
W E A K S E PA R AT I O N P R O P E RT Y F O R

S E L F - S I M I L A R S E T S

bachelor thesis

author

Levente Dávid

supervisor

Balázs Bárány

Department of Stochastics

BME

May 2023

Budapest University of Technology and Economics



Levente Dávid: Weak Separation Property for Self-Similar Sets, Bachelor Thesis,

May 2023



C O N T E N T S

1 Introduction to Iterrated Function Systems 2

1.1 General theory of IFS’s . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Measure and dimension . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Symbolic space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Properties of well separated sets . . . . . . . . . . . . . . . . . . . 9

2 Weak Separation property 15

2.1 Dimension drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A new separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Proof of the equivalent conditions 27

3.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 A clear view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The grand cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The secondary paths . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Remainder implications . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 46

1



1
I N T R O D U C T I O N T O I T E R R AT E D F U N C T I O N

S Y S T E M S

1.1 general theory of ifs’s

Both in nature and mathematics people observe geometric objects with deep

self-reoccuring structures. The field which study these is called Fractal Geometry.

Weierstrass function

The development of the analysis of such objects

started in the 19th century with mathematicians study-

ing the diversity and the complexity of functions. One

could have asked that does there exist a continuous

function on R which is nowhere differentiable. The an-

swer is yes, and an example is the Weierstrass function,

and by that we have discovered a function with many

new fractalic properties, leading us to a new area. The main breakthrough (be-

coming a widely know mathematical branch) came in the 20th century with

Benoit Mandelbrot who founded and popularised the field. Even the name fractal,

which comes from the latin fractus meaning broken, fractured was used first

by him. Nowadays, fractal geometry is an actively researched field induced by

the huge number of occurrences of fractals and self-similar structures not only

in mathematics, but even in other scientific fields such as finance, biology and

physics.

One widely used and studied way of constructing fractals are trough Iterated

Function Systems (IFS), which in some case gave us much more simplistically

2



The Sierpiński gasket Koch snowflake
Harter-Heighway
dragon curve

looking fractals such as the well know ones like the Sierpiński gasket, the Koch

snowflake or the Harter-Heighway dragon curve.

Definition 1.1.1 (IFS) Let (X, dist) be a complete metric space. We say that

a map f:X → X is a contraction if there exists λ ∈ (0, 1) such that for any x, y ∈

X : dist(f(x), f(y)) ≤ λ · dist(x, y). The appropriate λ is called the contracting

ratio of f . We call a finite collection of contractions Φ = {f1, f2, . . . , fm} an

Iterated Function System.

We can extend the definition of the distance to sets: let dist(A,B) denote

inf{dist(a, b) | a ∈ A, b ∈ B} throughout the document. We denote by B(A, r) :=

{x | dist(A,x) ≤ r} the closed r-neighbourhood of the set A. At many cases we

need a distance which can distinguish between intersecting sets, the previusly

defined distance fails at this. This observation leads to the definition of an other

distance distH(A,B) := inf
{
r ≥ 0

∣∣∣ A ⊆ B(B, r) and B ⊆ B(A, r)
}

which

is called Hausdorff distance/metric. The following theorem lets us define the

invariant set of the IFS, which will be the main object we will study.

Theorem 1.1.1 (Hutchinson, [9]) For every IFS Φ = {f1, . . . , fm} there ex-

ist a unique, non-empty, compact set Λ ⊂ X such that Λ = ∪mi=1fi(Λ). We call

Λ the attractor of the IFS.

The draft of the construction of the attractor is the following:
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• We start by just an arbitrary ball with radius R centered at xo. To get

the Λ = ∪mi=1fi(Λ) we need the R large enough so that fi(B(xo, R)) ⊆

B(xo, R) for any i ∈ {1, . . . ,m} By the maps being contractions and the

finiteness of the set of maps we can choose such R > 0.

• Now we iterate the ball trough the fi-s, and then union them up getting:

Λn := ∪mi1=1 ∪mi2=1 . . .∪min=1 (fi1 ◦ fi2 ◦ . . . ◦ fin)(B(xo, R)).

• Then Λn+1 ⊆ Λn by the choice of R and Λn is an union of finite many

compact sets because the maps are contractions. These two properties let us

use the Cantor intersection theorem, which gives us that there is a Λ ⊆ Rd

compact, non-empty such that Λ = ∩∞
n=1Λn.

• Note that we are done because

Λ = ∩∞
n=1 ∪mi1=1 ∪mi2=1 . . .∪min=1 (fi1 ◦ . . . ◦ fin)(B(xo, R))

= ∪mi1=1fi1
(

∩∞
n=2 ∪mi2=1 . . .∪min=1 (fi1 ◦ . . . ◦ fin)(B(xo, R))

)
= ∪mi1=1fi1(Λ).

1.2 measure and dimension

In geometry, it is usual to consider measuring length, area, volume and so on.

Doing so, given nice set, we might prefer values between 0 and ∞ not containing

the borders, but at many cases with fractals we can get infinite length but zero

area. This phenomenon leads us to consider some sort of measure between the

integer dimensions.

We first need a generalization of measure on Rd, or even more, we would

like to have a generalized s ∈ [0, d] dimensional measure in Rd. The following

construction gives us exactly what we want, with a nice geometric intuition trough

just containment in unions and limit.
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Definition 1.2.1 (s-dimensional Hausdorff measure) Let (X , dist) be a

complete metric space, E ⊂ X. For δ > 0 and s ≥ 0:

Hs
δ(E) := inf

{∑
i∈I

|Ui|s
∣∣∣∣ I is countable, E ⊆ ∪i∈IUi

and ∀i ∈ I : |Ui| ≤ δ
}

.

Then the s-dimensional Hausdorff outer measure of E is:

Hs(E) := lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs
δ(E).

Another measure used in the field is the Hausdorff content, which does not always

equal to the Hausdorff measure. Their relation is studied in [7].

Definition 1.2.2 (s-dimensional Hausdorff content) Let (X , dist) be a com-

plete metric space, E ⊂ X. For s ≥ 0 the s-dimensional Hausdorff content of E

is:

Hs
∞(E) := inf

{∑
i∈I

|Ui|s
∣∣∣∣ I is countable, E ⊆ ∪i∈IUi

}
.

Now after we concluded a measure, we ask that which/what sets are measurable?

A property that gives nice answer to this is that the Hausdorff measure is a

metric-outer measure, meaning that for any two positively separated sets, the

measure of their union equals to the sum of their measures. It is know that for a

metric-outer measure every Borel set B ∈ B is measurable see [3].

After this we can notice that the Hausdorff Measure can be thought of as a

function from R+ × B(Rd) to R+,0. Therefore it is natural to ask that is any

continuity happening in the first variable which is the measure dimension? The

following Lemma gives us an answer for exactly this.

Lemma 1.2.1 For E ∈ B(Rd), for any α > 0 we have:
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(1) If Hα(E) < ∞, then for any β > α we have:

Hβ(E) = 0.

(2) If Hα(E) > 0, then for any β < α we have:

Hβ(E) = ∞.
s

Hs(E)

s∗

∞

0

?

Corollary: This lets us to have at most one positive real γ such that ∞ >

Hγ(E) > 0.

Proof:

• We only give a proof for the first statement, the second one follows in a

similar fashion. From these two, the Corollary comes trivially.

• Given Hα(E) < ∞, by the definition of the Hausdorff measure: for every

ε > 0 exists δ > 0, exists Ui, i ∈ I countable cover of E such that for any i

we have |Ui| < δ and ∑i∈I |Ui|α ≤ Hα(E) + ε.

• Then we have: ∑i∈I |Ui|β ≤ δ(β−α)∑
i∈I |Ui|α ≤ δ(β−α)

(
Hα(E) + ε

)
→ 0

as δ goes to 0 proving the statement.

This phenomena let’s us to define a property of the set E at the snapping point,

which will be well-defined by the previous lemma.

Definition 1.2.3 (Hausdorff dimension) Let (X , dist) be a complete metric

space, for E ⊂ X the Hausdorff dimension is:

dimHE := inf{α > 0 | Hα(E) = 0}

:= sup{α > 0 | Hα(E) = ∞}.

Lemma 1.2.2 Let (X , dist) be a complete metric space, then for any A ⊂ X :

dimHA := inf{s ≥ 0 | Hs
∞(A) = 0}.

Some properties of the Hausdorff dimension:

1. Monotonicity: dimHA ≤ dimHB, ∀A ⊆ B.
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2. Countable stability: dimH
{

∪i∈IEi
}
= supi∈I

{
dimHEi

}
for all I countable

set.

3. Vol(E) > 0 =⇒ dimHE = d, where Vol is the d-dimensional Lebesgue

measure.

4. f : X → Y is α-Hölder (that is ∃C > 0 ∀x, y ∈ X : |f(x) − f(y)| ≤

C · |x− y|α) =⇒ dimH
{
f(E)

}
≤ dimH E

α .

5. f : X → Y is bi-Lipschitz (that is ∃L such that ∀x, y ∈ X : 1
L |x− y| ≤

|f(x) − f(y)| ≤ L|x− y|) =⇒ dimH
{
f(E)

}
= dimHE.

6. f : X → Y is a similarity (ϱ(x, y) = λ · ϱ(f(x), f(y)) ) =⇒ Hα(f(E)) =

λαHα(E).

For the proof, see [5].

Many more dimension concepts have been developed, we will use the following

two: lower- and upper-box-counting dimension:

dimBE := lim inf
δ→0+

log{Nδ(E)}
−log{δ}

, dimBE := lim sup
δ→0+

log{Nδ(E)}
−log{δ}

,

where Nδ(E) := min{m > 0 | ∃x1,x2, . . . ,xm : E ⊆ ∪mi=1B(xi, δ)} . If dimBE =

dimBE, then we can talk about the box-counting dimension : dimBE :=

dimBE. The box-counting dimension can also be computed with packings in-

stead of coverings. Let Pr(E) := max{m > 0 | ∃x1,x2, . . . xm ∈ E : B(xi, r) ∩

B(xj , r) ̸= Ø =⇒ i = j} be the maximal δ packing of the set E. Then

Pr(E) ≤ Nr(E) trivially and Pr(E) ≥ N2r(E) because if xi-s give N2r(E) = t

then those xi-s give a at least t disjoint balls with radius r otherwise the balls

which create intersection would also be unnecessary for the covering. Therefore:

dimBE := lim inf
δ→0+

log{Pδ(E)}
−log{δ}

, dimBE := lim sup
δ→0+

log{Pδ(E)}
−log{δ}

.
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The general relationship between the Hausdorff dimension and the box-counting

dimensions is: dimHE ≤ dimBE.

