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Chapter 1

Partial differential equations

In this chapter, we will study the time change of certain physical phenomena like the shape of
a string or the temperature of a rod. First, we will recall some definitions and statements for
Fourier series, which helps us describing these functions.

1.1 Fourier series

Definition 1.1.1 (Fourier series). Let f : R → R be a 2p–periodic, integrable function on [−p, p].
Its Fourier coefficients are

a0 =
1

2p

∫ p

−p
f(x) dx, an =

1

p

∫ p

−p
f(x) cos(

πn

p
x) dx, bn =

1

p

∫ p

−p
f(x) sin(

πn

p
x) dx.

The Fourier series of f is

S[f ](x) := a0 +
∞∑
n=1

(
an cos(

πn

p
x) + bn sin(

πn

p
x)

)
.

Theorem 1.1.2. Suppose that f : R → R is 2p–periodic, piecewise continuously differentiable with
only finitely many discontinuities on [−p, p], and integrable on [−p, p]. Then for every x ∈ R the
Fourier series S[f ](x) converges, and

S[f ](x) =
lim

y→x−
f(y) + lim

y→x+
f(y)

2
.

In particular:

• If f is continuous at x, then S[f ](x) = f(x).

• If f has a jump discontinuity at x, then S[f ](x) equals the average of the left and right limits.

Theorem 1.1.2 particularly states that every wave can be described as (countably infinite)
linear combination of basic waves of sin and cos. Note that the Fourier-series is unique.
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If a 2p–periodic function f is odd, that is, f(−x) = −f(x) for all x ∈ R, then

an =
1

p

∫ p

−p
f(x) cos(

πn

p
x) dx

=
1

p

∫ 0

−p
f(x) cos(

πn

p
x) dx+

1

p

∫ p

0
f(x) cos(

πn

p
x) dx

substitute
y=−x
=

1

p

∫ 0

p
f(−y) cos(−πn

p
y)(−1) dy +

1

p

∫ p

0
f(x) cos(

πn

p
x) dx

= −1

p

∫ p

0
f(y) cos(

πn

p
y) dy +

1

p

∫ p

0
f(x) cos(

πn

p
x) dx = 0

(1.1.1)

and
bn =

1

p

∫ p

−p
f(x) sin(

πn

p
x) dx

=
1

p

∫ 0

−p
f(x) sin(

πn

p
x) dx+

1

p

∫ p

0
f(x) sin(

πn

p
x) dx

substitute
y=−x
=

1

p

∫ 0

p
f(−y) sin(−πn

p
y)(−1) dy +

1

p

∫ p

0
f(x) sin(

πn

p
x) dx

=
2

p

∫ p

0
f(y) sin(

πn

p
y) dy.

(1.1.2)

1.1.1 Fourier-sine series

Using the previous, our goal now is to describe continuous functions f : [0, p] → R with finitely
many discontinuity points defined only on an interval.

Definition 1.1.3. Let p > 0 and let f : [0, p] → R be given such that f has only finitely many
discontinuity points, and 0 = f(0) = f(p). We define the 2p–periodic, odd extension f̂ : R → R of
f as follows: First, we define the odd extension f̄ of f on [−p, p] by

f̄(x) :=

f(x), 0 ≤ x ≤ p,

−f(−x), −p ≤ x < 0,

and then, we extend further it to f̂ defined on R 2p–periodically by

f̂(x) := f̄(x− kp) for x ∈ [(2k − 1)p, (2k + 1)p], where k ∈ Z

Clearly, f(x) = f̂(x) for every x ∈ [0, p]. Thus, using Theorem 1.1.2, (1.1.1) and (1.1.2) for
the 2p–periodic odd extension, we get the following corollary:

Corollary 1.1.4. Let p > 0 and suppose that f : [0, p] → R is a piecewise continuously differentiable
function with only finitely many discontinuities. Then

f(x) =

∞∑
n=1

bn sin(
πn

p
x), where bn =

2

p

∫ p

0
f(x) sin(

πn

p
x)dx

for every x ∈ [0, p] for which f is continuous.
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Example 1.1.5. Consider the function f : [0, 2] → R defined as

f(x) =

x if 0 ≤ x < 1,

2− x if 1 ≤ x ≤ 2.

Determine the Fourier-sine series of f .

By Corollary 1.1.4, we only need to determine the bn coefficients. Using the piecewise definition
of f we split the integral defining the Fourier series

bn =

∫ 1

0
x sin

(nπx
2

)
dx+

∫ 2

1
(2− x) sin

(nπx
2

)
dx.

