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INTRODUCTION TO ITERRATED FUNCTION
SYSTEMS

1.1 GENERAL THEORY OF IFS’S

Both in nature and mathematics people observe geometric objects with deep
self-reoccuring structures. The field which study these is called Fractal Geometry.

The development of the analysis of such objects
started in the 19th century with mathematicians study- | h
ing the diversity and the complexity of functions. One \\ ‘
could have asked that does there exist a continuous - N\
function on R which is nowhere differentiable. The an- : .
swer is ves, and an example is the Weierstrass function, ~ Yvelerstrass function
and by that we have discovered a function with many
new fractalic properties, leading us to a new area. The main breakthrough (be-
coming a widely know mathematical branch) came in the 20th century with
Benoit Mandelbrot who founded and popularised the field. Even the name fractal,
which comes from the latin fractus meaning broken, fractured was used first
by him. Nowadays, fractal geometry is an actively researched field induced by
the huge number of occurrences of fractals and self-similar structures not only
in mathematics, but even in other scientific fields such as finance, biology and
physics.

One widely used and studied way of constructing fractals are trough Iterated

Function Systems (IFS), which in some case gave us much more simplistically
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Harter-Heighway
The Sierpinski gasket Koch snowflake dragon curve

looking fractals such as the well know ones like the Sierpinski gasket, the Koch

snowflake or the Harter-Heighway dragon curve.

Definition 1.1.1 (IFS) Let (X,dist) be a complete metric space. We say that
a map f: X — X is a contraction if there exists A € (0,1) such that for any x,y €
X o dist(f(x), f(y)) < A-dist(x,y). The appropriate X is called the contracting
ratio of f. We call a finite collection of contractions ® = {f1, fo,..., fm} an

Iterated Function System.

We can extend the definition of the distance to sets: let dist(A, B) denote
inf{dist(a,b) | a € A,b € B} throughout the document. We denote by B(A,r) :=
{z | dist(A, z) < r} the closed r-neighbourhood of the set A. At many cases we
need a distance which can distinguish between intersecting sets, the previusly
defined distance fails at this. This observation leads to the definition of an other
distance disty (A, B) := inf {r >0 ‘ A C B(B,r) and B C B(A,T)} which
is called Hausdorff distance/metric. The following theorem lets us define the

invariant set of the IFS, which will be the main object we will study:.

Theorem 1.1.1 (Hutchinson, [9]) For every IFS ® = {f1,..., fm} there ez-
ist a unique, non-empty, compact set A C X such that A = U™, f;(A). We call
A the attractor of the IF'S.

The draft of the construction of the attractor is the following:



o We start by just an arbitrary ball with radius R centered at z,. To get
the A = U™, fi(A) we need the R large enough so that f;(B(z,,R)) C
B(zo,R) for any i € {1,...,m} By the maps being contractions and the

finiteness of the set of maps we can choose such R > 0.

o Now we iterate the ball trough the f;-s, and then union them up getting:
Ap =l U Uy (fiy o fiyo...0 fi,)(B(20,R)).

e Then A,4+1 € A, by the choice of R and A,, is an union of finite many
compact sets because the maps are contractions. These two properties let us
use the Cantor intersection theorem, which gives us that there is a A C R?

compact, non-empty such that A = N5 A,,.

o Note that we are done because

A= Ul Ul Uy (fiyo...0 fi,)(B(20,R))
S (S U U (o0 i) (Bl R)

= Uz”f:lfh (A)

1.2 MEASURE AND DIMENSION

In geometry, it is usual to consider measuring length, area, volume and so on.
Doing so, given nice set, we might prefer values between 0 and oo not containing
the borders, but at many cases with fractals we can get infinite length but zero
area. This phenomenon leads us to consider some sort of measure between the
integer dimensions.

We first need a generalization of measure on R?, or even more, we would
like to have a generalized s € [0, d] dimensional measure in R?. The following
construction gives us exactly what we want, with a nice geometric intuition trough

just containment in unions and limit.



Definition 1.2.1 (s-dimensional Hausdorff measure) Let (X, dist) be a

complete metric space, E C X. For 6 >0 and s > 0:

I is countable, £ C U;c1U;

H(E) = inf{Z\Ui\s

el

and¥iel: |Ui| < 5}.

Then the s-dimensional Hausdorff outer measure of E is:

Another measure used in the field is the Hausdorff content, which does not always

equal to the Hausdorff measure. Their relation is studied in [7].

Definition 1.2.2 (s-dimensional Hausdorff content) Let (X, dist) be a com-
plete metric space, E C X. For s > 0 the s-dimensional Hausdorff content of E

18:

15 (E) = inf{z loAE

el

I is countable, £ C Uz‘eIUz’}-

Now after we concluded a measure, we ask that which/what sets are measurable?
A property that gives nice answer to this is that the Hausdorff measure is a
metric-outer measure, meaning that for any two positively separated sets, the
measure of their union equals to the sum of their measures. It is know that for a
metric-outer measure every Borel set B € B is measurable see [3].

After this we can notice that the Hausdorff Measure can be thought of as a
function from R* x B(R?) to R, Therefore it is natural to ask that is any
continuity happening in the first variable which is the measure dimension? The

following Lemma gives us an answer for exactly this.

Lemma 1.2.1 For E € B(R?), for any a > 0 we have:



(1) If H? E) < oo, then for any B > a we have: HE

(2) If H*(E) > 0, then for any B < « we have:

( oo
H(E) =

(

)=

HO(E

Corollary: This lets us to have at most one positive real v such that oo >
HY(E) > 0.
Proof:

o We only give a proof for the first statement, the second one follows in a

similar fashion. From these two, the Corollary comes trivially.

o Given H*(E) < oo, by the definition of the Hausdorff measure: for every
e > 0 exists 0 > 0, exists U;,7 € I countable cover of E such that for any ¢

we have |U;| < 6 and Y ;e |Us|* < HY(E) +&.

» Then we have: Yier [U|® < 609-0) 5,/ |Ui]* < 609-9) (H(B) +2) — 0

as 0 goes to 0 proving the statement.

This phenomena let’s us to define a property of the set E at the snapping point,

which will be well-defined by the previous lemma.

Definition 1.2.3 (Hausdorff dimension) Let (X, dist) be a complete metric
space, for E C X the Hausdorff dimension is:

dimyg F := inf{a > 0 | HY(E) = 0}

:=sup{a >0 | H*(E) = oo}.

Lemma 1.2.2 Let (X, dist) be a complete metric space, then for any A C X :
dimyg A :=inf{s > 0 | H3 (A) = 0}.

Some properties of the Hausdorff dimension:

1. Monotonicity: dimg A < dimyg B, VA C B.



2. Countable stability: dimyg { Ujer EZ} = SUpP;¢1 { dimy EZ} for all I countable

set.

3. Vol(E) > 0 = dimpg E = d, where Vol is the d-dimensional Lebesgue

measure.

4. f + X — Y is a-Holder (that is 3C' > 0 Vz,y € X : |f(x) — f(y)]|
C-lo—yl®) = dimg {f(E)} < dmuf

IN

5. f: X — Y is bi-Lipschitz (that is 3L such that Vz,y € X : |z —y| <
@) = F )] < Liw —y]) = dimy {f(E)} = dimy £

6. f:X — Y isasimilarity (o(z,y) = X-o(f(z), f(y)) ) = H*(f(F)) =
NHY(E).

For the proof, see [5].
Many more dimension concepts have been developed, we will use the following

two: lower- and upper-box-counting dimension:

! E)}  — 1 E
dlmBE = hm lnf w’ d]mBE = hm sup w
o—0t  —log{d} st —log{do}

Y

where Ns(E) := min{m > 0 | Jz1,22,..., 2 E C U™, B(x;,0)} . If dimgE =
dimpE, then we can talk about the box-counting dimension : dimg £ :=
dimpE. The box-counting dimension can also be computed with packings in-
stead of coverings. Let P.(F) := max{m > 0 | Jz1,z2,... 2y, € E : B(x;,r) N
B(zj,r) # @ == 1 = j} be the maximal ¢ packing of the set E. Then
Pr(E) < Ny (E) trivially and P,(E) > Nar(E) because if z;-s give No(E) =t
then those z;-s give a at least t disjoint balls with radius r otherwise the balls

which create intersection would also be unnecessary for the covering. Therefore:

1 1) — 1 E
dimp 1= lim inf PPN b s 5PN
o0t —log{d} st —log{d}



The general relationship between the Hausdorff dimension and the box-counting

dimensions is: dimpg £ < dimgF.

