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INTRODUCTION

The foundation of fractal theory belongs to Benoit Mandelbrot, who called
these irregular and fragmented objects as fractals in his book "The Fractal Geom-
etry of Nature' [Man83]. As Mandelbrot said "It describes many of the irreqular
and fragmented patterns around us, and leads to full-fledged theories, by identi-
fying a family of shapes I call fractals. The most useful fractals involve chance
and both their reqularities and their irreqularities are statistical. Also, the shapes
described here tend to be scaling, implying that the degree of their irreqularity
and/or fragmentation is identical at all scales". There is no proper definition
for fractals, but the mathematical society agreed about fractals have unique fea-
tures. In nature we can found many examples for fractals, like coastlines, pine
cone, cauliflower, etc.. Some fractals can be described via Iterated Function Sys-
tem (IF'S), which is a finite collection of contracting maps. There exists a unique
non-empty compact set, which is called the Attractor or if the IFS is formed by
similarity transformations often called the self-similar set [HUT81]. The determi-
nation of the dimension of the attractor of a general iterated function systems
and a general graph-directed iterated function systems (GDIFS) is an open prob-
lem, but under some conditions, we can determine it. To measure the dimension,
we usually use the Hausdorff-dimension, the Box-dimension but there are another
dimensions. The self-similarity means that a set or object is exacly similar to a
part of itself. One of the most famous example for self-similar set is the Sierpinski
triangle.
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Figure 1: The Sierpinski triangle



INTRODUCTION

A Self-affine set is affine image to a part of itself, scaled by different amount
in different directions. A famous illustration for a self-affine set is the Barnsley
fern.

Figure 2: The Barnsley fern

For self-similar separated regular IFS, Hutchinson ([HUTS81]) showed that if
the cylinder sets are disjoint, then the Hausdorff dimension of the attractor is
equal to the similarity dimension. Later, Mauldin and Williams ([MW88]) de-
termined the dimension of regular Graph-directed self-similar IFS (GDSSIFS),
which is a natural generalization of an ordinary IFS. Recently Barany, Hochman
and Rapaport ([BHR19]) determined the dimension of the attractor of self-affine
IF'S on the plane, when the matricies of the contracting affine transformations
are strongly irreducible and regular. Our question is, what can we say about the
dimension, when the matricies of the affine functions are singular?

If we have a self-similar IF'S or a self-affine IFS with regular matrices then
the attractor of these systems is a perfect set. But if the matrices of the affine
mappings are singular, it can happen, that the attractor of the IFS is not a
perfect set. We explain this via the following example.

Example 1.1. Let F = {f;(z) = A;x +t;}7_; be an IFS, such that

1 1
A =12 0 , Ao = 0 Lot = 2|, te = ? ;
0 0 0 1 0 L

o



INTRODUCTION

and x € [0,1]2. Denote I; := [0,1] x {0} and Iy := {0} x [0,1]. Then

fi(ly) = [;1] x {0}, fi(l2) = {(é) },

falh) = {(0) } fal ) = {0} x [3,1].

To determine the attractor, we need to continue applying f; and fo on the in-
tervals. By symmetry we can split the attractor into two parts, and we can
investigate how it behaves on each axis. Figure 3 shows this behaviour on the x
axis by each layer means an iteration.

e
o
—_

Figure 3: Iterates on x axis.

Let A, and A, be non-empty compact sets, such that

1 (I IR (D) R (e B (6

(1)

Then for the compact set A = A, UAy,

A(A)U fa(A) = A (2)
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Figure 4: Attractor of IF'S defined in Example 1.1

In this Thesis, we investigate the connection between self-affine IF'S on the
plane and GDSSIFS on the line. Using this connection we would like to state
separation conditions, for which the dimension of the attractor can be defined
with the sub-additive pressure.



PRELIMINARY

2.1 THE HAUSDORFF MEASURE AND DIMENSION

In this Thesis, we use the Hausdorff dimension to determine the dimension of
the attractor of an IFS. Some theorems state the Box dimension too, which is

s () =R loggr MmN AP Tl

where Ng(A) denotes the measures the minimal number of balls with radius ¢
that are covering the attractor A. If the limit above exists then we denote it by
dimp(A). By the properties below it is more sophisticated to use the Hausdorff
dimension instead of Box dimension in theoretical point of view. In this section,
we discuss the basic definitions and properties of the Hausdorff measure and the
Hausdorff dimension as in [Fal88].

Definition 2.1. Let (X, 0) be a complete metric space and E, F' be subsets of
X. Then we define the Hausdorff premetric of E and F as

dy(E,F)=inf{0 >0: F C [E]5 and F C [F]g},

where [E]s = {y € X : thereexists z € E, o(z,y) < 6}. Let C = {F C X :
E is compact} be a collection of compact sets, then dp is a metric on C.

We denote the diameter of a set A by |A|.