Compute the first and second integral by parts (take u = x, v′ = sin(nπx2 )):

∫ 1

0
x sin

(nπx
2

)
dx =

[
− 2x

nπ
cos

(nπx
2

)]1
0

+
2

nπ

∫ 1

0
cos

(nπx
2

)
dx

= − 2

nπ
cos

(nπ
2

)
+

[
4

n2π2
sin

(nπx
2

)]1
0

= − 2

nπ
cos

(nπ
2

)
+

4

n2π2
sin

(nπ
2

)
.

Similarly ∫ 2

1
(2− x) sin

(nπx
2

)
dx =

[
2(2− x)

nπ
cos

(nπx
2

)]2
1

− 2

nπ

∫ 2

1
cos

(nπx
2

)
dx

=
2

nπ
cos

(nπ
2

)
+

4

n2π2
sin

(nπ
2

)
.

Adding the two contributions cancels the cosine-terms and yields

bn =
8

n2π2
sin

(nπ
2

)
.

Thus, the Fourier-sine series of f on [0, 2] is

f(x) = S[f ](x) =
∞∑
n=1

bn sin
(nπx

2

)
=

∞∑
n=1

8 sin
(
nπ
2

)
n2π2

sin
(nπx

2

)
,

where we used that f is continuous and by Corollary 1.1.4, it coincides with its Fourier-sine series.
To simplify the formula, observe that sin

(
nπ
2

)
= 0 for even n and sin

( (2k+1)π
2

)
= (−1)k, an

equivalent form summing only odd indices is

f(x) =
8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

((2k + 1)πx

2

)
.

Example 1.1.6. Consider the function f(x) = cos(3π2 x) sin(π2x). Find the Fourier-sine series of f .

We first use the product-to-sum identity: sin a cos b = 1
2

(
sin(a+ b) + sin(a− b)

)
. With a = π

2x
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and b = 3π
2 x we get

f(x) = sin
(
π
2x

)
cos

(
3π
2 x

)
= 1

2

(
sin

(
π
2x+ 3π

2 x
)
+ sin

(
π
2x− 3π

2 x
))

= 1
2

(
sin(2πx) + sin(−πx)

)
= 1

2 sin(2πx)−
1
2 sin(πx).

Now observe that the above form is already a sum of Fourier-sine series summands, the first term
corresponds to n = 4 and b4 = 1

2 and the second term corresponds to n = 2 and b2 = −1
2 . By the

uniqueness of the Fourier-series, we have that

S[f ](x) = −1
2 sin(πx) +

1
2 sin(2πx) =

∞∑
n=1

bn sin
(
nπ
2 x

)
, where bn =


−1

2 , n = 2,

1
2 , n = 4,

0, otherwise.

Here, we give the Fourier-sine series of some basic functions, which might appear frequently.

(I) Let h(x) =

1 0 < x < π,

0 x = 0, π.
Then

h(x) =
4

π

(
sin(x) +

sin(3x)

3
+

sin(5x)

5
+

sin(7x)

7
+ · · ·

)
=

∞∑
k=0

4

π(2k + 1)
sin((2k + 1)x)

for 0 ≤ x ≤ π,

(II) Let f(x) =

x 0 ≤ x < π,

0 x = π.
Then

f(x) = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
+ · · ·

)
=

∞∑
n=1

2

n
sin(nx)

for 0 ≤ x < π,

(III) Let g(x) =

x 0 ≤ x ≤ π/2,

π − x π/2 ≤ x ≤ π.
Then

g(x) =
4

π

(
sin(x)− sin(3x)

32
+

sin(5x)

52
− sin(7x)

72
+ · · ·

)
=

∞∑
k=0

(−1)k4

π(2k + 1)2
sin((2k + 1)x)

for 0 ≤ x ≤ π,

(IV) Let φ(x) = x(π − x) for x ∈ [0, π]. Then

φ(x) =
8

π

(
sin(x) +

sin(3x)

33
+

sin(5x)

53
+

sin(7x)

73
+ · · ·

)
=

∞∑
k=0

8

π(2k + 1)3
sin((2k + 1)x)

for 0 ≤ x ≤ π.
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The following proposition helps us to describe how the Fourier-sine series changes under
scaling.

Proposition 1.1.7. Let p > 0 and let f : [0, p] → R be given such that f has only finitely many
discontinuity points with 0 = f(0) = f(p). Suppose that f has Fourier-sine series

S[f ](x) =

∞∑
n=1

bn sin(
πn

p
x).

Let α, β ∈ R such that α ̸= 0. Then the Fourier-sine series of the map g(x) := βf(αx) is

S[g](x) =

∞∑
n=1

(βbn) sin(
παn

p
x).

Proof. Clearly, the map g(x) = βf(αx) is defined on the interval [0, p
α ]. Hence, the nth coefficient

of the Fourier-sine series of g is

2α

p

∫ p/α

0
g(x) sin(

πnα

p
x)dx

= β
2α

p

∫ p/α

0
f(αx) sin(

πnα

p
x)dx

substitute
y=αx
= β

2

p

∫ p

0
f(y) sin(

πn

p
y)dy = βbn.