1.3 SYMBOLIC SPACE

Definition 1.3.1 Let A be a set of finite symbols. Then we define the set of
n-length words by ¥, := A", Vn € IN. The set of words with finite length is
= Ul A" Finally, the Symbolic Space is the set of words with infinite
length ¥ := AN,

The symbolic space is particularly useful by the following:

Givenan IFS ® = {f1, f2, ..., fm}, wedenote fj, o fj,0...0 f;, by just FGivgoresin)
= fi for i = (j1,...,jn) € £*. Now it is natural ask that can we extend this to
infinite words. The following map gives us just that. Introduce a natural map
7 from the Symbolic Space X given by A = {1,2,...,m} to the points of the

attractor: for i = (i1,42,...) € &

i fi(A):= () fiiofiso---o fi,(A)
n=1
:nh_{gofilofho”'ofin(o)'

The symbolic space allows us to analyze fractals much more. Two of the construc-
tions for this are the measure on the symbolic space, which can be pushed to the
attractor and the minimal cut-sets/partition: Let p := (pi)ic(1,....,m) be a probabil-
ity vector. For i € 2*, let [i] = [(i1,i2,i3,...,in)] = {7 € X |Vl € {1,2,...,n}:
iy =7 }. Now for i = (i1, @2, ... ,in) define v([i]) := pi, - piy - - - . - Pi,, then the
Kolmogorov extension theorem extends this to X giving us a measure called the

Bernoulli-measure. Another useful notation is for j = (j1,j2,. .., jn—1,Jn) € &*

we define j~ := (J1,72, -+, Jn—1)-



Definition 1.3.2 (minimal cut-sets/partition) We call ' C X* a minimal

cut-sets/partition of ¥ if:
1. ForVi,j €T such that i # § we have [i| N [j] =0.

SN N
PIANN

111 112 11n

A possible partition in X generated by A = {1,2,...,n,}

The following property is the very essence of the partition:
If T is a partition and v is a Bernoulli-measure on X, then > ;cr v([i]) = 1. This
also ensures us that v is a probability measure on X. Furthermore if C denotes

the o-algebra generated by the cylinders then v is C-measureble.

Definition 1.3.3 (stationary measure) Let p be a push-forward of some
Bernoulli-measure on ¥* to the attractor, meaning: p = v = von L. For
A C X Borel, define p(A) := v(n=1(A)). We call u a stationary measure on the

attractor.

1.4 PROPERTIES OF WELL SEPARATED SETS

In this section we will see some interesting results using more or less the regularity
of well behaving fractals. As we move forward, the reader might ask, are these quite

strict properties what we stated necessary? If not, what kind of generalization



can we get? The constraint of our generality is that from now on in this paper

we will be interested in only X = R? with dist being the Euclidean metric.

Definition 1.4.1 (self-similar) If the maps f; : R — R? of the IFS are

similarities (i = 1,...,m):

fz(x) =XN-O;-x+1t; where \; € (0, 1) t; € R?

O; € O(d,R) (the set of d x d orthonormal matrices),

then we call the IFS self-similar, and the attractor self-similar set.

The following two notations will be used constantly: A\ypin := minf” (A\;), Amax :=

max!", (A;). The first use of self-similarity is a cover what we can define with it:

Definition 1.4.2 (Moran cover) For an IFS ® = {f1,..., fm} with fi(z) =
Ni-O;-x+t; for alli € {1,...,m}, with attractor A. We define the Moran

cut-set with parameter r € R™ as follows:

./(\/l/r = {-] = (j17j27 s 7jk:—17jk) € Z‘*

G < < |- (M)}

The Moran cut-set with parameter r can be interpreted as words in X* such
that the combined contraction of any word is at order r. The Moran cover now

easily follows:

My i={Ay=(fo. ..o f,)(A) SR | (i, k) € My},

Secondly, with self-similarity we can formalize and then decompose the defining
fi-s. Considering that rotations and transitions usually does not change the
dimension, we want to try to define a formal dimension concept only using the

defining functions’s contracting ratios:

10



1. We want to give an upper bound to the Hausdorff dimension by using the
attractor’s level-n cylinders, that is the images of the attractor trough any

n-length composition of the generating functions.

2. For a given n-length word i the diameter [f(;, . \(A)]=[A]-Aij ... Ai,,.

U

3. After this, using only level-n covers, the sum in the Hausdorff measure’s

definition can be expressed:

DU =AY N AL =AM+ )"
el el
4. As in the definition of the Hausdorff dimension, we want a number where
the measure presumably snaps. In the definition of the Hausdorff measure
we let 0 to go to zero, which can be translated to here by letting n to go to
oo. As this happens it is clear that (A] + ...+ AJ,)™ can be only nontrivial
if (A\j+...+2A3) = 1. Hence it is natural to define a dimension at this

point.

Definition 1.4.3 (similarity dimension) For an IFS ® = {fi,..., fm} of
similarities with the contracting ratios: \i, ..., Ay, the similarity dimension of

the IFS and the attractor is s, € R such that s, is the unique solution for

iz1(Xi)% =

The similarity dimension gives us an easy to compute and visually intuitive
concept. On the other hand, it does not care about whether some f;(A)-s overlap.
In this case the the similarity dimension fails to give us meaningful information,
it is just an upper bound of the previous mentioned Hausdorff and Box-counting
dimension. At worst if we let the collisions to grow bigger, the similarity dimension

can be far from the Hausdorff and the box-counting dimension.

11



Definition 1.4.4 (strong separation condition) Let ® = {fi,..., fm} be
an IFS with its attractor A. We say that A and ® satisfies the strong sepa-
ration condition (SSC) if for Vi # j € {1,...,m}: fi(A)N fj(A) = O.

Definition 1.4.5 (open set condition) We say that an IFS® = {f1,..., fm}
and its attractor satisfies the open set condition (OSC) if IU € R bounded,
open, non-empty set with fi(U) CU Vi e {1,...,m} and f;(U) N f;(U) = O for
any i # j, both € {1,...,m}.

First, it is easy to see that the SSC implies the OSC. One might like to use the
SSC because it is visual clarity, and easy to use, but as mentioned in the start

of the section we want a more general one which is the OSC, and as we move

forward the reader will see that many theorems only use the OSC.

Theorem 1.4.1 (Hutchinson, [9], ) Let ® be a self-similar [FS with attractor
A on R? such that the OSC holds. Then

dimyg A = dimg A = s,.

where sq is the similarity dimension. Furthermore 0 < H% (A) < oo.

This proves to be very helpful with finding the Hausdorff dimension, even when

computing s, is not possible explicitly, numerical approximations help very much.

Theorem 1.4.2 (Bandt-Graf, [1]) Let ® = {f;(z) = \O;z + t;} be a self-

similar [FS with attractor A. Then the following are equivalent:

1. OSC holds for ®.
2.0 < H%(A).
3. N is so-Ahlfors reqular: 3¢ > 0 Vr < |A| Vo € A

< Hoo(ANB(z,r)) -

rSo -

1
c

12



4. 3e>0Vye AVr<|A] 2 #{ieM, | i(A)NB(y,r)# O} <c.

Theorem 1.4.3 (Falconer, [6]) Let A be a self-similar set. Then:
dimpg A = dimg A and for t := dimg A we have H'(A) < oco.

Proof:

o We use a packing: Let us recall P,(E) := max{m > 0 | Jx1,29,...2y €
E : B(zj,r)NB(zj,r) # @ = i = j}, and then the upper-box-counting

dimension is dimpA := lim supg_,o+ %-

e Fix § > 0: Let y1,...,yn € R? be the centers of balls, who-s collection
attains this maximum. Let 71,...,7y € £ be such that 7(r;) = y; Vi €
{1,...,N}. Let ji,...,jnN € ./\75|A‘, then for all i we have: 7; € [j;] := {i €
Y ip= i)k VE € {1,..., |_]|}} Denote by K5 := {f;, })¥ which defines a

new IFS, and let us denote it’s attractor by Ay.