1.3 symbolic space

Definition 1.3.1 Let A be a set of finite symbols. Then we define the set of

n-length words by Σn := An, ∀n ∈ N. The set of words with finite length is

Σ∗ :=
⋃∞
n=0 An. Finally, the Symbolic Space is the set of words with infinite

length Σ := AN.

The symbolic space is particularly useful by the following:

Given an IFS Φ = {f1, f2, . . . , fm}, we denote fj1 ◦fj2 ◦ . . .◦fjn by just f(j1,j2,...,jn)

= fi for i = (j1, . . . , jn) ∈ Σ∗. Now it is natural ask that can we extend this to

infinite words. The following map gives us just that. Introduce a natural map

π from the Symbolic Space Σ given by A = {1, 2, . . . ,m} to the points of the

attractor: for i = (i1, i2, . . . ) ∈ Σ

π : i 7−→ fi(Λ) :=
∞⋂
n=1

fi1 ◦ fi2 ◦ · · · ◦ fin(Λ)

= lim
n→∞ fi1 ◦ fi2 ◦ · · · ◦ fin(0).

The symbolic space allows us to analyze fractals much more. Two of the construc-

tions for this are the measure on the symbolic space, which can be pushed to the

attractor and the minimal cut-sets/partition: Let p := (pi)i∈{1,...,m} be a probabil-

ity vector. For i ∈ Σ∗, let [i] = [(i1, i2, i3, . . . , in)] = {τ ∈ Σ | ∀l ∈ {1, 2, . . . ,n} :

il = τl}. Now for i = (i1, i2, . . . , in) define ν([i]) := pi1 · pi2 · . . . · pin , then the

Kolmogorov extension theorem extends this to Σ giving us a measure called the

Bernoulli-measure. Another useful notation is for j = (j1, j2, . . . , jn−1, jn) ∈ Σ∗

we define j− := (j1, j2, . . . , jn−1).
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Definition 1.3.2 (minimal cut-sets/partition) We call Γ ⊆ Σ∗ a minimal

cut-sets/partition of Σ if:

1. For ∀i, j ∈ Γ such that i ̸= j we have [i] ∩ [j] =Ø.

2. ⋃i∈Γ[i] = Σ.

Ø

1

11

111 112 . . . 11n

. . . 1n

2 3 . . . n

n1 . . . nn

A possible partition in Σ generated by A = {1, 2, . . . , n, }

The following property is the very essence of the partition:

If Γ is a partition and ν is a Bernoulli-measure on Σ, then ∑i∈Γ ν([i]) = 1. This

also ensures us that ν is a probability measure on Σ. Furthermore if C denotes

the σ-algebra generated by the cylinders then ν is C-measureble.

Definition 1.3.3 (stationary measure) Let µ be a push-forward of some

Bernoulli-measure on Σ∗ to the attractor, meaning: µ = π ∗ ν = ν ◦ π−1. For

A ⊂ X Borel, define µ(A) := ν(π−1(A)). We call µ a stationary measure on the

attractor.

1.4 properties of well separated sets

In this section we will see some interesting results using more or less the regularity

of well behaving fractals. As we move forward, the reader might ask, are these quite

strict properties what we stated necessary? If not, what kind of generalization
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can we get? The constraint of our generality is that from now on in this paper

we will be interested in only X = Rd with dist being the Euclidean metric.

Definition 1.4.1 (self-similar) If the maps fi : Rd → Rd of the IFS are

similarities (i = 1, . . . ,m):

fi(x) = λi·Oi · x+ ti where λi ∈ (0, 1) ti ∈ Rd

Oi ∈ O(d, R) (the set of d × d orthonormal matrices),

then we call the IFS self-similar, and the attractor self-similar set.

The following two notations will be used constantly: λmin := minmi=1(λi),λmax :=

maxmi=1(λi). The first use of self-similarity is a cover what we can define with it:

Definition 1.4.2 (Moran cover) For an IFS Φ = {f1, . . . , fm} with fi(x) =

λi · Oi · x+ ti for all i ∈ {1, . . . ,m}, with attractor Λ. We define the Moran

cut-set with parameter r ∈ R+ as follows:

M̃r :=
{
j = (j1, j2, . . . , jk−1, jk) ∈ Σ∗

∣∣∣ |fj(Λ)| ≤ r < |fj−(Λ)|
}
.

The Moran cut-set with parameter r can be interpreted as words in Σ∗ such

that the combined contraction of any word is at order r. The Moran cover now

easily follows:

Mr :=
{

Λj = (fj1 ◦ . . . ◦ fjk)(Λ) ⊆ Rd
∣∣∣ (j1, . . . , jk) ∈ M̃r

}
.

Secondly, with self-similarity we can formalize and then decompose the defining

fi-s. Considering that rotations and transitions usually does not change the

dimension, we want to try to define a formal dimension concept only using the

defining functions’s contracting ratios:
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1. We want to give an upper bound to the Hausdorff dimension by using the

attractor’s level-n cylinders, that is the images of the attractor trough any

n-length composition of the generating functions.

2. For a given n-length word i the diameter |f(i1,...,in)(Λ)| = |Λ| · λi1 . . . λin .

3. After this, using only level-n covers, the sum in the Hausdorff measure’s

definition can be expressed:

∑
i∈I

|Ui|s = |Λ|s ·
∑
i∈I

λsi1 . . . λ
s
in = |Λ|s · (λs1 + . . .+ λsm)

n

4. As in the definition of the Hausdorff dimension, we want a number where

the measure presumably snaps. In the definition of the Hausdorff measure

we let δ to go to zero, which can be translated to here by letting n to go to

∞. As this happens it is clear that (λs1 + . . .+ λsm)
n can be only nontrivial

if (λs1 + . . .+ λsm) = 1. Hence it is natural to define a dimension at this

point.

Definition 1.4.3 (similarity dimension) For an IFS Φ = {f1, . . . , fm} of

similarities with the contracting ratios: λ1, . . . ,λm, the similarity dimension of

the IFS and the attractor is so ∈ R+ such that so is the unique solution for∑m
i=1(λi)

so = 1.

The similarity dimension gives us an easy to compute and visually intuitive

concept. On the other hand, it does not care about whether some fi(Λ)-s overlap.

In this case the the similarity dimension fails to give us meaningful information,

it is just an upper bound of the previous mentioned Hausdorff and Box-counting

dimension. At worst if we let the collisions to grow bigger, the similarity dimension

can be far from the Hausdorff and the box-counting dimension.
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Definition 1.4.4 (strong separation condition) Let Φ = {f1, . . . , fm} be

an IFS with its attractor Λ. We say that Λ and Φ satisfies the strong sepa-

ration condition (SSC) if for ∀i ̸= j ∈ {1, . . . ,m} : fi(Λ) ∩ fj(Λ) = Ø.

Definition 1.4.5 (open set condition) We say that an IFS Φ = {f1, . . . , fm}

and its attractor satisfies the open set condition (OSC) if ∃ U ∈ Rd bounded,

open, non-empty set with fi(U) ⊆ U ∀i ∈ {1, ...,m} and fi(U) ∩ fj(U) = Ø for

any i ̸= j, both ∈ {1, ...,m}.

First, it is easy to see that the SSC implies the OSC. One might like to use the

SSC because it is visual clarity, and easy to use, but as mentioned in the start

of the section we want a more general one which is the OSC, and as we move

forward the reader will see that many theorems only use the OSC.

Theorem 1.4.1 (Hutchinson, [9], ) Let Φ be a self-similar IFS with attractor

Λ on Rd such that the OSC holds. Then

dimH Λ = dimB Λ = so.

where s0 is the similarity dimension. Furthermore 0 < Hso(Λ) < ∞.

This proves to be very helpful with finding the Hausdorff dimension, even when

computing so is not possible explicitly, numerical approximations help very much.

Theorem 1.4.2 (Bandt-Graf, [1]) Let Φ = {fi(x) = λiOix+ ti} be a self-

similar IFS with attractor Λ. Then the following are equivalent:

1. OSC holds for Φ.

2. 0 < Hso(Λ).

3. Λ is so-Ahlfors regular: ∃c > 0 ∀r ≤ |Λ| ∀x ∈ Λ :

1
c

≤ Hso(Λ ∩B(x, r))
rso

≤ c.
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4. ∃c > 0 ∀y ∈ Λ ∀r < |Λ| : #{i ∈ M̃r | fi(Λ) ∩B(y, r) ̸= Ø} ≤ c .

Theorem 1.4.3 (Falconer, [6]) Let Λ be a self-similar set. Then:

dimH Λ = dimB Λ and for t := dimH Λ we have Ht(Λ) < ∞.

Proof:

• We use a packing: Let us recall Pr(E) := max{m > 0 | ∃x1,x2, . . . xm ∈

E : B(xi, r)∩B(xj , r) ̸= Ø =⇒ i = j}, and then the upper-box-counting

dimension is dimBΛ := lim supδ→0+
log{Pδ(Λ)}

−log{δ} .

• Fix δ > 0: Let y1, . . . , yN ∈ Rd be the centers of balls, who-s collection

attains this maximum. Let τ1, . . . , τN ∈ Σ be such that π(τi) = yi ∀i ∈

{1, . . . ,N}. Let j1, . . . , jN ∈ M̃δ|Λ|, then for all i we have: τi ∈ [ji] :=
{

i ∈

Σ
∣∣∣ ik = (ji)k ∀k ∈ {1, . . . , |j|}

}
. Denote by Kδ := {fji

}Ni=1 which defines a

new IFS, and let us denote it’s attractor by Λδ.

Then Λδ ⊆ Λ. Also we now that ∀k ̸= l we have fτk
(Λ) ∩ fτl

(Λ) = Ø by

of the Moran-cover being a partition. These two property give us that Λδ

satisfies the Strong Separation Condition.

Hence it also satisfies the OSC and therefore Theorem 1.4.1 holds, giving

us: dimH Λ ≥ dimH Λδ = sδ, where sδ is the similarity dimension of the

new fractal. Hence

1 =
N∑
e=1

λsδ
τe


≥ λsδ

min · δsδ

|Λ|so
· Pδ(Λ)

≤ δsδ

|Λ|so
· Pδ(Λ)

=⇒


δ−sδ · |Λ|so ≥ λsδ

min · Pδ(Λ)

δ−sδ · |Λ|so ≤ ·Pδ(Λ).

Therefore we have Pδ(Λ) ≈ δ−sδ .
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• Consequently along any subsequences as δ goes to 0 we have:

dimBΛ := lim sup
δ→0+

log{Pδ(Λ)}
−log{δ}

= lim sup
δ→0+

log{δ−sδ}
−log{δ}

→ s.