Definition 2.2. Let £ C R? and ¢ > 0. Then the collecton of set {A;}°; is
a d-cover of E for § > 0, if B C U, A; and |A;| < 6. We call H'(E) the
t-dimensional Hausdorff pre-measure of F, where

o o0
Ht(E) = lim { inf Z|A1|t : EC U A, |Az| <94 .
00 i=1 i=1
Lemma 2.3. For any Borel set E C R% and 0 < a < 8 we obtain the following
implications:
HY(E) < 0o = HP(E) =0,
0 < H(E) = HYE) = co.



2.1 THE HAUSDORFF MEASURE AND DIMENSION

The proof can be found in the book called "The Geometry of Fractal Sets" by
Falconer ([Fal85]).

Definition 2.4. For any set E C R? the Hausdorff-dimension of E is the
following,

dimp (F) = inf{t >0 : H'(E) =0} = sup{t : H'(E) = oo}.

00 o
t— HY(E)
Qemmmmmmmmm - o
0 dimH(E) 13

Figure 5: Hausdorff measure of a set F.

The following lemma shows some properties of the Hausdorff-dimension.
Lemma 2.5. 1. Fvery countable set has Hausdorff-dimension zero.

2. For every F C RY, we have dimg (F) < d.

3. If LYE) > 0 then dimy (FE) = d.

4. For any k < d the k — dimensional smooth surface in R has a Hausdorff
dimension k.

5. For a Lipschitz map f: R — R"™ and a Borel set E C R we have
dimp (f(F)) < dimp (E).

6. Let E be a Borel set and let f: R* — R™ be a bi-Lipschitz map. Then
dimpg (E) = dimg (f(E)).

7. Let {E;};2, be a sequence of Borel sets in RY. Then

oo
dimpy (U EZ> = sup dimpy (£;).
1=1

7



2.2 SELF-SIMILAR IFS

2.2 SELF-SIMILAR IFS

This section is a brief introduction to Self-similar Iterated Functions Systems.
First we define the basics of an IF'S, then we show how to measure the dimension
of the attractor of an IFS via the Hausdorff-dimension.

Definition 2.6. Let (X, o) be a complete metric space, then we call the map
f: X — X contraction, if there exists a A € (0,1) such that

o(f(2), f(y)) < A-o(z,y)
for every z,y € X.

Definition 2.7. We say that a finite collection of contractions F = {f1,..., fn}
is an iterated function system (IF'S).

Now we show that, the previously defined Hausdorff pre-metric is a metric
on a compact set C. Let us check the properties of a metric. First, dy (E, F) =
dy(F, E) is trivial. Let 01 > dy(F,G) and 02 > dy (G, F) then E C [G](gl and
G C [F|s,. Which means E C [Fs, +5,, then

dH(E, F) < dH(E,G) + dH(G, F)

dig(E, F) > 0 can be seen by the definition. If dg (E, F') = 0, then [F|s D E for
every 6 > 0. So

where N> [F]
only if £ = F.

The following lemmas are essential to proof the existence and uniqueness of
the attractor of an IFS.

= F. Since F is compact F = F. That is dy(E,F) = 0 if and

3=

Lemma 2.8. If f: X — X is a contraction with ratio A € (0,1) and E, F C X,
then

du(f(E), f(F)) < A-du(E, F). (3)
Proof. Let § > dy(E, F). Since [E]s D F then

F(F) € F([Es)-
By definition

[E]s = {y: there exists x, o(x,y) < d}.
f([E]s) = {f(y): there exists z € E, o(x,y) <4}
C{f(y): thereexists x € E, o(f(x),f(y)) <X-d}.



2.2 SELF-SIMILAR IFS

By previous calculations, f(F) C [f(E)]x.s, which implies

Lemma 2.9. For every subsets A, B,C, D C X we have
dy(AUB,CUD) <max{dy(A,C), dy(B,D)}. (4)
Proof. Let 6 > dy(A,C),dg(B, D), then A C [C|s and B C [D];. By definition
AUB C [C]sU [D]s.

Since [C|s U [D]s = {y : there exists x € C or there exists © € D, o(z,y) < 0}.
Then

AUB C [CUDJs.
O

Theorem 2.10 (Hutchinson [HUTS81]). Assume that the IFS F = {f;}", con-
sits of functions f; : X — X with Lipschitz constants \; < 1. Then for the closed
ball

B = E(l’o, R) wher@ R = maX M (5)
? 1-— )\z
we have f;(B) C B for alli =1, ... ,m. Furthermore, we call the non-empty

compact set
A:m U fiy oo fi,(B)
n=1 (iy,....in)€{1,...,m}"

the attractor or invariant set of the IFS F. Then A is the unique non-empty
compact set which satisfies

s

A= fi(A).

1

(3

Proof. First, we show the existence. Let (X, p) be a compact metric space, let
xg € X be arbitrary and choose R > 0 sufficiently large, such that for every

i=A{1,...,n}

fi(B(]Jo,R)) - B(.ﬁlfo,R), (6)
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where B(xg, R) is an open ball around zg with radius R. Then for every y €
fi(B(zo0, R)), o(x0,y) < R. There exists z € B(x, R) such that y = f;(z).

o(fi(2),20) < o(fi(2), fi(xo)) + o(zo, fi(zo)) < Ai- o(z, w0) + o(fi(20), 20)
<\ -R+ Q(fi(l’()),xo) < R.