Then Ay C A. Also we now that Vk # [ we have f;, (A) N fr,(A) = O by
of the Moran-cover being a partition. These two property give us that Ag

satisfies the Strong Separation Condition.
Hence it also satisfies the OSC and therefore Theorem 1.4.1 holds, giving
us: dimg A > dimg As = s5, where sg is the similarity dimension of the

new fractal. Hence

5%
S5
o % o = Afin - NE - Ps(A) 575 A = A% Ps(A)
- Te 58 - _
S W) 57 - |A[* < Ps(A).

Therefore we have Ps(A) ~= §~%.



« Consequently along any subsequences as d goes to 0 we have:

S 1 A
dimgA := lim sup w

5—0t —log{5} 5—0+

o Assume that 3§ > 0 such that Nys(A) > (

being strict: 3s > ¢ such that Nog(A) > (

)\min -0

A

= lim sup

log{d™>}

—log{d} '

—t
) then by the inequality

Amﬂ)_s still holds. Then

SN A8 > 2w AL (A) > 1. But this implies: dimg(A) > dimg(Ay)

IA[®

= s5 > s >t = dimp(A) which contradicts the assumption.

o Lastly HE5(A) < (40)" - Nos(A) < IAL o which completes the second

AL

min

statement and the proof as well.

14



WEAK SEPARATION PROPERTY

2.1 DIMENSION DROP

In Section 1.4 we introduced the similarity dimension which is an easy to compute
concept, but and whence it only depends on the contracting rations. On the other
hand, computing the Hausdorff dimension by definition can be rather challenging.
A fractal which has these two dimensions different said to exhibit dimension drop.

Hutchinson proved that the OSC is a sufficient condition for the Hausdorff
dimension and the similarity dimension to be equal, but then we might ask that
is it also necessary. The answer is no, there are self-similar sets without satisfying
OSC but having those two dimension the same. This arrises to the next question,
is there a necessary condition for it? The answer is not known, but there is a
promising folklore conjecture, firstly stated by Simon in [13]:

To state the conjecture we need a new structure to analyze:

Definition 2.1.1 (Topology on Similarities) Let us to define the space of all

similarities of RY to itself:
Gg:= {g : R4 — RY ‘ g(x) = c4Og4z + t4 where
¢g € R, 0, € O(d,R), 1, € RY}.
Then a topology & on G is generated by the following distance:
d(f,9) :=max {|e; = ¢y, |0 = Oy, [ = tll}-

Theorem 2.1.1 (Equivalence of topologies) Given a dimension d, let xo, . . .
.zq C RY be in general position, then the topology of similarities 4 in R? is

equivalent to a second topology induced by the sets:

15



L (xp, ..., xq) = {Ug,g(:ﬁo,...,xd)‘ e>0,g9€ g} where Ue 4(zo,. .. ,2q) :

{f €g ’ | f(xr) —g(z)]] < e VEk € {0,... ,d}} which form a neighbourhood

basis of a function g € G.

Proof:

Without loss of generality we may fix g as the identity function in G. Then we
need that both topologies are coarser then the other:

Case 1: Given an f € G with f € B(Id,e) € ¢4 we have that max{]cf -
1,105 = Idgsall, I[tfll} < e, then:

|f(xr) —ap| = |cfOpap +tp —ap| < |cfOpxy — xp]| + ||t ¢
< |(cyOp =Tdgxag)zill + € < [leyOp —Idguallllzkl| + €

< |lcfOf — cfldgug + cfldgug — Idaxd|| ke%axd}{||$k||} +e

geey

< (les 110 ~ Maxall + Masalles ~ 1)  max el +

< (49 +e), max {lloll}+2:=<"

Giving us that B(Id,e) C Uy 1q(wo, ..., x4) an therefore . is coarser than .

Case 2: Given f € G with f € U.p(zo,...,2q) € ¥ we have that
MaXpe(o,... d} {Hf(a:k) — -’EkH} < e. Since x¢...,xq are in general position,
Tl —20,...,Tq— T, form a base of R? whence there exists cg, . .., cq € R such

that Z?:O cr; = 0 and Zf:() ¢; = 1. Hence
d d d
legll = 1£0) =0l = £ (X cims) = Y- il = | Y- i(f (i) — i)
=0 1=0 =0
d d
< S el f (@) — il <3 Jei] e = e
1=0 1=0

Let us define a norm on d by d matrices: ||A|' := % [|A(2; — x,)|. Since

the vector space of matrices is finite dimensional and all norms are equivalent,

16



there exists D > 0 such that: 1/DJ||A||" < ||A|| < D||A|’ for any A d by d

matrix. Then,

ey =11 = |llesOfll = [Mdasall| < llefOp — Tdgxal

d
< D> (erOr = Tdgua) (i — o) |
i=1

d
= D> || f (i) — xi — f(0) + 20|
=1

§D-d-2-5::6(2),

10 = Idgxdll = llefOf — Idgxq + (1 — cf) Of||
< llefOr = Idaxall + 1(1 = cp) Ol
<2D- d~5(zd: il +1) =: ).
1=0
Finally, letting ¢’ := min?_, {¢()} gives us that Us1da(zo, ..., zq) C B(Id,¢)

and therefore, ¢ is coarser than .%.

Definition 2.1.2 For an IFS ® = {f1,..., fm}, let & = {fflofj \ i,j €

1

2 such that i # J} C G with the inherited topology from G.

Lemma 2.1.2 [12] Let ® = {f1,..., fm} be an IFS. Then the OSC holds for
the IFS if an only if for the previously defined & we have |Id & cl(E)|.

Proof:

Firstly the OSC has an equivalent condition by Bandt-Graf [1], which is the
SOSC or strong open set condition: 3 U C R? bounded, open, non-empty set
with f;(U) CU Vi € {1,...,m} and f;(U) N f;(U) = @ for any i # j, both
e{l,..,m}and ANU # O.

Given the SOSC: let x € ANU. For any i,j € ¥*,i1 # j, without loss of

generality we may assume that iy # j;

17



i o file) —al = AN f(2) = fio)]
> A (dist(fi(z), f5,(0U)) + dist(fi(x), fi, (OU)))
> A (dist(f(x), f;(0U)) + dist(fi(x), fi(9U)))
= A\ (O (dist(z,0U)) 4+ N(dist (x,0U))) > dist(z,dU)).

Given Id ¢ cl(€) we also have Id ¢ cl(S\{Id}) and then by Theorem 2.3.1
I.a. holds: fix p > 1, then exists z € A and € > 0 such that for any h =
fitofy € Ewith A, = A\7'A € [p~hp] ¢ if h(x) # o then |h(z) — 2| > ¢,

furthermore our assumption also prohibits A to be Id for i # j. Let

vi=U fk(Bo(‘”’ 2(1€+p)>>‘

keXx*

Where B°(,) denotes the open ball, hence by the continuity of the maps, U is
open, bounded, non-empty. Also ANU 3 z, and by construction f(U) C U
for any ¢ € £*. Fix i,j € L* different and suppose that f;(U) N f;(U) # Q.
Now

& 7éfi< U fk<BO(x,2(1j_p))>>ﬂfj<

keX*

= U fik(BO<Jf72(1€+p)>)ﬂ U fik(BC)(m’Q(li_p)))'

keX* kex*

U fk<Bo(x’ 2(16—1-]9))))

keX*

Hence, there are ki, ks € £* such that

O # fi (BO(ZE, 2(1123))) N fike <BO($, 2(1€+p))>-

it 4]
Then |fik, (z) — fik, (z)| < %, therefore

18



2(1+p)

e < |k o fike () — 2] < (1+ Ajicy /ity )( )

€

)= <.

< (1+p)(2( 5

1+p)

This contradiction proves that for i,j € £* different f;(U) N f;(U) = O and
hence the SOSC holds.

Conjecture (Simon) In R dimension drop may only occur if Id € €.

