sinh x)^{\prime}=\cosh x$
$(\cosh x)^{\prime}=\sinh x$
$\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}$
$\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$
$\left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x}$
$\left(a^{x}\right)^{\prime}=a^{x} \ln (a)$
$(\sin x)^{\prime}=\cos x$
$(\cos x)^{\prime}=-\sin x$
$(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$
$(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}$
$(\ln x)^{\prime}=\frac{1}{x}$
$(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
$(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$
$(\operatorname{ar} \sinh x)^{\prime}=\frac{1}{\sqrt{1+x^{2}}}$
$(\operatorname{arcosh} x)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}$
$(\operatorname{ar} \tanh x)^{\prime}=\frac{1}{1-x^{2}}$
$(\operatorname{arcoth} x)^{\prime}=\frac{1}{1-x^{2}}$
$(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$
$(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}$

Differentiation rules

$(c u)^{\prime}=c u^{\prime} \quad(c$ constant $)$
$(u+v)^{\prime}=u^{\prime}+v^{\prime}$
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$
$\frac{\mathrm{d}}{\mathrm{d} x} f(g(x))=\frac{\mathrm{d} f}{\mathrm{~d} g} \mathrm{~d} g$

Rules of Integration

$\int c f \mathrm{~d} x=c \int f \mathrm{~d} x \quad(c$ constant $)$
$\int(f+g) \mathrm{d} x=\int f \mathrm{~d} x+\int g \mathrm{~d} x$
$\int f(a x+b) \mathrm{d} x=\frac{1}{a} F(a x+b)+c$,
where F is the primitive function of f
$\int f(g(x)) g^{\prime}(x) \mathrm{d} x=F(g(x))+c$,
where F is the primitive function of f
$\int f^{\alpha} f^{\prime} \mathrm{d} x=\frac{f^{\alpha+1}}{\alpha+1}+c$, ha $\alpha \neq-1$
$\int \frac{f^{\prime}}{f} \mathrm{~d} x=\ln |f|+c$
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Notable substitution of variables

$R\left(\mathrm{e}^{x}\right)$	$\mathrm{e}^{x}=t$
$R(\sqrt{a x+b})$	$\sqrt{a x+b}=t$
$R\left(\frac{\sqrt{a x+b}}{\sqrt{c x+d}}\right)$	$\frac{\sqrt{a x+b}}{\sqrt{c x+d}}=t$
$R(\sin x, \cos x)$	$\sin x, \cos x, \tan x, \tan \frac{x}{2}=t$
$R\left(x, \sqrt{a^{2}-x^{2}}\right)$	$x=a \sin t, x=a \cos t$
$R\left(x, \sqrt{a^{2}+x^{2}}\right)$	$x=a \sinh t$
$R\left(x, \sqrt{x^{2}-a^{2}}\right)$	$x=a \cosh t$

Notable integrals

$\int x^{\alpha} \mathrm{d} x=\frac{x^{\alpha+1}}{\alpha+1}+c \quad(\alpha \neq-1)$
$\int \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x}+c$
$\int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+c$
$\int \cos x \mathrm{~d} x=\sin x+c$
$\int \sin x \mathrm{~d} x=-\cos x+c$
$\int \frac{1}{\cos ^{2} x} \mathrm{~d} x=\tan x+c$
$\int \frac{1}{\sin ^{2} x} \mathrm{~d} x=-\cot x+c$
$\int \frac{1}{x} \mathrm{~d} x=\ln |x|+c$
$\int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+c$
$\int \frac{\mathrm{d} x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+c$
$\int \frac{\mathrm{d} x}{\sqrt{x^{2}+a^{2}}}=\operatorname{arsinh} \frac{x}{a}+c$
$\int \frac{\mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=\operatorname{arcosh} \frac{x}{a}+c$
$\int \frac{\mathrm{d} x}{a^{2}-x^{2}}=\frac{1}{a} \operatorname{ar} \tanh \frac{x}{a}+c, \quad$ if $\left|\frac{x}{a}\right|<1$
$\int \frac{\mathrm{d} x}{a^{2}-x^{2}}=\frac{1}{a} \operatorname{ar} \operatorname{coth} \frac{x}{a}+c, \quad$ if $\left|\frac{x}{a}\right|>1$
$\int \tan x \mathrm{~d} x=-\ln |\cos x|+c$
$\int \cot x \mathrm{~d} x=\ln |\sin x|+c$

1. Linear algebra

1. Gram-Schmidt orthogonalization: Let $\left\{\underline{w}_{1}, \ldots, \underline{w}_{k}\right\}$ be a basis of the subspace $W \subset \mathbb{R}^{d}$. Then $\left\{\underline{v}_{1}, \ldots, \underline{v}_{k}\right\}$ forms an orthonormal basis of W, where

$$
\underline{v}_{1}=\frac{\underline{w}_{1}}{\left\|\underline{w}_{1}\right\|} \text { and for } i=2, \ldots, k \underline{v}_{i}=\frac{\underline{w}_{i}-\sum_{j=1}^{i-1}\left(\underline{v}_{j} \cdot \underline{w}_{j}\right) \underline{v}_{j}}{\left\|\underline{w}_{i}-\sum_{j=1}^{i-1}\left(\underline{v}_{j} \cdot \underline{w}_{j}\right) \underline{v}_{j}\right\|} .
$$