• Assume that ∃δ > 0 such that N2δ(Λ) >
(
λmin·δ

|Λ|

)−t
then by the inequality

being strict: ∃s > t such that N2δ(Λ) >
(
λmin·δ

|Λ|

)−s
still holds. Then∑N

e=1 λ
s
τe

≥ λs
min·δs

|Λ|s N2δ(Λ) > 1. But this implies: dimH(Λ) ≥ dimH(Λδ)

= sδ > s > t = dimH(Λ) which contradicts the assumption.

• Lastly Ht
2δ(Λ) ≤ (4δ)t · N2δ(Λ) ≤ 4t·|Λ|t

λt
min

< ∞ which completes the second

statement and the proof as well.
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2
W E A K S E PA R AT I O N P R O P E RT Y

2.1 dimension drop

In Section 1.4 we introduced the similarity dimension which is an easy to compute

concept, but and whence it only depends on the contracting rations. On the other

hand, computing the Hausdorff dimension by definition can be rather challenging.

A fractal which has these two dimensions different said to exhibit dimension drop.

Hutchinson proved that the OSC is a sufficient condition for the Hausdorff

dimension and the similarity dimension to be equal, but then we might ask that

is it also necessary. The answer is no, there are self-similar sets without satisfying

OSC but having those two dimension the same. This arrises to the next question,

is there a necessary condition for it? The answer is not known, but there is a

promising folklore conjecture, firstly stated by Simon in [13]:

To state the conjecture we need a new structure to analyze:

Definition 2.1.1 (Topology on Similarities) Let us to define the space of all

similarities of Rd to itself:

G :=
{
g : Rd → Rd

∣∣∣ g(x) = cgOgx+ tg where

cg ∈ R+,Og ∈ O(d, R), tg ∈ Rd
}
.

Then a topology G on G is generated by the following distance:

d(f , g) := max
{
|cf − cg|, ∥Of −Og∥, ∥tf − tg∥

}
.

Theorem 2.1.1 (Equivalence of topologies) Given a dimension d, let x0, . . .

,xd ⊂ Rd be in general position, then the topology of similarities G in Rd is

equivalent to a second topology induced by the sets:
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S (x0, . . . ,xd) :=
{
Uε,g(x0, . . . ,xd)

∣∣∣ ε > 0, g ∈ G
}

where Uε,g(x0, . . . ,xd) :={
f ∈ G

∣∣∣ ∥f(xk) − g(xk)∥ < ε ∀k ∈ {0, . . . , d}
}

which form a neighbourhood

basis of a function g ∈ G.

Proof:

Without loss of generality we may fix g as the identity function in G. Then we

need that both topologies are coarser then the other:

Case 1: Given an f ∈ G with f ∈ B(Id, ε) ∈ G we have that max
{
|cf −

1|, ∥Of − Idd×d∥, ∥tf∥
}
< ε, then:

|f(xk) − xk| = |cfOfxk + tf − xk| ≤ ∥cfOfxk − xk∥ + ∥tf∥

≤ ∥(cfOf − Idd×d)xk∥ + ε ≤ ∥cfOf − Idd×d∥∥xk∥ + ε

≤ ∥cfOf − cf Idd×d + cf Idd×d − Idd×d∥ max
k∈{0,...,d}

{∥xk∥} + ε

≤
(
∥cf∥∥Of − Idd×d∥ + ∥Idd×d∥∥cf − 1∥

)
max

k∈{0,...,d}
{∥xk∥} + ε

≤
(
(1 + ε)ε+ ε

)
max

k∈{0,...,d}
{∥xk∥} + ε := ε′.

Giving us that B(Id, ε) ⊆ Uε′,Id(x0, . . . ,xd) an therefore S is coarser than G .

Case 2: Given f ∈ G with f ∈ Uε,Id(x0, . . . ,xd) ∈ S we have that

maxk∈{0,...,d}
{
∥f(xk) − xk∥

}
< ε. Since x0 . . . ,xd are in general position,

x1 − x0, . . . ,xd − xo form a base of Rd whence there exists c0, . . . , cd ∈ R such

that ∑d
i=0 cixi = 0 and ∑d

i=0 ci = 1. Hence

∥tf∥ = ∥f(0) − 0∥ = ∥f(
d∑
i=0

cixi) −
d∑
i=0

cixi∥ = ∥
d∑
i=0

ci
(
f(xi) − xi

)
∥

≤
d∑
i=0

|ci|∥f(xi) − xi∥ ≤
d∑
i=0

|ci| · ε =: ε(1)

Let us define a norm on d by d matrices: ∥A∥′ :=
∑d
i=1 ∥A(xi − xo)∥. Since

the vector space of matrices is finite dimensional and all norms are equivalent,
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there exists D > 0 such that: 1/D∥A∥′ ≤ ∥A∥ ≤ D∥A∥′ for any A d by d

matrix. Then,

|cf − 1| =
∣∣∣∥cfOf∥ − ∥Idd×d∥

∣∣∣ ≤ ∥cfOf − Idd×d∥

≤ D ·
d∑
i=1

∥(cfOf − Idd×d)(xi − xo)∥

= D ·
d∑
i=1

∥f(xi) − xi − f(x0) + x0∥

≤ D · d · 2 · ε =: ε(2),

∥Of − Idd×d∥ = ∥cfOf − Idd×d + (1 − cf )Of∥

≤ ∥cfOf − Idd×d∥ + ∥(1 − cf )Of∥

≤ 2D · d · ε(
d∑
i=0

|ci| + 1) =: ε(3).

Finally, letting ε′ := min3
i=1{ε(i)} gives us that Uε,Id(x0, . . . ,xd) ⊂ B(Id, ε′)

and therefore, G is coarser than S .

Definition 2.1.2 For an IFS Φ = {f1, . . . , fm}, let E :=
{
f−1

i ◦ fj
∣∣∣ i, j ∈

Σ∗ such that i ̸= j
}

⊂ G with the inherited topology from G.

Lemma 2.1.2 [12] Let Φ = {f1, . . . , fm} be an IFS. Then the OSC holds for

the IFS if an only if for the previously defined E we have Id /∈ cl(E).

Proof:

Firstly the OSC has an equivalent condition by Bandt-Graf [1], which is the

SOSC or strong open set condition: ∃ U ⊆ Rd bounded, open, non-empty set

with fi(U) ⊆ U ∀i ∈ {1, ...,m} and fi(U) ∩ fj(U) = Ø for any i ̸= j, both

∈ {1, ...,m} and Λ ∩U ̸= Ø.

Given the SOSC: let x ∈ Λ ∩ U . For any i, j ∈ Σ∗, i ̸= j, without loss of

generality we may assume that i1 ̸= j1
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|f−1
i ◦ fj(x) − x| = λ−1

i |fj(x) − fi(x)|

≥ λ−1
i (dist(fj(x), fj1(∂U)) + dist(fi(x), fi1(∂U)))

≥ λ−1
i (dist(fj(x), fj(∂U)) + dist(fi(x), fi(∂U)))

= λ−1
i (λj(dist(x, ∂U)) + λi(dist(x, ∂U))) ≥ dist(x, ∂U)).

Given Id /∈ cl(E) we also have Id /∈ cl
(
E\{Id}

)
and then by Theorem 2.3.1

1.a. holds: fix p > 1, then exists x ∈ Λ and ε > 0 such that for any h =

f−1
i ◦ fj ∈ E with λh = λ−1

i λj ∈ [p−1, p] : if h(x) ̸= x then |h(x) − x| > ε,

furthermore our assumption also prohibits h to be Id for i ̸= j. Let

U :=
⋃

k∈Σ∗
fk

(
Bo
(
x, ε

2(1 + p)

))
.

Where Bo(, ) denotes the open ball, hence by the continuity of the maps, U is

open, bounded, non-empty. Also Λ ∩U ∋ x, and by construction fℓ(U) ⊆ U

for any ℓ ∈ Σ∗. Fix i, j ∈ Σ∗ different and suppose that fi(U) ∩ fj(U) ̸= Ø.

Now

Ø ̸= fi

( ⋃
k∈Σ∗

fk

(
Bo
(
x, ε

2(1 + p)

)))
∩ fj

( ⋃
k∈Σ∗

fk

(
Bo
(
x, ε

2(1 + p)

)))

=
⋃

k∈Σ∗
fik

(
Bo
(
x, ε

2(1 + p)

))
∩

⋃
k∈Σ∗

fjk

(
Bo
(
x, ε

2(1 + p)

))
.

Hence, there are k1, k2 ∈ Σ∗ such that

Ø ̸= fik1

(
Bo
(
x, ε

2(1 + p)

))
∩ fjk2

(
Bo
(
x, ε

2(1 + p)

))
.

Then |fik1(x) − fjk2(x)| ≤ (λik1+λjk2 )ε

2(1+p) , therefore
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ε ≤ |f−1
ik1

◦ fjk2(x) − x| ≤ (1 + λjk2/λik1)(
ε

2(1 + p)
)

≤ (1 + p)(
ε

2(1 + p)
) =

ε

2.

This contradiction proves that for i, j ∈ Σ∗ different fi(U) ∩ fj(U) = Ø and

hence the SOSC holds.

Conjecture (Simon) In R dimension drop may only occur if Id ∈ E .

To study the conjecture, remembering Lemma 2.1.2 it is natural to separate two

condition from the property Id /∈ cl(E). This arises to two separation condition:

For any i, j ∈ Σ∗ we define a distance d(i, j) := |fi − fj|, if λi = λj, and ∞

otherwise. Define △n := min
{
d(i, j)

∣∣∣ |i| = |j| = n and i ̸= j
}
. The Exponential

Separation ES is fulfilled if △n ≥ an for some a > 0 and infinitely many n. This

was introduced by Hochman [8].

The other is the Weak Separation Property WSP which was introduced by Lau

and Ngai in [10] and Zerner [14] and is the main topic of the thesis. This again

allows overlapping but keeps enough structure so that the Hausdorff dimension

will be computable.

2.2 a new separation

The main idea of the Weak Separation Property is that we restrict the self-covers

in a very similar way to the OSC. Remember that the OSC holds iff Id /∈ cl(E).

For the WSP we let the maps overlap, but if so they have to agree on some level,

which translates to that the composition of functions cannot intersect, although

we let for some i1, i2 ∈ Σ∗ to have the same generated function: fi1 = fi2 .

Definition 2.2.1 (Weak Separation Property) For an IFS Φ = {f1, . . . ,

fm}, denote by E :=
{
f−1

i ◦ fj
∣∣∣ i, j ∈ Σ∗ such that i ̸= j

}
⊂ G with the inherited
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topology from G. We say that the Weak Separation Property holds for the IFS, if

Id /∈ cl
(
E\{Id}

)
. In other words the identity of E is not an accumulation point.