To study the conjecture, remembering Lemma 2.1.2 it is natural to separate two
condition from the property Id ¢ cl(£). This arises to two separation condition:

For any i,j € £* we define a distance d(i,j) := |fi — fjl, if Ai = A;, and oo
otherwise. Define /\;, := min {d(i,j) ’ lil =|j| =n and i # _]} The Exponential
Separation ES is fulfilled if A,, > a™ for some a > 0 and infinitely many n. This
was introduced by Hochman [8].

The other is the Weak Separation Property WSP which was introduced by Lau
and Ngai in [10] and Zerner [14] and is the main topic of the thesis. This again
allows overlapping but keeps enough structure so that the Hausdorff dimension

will be computable.

2.2 A NEW SEPARATION

The main idea of the Weak Separation Property is that we restrict the self-covers
in a very similar way to the OSC. Remember that the OSC holds iff Id ¢ cl(&).
For the WSP we let the maps overlap, but if so they have to agree on some level,
which translates to that the composition of functions cannot intersect, although

we let for some iq, iz € X* to have the same generated function: fi, = fi,.

Definition 2.2.1 (Weak Separation Property) For an IFS ® = {f1,...,
fm}, denote by € := {fi_l o fj

i,j € X* such that i # j} C G with the inherited
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topology from G. We say that the Weak Separation Property holds for the IFS, if

Id ¢ cl(S\{Id}). In other words the identity of £ is not an accumulation point.

There are many equivalent definition of the WSP, all of which reveal a different
viewpoint of the same object. We choose this because it reflects in an elegant
topological view, and it shows an elegant relation between the OSC and the WSP

in view of Lemma 2.1.2.

Definition 2.2.2 The following notations will be used all throughout the paper:
Leta,b,c, R> 0,k € Z* N, M c R¢ z € R?

. F::{fi ieZ*},

o« Fy:={f €F |\ € bAun b},

o My:={fi|ie My} ={f|1HD)<b<|i (N},

o« Fi= Ub>0{ Lo f; ’ Jis fj € Fb};

= {f, € Moy, | A(A) N fi(B(A, R)) # 0}
A)| < ek < [fim(A)] and fi(A) N B(fi(A), RN # 0},

er(k
{
. 78122 i= SUPyey+ {#TC,R(k)};

o Funm = {f € Fyn| ‘ fF(M)NN # 0},

2
. %(u)w i= SUp N CRd {#Fa,N,M},

® Fb(fl(w)) {gofl ‘ g€ Fb} {fj Ofi($) ‘ )\j E]b)\mmab]}
2.3 MAIN THEOREMS

The main goal of the thesis is to prove the following theorem providing all

accessible equivalent condition for which the WSP is satisfied.
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Theorem 2.3.1 (S.-M. Ngai, Y. Wang and M. P. W. Zerner [14, 11, 4])
Let ® = {f1..., fm} be an IFS, A its attractor. If A is not contained in a hy-

perplane, then the following conditions are equivalent:

1.a.

1.b.

2.b.

3.b.

/.a.
4.b.
j.c.
4.d.

5.b.

Vp>1 3z €A Fe>0 Yhe& withh,=X\"1NepLp:
if h(z) #2 = |h(z) —z| > e.
dreA Fe>0 VheF: ifh(z) #x = |h(z)—2| > e

JreR?Y Fe>0 VheF: ifh(z)#2 = |h(z) —2| > <.

3xo, ..., 24 € R in general position Ie >0 Yh € E\Id 3j with:
[h(2j) —wj| > e
3xo, ..., 24 € R in general position Ie >0 Yh € F\Id 3j with:
i) —zj] > e
3z, ..., zq € R in general position e >0 Yhe F Vj
if h(zj) # x5 = |h(z)j) —zj] > e
The identity is an isolated point of €, that is the WSP holds for the
IFS.

The identity is an isolated point of F.
Ye>0 VR>0: vé}%<oo.
Ve >0 VY bounded M C R? : 7&2]\)4 < 00.
Je>0 dR>0: vé}})z<oo.
Je>0 3 non-empty M C R%: 7&2]\)/[ < 00.
VeeR? Inl)<oo WVieX* Wb>0 VaeRe:
#{B(a,b) N {fa(z) | j € My}} < nl.
Ve>1Vpe (0,1) 3z e R 3n® < 0o Vie Z* Vk € N Va € R% :
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5.d.

6.h.

#{Bla,cp") N {fis(2) | i € M} <@,
JreR? ) <o VieZ Vb>0 VaeR?:
#{B(a,b) " {fu(w) | i€ My}} <n®.
VeeR? In® <oo VieX* Vb>0 VaeRe:
#{B(a,b) N Fy(fi(z))} <n).
dreR? ) <o VieZ Vb>0 VaeR?:
#{B(a,b) N Fy(fi(x))} < nl®).
) < 00 VzeR? Vb>0 we have that:
#{fi | 3 € Myyja) and f;(A) 0 B(x,b) £0} <n®)
VO <1<Cy InlD<oo VeeR? Wb>0:
#{fi | Cr < (HEL < Gy and f(A) N B(x,b) £0} <0,

[B(z.b)]
In®) < 0 3 compact D C R% with non-empty interior and with

U™, fi(D) € D such that ¥z € R? Vb e (0,1) we have that:

#{f €My |ze f(D)} <nl®.

We state an even stronger result from [7], but this only works assuming A is in

L.

II.

I1I.

IV.

the real line and not having whole Hausdorff dimension:

Theorem 2.3.2 (A. Farkas and J. M. Fraser [7]) Let ® = {f1,..., fm} be
an IFS, A its attractor such that it is on the real line and dimg(A) < 1. If A is

not a singleton, then the following conditions are equivalent:

The WSP holds for the IFS ®.
HAmu(A)(A) > 0.
A is Ahlfors regular.

dimy (A) = dimy (A) where dimy, the Assouad dimension defined:
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dimA(E)::inf{szO]VxEEVO<p<5§1:

3K > 0: Ny(En B(x,6)) < K(5/p)*}.

V. VT € Tan(A) : dimy(7T) = dimy(A) where Tan(E) is defined by:

Tan(FE) := {T ‘ T is a weak tangent set of E}

={r ’ Jyn € R 3r, > 0 distH(E — 9" A B(o, 1),T) = 0}.

Tn
VI. VT € Tan(A) T does not contain a line segment.

One of the most useful corollary of the WSP is that it gives an easier way to
compute the box-counting dimension and through that the Hausdorff dimension

when A is a self-similar set remembering Theorem 1.4.3.

Theorem 2.3.3 (M. P. W. Zerner [14]) Let ® = {fi,..., fm} be an IFS
satisfying the WSP, A its attractor. Then

: : . log{#M, :
i () = i (4) = iy 2 G = o

Proof:

By the definition of the box-counting dimension it is enough to see that
Ns(A) = min{m > 0| Jz1,22,...2m : A C U™ B(x;,0)} will tend to
infinity in the order of #M, = #{fi | |/i(A)| <b < |fi—(A)|}.

Firstly #M, > N;/2(A) because given 2 € A we have that Urepy, B(f(2),

b/2) covers A. Secondly by 1.b. we have that there exists y € A and € > 0
such that for any h € F : if h(y) # y we have that |h(y) —y| > . Then

{B(f(y), SAminb)}feM are disjoint because given f, g different in M we have
b
that f~'og € F, and then:

e <) =yl =2 9(w) = F W) = lg(y) — F(W) > €Ay > edminb.
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Therefore Py . p/2(A) > # M), where recall P.(A) := max{m > 0 | Jz1, x2,
Tm € Nt Bz, r) N B(zj,7) # @ = i = j} is a packing of A. Finally

using the inequality between packings and coverings:

#My > Nyjo(A) > Pyjo(A) > #M,,

()\minE) .

Remark: One can think of s; as the similarity dimension of the IFS M.

Before proving Theorem 2.3.1 we give an example of an IFS satisfying the

WSP, but not the OSC:

Lo 1 2 el E I3
R 1 | 9
0e e e e o2
| ! . L L3 I3 |
| I Iz |
| I |
} I := conv(A) l
€ OERERRERER y

Firstly 0 is the fixed point of fo,§ for f; and 9 for fs3, hence the convex hull of
the attractor is [0, 2] Looking at the first iterations we see that fi1 o fo = foo f3
implying that the OSC falls short.