Example 1.1.8. Let f : [0, 2] → R be the map f(x) = x(2− x). Find the Fourier-sine series of f .

Let φ on [0, π] by
φ(t) = t(π − t), 0 ≤ t ≤ π,

which is the (IV) element of the list above. Then using t = π
2x, we have that

φ(π2x) =
π
2x(π − π

2x) =
π
2x(

π
2 (2− x)) = (π2 )

2f(x), and so f(x) = 4
π2φ(

π
2x).

By the above list we have the Fourier-sine series of φ:

φ(t) =

∞∑
k=0

8

π(2k + 1)3
sin

(
(2k + 1)t

)
, 0 ≤ t ≤ π.

Hence, using Proposition 1.1.7 and substituting t = π
2x, we get

f(x) = S[f ](x) =
∞∑
k=0

4

π2

8

π(2k + 1)3
sin

(
(2k + 1)

π

2
x
)
.
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1.1.2 Exercises

1.1/1. Find the Fourier-sine series of the function f : [0, 3] → R, where

f(x) =


0 0 ≤ x < 1,

1 1 ≤ x < 2,

0 2 ≤ x ≤ 3.

1.1/2. Give the coefficients of the Fourier-sine series of the function f : [0, 3] → R, where

f(x) = cos(
5π

3
x) sin(

π

3
x) + 2 sin(2πx).

1.1/3. Find the Fourier-sine series of the function f : [0, 4] → R, where

f(x) =

5x 0 ≤ x < 2,

20− 5x 2 ≤ x < 4.

1.2 Vibrating string

Let us consider a perfectly ellastic string of length L. Such a string fixed at its ends (or otherwise
constrained) and slightly displaced from its equilibrium position exhibits transverse oscillations
when released. Physically the motion is governed by the balance of (vertical components of)
tension forces and the inertia of small portions of the string. For small transverse displacements
the motion is approximately one-dimensional: we identify the string with the interval [0, L], and
at each horizontal coordinate x ∈ [0, L], the vertical displacement of the string at time t is a scalar
u(x, t).

u(x, t) as a function of x

x

the string at time t

u(x, t)
L

Figure 1.1: Displacement u(x, t) of the vibrating string fixed at the ends.

Theorem 1.2.1. Let us consider a perfectly ellastic string of length L identified with the interval
[0, L]. Then there exists c > 0 such that the vertical displacement u(x, t) of the string at time t > 0

and at coordinate x ∈ [0, L] satisfies the one-dimensional wave equation

u′′tt(x, t) = c2 u′′xx(x, t).

This equation is called vibrating string equation.

8
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Proof. Consider a small segment of the string between x and x +∆x. The tensions at the ends,
T(x, t) and T(x+∆x, t), act tangent to the string. Let θ(x, t) be the angle the string makes with
the horizontal; by small-slope kinematics tan θ ≈ u′x(x, t). Moreover, since the string does not
move left or right, only up and down, the horizontal components must have constant horizontal
magnitudes ≈ H.

The vertical components of the end tensions are H tan θ(x, t) at x (upward if θ > 0) and
H tan θ(x+∆x, t) at x+∆x (but acting on the element in the opposite direction). Thus the net
vertical force Fy on the element is

Fy = H tan θ(x+∆x, t)−H tan θ(x, t) ≈ H
(
u′x(x+∆x, t)− u′x(x, t)

)
. (1.2.1)

u(x, t)

u(x+∆x, t)

T(x, t)

T(x+∆x, t)

x x+∆x

θ(x, t)

θ(x+∆x, t)

Figure 1.2: Zoomed-in view of the string segment between x and x+∆x. The tangent tensions
T(x, t) andT(x+∆x, t) have vertical components given by T tan θ(x, t) and −T tan θ(x+∆x, t).

Suppose that our string has uniform density µ. Then the mass of the small segment is ap-
proximately mass µ∆x, and by Newton’s second law, this gives that

Fy ≈ µ∆x u′′tt(x, t). (1.2.2)

Combining (1.2.1) and (1.2.2), and dividing by ∆x, we get

µu′′tt(x, t) = H
u′x(x+∆x, t)− u′x(x, t)

∆x
.

Letting ∆x → 0 yields
µu′′tt(x, t) = H u′′xx(x, t),

i.e. u′′tt(x, t) = c2u′′xx(x, t) with c2 = H/µ > 0.

Given a perfectly ellastic string of length L (identified with the interval [0, L]) with certain
physical properties encoded in the equation u′′tt(x, t) = c2u′′xx(x, t). We fix its enpoints (u(0, t) =
u(L, t) = 0 for t > 0). One can modify its shape (like stretching a bow) and/or giving it velocity
(like pluck the string on a guitar). In the following, we wish to describe the motion of u(x, t) of
such a string.