Which means that

felbim)

1—N
Let

By the property (6), Ap+1 € A, that is A, is a sequence of shrinking compact
sets. We use Cantor’s intersection theorem on A, and let A be the non-empty
compact set

Clearly, A := U fi(A). Now, we show the uniqueness of the attractor. Let A’
be another non-empty compact set such that,

m
A = fi(A).
=1
Then investigate the distance of A and A’ by the Hausdorf metric,

m (4)

0<dp(AAN)=dg <U fi(n), U fz'(A’)> % max dy (£i(A), Hi(A))
1=1 =1 T

(%) ‘max N -dpg (A,A/) <dy (A,A/).

i=1,...,m

Which is a contradiction, so that means the distance of A and A’ has to be
ZE€ro. O

Definition 2.11. Let (X, g) be a compact metric space, then the IFS of maps
fi: X — X is called self-similar if it contains only similarities, i.e

o(fi(z), fi(y)) = Ni - o(=,y),

or some A; € (0,1) and for every z,y € X.
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Now we show a construction for a Graph-directed self-similar IF'S by Mauldin
and Williams [MWS88]. Furthermore, for each Graph-directed self-similar IFS
there exists an attractor.

Definition 2.12. Let{I;}Y; be a set of closed intervals of R and let G = (V, £)
be a directed graph, where &; ; denotes the set of edges from i to j, and V =

(1 j)j.vzl. Furthermore, a contracting similarity mapping fe.: I; — I; on the fol-

lowing metric spaces (Ij,d), j = 1,...,N with contraction ratio r. € (0,1).
Then

d(fe(x), fe(y)) = re - d(z,y) for every z,y € I;.
We call the system (G, { fe,e € £}) as graph directed self-similar [FS (GDSSIFS).

Theorem 2.13 (Mauldin and Williams [MW8&8]). For each geometric construc-
tion, there exists a unique collection of compact sets, (A1, ... ,An) such that

for N € N

N
A= U fe(Aj) for everyi=1,...,N.
j:1665i,j

The construction object is defined as
N
A= U Ai
i=1
called the attractor.

The proof can be found in [MW88, Theorem 1]. Note that, in Theorem 2.13
the authors reefer to the previously define Graph-directed system as a geometric
consruction.

Definition 2.14. Let F be an IFS and let & = {1,...,m}N be the symbolic
space. Then IT: ¥ — A is the natural projection, that is

I1(z) = lim f;, o fi,o---0 f;, (0) for every 7 = (i1,i2,...,in,...).

n—oo

Denote o the left shift on the symbolic space X.

2.3 DIMENSION THEOREMS FOR SELF-SIMILAR IFS

This section is an introduction to the dimension theory of IFS. We give condi-
tions and cases, when we can determine the Hausdorff dimension of the attractor
of an IFS.



2.3 DIMENSION THEOREMS FOR SELF-SIMILAR IFS

2.3.1 Non-overlapping case

This case is the simplest one. The images of the contracting similarity trans-
formations does not intersect, then we can give nice separation conditions as
follows.

Definition 2.15. Let F = {fi,..., fm} be a contracting IFS and A the attrac-
tor, then the Strong Separation Property holds for F if|

[i(A)N f;(A) =0 for all i # j.

Definition 2.16. The Open Set Condition (OSC) hold for F if there exists a
non-empty open set V € R? such that

fi(V) € V holds for every i = 1,...,m;
Li(V)n f;(V) =0 for every i # j.

Definition 2.17. The Strong Open Set Condition holds for F if the set V in
teh definition of OSC can be chosen such that

VNA#D.

Using the previously defined separations conditions, we can state two different
theorems for the dimension. The first one by Moran and Hutchinson for Self-
similar IF'S, the second by Mauldin and Williams for Graph-directed IFS.

Theorem 2.18 (Moran [Mor46], Hutchinson [HUTS81]). Let F be a self-similar
IF'S which satisfies the OSC. Let 0 < A\; < 1 be the contraction ratio of f; and let
s be the similarity dimension, that is A\{ 4+ ---+ X\;, = 1, then for the attractor
A of F we have

0<H(A) < o0.
Moreover,
dimgy (A) = dimp(A) = s.

Now we define a matrix called Mauldin — Williams matrix by the construction
of a Graph Directed Self-Similar IFS (see in Definition 2.12) as the following.

Definition 2.19. Let (B](\Z)W)i,j = (b(s)(i,j)> be an n X n matrix, where

0, if & =10,
b*) (i, §) = ‘ for every s > 0.
>, r:, otherwise,
6651‘73'

11



2.3 DIMENSION THEOREMS FOR SELF-SIMILAR IFS

Lemma 2.20. Let p(B](\Z)W) be the spectral radius of B](\f[)w The mapping s —

p(B](\j)W) is continuous, strictly decreasing, p(s) > 1ifs =0 and p(B](\Z)W) —

0. Then, there exists a unique sog > 0 for which
p(Bi) = 1.
The proof can be found in [MW88, Theorem 2].

Theorem 2.21. (Mauldin and Williams [MWS88]) Consider a GDSSIFS such
that, G is strongly connected and {f; j(A;) : (i,7) € E} is a disjoint family of
sets, then for everyt =1,..., N we have

dimy A; = dimp A; = sp and 0 < H*(A;) < .