Secondly the WSP is satisfied: note that for i = (i1, 42, ...,i,) we have f; =
gm + 2k=1 3 . Then

SZ: {fi_lofj
n-m S
={z3 +Z3k1n_l_z:131717n

i,j € T* such thati;éj}

ijext i lil=nlil =m}
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Now letting x = 0 for any h = fi_l ofj €&, with \p € [p~1, p] we have that
|n —m| <logg p where |i| = n, |j| = m. Then assuming m = n and h(z) # = we

have

] n ) LN, )
M) =l = | 3 g =3 o] 2 | Ui = i) (89) 2 1

Hence the WSP holds by 7.a..

Thirdly we want to compute the Hausdorff dimension. For this we need to get
the growth rate of My, this might be tricky but now observe that in the second
level cylinders { foo, fo1, fo3, f10, fi1, f13, f30, f31, f33} two type of intersection
happends: fi9 = fo3 and for £ = 0,1,3 fio and fr1.

This lets us to restrict the generating method: after 1 or 3 all 0,1, 3 can come,
but after 0 we only let 0, 1. Now in general given two intersecting level-n cylinders
A, Aj with the restriction with distinct i, j we have that they agree on the first
n — 1 letters, denoted with [iNj| = n — 1, and one’s last letter is 0 and the other’s
is 1.

To prove this we use induction: observe that for the first level cylinders it holds.
Now suppose that for level-(n-1) it holds, and let i,j be two different level-n
words such that ;NI # O, but k := [iNj| +1 < n. Denote w :=iNj € X*.
By the induction hypothesis we have {ig, jr} = {0, 1}, without loss of generality
we may assume that i = 0,73 = 1. Since I; N [; # O we have I,0i,,, N 1wl 7#
@, therefore Io;, ., NIy # @. Looking at figure we concude that i1 = 3, but
now (i, ix+1) = (0,3) which is the one we restricted. This contradiction proves
that [iNj| = k—1 = n — 1. Finally now again looking at figure we see that
{in, jn} = {ix, jr} = {0,1}. Now #M, = AP - I, where

i

I
— =
— = =
[ )

1
p=p(b) := [logy/5{b}], I:= |1
1

25



% and A is a non-negative, irreducible,

The dominant eigenvalue is a :=
primitive matrix hence by the Perron-Frobenius theorem the growth rate of

AP®) . [ is asymptotic to a?®) as b — co. Finally:

. _ o log{#My o log{Ar®) .1y log{a?®)}
dimu(A) = B 0o~ o T gt loa(t)

p(b) -logfa} _ . [logy/s{b}] -log{*/%}

T o0t — log{b} b—0+ —log{b}
_ log{3++/5} —log{2}
log{3} '

For a more detailed analysis of this set we recommend [4].
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PROOF OF THE EQUIVALENT CONDITIONS

For the proof we fix some notations: d denotes the dimension of the space where
the IF'S is embedded, m denotes the cardinality of the IFS. Let ¥ denote the
symbolic space generated by the syllables 1,...,m, A denotes the attractor.
For the proof we assume that |A| = 1 which is not too restricting because any
attractor and IF'S can be transformed to such and the transformation does not
change the geometric properties we study. With an IFS ® = {f1,..., f,} and its
attractor A given g invertible function, a new IFS ®, = {go fi o g ..., gofmo
g~} will have the attractor g(A). Then use g(x) := 1/|A|-x. Finally notice

that the WSP’s definition holds for @ iff it holds for ®,.

3.1 LEMMAS

At first we start with a lemma nothing to do with fractals or self-similarity,
but with the structure of R%. Although it’s statement is trivial by any easy
overestimation we have to mention that the exact values are unknown in high

dimensions, for example in d = 2 it is called the Disc covering problem.

Lemma 3.1.1 Given R > r > 0 and a dimension d. Any ball with radius R can
be sufficiently covered by L = L(d, R,r)-many balls with radius r. That is there

exists £ > 0 such that for any x € R? there are x1, ..., z, € R% such that

=

B(zi,r) 2 B(z, R).

=1
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Lemma 3.1.2 If A is not contained in a hyperplane, then for all x € R% which

satisfy 5.c., also satisfy the following inequality:

O = ys;ﬂ;{)d{igg#{f € M, ’ f(z) = y}} < 00.

And for all x € R?, which satisfy 5.e., also satisfy the following inequality:

O = yseuﬂg)d{sbgg#{f € F, ‘ f(z) = y}} < 00.

Proof:

3)

Assuming J.c., there exists an z € R% and an n3) < oo such that for any

ie X any b> 0 and any a € R? we have that
#{B(a,0) N { fis(2) (j € Myf} <n®.

Now fix such pair of ,n(®). Since {fj(x) | i € £*} is dense in A which is
not contained in any hyperplane we can choose d + 1 many finite worlds
ig,...,ig € X* such that the d + 1 points fi,(z),..., fi,(z) are in general
position.

Theorem 2.1.1 lets us to uniquely determine the similarities of R? with
d + 1 general points value taken by it. Therefore we can upper bound #{ fe
M, ‘ f(z) = y} with the number of lenght-(d + 1) sequences formed from
the elements of the set {f(flk(x)) ‘ k € {0,...,d} and f € My such that
f(z) = y} =: A. Hence:

sup {Sup#{f e M, ‘ f(z) = y}} < sup {Sup{(#A)d+1}}

yeRd ~ b>0 yeRd ~ >0
< (sup {sup#{f(fi,(2)) | k€ ..., f €My f(x)=y}})*
yeRd ~ b>0
d

< (3 sup {sup#{f (£, (0) | f € My, f(2) =y} )"

k=0 ye]Rd b>0
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Notice that f(z) = y implies | f(fi,(2)) =yl = |f (fi,(2)) = f(2) = Af|fi, (z)
—z| < b-maxi{|fi, () — x|} which further implies f(f;, (z)) € B(y, bmax;{

| fi, (x) — 2[}), denote ¢ := maxy{| f;, () — 2|}, using this:

{1 @) | f €My, f(2) =y]
C{f(fi(@) | f € My, f(fi,(x)) € B(y,b0)}
= {F(fiu(2)) | f € My} N B(y, be).

Finally we can use 5.c. and Lemma 3.1.1 to have that:
up {sup#{f € 10y | £(2) = )}
yeRd = b>0

d+1
) <

< ((d+1)-n®-L(d,c,1)
Notice that the second equation can be proven by the same argument with

only changing 5.c. to 5.c. and not forgetting the definition: Fy(fi(x)) =
{gofi(l‘) ‘ g€ Fb}.

Lemma 3.1.3 For all 0 < ¢y < co and R > 0 there exists an increasing continu-
ous function ¢(t) > 1 on [1,00), depending only on the IFS, such that for every
keX*:

#r02,R(k)
¢(2)
(1)

Vea,R (1) (1) c2
¢(2g2) S Y%.R S VR ¢(a)-

< #T., m(k) < #Te, r(K) -¢(Z) and from that

Proof:

Firstly we show the left inequality:
Let f; € T, r(k) meaning that A\; < codx < A= and fi(A) N fu(B(A,R)) #
@. Denote the set |i[:= {j € L* | i is a prefix of j}, it has a non-empty

intersection with /ﬁcl A, and there will be at least one j = ii’ in the intersection
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such that f;(A) N fx(B(A, R)) # O and then f; € T';, r(k). Fix such a word

7]

j = ii’, then \; < co Ak implies ¢1 Amin Ak < iy < 2 \max Ak and hence:

il <1 {C—
i < O\ max cy

Define ¢(t) := ¢ (t) - m¥®), recall m is the cardinality of the IFS {f1,..., fm}.
Now we claim that the map K : f; — fiy is at most gb(%)—to—l and this follows
because even if f; , # f;, both in I'c, r(k) with fiu)i’(l) = fi(2>i/(2) in T'e, r(k)
there are at most ¢ (t) - m¥(*) possibilities for i’(2) and i’(2).
Secondly the right inequality:

Let fj € I'¢, r(k) meaning that A\; < ciAx < A\j— and f5(A) N fx(B(A, R)) #
@. Fix such an j, then there is an unique prefix i’ of it such that i’ € MVCQ A
and trivially fy(A)N fu(B(A,R)) # O hence fy € T, (k). Now j =: i'i”
and similarly we have [i"| < w(%) Finally if f;, = fj, bothin ', r(k) with
fi/(l) + fi/(2) in I'c, r(k) then i/(’l) has to be different than i’(/2) and therefore
K*: fj = fv is at most gb(%)—to—l.