There are many equivalent definition of the WSP, all of which reveal a different

viewpoint of the same object. We choose this because it reflects in an elegant

topological view, and it shows an elegant relation between the OSC and the WSP

in view of Lemma 2.1.2.

Definition 2.2.2 The following notations will be used all throughout the paper:

Let a, b, c,R > 0, k ∈ Σ∗,N ,M ⊂ Rd,x ∈ Rd

• F :=
{
fi
∣∣∣ i ∈ Σ∗

}
,

• Fb :=
{
fi ∈ F

∣∣∣ λi ∈ ]bλmin, b]
}
,

• Mb :=
{
fi
∣∣∣ i ∈ M̃b/|Λ|

}
=
{
fi
∣∣∣ |fi(Λ)| ≤ b < |fi−(Λ)|

}
,

• F :=
⋃
b>0

{
f−1

i ◦ fj
∣∣∣ fi, fj ∈ Fb

}
,

• Γc,R(k) :=
{
fi ∈ Mcλk

∣∣∣ fi(Λ) ∩ fk(B(Λ,R)) ̸= Ø
}

=
{
fi
∣∣∣ |fi(Λ)| ≤ cλk < |fi−(Λ)| and fi(Λ) ∩B(fk(Λ),Rλk) ̸= Ø

}
,

• γ
(1)
c,R := supk∈Σ∗

{
#Γc,R(k)

}
,

• Fa,N ,M :=
{
f ∈ Fa|N |

∣∣∣ f(M) ∩N ̸= Ø
}
,

• γ
(2)
a,M := supN⊆Rd

{
#Fa,N ,M

}
,

• Fb(fi(x)) :=
{
g ◦ fi(x)

∣∣∣ g ∈ Fb
}
=
{
fj ◦ fi(x)

∣∣∣ λj ∈]bλmin, b]
}
.

2.3 main theorems

The main goal of the thesis is to prove the following theorem providing all

accessible equivalent condition for which the WSP is satisfied.

20



Theorem 2.3.1 (S.-M. Ngai, Y. Wang and M. P. W. Zerner [14, 11, 4])

Let Φ = {f1 . . . , fm} be an IFS, Λ its attractor. If Λ is not contained in a hy-

perplane, then the following conditions are equivalent:

1.a. ∀p > 1 ∃x ∈ Λ ∃ε > 0 ∀h ∈ E with λh = λ−1
i λj ∈ [p−1, p] :

if h(x) ̸= x =⇒ |h(x) − x| > ε.

1.b. ∃x ∈ Λ ∃ε > 0 ∀h ∈ F : if h(x) ̸= x =⇒ |h(x) − x| > ε.

1.c. ∃x ∈ Rd ∃ε > 0 ∀h ∈ F : if h(x) ̸= x =⇒ |h(x) − x| > ε.

2.a. ∃x0, . . . ,xd ∈ Rd in general position ∃ε > 0 ∀h ∈ E \ Id ∃j with:

|h(xj) − xj | > ε.

2.b. ∃x0, . . . ,xd ∈ Rd in general position ∃ε > 0 ∀h ∈ F \ Id ∃j with:

|h(xj) − xj | > ε.

2.c. ∃x0, . . . ,xd ∈ Rd in general position ∃ε > 0 ∀h ∈ F ∀j

if h(xj) ̸= xj =⇒ |h(xj) − xj | > ε.

3.a. The identity is an isolated point of E, that is the WSP holds for the

IFS.

3.b. The identity is an isolated point of F .

4.a. ∀c > 0 ∀R > 0 : γ
(1)
c,R < ∞.

4.b. ∀c > 0 ∀ bounded M ⊆ Rd : γ
(2)
c,M < ∞.

4.c. ∃c > 0 ∃R > 0 : γ
(1)
c,R < ∞.

4.d. ∃c > 0 ∃ non-empty M ⊆ Rd : γ
(2)
c,M < ∞.

5.a. ∀x ∈ Rd ∃n(1) < ∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd :

#
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
≤ n(1).

5.b. ∀c ≥ 1 ∀p ∈ (0, 1) ∃x ∈ Rd ∃n(2) < ∞ ∀i ∈ Σ∗ ∀k ∈ N ∀a ∈ Rd :
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#
{
B(a, cpk) ∩

{
fji(x)

∣∣∣ j ∈ M̃cpk

}}
≤ n(2).

5.c. ∃x ∈ Rd ∃n(3) < ∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd :

#
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
≤ n(3).

5.d. ∀x ∈ Rd ∃n(4) < ∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd :

#
{
B(a, b) ∩ Fb(fi(x))

}
≤ n(4).

5.e. ∃x ∈ Rd ∃n(5) < ∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd :

#
{
B(a, b) ∩ Fb(fi(x))

}
≤ n(5).

6.a. ∃n(6) < ∞ ∀x ∈ Rd ∀b > 0 we have that:

#
{
fj
∣∣∣ j ∈ M̃b/|Λ| and fj(Λ) ∩B(x, b) ̸=Ø

}
≤ n(6).

6.b. ∀ C1 < 1 < C2 ∃n(7) < ∞ ∀x ∈ Rd ∀b > 0:

#
{
fj
∣∣∣ C1 ≤ |fj(Λ)|

|B(x,b)| ≤ C2 and fj(Λ) ∩B(x, b) ̸=Ø
}

≤ n(7).

6.c. ∃n(8) < ∞ ∃ compact D ⊂ Rd with non-empty interior and with⋃m
i=1 fi(D) ⊂ D such that ∀x ∈ Rd ∀b ∈ (0, 1) we have that:

#
{
f ∈ Mb

∣∣∣ x ∈ f(D)
}

≤ n(8).

We state an even stronger result from [7], but this only works assuming Λ is in

the real line and not having whole Hausdorff dimension:

Theorem 2.3.2 (Á. Farkas and J. M. Fraser [7]) Let Φ = {f1, . . . , fm} be

an IFS, Λ its attractor such that it is on the real line and dimH(Λ) < 1. If Λ is

not a singleton, then the following conditions are equivalent:

I. The WSP holds for the IFS Φ.

II. HdimH(Λ)(Λ) > 0.

III. Λ is Ahlfors regular.

IV. dimH(Λ) = dimA(Λ) where dimA, the Assouad dimension defined:
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dimA(E) := inf
{
s ≥ 0 | ∀x ∈ E ∀0 < p < δ ≤ 1 :

∃K ≥ 0 : Np(E ∩B(x, δ)) ≤ K(δ/p)s
}
.

V. ∀T ∈ Tan(Λ) : dimH(T ) = dimH(Λ) where Tan(E) is defined by:

Tan(E) :=
{
T
∣∣∣ T is a weak tangent set of E

}
=
{
T
∣∣∣ ∃yn ∈ Rd ∃rn > 0 : distH

(E − yn
rn

∩B(0, 1),T
)

→ 0
}
.

VI. ∀T ∈ Tan(Λ) T does not contain a line segment.

One of the most useful corollary of the WSP is that it gives an easier way to

compute the box-counting dimension and through that the Hausdorff dimension

when Λ is a self-similar set remembering Theorem 1.4.3.

Theorem 2.3.3 (M. P. W. Zerner [14]) Let Φ = {f1, . . . , fm} be an IFS

satisfying the WSP, Λ its attractor. Then

dimH(Λ) = dimB(Λ) = lim
b→0+

log{#Mb}
− log{b}

:= lim
b→0+

sb.

Proof:

By the definition of the box-counting dimension it is enough to see that

Nδ(Λ) = min{m > 0 | ∃x1,x2, . . . xm : Λ ⊆ ∪mi=1B(xi, δ)} will tend to

infinity in the order of #Mb = #{fi
∣∣∣ |fi(Λ)| ≤ b < |fi−(Λ)|}.

Firstly #Mb ≥ Nb/2(Λ) because given x ∈ Λ we have that ⋃f∈Mb
B(f(x),

b/2) covers Λ. Secondly by 1.b. we have that there exists y ∈ Λ and ε > 0

such that for any h ∈ F : if h(y) ̸= y we have that |h(y) − y| > ε. Then{
B(f(y), ελminb)

}
f∈Mb

are disjoint because given f , g different in Mb we have

that f−1 ◦ g ∈ F , and then:

ε < |f−1(g(y)) − y| = λ−1
f |g(y) − f(y)| =⇒ |g(y) − f(y)| > ελf ≥ ελminb.
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Therefore Pελminb/2(Λ) ≥ #Mb where recall Pr(Λ) := max{m > 0 | ∃x1,x2,

. . . ,xm ∈ Λ : B(xi, r) ∩B(xj , r) ̸= Ø =⇒ i = j} is a packing of Λ. Finally

using the inequality between packings and coverings:

#Mb ≥ Nb/2(Λ) ≥ Pb/2(Λ) ≥ #Mb/(λminε).

Remark: One can think of sb as the similarity dimension of the IFS Mb.

Before proving Theorem 2.3.1 we give an example of an IFS satisfying the

WSP, but not the OSC:

Example: Φ013 = {f0 := x
3 , f1 := x

3 + 1, f3 := x
3 + 3},

First and second level cylinders of the convex hull of the attractor

0 9
2

1 + 3
2

3
21 3 I3

I31I1

I11

I13
I0

I10

I03

I := conv(Λ)

Firstly 0 is the fixed point of f0,3
2 for f1 and 9

2 for f3, hence the convex hull of

the attractor is [0, 9
2 ]. Looking at the first iterations we see that f1 ◦ f0 = f0 ◦ f3

implying that the OSC falls short.

Secondly the WSP is satisfied: note that for i = (i1, i2, . . . , in) we have fi =

x
3n +

∑n
k=1

ik
3k−1 . Then

E :=
{
f−1

i ◦ fj
∣∣∣ i, j ∈ Σ∗ such that i ̸= j

}
=
{
x · 3n−m +

m∑
k=1

jk
3k−1−n −

n∑
l=1

il
3l−1−n

∣∣∣ i, j ∈ Σ∗, i ̸= j, |i| = n, |j| = m
}
.
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Now letting x = 0 for any h = f−1
i ◦ fj ∈ E , with λh ∈ [p−1, p] we have that

|n−m| ≤ log3 p where |i| = n, |j| = m. Then assuming m = n and h(x) ̸= x we

have

|h(x) − x| =
∣∣∣ m∑
k=1

jk
3k−1−n −

n∑
l=1

il
3l−1−n

∣∣∣ ≥
∣∣∣ n∑
k=1

(jn−k+1 − in−k+1)(3k)
∣∣∣ ≥ 1.