2.3.2 IFS with overlaps

This section it is clear that we investigate those IFS, which image spaces can
intersect.

Theorem 2.22 (Simon, Solomyak [SS02]). Let F = {\x + t;}%, be a self-
similar IFS on R such that 0 < |\;| <1 and t; € R for everyi =1,...,m. De-
note A the attractor of F and let s be the similarity dimension, that is Y"1 |\;|® =
1. Then

dimg (A) = dimp(A) = min{1, s} for Lebesque almost every
t=(t1,...,tm) ERx--- xR,

Moreover if s > 1, then
LY(A) > 0 for almost every t = (t1,...,tm) ER X -+ x R,

where L' denotes the Lebesgue measure.

Let © = {1,...,m}N be a set of every infinite words and let " be a set of
every finite words with lenght at most n. For a finite word 7 € X, denote 7] the
length of 7. If 7 = i1 - ... i, we denote by A; the finite product A;, - ... - 4;,.

Let f; = Mz +t; be a contracting similarity transformations with contraction
ratio \; and f; = f;, o---0o f;, for every 7 € X". Let I be the set of parameters,
then A\j: I — (—1,1)\ {0} and a;: I — R for every ¢ € {1,...,m}. For each
t € I C R define f;;: R — R such that fi:(z) = M\i(t)(x — ai(t)). For any
1eX™let fip = fi,p0---0 fi,rand Az = f.(0) — f5+(0), and for every 7,7 € &
let Arz,j = Ht(Z) — Ht(]_)

12



2.4 SELF-AFFINE IFS

Theorem 2.23 (Hochman [Hocl4]). Let F; = {fi+}ix, be a parametrized IFS
with attractor Ay. For every e > 0 let

L= ijl ﬂN (_ _L_Jz‘n(A@J_)_l(_gn’gn)) )

and

E=)E-.

e>0

Then for every t € I\ E and for the attractor Ay of F; satisfies dimpg Ay =
dimp(A¢) = min{1, s(t)}, where S| X (8)[*®) = 1.

Theorem 2.24 (Hochman [Hocl4]). Let I C R be a compact interval, let
Nit I — (=1,1)\ {0} and a;: I — R be real analytic, and let Fr = {fi+}i",

be associated parametric family of IFS-s, as above. Suppose that
Az =0 on I if and only if 1 =7 € X.
Then the set E of "exceptional” parameters in Theorem 2.25 has Hausdorff di-

mension 0.

2.4 SELF-AFFINE IFS

This section is a brief introduction to self-affine IFS. Every affine transfor-
mation can be represented by a matrix. In this section we assume that, these

matrices are regular. We show the earlier results on the dimension of self-affine
IF'S.

Definition 2.25. An IFS F = {f1,..., fm} called self-affine if it is only contains
affinities i.e.

where 4; € R4 ¢, € R? and || 4;]| < 1.

Definition 2.26. Let T be a d x d real valued matrix, then the singular value
function o!(T') of T can be defined,
t—(k—1) .
a1 Q1@ , ifk—1<t<k<d,
o(T) = o
(o agq)d, if t >d,

where oy > - -+ > a4 are the singular values of T'.

13



2.4 SELF-AFFINE IFS

If 7 =41 ...14, we denote by A; the finite product A;, - ... - A;, for every
1 =1,...,n and for every n € IN.

Definition 2.27. Denote s(Aj, ..., Ay,) the affinity dimension of the self-affine
IFS F = {Ajz + t;}%,, that is,

s(Al,...,Am):inf{t>0: io: > gpt(Ag)<oo}.

m=0 |7]=m
Falconer ([Fal94]) defined the sub-additive pressure function P : RT™ — R,

P(s) = lim llog (Z @S(Az)) : (7)

n—o0 n, |i|*n

Because of the submultiplicativity of the singular value function (see in [Fal88,
Lemma 2|) the following holds,

|Z ' (A7) = IIZ D P4 Ap) < lZ D #(A) @ (Ap)
7|l=n+m jl=n|k|=m Jl=n|k|=m

Since the logarithm function is strictly monotone increasing and continuous,
then the sequence {log > ;- ¢! (A7)} is subadditive. Then by Fekete’s lemma
[Fek23], there exists a limit of the equation (7).

Theorem 2.28 (Falconer [Fal88)). Let F = {Ajx +t;}%, be a self-affine IFS
in R with attractor A, such that the matrices A; are reqular. Then

dimp(A) < min{d, s(41,...,An)}.

Theorem 2.29 (Falconer [Fal88], Solomyak [SOLI8|). Form > 2 let {A1,..., An}
be non-singular d X d matrices, such that their Fuklidean norm satisfies,

1 :
||Ai||<§, i=1,...,m.