3.2 A CLEAR VIEW

Notice that the proof of equivalence is complete if the directed graph of the
statements and proofs is strongly connected, that is from any statement(vertex) we
have a path of proofs to any other statement(vertex). For the easier understanding
we give 2 embedding of the graph: G1: the one ordered by the statements and
GG2: the one by the main path of proofs.

Dashed arrows denote trivial implications, those don’t need any further proof.
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(G1 showing us the overall structure of the statements
B ScTTTeA

1.b. 1.c.

G2 showing us the framework of the proof

1.a

5.b. Je— ™
\ /f 'Q
d.c. l.c.<— 4.d.
A 6b e
T LR
5.a. 6. 2.c. 6.c. }
\ / v / 5.d.
J.a. 2.b. —> 4.b. —
a \ga /3b
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3.3 THE GRAND CYCLE

\2.@. <~ 3.@.\

The set £ can inherit both topology of Theorem 2.1.1 from G which with
the statement of Theorem 2.1.1 gives us 2.a. = 5.a.. Conversely by A not
contained in a hyperplane we can choose zg,...,rq € A in general position and

then 3.a. = 2.a..

2.q. = 4.(1/.‘

Choose ¢ > 0 and xg,...,rq satisfying 2.a.. Let us fix ¢, R > 0, for any
k € X* fixed, and every function f; € T r(k) we have that cAgAmin < Aj < k.
Furthermore for any f;, fj with fi * o fj € E\Id , lets us to define ¢ = ((f;, f;)
index in {0, ..., d} such that:

|(fi(ze) = filze)| = Nl S (fi(me)) — 2] > Aig > echicAmin

If there are more, then abandon all but the lexicographically smallest. From we

get that: B(fi(xe), “Nmin) N B(fj(x,), C%min) = (. For all f € T, g(k):
FM) N f(B(AR)) #0 = dist(f(A), B(f(B(A, R))) = 0.
Now use for all ¢ € {0,...,d}:
dist(f(x), F(A)) = Apdist(zg, A).

Then,

dist(f(2e), fu(B(A, R))) < dist(f(20), f(A)) +dist(f(A), fi(B(A, R)))
+ £ (A)| < Apdist(zp, A) + 0+ Ap|A] = Apdist(zg, A) + Ay

Finally using the equation above and the fact that dist(a,b) < r implies that
a € B(b,r) if |a| = 0 which is satisfied if a is a point:

f(xg) € B(fk(B(A, R)), /\fdist(a:g, A) + )\f).

32



Using this we compute:

C5':)\k>\min
3

3

= B(fk(/\), /\fdiSt(CL’g, A) + /\f +

B(f(xg), ) C B(fk(B(A, R)), )\fdist(xg, A) + /\f + )

CE>\k>\min + /\fR)

ce )\k >\min
3

C B(fk(A), \x(¢ max {dist(xy, A)} +c+
2€{0,...,d}

geeey

—+ C/\kR)

CE Amin

C B(fk(/\), C/\kdist(l’g, A) + cA +

+cR))
— BU(A), R D).

Consider the following graph: for a fixed I'. (k) the vertices will be the functions
in I'c g(k), between any two vertices f, g € I'c g(k) there is a a suitable £(f, g)
defining a labeled edge. Now ¢ can be thought of as a coloring on a complete
graph letting us to use Ramsay’s theorem [2, Theorem 19.2.3], bounding the
number of vertices with a constant L = L(#A) depending only on the number
of vertices in the maximal connected set of vertices by the same colored edges:
A. Finally consider the d-dimensional volume of the previously computed balls:

vk € 2*

#FQR(k) S L(#A)
S L(per{%?x’d} {#A C FcR k) ’ vf 7& g € A é(f g) _p})
Vol(B( fx(A), /\kR ))
< L(per{%i}id} Vol(B(f (w) ceAk/\mm))})
Vol(B(A,RM)) \y
= L(per{%?fd} {Vol(B(O, cAgnin ) J) =),

The L' < oo above is independent of k, depending only on ¢ and R. Finally,
véll){ = SUPkexs {#FQ R(k)} and hence by the definition of the supremum 7&% <
L'(¢, R).

‘ 4.a. = JH.a. ‘

33



Let a € R% b > 0 be arbitrary. Fix * € RY R = R(z) > 0 such that
x € B(A, R). Now for any i € £* we have fij(z) € B(A, R) by the definition of

the attractor A. Define J as follows:

T = #{B(a,b) N {fi(x) | j € Mo} }

j€ My and fi(fi(z)) € B(a,b)}

j € My and fi(B(A, R)) N B(a,b) # 0}

j € My and B(f;(A), \jR)) N B(a,b) # O}
j € My and f;(A) N B(a,b+ \R) # 0}
je My and fi(A)

B
N B(a,b(1+R)) # 0},

If ANB(a,b(1+ R)) = @ then J = 0 and therefore 5.a. holds. Otherwise
Ik € M, such that fi(A) N B(a,b(1+ R)) # @. Choose one k like this, then:

B(a,b(1+ R)) C B(fi(A),20(1+ R)) € fi(B(A, 2251, (1+ R)))

From this:

T < #{f; | i€ Myand f;(A) N f(B(A, 2250, (1+ R))) # 0}

(1)

= #rbA‘l oA7! (1+R)(k) <Yep <00 by 4.a.

\5.c. < J.b.

|

Given 5.c.: 3z € R? 3n(® < 0o Vi € 2" Wb > 0 Ya € R : #{B(a,b) N

{fi(2) [ ie My}} <

n®) 5.b. follows by Lemma 3.1.1 with £(d,¢,1). And then

with given p* we can easily choose any bigger b which gives us n3) >n@ /¢ and

the same z is used in both of the statements.

Conversely fix b > 0, p € (0,1) arbitrary. Then there exists a unique k£ € IN

such that p*T1 < b < pF. Given j € ./Wb there is a j' € Mvpk prefix of j such that:
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/\j < b < /\j— — /\minb < /\min)\j— < /\j
>‘j' < pk < )\j/_ = >\J' < pk

<Ny

p Ay

Amind A
Now the two implies: Apinp < m;{n J
== |J| - |J/| < log)\max{/\minp} < {logAmax{Aminp}T

Using ¢ = 1 by 5.b. we have that 3z € R? In® < 0o Vie Xt Vke
N VaeRe:

#{B(a,b) " {f(2) | i € My}} <
m 198 Amax {Aminp}] -#{B(a, b) N {fji(w) ‘j c Mpk}} < m 108 max PAminp}T .y (2).

‘5.0. - 4.(:.‘

Recall that |A| = 1 by assumption. With 5.¢. we have that 3z € R% 3n() <
0o Vi € X Wb >0Va € R?: #{B(a,b) N {fis(x) |j € My}} <n®). Let R>0
be such that © € B(A, R), then Vj € Z* : fij(z) € B(f;(A), R);j).

Now Vk € X*:
Recall Ty (k) ={f;|Jj€ My, and £;(A) N fi(B(A, R)) # O}, then A < Ak
Let a € R? such that fi(A) C B(a, \g).