Hence the WSP holds by 1.a..

Thirdly we want to compute the Hausdorff dimension. For this we need to get

the growth rate of Mb, this might be tricky but now observe that in the second

level cylinders {f00, f01, f03, f10, f11, f13, f30, f31, f33} two type of intersection

happends: f10 = f03 and for k = 0, 1, 3 fk0 and fk1.

This lets us to restrict the generating method: after 1 or 3 all 0, 1, 3 can come,

but after 0 we only let 0, 1. Now in general given two intersecting level-n cylinders

Λi, Λj with the restriction with distinct i, j we have that they agree on the first

n− 1 letters, denoted with |i ∩ j| = n− 1, and one’s last letter is 0 and the other’s

is 1.

To prove this we use induction: observe that for the first level cylinders it holds.

Now suppose that for level-(n-1) it holds, and let i, j be two different level-n

words such that Ii ∩ Ij ̸= Ø, but k := |i ∩ j| + 1 < n. Denote ω := i ∩ j ∈ Σ∗.

By the induction hypothesis we have {ik, jk} = {0, 1}, without loss of generality

we may assume that ik = 0, jk = 1. Since Ii ∩ Ij ̸= Ø we have Iω0ik+1 ∩ Iω1 ̸=

Ø, therefore I0ik+1 ∩ I1 ̸= Ø. Looking at figure we concude that ik+1 = 3, but

now (ik, ik+1) = (0, 3) which is the one we restricted. This contradiction proves

that |i ∩ j| = k − 1 = n− 1. Finally now again looking at figure we see that

{in, jn} = {ik, jk} = {0, 1}. Now #Mb = Ap · I, where

A :=


1 1 0
1 1 1
1 1 1

 , p = p(b) := ⌈log1/3{b}⌉, I :=


1
1
1

 .
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The dominant eigenvalue is a := 3+
√

5
2 and A is a non-negative, irreducible,

primitive matrix hence by the Perron-Frobenius theorem the growth rate of

Ap(b) · I is asymptotic to ap(b) as b → ∞. Finally:

dimH(Λ) = lim
b→0+

log{#Mb}
− log{b}

= lim
b→0+

log{Ap(b) · I}
− log{b}

= lim
b→0+

log{ap(b)}
− log{b}

= lim
b→0+

p(b) · log{a}
− log{b}

= lim
b→0+

⌈log1/3{b}⌉ · log{3+
√

5
2 }

− log{b}

=
log{3 +

√
5} − log{2}

log{3}
.

For a more detailed analysis of this set we recommend [4].
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3
P R O O F O F T H E E Q U I VA L E N T C O N D I T I O N S

For the proof we fix some notations: d denotes the dimension of the space where

the IFS is embedded, m denotes the cardinality of the IFS. Let Σ denote the

symbolic space generated by the syllables 1, . . . ,m, Λ denotes the attractor.

For the proof we assume that |Λ| = 1 which is not too restricting because any

attractor and IFS can be transformed to such and the transformation does not

change the geometric properties we study. With an IFS Φ = {f1, . . . , fm} and its

attractor Λ given g invertible function, a new IFS Φg = {g ◦ f1 ◦ g−1, . . . , g ◦ fm ◦

g−1} will have the attractor g(Λ). Then use g(x) := 1/|Λ| · x. Finally notice

that the WSP’s definition holds for Φ iff it holds for Φg.

3.1 lemmas

At first we start with a lemma nothing to do with fractals or self-similarity,

but with the structure of Rd. Although it’s statement is trivial by any easy

overestimation we have to mention that the exact values are unknown in high

dimensions, for example in d = 2 it is called the Disc covering problem.

Lemma 3.1.1 Given R > r > 0 and a dimension d. Any ball with radius R can

be sufficiently covered by L = L(d,R, r)-many balls with radius r. That is there

exists L > 0 such that for any x ∈ Rd there are x1, . . . ,xL ∈ Rd such that

L⋃
i=1

B(xi, r) ⊇ B(x,R).
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Lemma 3.1.2 If Λ is not contained in a hyperplane, then for all x ∈ Rd which

satisfy 5.c., also satisfy the following inequality:

C∗ := sup
y∈Rd

{
sup
b>0

#
{
f ∈ Mb

∣∣∣ f(x) = y
}}

< ∞.

And for all x ∈ Rd, which satisfy 5.e., also satisfy the following inequality:

C ′ := sup
y∈Rd

{
sup
b>0

#
{
f ∈ Fb

∣∣∣ f(x) = y
}}

< ∞.

Proof:

Assuming 5.c., there exists an x ∈ Rd and an n(3) < ∞ such that for any

i ∈ Σ∗ any b > 0 and any a ∈ Rd we have that

#
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
≤ n(3).

Now fix such pair of x,n(3). Since {fi(x) | i ∈ Σ∗} is dense in Λ which is

not contained in any hyperplane we can choose d + 1 many finite worlds

i0, . . . , id ∈ Σ∗ such that the d+ 1 points fi0(x), . . . , fid(x) are in general

position.

Theorem 2.1.1 lets us to uniquely determine the similarities of Rd with

d+ 1 general points value taken by it. Therefore we can upper bound #
{
f ∈

Mb

∣∣∣ f(x) = y
}

with the number of lenght-(d+ 1) sequences formed from

the elements of the set
{
f(fik(x))

∣∣∣ k ∈ {0, . . . , d} and f ∈ Mb such that

f(x) = y
}
=: A. Hence:

sup
y∈Rd

{
sup
b>0

#
{
f ∈ Mb

∣∣∣ f(x) = y
}}

≤ sup
y∈Rd

{
sup
b>0

{
(#A)d+1

}}
≤ ( sup

y∈Rd

{
sup
b>0

#
{
f(fik(x))

∣∣∣ k ∈ . . . , f ∈ Mb, f(x) = y
}}

)d+1

≤ (
d∑

k=0
sup
y∈Rd

{
sup
b>0

#
{
f(fik(x))

∣∣∣ f ∈ Mb, f(x) = y
}}

)d+1.
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Notice that f(x) = y implies |f(fik(x))− y| = |f(fik(x))− f(x)| = λf |fik(x)

−x| ≤ b · maxk{|fik(x) − x|} which further implies f(fik(x)) ∈ B(y, bmaxk{

|fik(x) − x|}), denote c := maxk{|fik(x) − x|}, using this:

{
f(fik(x))

∣∣∣ f ∈ Mb, f(x) = y
}

⊆
{
f(fik(x))

∣∣∣ f ∈ Mb, f(fik(x)) ∈ B(y, bc)
}

=
{
f(fik(x))

∣∣∣ f ∈ Mb

}
∩B(y, bc).

Finally we can use 5.c. and Lemma 3.1.1 to have that:

sup
y∈Rd

{
sup
b>0

#
{
f ∈ Mb

∣∣∣ f(x) = y
}}

≤
(
(d+ 1) · n(3) · L(d, c, 1)

)d+1
< ∞.

Notice that the second equation can be proven by the same argument with

only changing 5.c. to 5.c. and not forgetting the definition: Fb(fi(x)) :={
g ◦ fi(x)

∣∣∣ g ∈ Fb
}
.

Lemma 3.1.3 For all 0 < c1 < c2 and R > 0 there exists an increasing continu-

ous function ϕ(t) > 1 on [1, ∞), depending only on the IFS, such that for every

k ∈ Σ∗:

#Γc2,R(k)
ϕ( c2

c1
)

≤ #Γc1,R(k) ≤ #Γc2,R(k) · ϕ(c2
c1
) and from that

γ
(1)
c2,R

ϕ( c2
c1
)

≤ γ
(1)
c1,R ≤ γ

(1)
c2,R · ϕ(c2

c1
).

Proof:

Firstly we show the left inequality:

Let fi ∈ Γc2,R(k) meaning that λi ≤ c2λk < λi− and fi(Λ) ∩ fk(B(Λ,R)) ̸=

Ø. Denote the set ]i[:= {j ∈ Σ∗ | i is a prefix of j}, it has a non-empty

intersection with M̃c1λk and there will be at least one j = ii′ in the intersection
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such that fj(Λ) ∩ fk(B(Λ,R)) ̸= Ø and then fj ∈ Γc1,R(k). Fix such a word

j = ii′, then λi < c2λk implies c1λminλk < λii′ ≤ c2λ
|i′|
maxλk and hence:

|i′| ≤ logλmax

{c1
c2
λmin

}
+ 1 =: ψ(

c2
c1
)

Define ϕ(t) := ψ(t) ·mψ(t), recall m is the cardinality of the IFS {f1, . . . , fm}.

Now we claim that the map K : fi → fii′ is at most ϕ( c2
c1
)-to-1 and this follows

because even if fi(1) ̸= fi(2) both in Γc2,R(k) with fi(1)i′(1)
= fi(2)i′(2)

in Γc1,R(k)

there are at most ψ(t) ·mψ(t) possibilities for i′(2) and i′(2).

Secondly the right inequality:

Let fj ∈ Γc1,R(k) meaning that λj ≤ c1λk < λj− and fj(Λ) ∩ fk(B(Λ,R)) ̸=

Ø. Fix such an j, then there is an unique prefix i′ of it such that i′ ∈ M̃c2λk

and trivially fi′(Λ) ∩ fk(B(Λ,R)) ̸= Ø hence fi′ ∈ Γc1,R(k). Now j =: i′i′′

and similarly we have |i′′| ≤ ψ( c2
c1
). Finally if fj(1) = fj(2) both in Γc2,R(k) with

fi′
(1)

̸= fi′
(2)

in Γc2,R(k) then i′′(1) has to be different than i′′(2) and therefore

K∗ : fj → fi′ is at most ϕ( c2
c1
)-to-1.

3.2 a clear view

Notice that the proof of equivalence is complete if the directed graph of the

statements and proofs is strongly connected, that is from any statement(vertex) we

have a path of proofs to any other statement(vertex). For the easier understanding

we give 2 embedding of the graph: G1: the one ordered by the statements and

G2: the one by the main path of proofs.

Dashed arrows denote trivial implications, those don’t need any further proof.
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G1 showing us the overall structure of the statements

1.a. 1.b. 1.c.

2.a. 2.b. 2.c.

3.a. 3.b.

4.a. 4.b. 4.c. 4.d.

5.a. 5.b. 5.c. 5.d. 5.e.

6.a. 6.b. 6.c.

G2 showing us the framework of the proof

2.c.

1.c.

1.b.
1.a.

4.c.

5.c.

5.a.

4.a.

2.a.
3.a.

3.b.

2.b. 4.b.

6.c.

4.d.