Fort:= (t1,...,tm) € R% x --- x R? define the m-parameter family of self-affine
IFS on R?,

Ft.= {AZJ} + ti}gll-
Let AL be the attractor of Ft. Then for £L™¢-almost all t we have
dimg(A) = dimp(A) = min{d, s(A1, ..., An)}.

The original version of the previous theorem was weaker than we stated here.
It was proved by Falconer for regular matrices, such that ||A;|| < % Later in
1998, Boris Solomyak proved for [|4;|| < 3.

14



2.4 SELF-AFFINE IFS

Definition 2.30. Let A = {A1,..., A,} be a collection of regular d x d matrices.

We say that A is strongly irreducible if there is no finite collection Vi,...,V} of
proper subspaces of R such that

k k
AZ(U VJ) = UVJ forevery i =1,...,n.
j=1 j=1

Theorem 2.31 (Bardny, Hochman and Rapaport [BHR19]). Let F = {f;(z) =
Az +t; 4 be a planar self-affine IFS, such that F satisfies the Strong Open-set
Condition and the collection of reqular matrices A = {A1,..., Ap} is strongly
irreducible. Then,

dimH(A) = dlmB(A) = S(Al, c. ,Am).

15



MAIN RESULTS

In the previous Chapter we showed dimension theorems for regular IF'S. Now
we move on to the main question of this Thesis: What happens to the dimension
if we allow singular matrices in the IFS? In the following, we show our results
about dimension and the connection between self-affine sets and graph directed
iterated function systems with singular matrices. Let ¥ = {1,...,n}N be a
symbolic space, furthermore we can define X,y = {i: A; are regular matrices}
and g,y = {i: A; are singular matrices}. Let X" be the set of words with lenght
of at most n and let X* be the set of all finite words. Then define 27,/ and X7
as

o, =A{(i1,...,ig) : k <nandi € Xy} for every l = (1,...,k),

reg
> k
*
Z“1"eg - U Zreg'
k=1

Now we construct a matrix formed by the contracting ratios and motivated by
the Mauldin-Williams matrix.

Definition 3.1. Let A be a 2 x 2 matrix and let V be a subspace of R?, then
for every x € V' the norm of A conditioned on V' defined as

A
LAV = sup 1220
SO

Let B(®) be an n x n matrix and n = |Zsing|, where

w@nf=(2nm&mm&mﬂ . (8)

= *
Zezreg iajezsing

Observe that, the previously defined B() matrix will be not well defined for
every s. In the following we will show some cases, when we can determine the
dimension of a singular IF'S via the B (5) matrix. We use the notation of

Psing(s) = 10g (p(B(s))) s

. 1
Preg(s) = lim %log Z ©°(45)
JETE g\ T s

16



3.1 UPPER BOUND

Furthermore, let us define 54,4 as a unique solution for the equation
p(Blesind)) = 1.

And let s.¢4 be the unique root of P..

3.1 UPPER BOUND

This section is a brief introduction to the theorems we gave for the upper
bound of the dimension of the attractor of a self-affine IF'S.

Theorem 3.2. For every F = {Ajx+t;}1 let so = inf{s: ez ¢*(4;) < 00}
be the affinity dimension, then for the attractor A of F,

dimg (A) < sp.

We will proof the previous Theorem 3.2 in the following Chapter 4. By defi-
nition of s,¢y and sgpg We can investigate the root of the pressure function P (s).
Since the self-affine IFS contains singular matrix, then the pressure function will
shift at s = 1. The question is, what can we say about the dimension of the
attractor of the self-affine IFS? The following figure represents that, how does
the changes in s,¢4 and sgpg affect the shift of the pressure function.

P(s)
1 T

(a) speg >1 (b) Ssing > 1> Speg (€) 1> 54ing

In the following we will answer the previous question. First let us investigate
the affinity dimension in different cases of s,¢4 and sgjng.

Proposition 3.3. Consider sp = inf{s > 0 : Yjex+ ¢*(A4;) < 00}, sp¢g and
Ssing @S defined previously, then

S’I"eg Z‘f Sfreg > 1’
S0 —

min{1l, max{sging, Sreg}}  if Sreg < 1.

17



3.2 SELF-AFFINE SETS WITH SINGULAR MATRICES ONLY

Theorem 3.4. Assume that syeq > 1, consider F a self-affine IFS with singular
and reqular matrices, then let Freq C F be a self-affine IFS with reqular matrices
only, such that Freq satisfies the Strong Separation Property and the collection
of reqular matrices Areqg = {A1, ..., Am} is strongly irreducible, then

dimH (A) = Sreg-

Proof. By Theorem 3.2 sy will be an upper for dimg (A), but by Proposition
3.3 50 = Speg- On the other hand, by Theorem 2.31 and by the definition of
Sreg we have dimp (A) > speq. O

3.2 SELF-AFFINE SETS WITH SINGULAR MATRICES ONLY

This section is an introduction to the case when the matrices of the contracting
similarity functions of the IFS F = {¢; = Az +;}}_, are singular.