9
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Definition 1.2.2. We call the boundary–initial value problem

u′′tt(x, t) = c2u′′xx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x) 0 ≤ x ≤ L,

u′t(x, 0) = g(x), 0 ≤ x ≤ L,

where f is the initial shape and g the initial transverse velocity as vibrating string problem.

Let us begin with the following simple observation.
Proposition 1.2.3. Let u1(x, t) and u2(x, t) be function such that both satisfy the vibrating string
equation u′′tt(x, t) = c2u′′xx(x, t). Then for every constants a, b ∈ R, the map a ·u1+b ·u2 also satisfies
the vibrating string equation.

This simply follows by the linearity of the differentiation.

1.2.1 Bernoulli’s solution

First, we consider a solution, which takes into account the Fourier-sine representation of func-
tions, and which is called Bernoulli’s solution.
Theorem 1.2.4 (Bernoulli’s solution). Let us consider the following vibrating string problem:

u′′tt(x, t) = c2u′′xx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x) 0 ≤ x ≤ L,

u′t(x, 0) = g(x), 0 ≤ x ≤ L,

Then

u(x, t) =

∞∑
n=1

(
An cos(

nπc

L
t) +Bn sin(

nπc

L
t)
)
sin(

nπ

L
x),

where
An =

2

L

∫ L

0
f(x) sin(

nπ

L
x)dx and Bn =

2

nπc

∫ L

0
g(x) sin(

nπ

L
x)dx,

that is, An are the Fourier-sine coefficients of f(x) and πnc
L Bn are the Fourier-sine coefficients of g(x).

Proof. First, assume u(x, t) = T (t)X(x) ⇒, then by the u′′tt(x, t) = c2u′′xx(x, t), we have

T ′′(t)

c2T (t)
=

X ′′(x)

X(x)
.

Since the left-hand side depends only on t and the right-hand side depends only on x, this is
possible only if there exists some constant λ ∈ R (independent of t and x) such that

T ′′(t)

c2T (t)
= λ and X ′′(x)

X(x)
= λ.

10
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Hence, we get that T (t) satisfies the ordinary differential equation

T ′′(t)− c2λT (t) = 0.

The general solution of T then is the following:

T (t) =


Ae−c

√
λt +Bec

√
λt if λ > 0,

At+B if λ = 0,

A cos(
√
−λct) +B sin(

√
−λct) if λ < 0.

However, the first two case is not possible physically, since they would imply that |T (t)| → ∞ as
time passes t → ∞ (so the string would blew away to infinity), and so, only the third option

T (t) = A cos(
√
−λct) +B sin(

√
−λct) (1.2.3)

is physically relevant.
Thus, we see that X(x) also satisfies the ordinary differential equation with initial valuesX ′′ + λX = 0,

X(0) = X(L) = 0,

for some λ < 0. Therefore, and from a similar calculation for X(x)

X(x) = C cos(
√
−λx) +D sin(

√
−λx).

Clearly, 0 = X(0) can happen if and only if C = 0. On the other hand X(L) = 0 then implies
that

0 = X(L) = D sin(
√
−λL)

So either D = 0 (but this would mean that u(x, t) ≡ 0, which is again a physical non-sense) or
√
−λ = nπ

L for some n ∈ N. Thus, combining this with (1.2.3), we see that the maps

un(x, t) =
(
A cos(

nπ

L
ct) +B sin(

nπ

L
ct)

)
sin(

nπ

L
x)

satisfy the vibrating string equation u′′tt(x, t) = c2u′′xx(x, t) with boundary condition u(0, t) =

u(L, t) = 0 for every A,B ∈ R and n ∈ N. Since the solutions are linear in sense of Proposi-
tion 1.2.3, we get that the general solution is of the form

u(x, t) =

∞∑
n=1

(
An cos(

cnπ
L t) +Bn sin(

cnπ
L t)

)
sin(nπL x),

where An, Bn ∈ R.
From the initial values, we will be able to get back the coefficients, An, Bn:

f(x) = u(x, 0) =
∞∑
n=1

An sin(
nπ
L x)

11
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thus by Corollary 1.1.4, choosing

Ak =
2

L

∫ L

0
f(x) sin(kπL x)dx

we get the desired equation. Similarly,

g(x) = u′x(x, 0) =
∞∑
n=1

ncπ
L Bn sin(

nπ
L x)

gives that ncπ
L Bn must be the Fourier-sine coefficients of g(x), and so

Bk =
2

kπc

∫ L

0
g(x) sin(kπL x)dx.