5.d.

5.e.

6.a.

6.b.

5.b.
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3.3 the grand cycle

2.a. ⇐⇒ 3.a.

The set E can inherit both topology of Theorem 2.1.1 from G which with

the statement of Theorem 2.1.1 gives us 2.a. =⇒ 3.a.. Conversely by Λ not

contained in a hyperplane we can choose x0, . . . ,xd ∈ Λ in general position and

then 3.a. =⇒ 2.a..

2.a. =⇒ 4.a.

Choose ε > 0 and x0, . . . ,xd satisfying 2.a.. Let us fix c,R > 0, for any

k ∈ Σ∗ fixed, and every function fi ∈ Γc,R(k) we have that cλkλmin < λi ≤ cλk.

Furthermore for any fi, fj with f−1
i ◦ fj ∈ E\Id , lets us to define ℓ = ℓ(fi, fj)

index in {0, . . . , d} such that:

|(fj(xℓ) − fi(xℓ)| = λi|f−1
i (fj(xℓ)) − xℓ| ≥ λiε > εcλkλmin.

If there are more, then abandon all but the lexicographically smallest. From we

get that: B(fi(xℓ), cελkλmin
3 ) ∩B(fj(xℓ), cελkλmin

3 ) = Ø. For all f ∈ Γc,R(k):

f(Λ) ∩ fk(B(Λ,R)) ̸= Ø =⇒ dist(f(Λ),B(fk(B(Λ,R))) = 0.

Now use for all ℓ ∈ {0, . . . , d}:

dist(f(xℓ), f(Λ)) = λfdist(xℓ, Λ).

Then,

dist(f(xℓ), fk(B(Λ,R))) ≤ dist(f(xℓ), f(Λ)) + dist(f(Λ), fk(B(Λ,R)))

+ |f(Λ)| ≤ λfdist(xℓ, Λ) + 0 + λf |Λ| = λfdist(xℓ, Λ) + λf .

Finally using the equation above and the fact that dist(a, b) ≤ r implies that

a ∈ B(b, r) if |a| = 0 which is satisfied if a is a point:

f(xℓ) ∈ B(fk(B(Λ,R)),λfdist(xℓ, Λ) + λf ).
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Using this we compute:

B(f(xℓ),
cελkλmin

3 ) ⊂ B(fk(B(Λ,R)),λfdist(xℓ, Λ) + λf +
cελkλmin

3 )

= B(fk(Λ),λfdist(xℓ, Λ) + λf +
cελkλmin

3 + λfR)

⊂ B(fk(Λ), cλkdist(xℓ, Λ) + cλk +
cελkλmin

3 + cλkR)

⊂ B(fk(Λ),λk(c max
ℓ∈{0,...,d}

{dist(xℓ, Λ)} + c+
cελmin

3 + cR))

:= B(fk(Λ),λkR
(1)).

Consider the following graph: for a fixed Γc,R(k) the vertices will be the functions

in Γc,R(k), between any two vertices f , g ∈ Γc,R(k) there is a a suitable ℓ(f , g)

defining a labeled edge. Now ℓ can be thought of as a coloring on a complete

graph letting us to use Ramsay’s theorem [2, Theorem 19.2.3], bounding the

number of vertices with a constant L = L(#A) depending only on the number

of vertices in the maximal connected set of vertices by the same colored edges:

A. Finally consider the d-dimensional volume of the previously computed balls:

∀k ∈ Σ∗

#Γc,R(k) ≤ L(#A)

≤ L
(

max
p∈{0,...,d}

{
#A ⊂ Γc,R(k)

∣∣∣ ∀f ̸= g ∈ A : ℓ(f , g) = p
})

≤ L
(

max
p∈{0,...,d}

{ Vol(B(fk(Λ),λkR
(1)))

Vol(B(fj(xℓ), cελkλmin
3 ))

})

≤ L
(

max
p∈{0,...,d}

{ Vol(B(Λ,R(1)))

Vol(B(0, cελmin
3 ))

})
=: L′(c,R).

The L′ < ∞ above is independent of k, depending only on c and R. Finally,

γ
(1)
c,R = supk∈Σ∗

{
#Γc,R(k)

}
and hence by the definition of the supremum γ

(1)
c,R ≤

L′(c,R).

4.a. =⇒ 5.a.
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Let a ∈ Rd, b > 0 be arbitrary. Fix x ∈ Rd, R = R(x) > 0 such that

x ∈ B(Λ,R). Now for any i ∈ Σ∗ we have fi(x) ∈ B(Λ,R) by the definition of

the attractor Λ. Define J as follows:

J := #
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
= #

{
fj
∣∣∣ j ∈ M̃b and fj(fi(x)) ∈ B(a, b)

}
≤ #

{
fj
∣∣∣ j ∈ M̃b and fj(B(Λ,R)) ∩B(a, b) ̸= Ø

}
= #

{
fj
∣∣∣ j ∈ M̃b and B(fj(Λ),λjR)) ∩B(a, b) ̸= Ø

}
≤ #

{
fj
∣∣∣ j ∈ M̃b and fj(Λ) ∩B(a, b+ λjR) ̸= Ø

}
≤ #

{
fj
∣∣∣ j ∈ M̃b and fj(Λ) ∩B(a, b(1 +R)) ̸= Ø

}
.

If Λ ∩ B(a, b(1 + R)) = Ø then J = 0 and therefore 5.a. holds. Otherwise

∃k ∈ M̃b such that fk(Λ) ∩B(a, b(1 +R)) ̸= Ø. Choose one k like this, then:

B(a, b(1 +R)) ⊂ B(fk(Λ), 2b(1 +R)) ⊂ fk(B(Λ, 2λ−1
min(1 +R)))

From this:

J ≤ #
{
fj
∣∣∣ j ∈ M̃b and fj(Λ) ∩ fk(B(Λ, 2λ−1

min(1 +R))) ̸= Ø
}

= #Γbλ−1
k ,2λ−1

min(1+R)
(k) ≤ γ

(1)
c,R < ∞ by 4.a.

5.c. ⇐⇒ 5.b.

Given 5.c. : ∃x ∈ Rd ∃n(3) < ∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd : #
{
B(a, b) ∩{

fji(x)
∣∣∣ j ∈ M̃b

}}
≤ n(3) 5.b. follows by Lemma 3.1.1 with L(d, c, 1). And then

with given pk we can easily choose any bigger b which gives us n(3) ≥ n(2)/ℓ, and

the same x is used in both of the statements.

Conversely fix b > 0, p ∈ (0, 1) arbitrary. Then there exists a unique k ∈ N

such that pk+1 < b ≤ pk. Given j ∈ M̃b there is a j′ ∈ M̃pk prefix of j such that:
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λj ≤ b < λj− =⇒ λminb < λminλj− ≤ λj

λj′ ≤ pk < λj′− =⇒ λj′ ≤ pk

Now the two implies: λminp <
λminb

pk
≤ λj
λj′

≤ λ|j|−|j′|
max

=⇒ |j| − |j′| < logλmax{λminp} ≤ ⌈logλmax{λminp}⌉.

Using c = 1 by 5.b. we have that ∃x ∈ Rd ∃n(2) < ∞ ∀i ∈ Σ∗ ∀k ∈

N ∀a ∈ Rd :

#
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
≤

m⌈logλmax{λminp}⌉ ·#
{
B(a, b)∩

{
fji(x)

∣∣∣ j ∈ M̃pk

}}
≤ m⌈logλmax{λminp}⌉ ·n(2).

5.c. =⇒ 4.c.

Recall that |Λ| = 1 by assumption. With 5.c. we have that ∃x ∈ Rd ∃n(3) <

∞ ∀i ∈ Σ∗ ∀b > 0 ∀a ∈ Rd : #
{
B(a, b) ∩

{
fji(x)

∣∣∣ j ∈ M̃b

}}
≤ n(3). Let R > 0

be such that x ∈ B(Λ,R), then ∀j ∈ Σ∗ : fj(x) ∈ B(fj(Λ),Rλj).

Now ∀k ∈ Σ∗ :

Recall Γ1,R(k) =
{
fj
∣∣∣ j ∈ M̃λk and fj(Λ)∩ fk(B(Λ,R)) ̸= Ø

}
, then λj ≤ λk.

Let a ∈ Rd such that fk(Λ) ⊂ B(a,λk).

fj(Λ) ∩ fk(B(Λ,R)) ̸= Ø =⇒ fj(Λ) ⊂ B(fk(Λ),Rλk + λj) =⇒

B(fj(Λ),Rλj) ⊂ B(fk(Λ),Rλk + λj +Rλj) ⊂ B(fk(Λ), (2R+ 1)λk)

⊂ B(B(a,λk), (2R+ 1)λk) ⊂ B(a, (2R+ 2)λk)

⊂
L(R)⋃
i=1

B(ai,λk)

by Lemma 3.1.1 with L(R) = L(d, (2R+ 1)λk,λk) = L(d, (2R+ 1), 1).
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Hence using 5.c.: there are at most n(3) points y1 , . . . , yn(3) ∈ Rd such that

fj(x) = yp ∈ B(ai,λk). On the other hand there are at most C∗-many fj such

that j ∈ M̃λk and fi(x) = yp for any p by Lemma 3.1.2, and therefore:

#Γ1,R(k) ≤
L(R)∑
i=1

#
{
fj
∣∣∣ j ∈ M̃λk and fj(x) ∈ B(ai,λk)

}
≤ L(R) · n(3) ·C∗.

4.c. =⇒ 1.a.

By 4.c. there exist c > 0,R > 0 such that γ(1)c,R < ∞. By Lemma 3.1.3

γ
(1)
1,R ≤ ϕ(c)γ

(1)
c,R < ∞, therefore

∃ℓ ∈ Σ∗ : #Γ1,R(ℓ) = maxk∈Σ∗
{
#Γ1,R(k)

}
.

Fix p > 1. Now for any v ∈ Σ∗ :

Γ1,R(vℓ) =
{
fi
∣∣∣ |fi(Λ)| ≤ λvℓ < |fi−(Λ)| and fi(Λ) ∩ fvℓ(B(Λ,R)) ̸= Ø

}
=
{
fv ◦ fj

∣∣∣ j ∈ Γ1,R(ℓ)
}
.

The containment ⊇ holds by the definition and ⊆ hold by the maximality

of ℓ. For an arbitrary y ∈ Λ let x := fℓ(y), then still x ∈ Λ, but we have

B(x,Rλℓ) ⊂ fℓ(B(Λ,R)). Let q be an integer such that λqmax < 1/p. We may

assume that |ℓ| > q, this is possible because by Γ1,R(vℓ) =
{
fv ◦ fj

∣∣∣ j ∈ Γ1,R(ℓ)
}

we can choose a new ℓ′ := vℓ with |ℓ′| > q. Let us define

ε1 := min
{
|x− f(fk(y))|

∣∣∣ f ∈ Γ1,R(ℓ), 0 ≤ |k| ≤ q and f(fk(y)) ̸= x
}
,

and ε := min
{
ε1,Rλℓ

}
.