Remark 3.5. If we only consider singular matrices, then the matrix B (5) defined
in (8) simplifies to the following form.

b*) (i, §) = |Ai|Im(A;)]|°  for every i,j =1,...,n.

By this construction we eliminated the problem that, the dimension of B (s)
will not equal to the number of transformations. Now, we will show the dimension
of the attractor of an IFS by the B() matrix.

Theorem 3.6. Let F = {p; = Ajx +t;}i—q be an IFS for every matriz A; is
singular. If pi o 0;(A) Npiopp(A) =0 for every i and j # k then

dimH(A) = 50,

where sq is the unique solution of p(B0)) = 1.

3.3 ONE SINGULAR BETWEEN REGULARS

In this section we investigate those self-affine IF'S, which contains regular matri-
ces and only one singular matrix. Then by our new assumption we will determine
the dimension of the attractor such self-affine IFS.

Definition 3.7. Let B be a ball of R? and an IFS F = {¢1,..., ¢y} such that
¢i(B) C B for every i. Then we say that F is Elliptically Strong Separated or
satisfies the Elliptic Strong Separation Property, if

vi(B)Nw;i(B) =0, if i # j.

18



3.3 ONE SINGULAR BETWEEN REGULARS

Proposition 3.8. We assume Zgng = {1} and L,eqy = {2,...,n}, furthermore
let A1() be the singular matriz as follows

A1(B) =0 ((1]) . (cos(ﬁ) sin(ﬁ)) , for every B € 10,27] and o < 1.

Let Fg = {Ai1(B)z +t1,..., Apz +t,} be the modified IFS and define the set
T = {B € [0,2x]: Elliptic separation property holds}. Then there exists a set
E C T such that dimg (E) = 0 and for every § € T\ E

dimg (Ag) = so(3),
where Ag 1is the attractor of the IFS Fp.

Remark 3.9. For every singular matrix A with rank(A) = 1 there is a trans-
formation, B such that

BAB 1=y (;) : (cos(ﬁ) sin(ﬁ)) , for some 8 € [0,27] and o > 0.

The transformation g(x) = Bz is a bi-Lipschitz, so it does not affect the dimen-
sion of the attractor g(A), which is the attractor of the IFS {go F; o g 1}% ;.

19



PROOFS

In this chapter we give a detailed proofs of the results in the previous chapter.
First, it is practical to prove a general upper bound, then we show the lower
bound for the dimension in specific cases. In R? with regular matrices by The-
orem 2.29; 2 will be an upper bound for the dimension of the attractor at any
time.

4.1 UPPER BOUND

Lemma 4.1. For every singular matrices A and B and for every subspace V we
have

[ABIV = [[A[Im(B)]| - [ BIV]|-

Proof. For every v € V and |jv|| = 1,

|AB|V| = [[ABu| =
_J)o if Ker(B) =V
IABAL | Bo|| = Al Im(B) |- [BIVI| if Ker(B) # V
If Ker(B) =V then [|BIV]| = 0 and | A|Tm(B)|| - | BV = 0. .

Lemma 4.2. Let F = {Ajx +t;}] then for every s <1
s k
> ©*(A;) < oo if and only if Y H(B(S)> H < oo and Y ¢*(4;) < 0.
et k=0 1 1€ e
Remark 4.3. In Lemma 4.2 for a matrix A we use
Al = _lagl.
2%

Proof. For the reverse direction of the implication we have,

Yot () > D D e(AidA) + Y o (A). (9)

1€ 1,§€X sing 1€ 1€ ey

By Lemma 4.1,

D=2 2 IAAIm(A)I- A1+ D #°(An). (10)

i€ ging T€Tx 1€ e

20



4.1 UPPER BOUND

Then by the definition of B(*), see in equation (8)

(=3 3 (B4l + X o)

k=04,jEXsing 1€ cq
o
: s (s) k s
> min 4553 |(BY) |+ 3 ¢ (4).
]EZsing k=0 1 iez;eg
On the other hand similarly to previous calculations we have,

oA = Y P A)+ Y Y o (AyAidy)+

TEL« 1€ S eg 1€ ging 11,02€ L7 eqg

2. 2 2 S MnAiAA) <

iajezsing 11,72 ez‘ieg jGZ*

< D A+ X Y ¢ (An)lAillfe"(Ar)+

iezieg iez‘sing 5177262;69

+ X X X2 (A)IAAImA) 1T [[A 17" (Ar,) <

7:7.j€25ing 11,12 e):‘;k“eg jEZ*

< 2 sos(Az)Jr( > wS(Az)) ( > ||Aj||3)+

1€ T eqg 1€X ey J€Lsing

+(Z soS(Aa) Y (B, Al

1€ e k=01,7€X5ing

< D () ( > sos(Az)) ( > HAj”S) +< > wS(Af))