Example 1.2.5. Solve the following vibrating string problem

u′′tt = 2u′′xx, 0 < x < 3, t > 0,

u(0, t) = 0, u(3, t) = 0, t ≥ 0,

u(x, 0) = f(x) = sin(πx) cos
(
4πx
3

)
+ sin

(
2πx
3

)
, 0 ≤ x ≤ 3,

u′t(x, 0) = g(x) =

1 if 0 < x < 3

0 if x = 0, 3.
.

First, we get the important constants c2 = 2 ⇒ c =
√
2 and L = 3. Then the general solution

has the form

u(x, t) =
∞∑
n=1

sin
(
nπ
3 x

)(
An cos(

nπ
√
2

3 t) +Bn sin(
nπ

√
2

3 t)
)
,

Decompose f using product-to-sum:

sin(πx) cos
(
4πx
3

)
= 1

2

[
sin

(
7πx
3

)
− sin

(
πx
3

)]
.

Thus
f(x) = 1

2 sin
(
7πx
3

)
− 1

2 sin
(
πx
3

)
+ sin

(
2πx
3

)
.

Since the eigenfunctions are sin
(
nπx
3

)
, the Fourier–sine coefficientsAn =

2

3

∫ 3
0 f(x) sin

(
nπx
3

)
dx equal

the amplitudes above:

A1 = −1
2 , A2 = 1, A7 =

1
2 , An = 0 for n ̸∈ {1, 2, 7}.

For g(x) = 1 on (0, 3):

∫ 3

0
sin

(
nπx
3

)
dx =

3

nπ

(
1− (−1)n

)
=


6

nπ
, n odd,

0, n even.

12
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Hence

Bn =
2

3 · nπ
√
2

3

∫ 3

0
g(x) sin

(
nπx
3

)
dx =


6
√
2

n2π2
, n odd,

0, n even.

Therefore the solution is

u(x, t) = −1
2 sin

(
πx
3

)
cos

(
π
√
2 t
3

)
+ sin

(
2πx
3

)
cos

(
2π

√
2 t

3

)
+ 1

2 sin
(
7πx
3

)
cos

(
7π

√
2 t

3

)
+

∞∑
k=0

6
√
2

(2k + 1)2π2
sin

(
(2k+1)πx

3

)
sin

(
(2k+1)π

√
2 t

3

)
.

Example 1.2.6. A dulcimer player plays an instrument with strings one meter long. He strikes the
string exactly in the middle, from above, with a small hammer with a 2 centimetre long head, at a
speed of 1m/s. The string satisfies the vibrating string equation utt

′′(x, t) = 2u′′xx(x, t). Describe the
vibration of the string (the units are given in meter).

We model the string on the interval 0 < x < L with L = 1 m. The PDE given is

utt(x, t) = 2uxx(x, t),

so c2 = 2 and c =
√
2. The string is fixed at the ends:

u(0, t) = u(1, t) = 0 (t ≥ 0).

Model the initial data coming from the hammer strike. The hammer head is 0.02 m long and
hits the midpoint x = 1

2 , therefore the contact interval is[
1
2 − 0.01, 1

2 + 0.01
]
= [0.49, 0.51].

The hammer gives (approximately) a uniform downward velocity 1 m/s to the contacted portion.
Choosing the upward direction positive, the initial displacement is zero and the initial velocity is

f(x) = u(x, 0) = 0, g(x) = ut(x, 0) =

−1, 0.49 < x < 0.51,

0, otherwise (on [0, 1]).

By Theorem 1.2.4, the general solution is

u(x, t) =
∞∑
n=1

(
An cos(nπct) +Bn sin(nπct)

)
sin(nπx),

with (here L = 1)

An = 2

∫ 1

0
f(x) sin(nπx) dx, Bn =

2

nπc

∫ 1

0
g(x) sin(nπx) dx.

13
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Since f ≡ 0 we have An = 0 for every n. For Bn we compute the integral over the contact interval:∫ 1

0
g(x) sin(nπx) dx =

∫ 0.51

0.49
(−1) sin(nπx) dx =

1

nπ

(
cos(0.51nπ)− cos(0.49nπ)

)
.

Hence
Bn =

2

n2π2c

(
cos(0.51nπ)− cos(0.49nπ)

)
.

Therefore, using that cosA− cosB = −2 sin
(
A+B
2

)
sin

(
A−B
2

)
,

u(x, t) =
∞∑
n=1

Bn sin
(
nπ

√
2 t

)
sin(nπx), Bn = − 2

√
2

n2π2
sin

(
nπ
100

)
sin

(
nπ
2

)
.

Figure 1.3: Animation: Vibration of a hammered string. You might need to change your PDF
reader for this.

1.2.2 D’Alembert’s solution

Now, we consider an alternative solution, which takes into account the movement of the peaks
of the waves, called D’Alembert’s solution.