Let us use the convention: fk := Id when |k| = 0. Let h = f−1
v ◦ fw ∈ E\Id with

λh ∈ [p−1, p]. We may assume that λv ≥ λw, since otherwise we might just work

with h−1. Then 1/p ≤ λh = λw/λv ≤ 1. Then λwℓ ≤ λvℓ and exists ℓ′ a prefix

of ℓ such that wℓ′ ∈ M̃λvℓ
. Defining ℓ′′ as ℓ = ℓ′ℓ′′ we have that 0 ≤ |ℓ′′| ≤ q.

Now there are two cases:
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If fwℓ′ ∈ Γ1,R(vℓ) =
{
fv ◦ fj

∣∣∣ j ∈ Γ1,R(ℓ)
}

then fwℓ′ = fv ◦ fi for some

i ∈ Γ1,R(ℓ). Then:

|h(x) − x| = |f−1
v (fw(x)) − x| = |f−1

v (fw(fℓ(y))) − x|

= |f−1
v (fw(fℓ′(fℓ′′(y)))) − x|

= |f−1
v (fv(fi(fℓ′′(y)))) − x|

= |fi(fℓ′′(y)) − x| ≥ ε1 ≥ ε by definition.

If fwℓ′ /∈ Γ1,R(vℓ) =
{
fv ◦ fj

∣∣∣ j ∈ Γ1,R(ℓ)
}

then by fwℓ(Λ) ⊂ fwℓ′(Λ) we

have that for x ∈ fℓ(Λ) : |fw(x) − fv(x)| ≥ Rλvλℓ. Finally:

|h(x) − x| = |f−1
v (fw(x)) − x| = λ−1

v |fw(x) − fv(x)| by linearity

≥ λ−1
v Rλvλℓ = Rλℓ ≥ ε.

In both cases for h ∈ E\Id we have that |h(x) − x| ≥ ε.

1.a. =⇒ 1.b.

Let W :=
{
h ∈ G

∣∣∣ λh ∈]λmin,λ−1
min[

}
, clearly F ⊆ E ∩ W, now we show the

other containment. Let h ∈ E ∩ W meaning that h = f−1
i ◦ fj for some i, j ∈ Σ∗

and λh = λ−1
i λj ∈]λmin,λ−1

min[. Suppose that h /∈ F , so ∄b > 0 : fi, fj ∈ Fb which

implies ∀b > 0 such that fj ∈ Fb we have fi /∈ Fb and hence

fi /∈
⋃

b:fj∈Fb

Fb =⇒ λi /∈
⋃

b:fj∈Fb

]bλmin, b] =
⋃

b∈[λj,λjλ
−1
min[

]bλmin, b] =

=]λjλmin,λjλ
−1
min[ =⇒ λiλ

−1
j /∈]λmin,λ−1

min[,

which contradicts that h ∈ W proving that F = E ∩ W. Finally we can choose

p := λ−1
min > 1 to provide the implication.

1.c. =⇒ 2.c.

By 1.c.: there exists x ∈ Rd ∃ε > 0 ∀h ∈ F : if h(x) ̸= x =⇒ |h(x)− x| > ε,

fix this x. Let Fb(x) = {f(x) | f ∈ Fb} =
{
fi(x)

∣∣∣ λi ∈ ]bλmin, b]
}
, as b

37



decreases towards 0, Fb(x) converge to the attractor Λ in the Hausdorff metric.

By assumption Λ is not contained in any hyperplane, therefore there will be

fi1 , . . . , fid ∈ Fb such that xj := fij (x), j = 0, . . . , d will be in general position.

Now ∀j ∈ {0, . . . , d}, ∀h ∈ F : either h(xj) = xj , or

∣∣∣h(xj) − xj
∣∣∣ = ∣∣∣h(fij (x)) − fij (x)

∣∣∣ = λij
∣∣∣f−1

ij (h(fij (x))) − (x)
∣∣∣

≥ min
j∈{0,...,d}

{
λij
}

· ε.

We remark that with a similar argument one can prove 1.a. =⇒ 2.a..

2.b. ⇐⇒ 3.b.

Trivially F :=
⋃
b>0

{
f−1

i ◦ fj
∣∣∣ fi, fj ∈ Fb

}
is a subset of E :=

{
f−1

i ◦ fj | i, j ∈

Σ∗ such that i ̸= j
}

, so we can use the topology defined in the proof of 2.a. ⇐⇒

3.a. gives us ther result.

3.b. =⇒ 3.a.

As we have seen before F = E ∩ W where W :=
{
h ∈ G

∣∣∣ λh ∈]λmin,λ−1
min[

}
which is an open subset in G, because for any g ∈ G : g(x) = cgUgx +

tg where cg ∈ R+,Ug ∈ O(d, R), tg ∈ Rd, if cg = λg ∈]λmin,λ−1
min[, then

B(g, min{ |λmin−λg|
2 , |λ−1

min−λg|
2 }) ⊂ W .

3.4 the secondary paths

2.b. =⇒ 4.b.

The proof is similar to 2.a. =⇒ 4.a.. By 2.b. there exists x0, . . . ,xd ∈

Rd in general position ∃ε > 0 ∀h ∈ F \ Id ∃j with: |h(xj)−xj | > ε. Fix M ⊂ Rd

bounded, fix c > 0. We want to see that

γ
(2)
c,M := sup

N⊆Rd

{
#Fc,N ,M

}
= sup

N⊆Rd

{
#
{
f ∈ Fc|N |

∣∣∣ f(M) ∩N ̸= Ø
}}

=

38



= sup
N⊆Rd

{
#
{
f ∈

{
fi
∣∣∣ λi ∈ ]c|N |λmin, c|N |]

} ∣∣∣ f(M) ∩N ̸= Ø
}}

= sup
N⊆Rd

{
#
{
fi
∣∣∣ fi(M) ∩N ̸= Ø and λi ∈ ]c|N |λmin, c|N |]

}}
< ∞.

We may assume that x0, . . . ,xd ∈ M . For any f ̸= g ∈ Fc,N ,M we have
∣∣∣f(xj) −

g(xj)
∣∣∣ ≥ c|N |λminε for a j = j(f , g) given for h := g−1 ◦ f ∈ F \ Id. Now define

for all j = 0, . . . , d : Fj subfamily of Fc,N ,M such that j(f1, f2) = j is a constant

for any f1, f2 ∈ Fj .

Fix j ∈ {0, . . . , d}, then for all f , g ∈ Fj :

B(f(xj), c|N |λminε/2) ∩B(g(xj), c|N |λminε/2) = Ø.

On the other hand the their centers are contained in a ball of radius |N |(1+ 2c|M |)

therefore #Fj ≤ (1 + 2c|M | + 2cλminε/2)d/(2cλminε/2)d independent of N .

And again Ramsey’s theorem 19.2.3 [2] yields that there exist L(c,M) independent

of N such that #Fc,N ,M ≤ L(c,M) < ∞ giving us a bound to γ(2)c,M .

4.b. =⇒ 5.d.

Fix x ∈ Rd, for any a ∈ Rd, y > 0:

sup
b>0

sup
a∈Rd

sup
f∈F

#
{
Fb(f(x)) ∩B(a, b)

}
≤ sup
b,a,f

#
{
g ∈ Fb

∣∣∣ g(f(x)) ∈ B(a, b)
}

≤ sup
b,a

#
{
g ∈ Fb

∣∣∣ g(F (x)) ∩B(a, b) ̸= Ø
}

≤ sup
b,U

#
{
g ∈ F 1

2 ·|U |

∣∣∣ g(F (x)) ∩U ̸= Ø and |U | = 2b
}

≤ sup
U⊂Rd

#
{
g ∈ F 1

2 ·|U |

∣∣∣ g(F (x)) ∩U ̸= Ø
}

≤ γ
(2)
1/2,F (x).

And F (x) = {fi(x) | i ∈ Σ∗} is bounded hence γ(2)1/2,F (x) < ∞ by 4.b..
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5.e. =⇒ 4.d.

γ
(2)
1/2,{x} = sup

N⊆Rd

#
{
f ∈ F1/2|N |

∣∣∣ f(x) ∩N ̸= Ø
}

≤ sup
N⊆Rd

L sup
z∈Rd

#
{
f ∈ F|N |/2

∣∣∣ f(x) ∈ B(z, |N |/2)
}

≤ L · sup
b>0

sup
z∈Rd

∑
y∈Fb(x)∩B(z,b)

#
{
f ∈ Fb

∣∣∣ f(x) = y
}
,

where L = L(d, 2, 1) is the number of unit balls needed to cover a radius two ball

by Lemma 3.1.1. Now using Lemma 3.1.2 and 5.e.:

γ
(2)
1/2,{x} ≤ L ·C ′ · sup

b>0
sup
z∈Rd

#
{
Fb(x) ∩B(z, b)

}
≤ L ·C ′ · n(5).

4.d. =⇒ 1.c.

The proof will be very similar to 4.c. =⇒ 1.a.. By 4.d. ∃c > 0 ∃ non-

empty M ⊆ Rd : γ
(2)
c,M < ∞. Without loss of generality we may assume that

M = {y}, y ∈ Rd. Define for any fi:

IB(y,1/2c)(fi) :=
{
fj ∈ Fλi

∣∣∣ fj(y) ∩ fi(B(y, 1/2c)) ̸= Ø
}
= Fc,fi(B(y,1/2c)),{y}.

By 4.d. #Fc,fi(B(y,1/2c)),{y} is bounded, also it can only admit whole numbers,

so there exists a fk ∈ F such that #Fc,fk(B(y,1/2c)),{y} is maximal. Now for any

fi ∈ F :

IB(y,1/2c)(fi ◦ fk) = fi ◦ IB(y,1/2c)(fk).

Indeed the maximality property of fk gives ⊆ and for any h = fi ◦ fj, fj ∈

IB(y,1/2c)(fk) we have that h ∈ Fλi·λk = Fλik and fk(y) ∩ fj(B(y, 1/2c)) ̸= Ø

implies fi(fk(y)) ∩ fi(fj(B(y, 1/2c))) ̸= Ø.

Set x := fk(y). Let h = f−1
i ◦ fj ∈ F be arbitrary, for some fi, fj ∈ Fb. We may

assume that λi ≤ λj otherwise h−1 works. Case 1: fj ◦ fk ∈ IB(y,1/2c)(fi ◦ fk).