2. Partial Differential equations

1. The sine-Fourier series of a function $f:[0, L] \mapsto \mathbb{R}$ is:

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} \cdot x\right), \text { where } b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} \cdot x\right) d x
$$

2. $\int x \sin (a x) d x=\frac{\sin (a x)-a x \cos (a x)}{a^{2}}+c$ and $\int x^{2} \sin (a x) d x=\frac{2 \cos (a x)+2 a x \sin (a x)-a^{2} x^{2} \cos (a x)}{a^{3}}+c$
3. Bernoulli's solution for the vibrating string problem:

$$
\begin{cases}u_{t t}^{\prime \prime}=c^{2} u_{x x}^{\prime \prime} & 0<x<L \text { and } 0<t \\ u(0, t)=u(L, t) \equiv 0 & 0<t \\ u(x, 0)=f(x) & 0<x<L \\ u_{t}^{\prime}(x, 0)=g(x) & 0<x<L\end{cases}
$$

then $u(x, t)=\sum_{k=1}^{\infty} \sin \left(\frac{k \pi}{L} x\right) \cdot\left(A_{k} \cos \left(\frac{k c \pi}{L} t\right)+B_{k} \sin \left(\frac{k c \pi}{L} t\right)\right)$, where A_{k} are the coefficients of the Fourier-sine series of $f(x)$ and $\frac{k c \pi}{L} B_{k}$ are the coefficients of the Fourier-sine series of $g(x)$.
4. Heat equation for finite rod:

$$
\begin{cases}u_{t}^{\prime}=\alpha u_{x x}^{\prime \prime} & 0<x<L \text { and } 0<t \\ u(0, t)=u(L, t) \equiv 0 & 0<t \\ u(x, 0)=f(x) & 0<x<L\end{cases}
$$

then $u(x, t)=\sum_{k=1}^{\infty} A_{k} e^{-\left(\frac{k \pi}{L}\right)^{2} \alpha t} \sin \left(\frac{k \pi}{L} x\right)$, where A_{k} are the coefficients of the Fourier-sine series of $f(x)$.

3. Vectoranalysis

1. Let \mathcal{A} be an orientable surface with parametrization $\mathbf{r}(u, v)$, where $(u, v) \in T$ for some domain T and $\vec{F}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ be a vectorfield. Then

$$
\iint_{\mathcal{A}} \vec{F} d \vec{A}= \pm \iint_{T} \vec{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u}^{\prime} \times \mathbf{r}_{v}^{\prime}\right) d u d v
$$

where we choose + if the orientation of \mathcal{A} corresponds to $\mathbf{r}_{u}^{\prime} \times \mathbf{r}_{v}^{\prime}$, otherwise - .
2. Gauss' Theorem: Let $K \subset \mathbb{R}^{3}$ be a body with boundary ∂K oriented pointing outwards. If all the second partial derivatives of the vectorfield \vec{F} exist and continuous on K then

$$
\iint_{\partial K} \vec{F} d \vec{A}=\iiint_{K} \operatorname{div}(\vec{F}) d x d y d z
$$

3. Stokes' Theorem: Let \mathcal{F} be an orientable surface and $\partial \mathcal{F}$ its boundary with coherent orientation. If all the partial derivatives of the vectorfield \vec{F} exist and continuous on \mathcal{F} then

$$
\int_{\partial \mathcal{F}} \vec{F} d \mathbf{r}=\iint_{\mathcal{F}} \operatorname{curl}(\vec{F}) d \vec{A} .
$$

4. Green's Theorem: Let T be a domain on the plane such that its boundary is a γ simple closed curve. If all the partial derivatives of the vectorfield \vec{F} exist and continuous on T then

$$
\int_{\gamma} \vec{F} d \mathbf{r}=\iint_{T} Q_{x}^{\prime}-P_{y}^{\prime} d x d y, \text { where } \vec{F}(x, y)=(P(x, y), Q(x, y))
$$

5. Cylindrical substitution:

$$
\begin{aligned}
x & =r \cos (\varphi) \\
y & =r \sin (\varphi) \\
z & =z
\end{aligned}
$$

with Jacobian determinant: r.
6. Spherical substitution:

$$
\begin{aligned}
x & =r \sin (u) \cos (v) \\
y & =r \sin (u) \sin (v) \\
z & =r \cos (u)
\end{aligned}
$$

with Jacobian determinant: $r^{2} \sin (u)$.
7. Polar substitution on the plane:

$$
\begin{aligned}
& x=r \cos (v) \\
& y=r \sin (v)
\end{aligned}
$$

with Jacobian determinant: r.