Theorem 1.2.7 (D’Alembert’s solution I). Let us consider the following vibrating string problem:

u′′tt(x, t) = c2u′′xx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x) 0 ≤ x ≤ L,

u′t(x, 0) = g(x), 0 ≤ x ≤ L,

Then

u(x, t) =
f̂(x+ ct) + f̂(x− ct)

2
+

1

2c

∫ x+ct

x−ct
ĝ(y)dy,

14
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where f̂(x) and ĝ(x) are the 2L–periodic, odd extension of the functions f(x) and g(x) defined in
Definition 1.1.3.

Proof. Assume that the solution has the form

u(x, t) = F (x+ ct) +G(x− ct).

Then

u′′xx(x, t) = F ′′(x+ ct) +G′′(x− ct) and u′′tt(x, t) = c2F ′′(x+ ct) + c2G′′(x− ct),

thus, u(x, t) satisfies the vibrating string equation u′′tt(x, t) = c2u′′xx(x, t).
Now, let us extend the initial conditions 2L-periodic and odd functions on R. The initial

conditions imply
f̂(x) = u(x, 0) = F (x) +G(x),

ĝ(x) = u′t(x, 0) = cF ′(x)− cG′(x).

Integrating the last equality, we get that for every x ∈ R∫ x

0
ĝ(y)dy = cF (x)− cF (0)− cG(x) + cG(0).

Solving the linear equation system

cF (x)− cG(x) =
∫ x
0 ĝ(y)dy + cF (0)− cG(0)

F (x) +G(x) = f̂(x)

}

we get

F (x) =
f̂(x)

2
+

1

2c

∫ x

0
ĝ(y)dy + F (0)−G(0) and G(x) =

f̂(x)

2
− 1

2c

∫ x

0
ĝ(y)dy − F (0) +G(0).

Hence,
u(x, t) = F (x+ ct) +G(x− ct)

=
f̂(x+ ct) + f̂(x− ct)

2
+

1

2c

∫ x+ct

0
ĝ(y)dy − 1

2c

∫ x−ct

0
ĝ(y)dy

=
f̂(x+ ct) + f̂(x− ct)

2
+

1

2c

∫ x+ct

x−ct
ĝ(y)dy.

Finally, let us check the boundary conditions u(0, t) = u(L, t) = 0. Substituting t = 0, we get

u(0, t) =
f̂(ct) + f̂(−ct)

2
+

1

2c

∫ ct

−ct
ĝ(y)dy =

f̂(ct)− f̂(ct)

2
+

1

2c

∫ ct

0
ĝ(y)dy +

1

2c

∫ 0

−ct
ĝ(y)dy

substituting
z=−y
=

1

2c

∫ ct

0
ĝ(y)dy +

1

2c

∫ 0

ct
ĝ(−y)(−1)dy =

1

2c

∫ ct

0
ĝ(y)dy −

∫ ct

0
ĝ(y)dy = 0,

15
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where we used that f̂ and ĝ are odd functions. Similarly,

u(L, t) =
f̂(L+ ct) + f̂(L− ct)

2
+

1

2c

∫ L+ct

L−ct
ĝ(y)dy

using oddity &
substituting

z=−y
=

f̂(L+ ct)− f̂(−L+ ct)

2
+

1

4c

∫ L+ct

L−ct
ĝ(y)dy +

1

4c

∫ −L−ct

−L+ct
ĝ(−y)(−1)dy

by 2L-period.
=

f̂(L+ ct)− f̂(L+ ct)

2
+ +

1

4c

∫ L+ct

L−ct
ĝ(y)dy − 1

4c

∫ L+ct

L−ct
ĝ(y)dy = 0.

Observe that we have not used during the proof the boundary conditions to find the solutions.
Contrary, we have verified it after we got the solution. This makes it possible to apply D’Alembert’s
solution for infinite strings, when the string is identified with the whole real line.

Theorem 1.2.8 (D’Alembert’s solution II). Let us consider the following infinite vibrating string
problem: 

u′′tt(x, t) = c2u′′xx(x, t), x ∈ R, t > 0,

u(x, 0) = f(x) x ∈ R,

u′t(x, 0) = g(x), x ∈ R,

Then
u(x, t) =

f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(y)dy.

Example 1.2.9. An infinite string is linearly stretched between the "points" (−∞, 0), (−1, 0), (0, 2), (1, 0)

and (0,∞) in this order, and is released at time t = 0. An infinite string is fixed at the points
(−1, 0), (0, 2), (1, 0) and released at time t = 0. Let u(x, t) be the function which describes the move-
ment of the infinite vibrating string, which satisfies the equation u′′tt = 4u′′xx. Describe the movement
of the string at point x = 2.

The initial condition is

f(x) =

2(1− |x|), |x| ≤ 1,

0, |x| > 1,
and g(x) ≡ 0.