Then
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|h(x) − x| = |f−1
i (fj(fk(y))) − fk(y)| = |g̃(y) − f(y)|.

If g̃(y) ̸= f(y), then |g̃(y) − f(y)| ≥ min
{
|g(y) − f(y)|

∣∣∣ g ∈ IB(y,1/2c)(f) and

g(y) ̸= f(y)
}

Case 2: fj ◦ fk /∈ IB(y,1/2c)(fi ◦ fk). Then f−1
i (fj(fk(y))) /∈ fk(B(y, 1/2c)) =

B(x,λk/2c), so |h(x) − x| ≥ λk/2c. Finally now 1.b. holds with

ε := min
{
λk/2c, min

{
|g(y) − f(y)|

∣∣∣ g ∈ IB(y,1/2c)(f) and g(y) ̸= f(y)
}}

.

3.5 remainder implications

4.a. =⇒ 6.a.

We need to show that exists n(6) < ∞ ∀x ∈ Rd ∀b > 0 such that:

#
{
fj
∣∣∣ j ∈ M̃b and fj(Λ) ∩B(x, b) ̸= Ø

}
≤ n(6).

Fix B(x, b) we may assume that b ≤ 1 and Λ ∩B(x, b) ̸= Ø otherwise M̃b would

be empty or the intersection would be empty. Then there exist k ∈ Σ∗ such that

fk(Λ) ∩B(x, b) ̸= Ø and bλmin < λk ≤ b. By this again using |Λ| = 1:

B(x, b) ⊂ B(fk(Λ), 2b) ⊂ B(fk(Λ), 2λkλ
−1
min) = fk(B(Λ, 2λ−1

min)).

Therefore for any j ∈ M̃b if fj(Λ) ∩B(x, b) ̸= Ø then we have that fj(Λ) ∩

fk(B(Λ, 2λ−1
min)) ̸= Ø. Now fix k ∈ Σ∗:

{
fj
∣∣∣ j ∈ M̃b and fj(Λ) ∩B(x, b) ̸= Ø

}
⊂
{
fj
∣∣∣ j ∈ M̃λkλ

−1
k b and fj(Λ) ∩ fk(B(Λ, 2λ−1

min)) ̸= Ø
}

= Γλ−1
k b,2λ−1

min
(k) ≤ γλ−1

k b,2λ−1
min

.

.

Finally, using Lemma 3.1.3: for any k such that bλmin < λk ≤ b
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γλ−1
k b,2λ−1

min
≤ ϕ(

λ−1
min
λ−1

k b
)γλ−1

min,2λ−1
min

≤ ϕ(λ−1
min)γλ−1

min,2λ−1
min

< ∞.

Because ϕ is increasing and continuous and λk ∈]bλmin, b].

6.a. =⇒ 6.b.

Fix 0 < C1 < 1 < C2. Notice that the assumption on |Λ| = 1 converts

C1 ≤ |fj(Λ)|
|B(x,b)| ≤ C2 into C1 ≤ λj

2b ≤ C2, or in other words: λj ∈ [2bC1, 2bC2]. Now

consider the following covering union of sets of that interval:

M̃2bC2 =
{
i ∈ Σ∗

∣∣∣ λi = |fi(Λ)| ≤ 2bC2 < |fi−(Λ)| = λi−
}

⊃
{
i ∈ Σ∗

∣∣∣ 2bC2λmax ≤ λi ≤ 2bC2
}
,

M̃2bC2λmax =
{
i ∈ Σ∗

∣∣∣ λi ≤ 2bC2λmax < λi−
}

⊃
{
i ∈ Σ∗

∣∣∣ 2bC2λ
2
max ≤ λi ≤ 2bC2λmax

}
,

...

M̃2bC2λkmax
=
{
i ∈ Σ∗

∣∣∣ λi ≤ 2bC2λ
k
max < λi−

}
⊃
{
i ∈ Σ∗

∣∣∣ 2bC2λ
k+1
max ≤ λi ≤ 2bC2λ

k
max

}
,

...

Then there will be an h such that from that index 2bC2λhmax becomes smaller

than 2bC1 because λmax < 1 : 2bC2λkmax = 2bC1 =⇒ k = logλmax

{
C1
C2

}
, so

h :=
⌊

logλmax

{
C1
C2

}⌋
+ 1. Finally we have that:

{
fj
∣∣∣ C1 ≤ |fj(Λ)|

|B(x, b)| ≤ C2
}
=
{
fj
∣∣∣ λj ∈ [2bC1, 2bC2]

}

⊂
h⋃
k=0

{
fj
∣∣∣ λj ∈ [2bC2λ

k+1
max, 2bC2λ

k
max]

}
⊂

h⋃
k=0

M̃2bC2λkmax
.
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For a given pair k,B(x, b), we define xi, i ∈ {0, . . . ,L(k)} as the centers of

balls with radius 2bC2λkmax such that they cover B(x, b) by Lemma 3.1.1 with

L(k) = L(d, b, 2bC2λkmax) . Hence:

#
{
fj
∣∣∣ C1 ≤ |fj(Λ)|

|B(x, b)| ≤ C2 and fj(Λ) ∩B(x, b) ̸= Ø
}

≤ #
{
fj
∣∣∣ j ∈

h⋃
k=1

M̃2bC2λkmax
and fj(Λ) ∩B(x, b) ̸= Ø

}

≤
h∑
k=1

#
{
fj
∣∣∣ j ∈ M̃2bC2λkmax

and fj(Λ) ∩B(x, b) ̸= Ø
}

≤
h∑
k=1

#
{
fj
∣∣∣ j ∈ M̃2bC2λkmax

and fj(Λ) ∩
L(k)⋃
i=1

B(xi, 2bC2λ
k
max) ̸= Ø

}

≤
h∑
k=1

L(k)∑
i=1

#
{
fj
∣∣∣ j ∈ M̃2bC2λkmax

and fj(Λ) ∩B(xi, 2bC2λ
k
max) ̸= Ø

}

≤
h∑
k=1

L(h)∑
i=1

#
{
fj
∣∣∣ j ∈ M̃2bC2λkmax

and fj(Λ) ∩B(xi, 2bC2λ
k
max) ̸= Ø

}
≤ h(C1,C2) · n(6) ·L(h).

6.b. =⇒ 4.c.

Fix c > 0 and R > 0.

γ
(1)
c,R = sup

k∈Σ∗
#
{
fi
∣∣∣ λi ≤ cλk < λi− and fi(Λ) ∩B(fk(Λ),Rλk) ̸= Ø

}

≤ sup
k∈Σ∗

#
{
fi
∣∣∣ λi ≤ cλk < λi− and fi(Λ) ∩

L(R)⋃
i=1

B(fk(xi),Rλk) ̸= Ø
}

≤
L(R)∑
i=1

sup
k∈Σ∗

#
{
fi
∣∣∣ λi ≤ cλk < λi− and fi(Λ) ∩B(fk(xi),Rλk) ̸= Ø

}

≤
L(R)∑
i=1

sup
k∈Σ∗

#
{
fi
∣∣∣ λmincλk < λi ≤ cλk and fi(Λ) ∩B(fk(xi),Rλk) ̸= Ø

}
.

By Lemma 3.1.1 for some L(R) = L(d,R|Λ|,R) = L(d, |Λ|, 1). Now λmincλk <

λi ≤ cλk implies: λminc
2R = λmincλk

2λkR
< λi

2λkR
≤ cλk

2λkR
= c

2R . Finally:
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≤
L(R)∑
i=1

sup
k∈Σ∗

#
{
fi
∣∣∣ λminc

2R <
λi

2λkR
≤ c

2R and fi(Λ) ∩B(fk(xi),Rλk) ̸= Ø
}

≤ L(R) · n(7) where n(7) is given by 6.b. for C1 :=
λminc

2R ,C2 :=
c

2R .

4.b. =⇒ 6.c.

Let D be fixed compact in Rd, for any x ∈ Rd, b > 0, then using Mb ⊆ Fb we

have that:

#
{
f ∈ Mb

∣∣∣ x ∈ f(D)
}

≤ #
{
f ∈ Mb

∣∣∣ x ∈ f(D) ∩B(x, b/2) ̸= Ø
}

≤ #
{
f ∈ Fb

∣∣∣ x ∈ f(D) ∩B(x, b/2) ̸= Ø
}

≤ #F1,B(x,b/2),D ≤ γ
(2)
1,D < ∞.

6.c. =⇒ 4.d.

We have that #
{
f ∈ Mb

∣∣∣ x ∈ f(D)
}

≤ n(8). Note that f(D) ⊂ B(x, (1 +

|D|)b). Now it follows that

∑
f

{
Vol(f(D))

∣∣∣ f ∈ Mb and f(D) ∩B(x, b) ̸= Ø
}

≤ n(8) · Vol(B(x, (1 + |D|)b)) = n(8) · ((1 + |D|)b)d · c,

where Vol denotes the d-dimensional Lebesgue measure, and for a constant c =

Vol(B(0, 1)). On the other hand, (λminb)d · Vol(D) ≤ λdf · Vol(D) = Vol(f(D))

because f ∈ Mb. Hence

#
{
f ∈ Mb

∣∣∣ f(D) ∩B(x, b) ̸= Ø
}

≤ n(8) · (1 + |D|)d · c
λdminVol(D)

.
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Finally,

γ
(2)
1,D = sup

N⊆Rd

{
#F1,N ,D

}
= sup

N⊆Rd

#
{
f ∈ F|N |

∣∣∣ f(D) ∩N ̸= Ø
}

≤ sup
x∈Rd,b>0

#
{
f ∈ Fb

∣∣∣ f(D) ∩B(y, b/2) ̸= Ø
}

≤ sup
x∈Rd,b>0

#
{
f ∈ Fb

∣∣∣ f(D) ∩B(y, b) ̸= Ø
}

≤ sup
x∈Rd,b>0

#
{
f ∈

h(λmin)⋃
i=0

Mbλimax

∣∣∣ f(D) ∩B(y, b) ̸= Ø
}

≤ h(λmin) · sup
x∈Rd,b>0,i

#
{
f ∈ Mbλimax

∣∣∣ f(D) ∩B(y, b) ̸= Ø
}

≤ h(λmin) · n
(8) · (1 + |D|)d · c
λdminVol(D)

,

where we used the construction from 6.a. =⇒ 6.b. to get an h = h(λmin) =⌊
logλmax

{
λmin

}⌋
+ 1 independent of b such that Fb ⊆ ⋃h(λmin)

i=0 Mbλimax
.
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