1€% 5 eq 1€% eq J€Lsing 1€ eg

x| Aj|*- (i H(B%’ﬂHl) :
k=0

Proof of Proposition 3.3. For sp.q > 1,

Z @S(Ai) = Z SOS(Az)-

7EL* 1€ ey

Hence, it is clear that s.cy = s0.
On the other hand, if s,y < 1, then we have two cases. In first case, for every
s € (0,1] the Ysex+ ¢*(A;) = 0o. Then it is clear, sp = 1 and by Lemma 4.2

5 (50

= Q.
1
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4.1 UPPER BOUND

Then by Lemma 2.20 p(B(S)) > 1, which implies Sgng > 1. In the second
case, there exists 0 < s < 1, such that > ;ex« 9*(A4;) < 0o. Then sy < 1 and by
Lemma 4.2

> |BENH]| < ooand 37 ¢7(A7) < o0
k=0

1€L g

By Lemma 2.20 p(B()) < 1, which implies that Ssing < . Since, Ygexy, 9”7 (A7) <

oo then by Lemma 4.2 s, < 5. The above implies that,

max{srega Ssing} <s.

]

Proof of Theorem 3.2. If sy > 1 then the affinity dimension sy = sp¢4, by
Proposition 3.3 and Falconer Theorem 2.29 On the other hand, let + € A
be a point. Then we can determine z as

x = lim @j o+ 0¢;,(0) for some 7= (i1,...in,...) € L.

Then we have those & which can be represented by all regular matrices A4 and
those, which contains at least one singular Ag;pg. So we can devide the attractor,

N = Npeyg U Nsing, Where
Asing — U U P30 @i (A)

igzsing jez':eg

Arg= U 95 (Arg).

JE€Xreg

We know that, for every i € Lging, pi(A) is contained in a line segment. Let B
be a ball as defined in Theorem 2.10, then ¢;(B) C B. So ¢;(A) C ¢i(B).
Since dim ¢;(B) = 1 if i € Xyj,4, then

dimz (Asing) = sup sup dimp pj0 p;(A) < 1.
i J€XT ey

By the 7. property in Lemma 2.5
dimp (A) = max{dimp (Areg), dimy (Aging) } < max{syeg, 1} = speq.

Now we turn to the case when sy < 1. By definition of a ball B, p;(B) C B.

So A C U ¢i(B). For the diameter of ; it follows,
S¥e

ea(B)| = |43l - 1B (11)
Then (11) implies p*(A4;7) = ||Az]]°. If > ¢*(A;) < oo, then
1ex*
H¥(A) = 0.
This implies that, dimg (A) < sp. O
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4.2 STUDY OF PRESSURE FUNCTION

4.2 STUDY OF PRESSURE FUNCTION

In this section we investigate the previously defined B) matrix with the

pressure. We will show under which condition the matrix will be well defined.

First we consider the case, when we have singular and regular matrices in the

IFS.

Proposition 4.4. Let A; be a reqular matriz and A; = Aj, - ... - Aj,. Then for
every € > 0 there exists ¢ > 0, such that for every n € N

C_l . en(PTeg(s)+8) S Z SDS (Ai) S C- en(P"'eg(s)jLa)‘
1€ ey

[2]=n

Proof. By definition of Pre4(s), there exists N,n > 0, for every ¢ > 0if n > N
then,

1
—log | > ¢ (Ar) | — Preg(s)] <e.
n 1€ g

|z|=n
[l

Lemma 4.5. If s,¢y <1 then the matrix B s well defined for every s > Speq.

Proof.
Do NAAIm(A) I < Yo A" (12)

JEXTeg JE T eg

By the sub-additivity of the norm,

(12) < > [[All- 14507 (13)
jez':eg
By Proposition 4.4,
o0
(13) < [JA1° > ¢ Prea(s)e) < o0 if Preg(s) +e <0.
n=0

But there exists such € if s > s;.¢4.
n

In the following we investigate the case, when the IFS contains only singular
madtrices.
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4.2 STUDY OF PRESSURE FUNCTION

Lemma 4.6. Let A; be an arbitrary product of the singular matrices A;,, ..., A;
for every n € IN. Then,

n

Im(A;) = Im(A;,) or Im(A;) = {0}.

Proof. Let A; be a matrix with rank(A4;) = 1. Assume that,

A= G- Cibi = '(ai bi);
d;-a; d;-b; d;

for every ¢ = 1,...,n and for every a, b, ¢,d € R. Obviously,

Im(A;) = span < (2) > and Ker(A;) = span < (Z) > .

If n =1 then

A; = Ay, so Im(A;) = Im(A;).
If n = 2 we have,

Ar= A - Ay =

_ iy @iy (Ciy - @iy +0iy - diy)  ciy by (Cip iy 7+ by - diy)
dil * Qg (Ciz Gy T+ b’i1 'diz) di1 'bi2 (ail " Ciy T+ bi1 'diQ ’ Ci2)

The image of A;

A -x = (Cil (g, - ciy + by - diy) - (aiy - T+ by y)) _
op = _
diy - (@i, - iy + by - diy) - (aiy - T+ biy - y)

1

Then unless Ker(A;,) = Im(A4;,),

Im(A;) = span < (; ) > = Im(4;,).