By Theorem 1.2.8, the solution is

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(y) dy

=
f(x+ 2t) + f(x− 2t)

2
.

We are asked for the motion at x = 2. Thus

u(2, t) =
f(2 + 2t) + f(2− 2t)

2
.

16
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Observe that f is supported on [−1, 1], but, for all t ≥ 0 we have 2+2t ≥ 2 > 1, hence f(2+2t) = 0.
Furthermore |2− 2t| ≤ 1 ⇐⇒ t ∈ [12 ,

3
2 ]. Therefore

u(2, t) =
f(2− 2t)

2
=

(1− |2− 2t|), if t ∈ [12 ,
3
2 ],

0, else.

Splitting at t = 1 gives the piecewise linear form

u(2, t) =



0, 0 ≤ t < 1
2 ,

2t− 1, 1
2 ≤ t ≤ 1,

3− 2t, 1 ≤ t ≤ 3
2 ,

0, t > 3
2 .

Thus the motion at x = 2 is a triangular pulse in time: it is zero until t = 1
2 , then grows linearly

to the maximum value u(2, 1) = 1 at t = 1, and decays linearly back to zero at t = 3
2 ; outside

[1/2, 3/2] the displacement at x = 2 is zero.

Figure 1.4: Animation: A tent in an infinite horizon. You might need to change your PDF reader
for this.

1.2.3 Exercises

1.2/1. Let us consider the following vibrating string equation:

u′′tt(x, t) = 3u′′xx(x, t) 0 ≤ x ≤ 2, t ≥ 0;

u(0, t) = u(2, t) = 0 t ≥ 0;

u(x, 0) = 0 0 ≤ x ≤ 2;

u′t(x, 0) = sin(πx)
(
cos(2πx) + 1

2

)
0 ≤ x ≤ 2.

17
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Determine the function u(x, t)!

1.2/2. An archer has a 2 meter-long bow. He grabs the string of the bow exactly at the middle
and stretches his bow 1 meter-long are releases it. The bow satisfies the vibrating string
equation u′′tt = u′′xx. Describe the movement of the string of the bow in time!

1.2/3. A meteor impacts into the ocean. (Although the ocean is a surface, we model it here with an
infinite string). The meteor hits the ocean on the interval [−1, 1] (the lengths are given in
km) with velocity 60 km/h (note that the meteor hits the ocean from above). The vibration
of the ocean is described by the equation u′′tt = 4u′′xx. There is a ship 15km away from the
origin to the right. Describe the movement of the ship in time.

1.3 Heat transport

Finally, we will consider heat conduction in a special case. Let us consider a rod of length L

identified with the [0, L] interval. Let u(x, t) denote temperature at position x ∈ (0, L) and time
t > 0. We will assume that the endpoints of the rod have constant temperature zero.

Definition 1.3.1. We call the boundary–initial value problem
u′t(x, t) = κu′′xx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x) 0 < x < L,

where κ > 0 is called the thermal diffusivity constant, and f(x) is the initial temperature as heat
transport problem.

Our goal is now to describe how the temperature changes with time.

Theorem 1.3.2. Let us consider the following heat transport problem:
u′t(x, t) = κu′′xx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x) 0 ≤ x ≤ L.

Then

u(x, t) =

∞∑
n=1

Ane
−(nπ

L )
2
κt sin(

nπ

L
x), where An =

2

L

∫ L

0
f(x) sin(

nπ

L
x)dx,

that is, An are the Fourier-sine coefficients of f(x).

Proof. We solve the heat equation on the rod 0 < x < L with similar method to Bernoulli’s
solution in case of vibrating strings, namely, by separation of variables.

Assume that u(x, t) = X(x)T (t) with X ̸≡ 0, T ̸≡ 0. Substitution gives

X(x)T ′(t) = κX ′′(x)T (t) =⇒ T ′(t)

κT (t)
=

X ′′(x)

X(x)
.

18
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Since the left-hand side depends only on t and the right-hand side depends only on x, this is only
possible if there exists a constant λ ∈ R such that

T ′(t)

κT (t)
= λ and X ′′(x)

X(x)
= λ.

Notice that
λκ =

T ′(t)

T (t)
=

(
log T (t)

)′
=⇒ T (t) = Aeλκt.

This implies that physically the only relevant choice for the constant λ is λ < 0. Otherwise, if
λ > 0 then |T (t)| → ∞ as t → ∞, which means that the temperature blows up (without outer
source of energy), and if λ = 0 then T (t) ≡ A, which means that the temperature would be
unchanged in time.

On the other hand, we got that the function X(x) satisfies the following initial problem ordi-
nary differential equation

X ′′(x)− λX(x) = 0, X(0) = X(L) = 0.

while similarly to the previous section, X(t) has the form

X(x) = B cos(
√
−λx) + C sin(

√
−λx).