HA)Nf(B(AR)) # 0 = fi(A) C B(fx(A), R+ ) =
B(f;(A), R\j) C B(fi(A), R\ + Aj + RA;) € B(fi(A), 2R+ 1)Ax)

C B(B(a, ), 2R+ 1)) C B(a, (2R + 2) k)

L(R)
C B(ai, /\k)

[y

1=

by Lemma 3.1.1 with L(R) = £(d, (2R 4+ 1) \g, A\x) = L(d, (2R +1),1).
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Hence using 5.c.: there are at most n3) points Yis- o Yp3) € R¢ such that
fi(xz) = yp € B(a;, Ax). On the other hand there are at most C*-many f; such

that j € Mkk and fi(x) =y, for any p by Lemma 3.1.2, and therefore:

=

L(R) »
#I1 r(k) < #{fj ‘j € M), and fj(z) € B(ai,)\k)} < L(R) -n® . C".

1

|
—_

‘4,0. = Z.a,‘

By 4.c. there exist ¢ > 0, R > 0 such that ’yc(}% < o0. By Lemma 3.1.3

7% < ¢(C)7§}]2{ < 00, therefore
e #T1x(0) = maxyess {#Fl,R(k)}.

Fix p > 1. Now for any v € X* :

I r(VE) = {fi |fi(A)] < Ave < [fie(A)] and fi(A) N fur(B(A, R)) # @}
= {fvofi|ieTLr(0)}.

The containment O holds by the definition and C hold by the maximality
of ¢. For an arbitrary y € A let z := fy(y), then still z € A, but we have
B(x,RN\y) C fo(B(A, R)). Let ¢ be an integer such that A% . < 1/p. We may

assume that |[¢| > g, this is possible because by I' p(v{) = {fv of; ‘ j€e FLR(E)}

we can choose a new ¢ := v/ with |¢'| > ¢. Let us define

eri=min {|z = f(fi)| | f €Tir(0), 0 <[k < g and f(fily)) # =z},
and € := min {51, R/\g}.

Let us use the convention: fy := Id when |k| = 0. Let h = f; !0 fi € £\Id with
An € [p_l, p]. We may assume that Ay > Ay, since otherwise we might just work
with A=Y Then 1/p < A\, = Aw/Av < 1. Then Ay < Ay and exists ¢ a prefix
of ¢ such that w/¢' € MM' Defining ¢" as ¢ = ¢'¢" we have that 0 < || < q.

Now there are two cases:
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If fowr € T1r(VE) = {fvofj ’J € Fl,R(f)} then fupy = fvo fi for some
ieT g(¢). Then:

h(z) =z = £ (fw() — 2| = |/ (fw(fe(y))) — 2]
= 11 (fw(fe(fer(y)))) — =

= (S (fi(fer () — 2|
= |fi(fe(y)) —z| > e1 > ¢ by definition.

If fawe ¢ Fl,R(VE) = {fvofj ‘ J€ Fl,R(g)} then by wa(A) - fwﬁ’(A) we
have that for x € fo(A) : |fw(z) — fv(z)| > RAvAs. Finally:

h(2) =z = [y (fw(2)) — 2] = XS fw(z) = fu(2)] by linearity
> A\ 'RAN = RM\p > e

In both cases for h € E\Id we have that |h(x) — 2| > ¢.

‘J.a. = 1.b. ‘
Let W := {h €g ‘ An € )\mm,)\mm[}, clearly 7 C £NW, now we show the

other containment. Let h € £ N W meaning that h = fi_ o fj for some i,j € X*
and \j, = )\i_l)\j €] A min, AL 7. Suppose that h ¢ F, so b >0 : fi» fj € Fy which

min [

implies Vb > 0 such that f; € [}, we have f; ¢ I}, and hence

fié U Fb — )\ é U mlny ]: U ]b/\minab] —

b:fieF, beer be A\ At |

J'min

:])\ )\m1n7>\ )‘_m[ = )‘1)‘; é] mlnv}‘r:nn[

which contradicts that A € W proving that F = £ N W. Finally we can choose

p:= AL > 1 to provide the implication.

min

[1.c. = 2.c]
By 7.c.: there exists # € R 3e > 0Vh € F: if h(z) # 2 = |h(z) — x| > ¢,
fix this 2. Let Fy(x) = {f(z) | f € B} = {f(2) | M € JbAuin, 0]}, as b
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decreases towards 0, Fj(x) converge to the attractor A in the Hausdorff metric.
By assumption A is not contained in any hyperplane, therefore there will be
firs s fiy € Fy such that z; := f;,(2),j = 0,...,d will be in general position.
Now Vj € {0,...,d},Vh € F : either h(z;) = zj, or

() = | = (1o () = i) =

2 quiny Du}-e

fi, (0 (2))) = ()]

We remark that with a similar argument one can prove 7.a. — 2.qa..

[2.b. < 3.b.]
Trivially F := Up>0 {f(l o f; ‘ fis fj € Fb} is a subset of £ := {ffl ofjlije
>* such that i # j}, so we can use the topology defined in the proof of 2.a. <=

3.a. gives us ther result.

3.b. = 3.a.]
As we have seen before 7 = £ N W where W := {h €g ’ A €] Amin, )\I_niln[}

which is an open subset in G, because for any g € G : g(z) = c,Ugx +
ty where ¢, € RY,U; € O(d,R),t; € RY if ¢g = Ay €] Amin, A

-1 _
B(g,min{l/\mi“;)‘g‘, |)\mi“2 )\g‘}) Cc W.

then

minls

3.4 THE SECONDARY PATHS

2. = 4.b.]

The proof is similar to 2.a. = J.a.. By 2.b. there exists zq,...,zq €
R? in general position 3¢ > 0 Vh € F\ Id 3j with: |h(z;) — x| > . Fix M C R4
bounded, fix ¢ > 0. We want to see that

7§2134 = ngﬁd {#FC,N,M} = ;&gd{#{f € Fyn ‘ f(M)NN # @}} —
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= sup {#{f < {

NCRA

——

NCR4

A € Jel N Amin, ol NT]} | F(M) NN # 0}

(M) NN # O and X; € Je|N|Amin, ¢| N[} } < o0.

We may assume that zo,...,zq € M. For any f # g € F, y a we have ‘f(xj) -
g(xj)) > ¢|N|Amine for a j = j(f,g) given for h:= g~'o f € F\ Id. Now define
forall j = 0,...,d: F; subfamily of Fi y ps such that j(fi, f2) = j is a constant
for any f1, fo € Fj.

Fix j € {0,...,d}, then for all f,g € F}:

B(f(xj),c|N[Amine/2) N B(g(z;), c|N|Amine/2) =

On the other hand the their centers are contained in a ball of radius |N|(1 + 2¢|M|)
therefore #F; < (1 + 2¢|M| + 2cAmine /2)4/(2cAmine/2)¢ independent of N.
And again Ramsey’s theorem 19.2.3 [2] yields that there exist L(c, M) independent
of N such that #F, ny a < L(e, M) < oo giving us a bound to %(2]\)/[

4. = 5.d.|

Fix z € R?, for any a € R%,y > 0:

sup sup sup #4 Fp(f(x)) N B(a b)}
b>0 qeRe feF

{
SESI}#{QGFIJ‘Q r)) € B(a,b)}

<Sup# g€ Fy | g(F(x))NB(a,b) # 0}

{
<sup#{

geFy, | g(F(2)) U # @ and U] = 2b}

< sup #4g € I g(F NU # O S’y@) )"
Uc]Rd{ Ly | 9(F(2) b <M

And F(x) = {fi(v) | i € T} is bounded hence 717} ;) < 00 by /...
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S.e. = 4.d]

78)2’{1;} = sup #{f € F1 /9N ‘ fx)NN # @}

NCR4

< sup L sup #{f € Fin|/2 ‘ f(z) € B(z,|N|/2)}
NCRY zeRd4

< L -sup sup Z #{fer’f('x):y}a

b>0 2eR? yc F, (z)NB(2,b)

where £ = £(d,2,1) is the number of unit balls needed to cover a radius two ball

by Lemma 3.1.1. Now using Lemma 3.1.2 and 5.e.:

2
”A/)Q,{m} < E-C’-iggzseuﬂg)d#{Fb(a:) ﬂB(z,b)} <L-C -,

‘4.(1. = l.c.