Using the boundary condition, we get X(0) = B = 0, and X(L) = sin(
√
−λL) = 0, which gives

that √−λ = nπ
L for some n ∈ N. In particular, λ = −

(
nπ
L

)2. Hence, the general solution is

u(x, t) =

∞∑
n=1

Ane
−κ(nπ/L)2t sin

(nπ
L

x
)
.

where we used that the (countable) linear combination of the solutions of u′t = κu′′xx is a solution.
Now, considering the initial condition, substituting x = 0 into the general solution, we get

f(x) = u(x, 0) =
∞∑
n=1

An sin
(nπ
L

x
)
,

which means means that
An =

2

L

∫ L

0
f(x) sin

(nπ
L

x
)
dx.

Example 1.3.3. Solve the following heat transport equation

u′t(x, t) = 3u′′xx(x, t), 0 < x < 2, t > 0,

u(0, t) = u(2, t) = 0, t ≥ 0,

u(x, 0) =

x, 0 < x < 1,

2− x, 1 < x < 2,
, 0 ≤ x ≤ 2,
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We apply Theorem 1.3.2 with L = 2, κ = 3 and

f(x) =

x, 0 < x < 1,

2− x, 1 < x < 2,

and the general solution has the form

u(x, t) =
∞∑
n=1

Ane
−(nπ

2 )
2
3t sin

(nπx
2

)
.

Let us now computeAn. It is easy to see that f resembles to the function g(x) =

x 0 ≤ x < π/2

π − x π/2 ≤ x ≤ π

in (III) in Section 1.1.1, where we see that

g(x) =

∞∑
k=0

(−1)k4

π(2k + 1)2
sin((2k + 1)x). (1.3.1)

We see that f(2) = 0 and g(π) = 0, so we might apply the scaling t = π
2x in the variable, moreover,

f(1) = 1 and g(π/2) = π/2, gives the scaling y = 2
πx. In other words,

f(x) = 2
πg(

π
2x).

So using Proposition 1.1.7 and (1.3.1), we get

f(x) =
∞∑
k=0

(−1)k8

π2(2k + 1)2
sin(

(2k + 1)π

2
x).

Therefore

u(x, t) =

∞∑
k=0

(−1)k8

(2k + 1)2π2
sin

(
(2k + 1)π

2
x

)
e−

3(2k+1)2π2

4 t.

1.3.1 Exercises

1.3/1. A rod of length 3 meters satisfies the heat transport equation u′t(x, t) = 2u′′xx(x, t), where
u(x, t) represents the temperature of the rod at time t and at position x. We heat up the
whole rod to 5 except the endpoints which are kept on 0. Determine the function u(x, t)!
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1.4 Mixed exercises in Partial Differential Equations

1.4/1. Solve the following vibrating string problem!

u′′tt(x, t) = 3u′′xx(x, t) 0 ≤ x ≤ 2, t ≥ 0

u(0, t) = u(2, t) = 0 t ≥ 0

u(0, x) =


0 0 ≤ x < 1/2

1 1/2 ≤ x ≤ 3/2

0 3/2 < x ≤ 2

u′t(0, x) = 0 0 ≤ x ≤ 2

1.4/2. Let us consider the following vibrating string equation:

u′′tt = 3u′′xx 0 ≤ x ≤ 2, t ≥ 0;

u(0, t) = u(2, t) = 0 t ≥ 0;

u(x, 0) = 0 0 ≤ x ≤ 2;

u′t(x, 0) = sin(πx) cos(2πx) cos(3πx) 0 ≤ x ≤ 2.

Determine the function u(x, t)!
1.4/3. Let us consider the following vibrating string equation:

u′′tt = u′′xx 0 ≤ x ≤ 3, t ≥ 0;

u(0, t) = u(3, t) = 0 t ≥ 0;

u(x, 0) = x(3−x)
2 0 ≤ x ≤ 3;

u′t(x, 0) =

1 0 < x < 3,

0 x = 0, 3.

Determine the function u(x, t)!
1.4/4. Let us consider the following infinite vibrating string equation:

u′′tt(x, t) = 4u′′xx(x, t) x ∈ R, t ≥ 0;

u(x, 0) = 0 x ∈ R

u′t(x, 0) =

3 0 ≤ x ≤ 10,

0 otherwise.

Determine u(−1, 2) =?

1.4/5. Consider the following heat transport equation:
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

u′t(x, t) = u′′xx(x, t) x ∈ [0, 5], t ≥ 0;

u(0, t) = u(5, t) = 0 t ≥ 0

u(x, 0) =

2x if 0 ≤ x ≤ 1

4− 2x if 1 ≤ x ≤ 2

Determine u(x, t) =?
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