The proof will be very similar to 4.c. = 1I.a.. By 4.d. 3¢ > 0 3 non-

empty M C R? : 7913/_/ < oo. Without loss of generality we may assume that
M = {y},y € R% Define for any f;:

Totyas20 (1) = {fi € Py | i(y) N A(B(y,1/20)) # O} = Fo p(B(y.1/20).(0)-

By J.d. #F, ;,(B(y,1/2¢)),{y} 18 bounded, also it can only admit whole numbers,

so there exists a fi € F such that #F, ¢ (p(y.1/2¢)),{y} 18 maximal. Now for any
fi € F:

Zp(ya/20)(fio fi) = fioLp(y/20) (fio)-

Indeed the maximality property of fi gives C and for any h = fio fj, fj €
Zp(y1/20)(fi) we have that h € Fy. = Fyy and fi(y) N fi(B(y,1/2c)) # O
implies fi(fk(y)) N fi(f(B(y,1/2c))) # O.

Set v := fi(y). Let h = f; 1o f; € F be arbitrary, for some f;, fj € F,. We may
assume that A\; < Aj otherwise h~! works. Case 1: fiofx € IB(y,1/2c)(fi o fx)-
Then
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[h(x) =z =7 (k@) = fily)] = l3(y) = F ().

It §(y) # £(v), then |5(y) — f(y)| > min{|g(y) = F(W)| | 9 € Tp(y1/20)(f) and
g(v) # f(v)}

Case 2: fjo fi & Ip(y1/20)(fi© fio)- Then fi (f5(fi())) & fu(B(y,1/2c)) =
B(x,A\¢/2¢), so |h(z) — x| > Ax/2c. Finally now 1.b. holds with

e := min { N/ 2¢,min {|g(y) = F(W)| | 9 € Zp(y1/20(f) and g(y) # f(v)}}.

3.5 REMAINDER IMPLICATIONS

‘ 4.a. = 0.a. ‘

We need to show that exists n(6) < oo Vo € R¢ Vb > 0 such that:
#{f5 |3 € My and fi(A) 01 B(a,b) # 0} < ).

Fix B(x,b) we may assume that b < 1 and AN B(z,b) # O otherwise M;, would
be empty or the intersection would be empty. Then there exist k € £* such that
fk(A) N B(z,b) # @ and bA\pin < Ak < b. By this again using |A| = 1:

B(.T, b) - B(fk(A)72b) - B(fk( ) 2)‘k)‘mln) fk( (A 2/\mln))

Therefore for any j € M, if f;(A) N B(z,b) # O then we have that fj(A) N
fi(B(A,2),1)) # ©. Now fix k € T*:

{55 | € My and f5(A) 0 B(a,b) # 0)
< {f5 |3 € My, vy and f(A) 0 (B, 225L)) # 0},

=T, b2t (k)<7A Tpar-l -

min min

Finally, using Lemma 3.1.3: for any k such that bApin < Ak < b

41



-1

mln) A 1 2)\ 1 <¢( mln)’Y,\ 1

7A£1b72A;1n - QS(Aklb min’ min’

2/\1<OO

Because ¢ is increasing and continuous and Mg €]bAmin, b].

[6.0. = 6.b.]

Fix 0 < C; < 1 < Cy. Notice that the assumption on |A| = 1 converts

C; < ||£J(( ))I‘ < (9 into C] < g < (9, or in other words: \j € [2bC, 2bC5]. Now

consider the following covering union of sets of that interval:

./Wzbc2 = {i cx*
> {iex

A = filA)] <200 < [fi-(A)] = )\if}
2bCo Amax < Ai < 20C5},

—~ . "
MZbCQ)\max = {1 € Z

Ai < 2000 max < Ai- }
S {iex

2b02>\max < >\i < QbCQ)\max}7

Mopeote = {i cx*
) {i cx*

Ai < 260N < A}

max

2bCoNELL < Ap < 20CoN .},

Then there will be an h such that from that index 2bCo\"_ becomes smaller

max

than 2bC7 because Apax < 1 : 2b02)\max =2bCy = k =logy .. {%}, SO
h = {bg)\max {%}J + 1. Finally we have that:

{fi| ‘fJ(( ))‘I < o} = {fi | A € [26C1, 260}

C U {fj ’ )‘j € [2[)02)\1]%_;)1(,21702>\ ax]} - U M2bC2/\
k=0 k=0

max

42



For a given pair k, B(x,b), we define z;,¢ € {0,...,L(k)} as the centers of
balls with radius 26Co\¥ __ such that they cover B(z,b) by Lemma 3.1.1 with

max

L(k) = L£(d,b,2bCa)\E ) . Hence:

max

1fi(A)]
|B(,0)]

#{ f; \ Ch < < Cyand fi(A) N B(x,b) # 0O}

max

h —~
<#{fi|ie U My, and fi(A)NB(x,b) # 0}
k=1

h P
< 3 #{f |3 € Myyng,, and f5(A) N B(x,b) # 0}
k=1
h . L(k)
< S #{fi |5 € My, and F(A) N Blai, 20C5)\0,) # 0}
k=1 i=1
h_L(k) N
< 33 #{fi |3 € My,ng,,, and fi(A) N Bai, 26C0Xy,) # O}
k=1 =1
h L(h) N
<3 #{h |5 € My, and fi(A) N B(i, 26Co)\E,,) # 0}
k=1 i=1

(01, 02) . n(6) . L(h).

IA
>

6.0 = 4.c|

Fixe>0and R > 0.

73 = sup #{fi | A < d < A and fi(A) N B(fie(A), Ryx) # 0}

L(R)

< sup #{fi | M < e < A and fi(A) N B(fie(), RA) # O}
exr i=1
L(R)
<> sup #{fi Ai < e < Ai- and fi(A) N B(fi(2:), R\) # @}
i=1 kex*

L(R)
<> sup #{f;

i=1 keXx”

/\minC)\k < )\i < C)\k and fl(A) n B(fk(xl))R)‘k) 7& ®}

By Lemma 3.1.1 for some L(R) = L(d, R|A|,R) = L(d, |A[,1). Now ApincAk <

. ; faqe Amin€ — AminCAk Aj Ax  _ ¢ T .
Aj < cAg implies: 25R= = MR < IR < B — 2R Finally:
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)

L(R
AminC A c
< . < & (A B N
- ; 5&15#{f‘ 2R~ onk = op ™4 A(A) N B(fi(wi), R\i) # O}
AminC c
< L(R)-nl" where n'7) is given by 6.b. for Cy := 2R Oy = 2R’

4. = 6.c]

Let D be fixed compact in R, for any = € R?%, b > 0, then using M, C F}, we
have that:

#{feMy|xef(D) <#{feM|aef(D)NB(x,b/2) £ 0}
<#{feR|ref(D)NB(b/2) # 0}

2
< #L Bap/2),0 < 7%,1)9 < 0.

6.c. = 4.d.
| |

We have that #{f € M, ‘ S f(D)} < n'®). Note that f(D) C B(z, (1 +
|D|)b). Now it follows that

> {Vol(f(D)) | f € My and f(D) N B(x,b) # 0}
7

< n® Vol(B(z, (14 |D)b)) = n® - (1 +|D|)b)? - ¢,

where Vol denotes the d-dimensional Lebesgue measure, and for a constant ¢ =

Vol(B(0,1)). On the other hand, (Aminb)? - Vol(D) < X} - Vol(D) = Vol(f(D))

because f € M;. Hence

n® .1+ D)% ¢

#{f € My ‘ f(D)N B(x,b) # ®} < AL Vol(D)
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Finally,

V@) = sup {#Fl,N,D} = sup #{f € Iy ‘ f(D)NN # @}
NCR4 NCRd

< s #{feF | f(D)NB(y.b/2) # 0}

z€R?,b>0

< sup #{f€F | [(D)NB(yb) # 0}

2€RZ,b>0
h(Amin)
< s #{fe U My, | F(D)NB(yb) 0}
2€R4 b>0 i=0
<h(Awin)- sup  #{f €My | F(D)NB(y,b) # 0}
z€RY b>0,i
(8). d,
< B() - " APD- ¢
)‘minVOI(D)

where we used the construction from 6.a. = 6.b. to get an h = h(Apin) =

{log A {)\mm” + 1 independent of b such that Fj C U?:()(}mi“) My i

max
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