If |7| = n we can split the product A; into two parts
Az = Aiy - App—1.-

Then using the case n = 2 and induction we get the result.
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4.2 STUDY OF PRESSURE FUNCTION

Lemma 4.7. A generalization of Lemma 4.1, for every 1 = (i1,...,i,) we
have

[Aiy Aiy - Ay [ Tm (A, )| = 1 As [Tm(Ai) |- | Ai,_y (A, )]
Proof. For every v € Im(A;,) and ||v|| if A;, -+ A;, v # 0,

[Aiy - Aiy [ Im( A )| = | Aiy - Aiuf| =
A AL
= || 4; 2 n-1= A A
|| 11 ||A A’Ln v ” || ” 12 Zn—ly”

We know that A;, ... A;, v € Im(A;,... A, )by Lemma 4.6 Im(A;,... A, ) =

Im(A;,) then

Ai Az v
A; 2 || = || Ay [ Im :
” 11 ||A12 Azn ) || || || 21| ( )H
By induction we use the previous calculation for ||A;, ... A;, _ v]|. O

Proposition 4.8. Let Ay, ..., A, be singular matrices of an IFS F and a1(A;)
be maximum of the singular values of A;. Then there exists constants m, M > 0
such that for every k>1ands € (O 1],

m- (B < 3 ar(4)® < M- (B, (14)

|7|=k+1
Proof. We know that, aq(A;) = || A;]|. Observe that

> (&)= > 3 [AAIm(AI - [IA] (15)

[7|=k+1 ij=1,.n |J|=k—1
Then denote M = max{||A;]|} and m = min{||A4;||}. By using m and M in
J j

equation (15)

m-|(BO) < Y ar(A)® < M- [(BE).

|7|=k+1

Proposition 4.9. Let Ay,..., A, be singular matrices. Then,
P(s) =log (p(B(S))) for0<s<1.

Proof. By using inequality (14) and taking logarithm and dividing by n we have
1 (s)\n 1 s 1 (s)\n
—log(p(B')") < ~log | > a1(4)* | < —log(p(B')").

n n l7j=n+1 n

Then by Gelfand’s formula || B™||Y/™ — p(B) as n — co. Thus, we have
P(s) = log(p(B")).
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4.3 LOWER BOUND

4.3 LOWER BOUND

To give a proper lower bound for the dimension of the attractor is not as simple
as the upper bound.

4.3.1 Singular case

Let us recall the definition of B](\Z)W from equation (2.19) and our constructed
matrix B) from equation (8). To begin the investigation of these matrices, one
can see that if there are more than one mapping to the same affine space, the sum
of their contraction ratio will appear in the Mauldin-Williams matrix. On the
other hand, in matrix B(®), we record every contraction ratio one by one. Hence

the dimension of the matrices satisfies dim(B](\Z)W) < dim(B")). We construct
an eigenvector for the same positive eigenvalue from B (5) to B](\Z)W By Perron-
Frobenius theorem this eigenvector is unique and positive, so the spectral radius
of the matrices should equal. This is necessary step which allows us to use the
Mauldin-Williams theorem 2.21 for the matrix B(5).

Now we show a Grap-directed IFS corresponds to the self-affine IFS F =
{pi(z) = Aiz + t;}1™,. By definition Im(p;) = Im(A;) +t; for every i =
1,...,m. Let I be the set of all image spaces of ¢; which are distinct. In other
words

I={Im(p;) :i=1,....m}:={V,.... Vi },

where V; # Vj for i # j. Furthermore, by definition & ; := {k : Im(yy) =
V; and Ker(Ay) # V;} and define & = {k: Im(px) = Vi}. Then we can define
fer Im(pi) = Im(yp;) for every i,j and e: i — j, e € £. In this case

fe(z) = pj(x) for every & € Im(¢;).

Since for every i, V; is a hyperspace, we need to construct a set with subspaces

to determine the norm of the matrix B](\f[)W For every V; there is a unique W;
subspace in R? such that for every z, y € Vi, z —y € W;. Then the elements of
the matrix BJ(\fI)W will be

(Bz(\j)w>. = > AW foreveryi,j=1,.. M.
©J ke&; ;

Lemma 4.10. Let {p;(z) = Ajxz +t;}%, be an IFS for every x € R%and for

every m > 1. Consider the following matrices Bz(\j)w and B() for the IFS. Then
the spectral radius of the matrices are equal,

p=p(Byjly) =p(BY).
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4.3 LOWER BOUND

(s)

Proof. Previously we saw the elements of the B}, matrix. On the other hand,
the elements of the matrix B() will be

(B(S))ij = ||A;[Im(A;)||® foreveryi,j=1,...,m.

There exists a unique vector v € R™ such that ||v]| = 1 and for every i =
1,...,m, v; > 0. The spectral radius of p(B(*)) = p and by the Perron Frobenius
theorem,

Bs)y = pu.

Now we construct a vector, by v then we will see this constructed vector is an

(s)

eigenvector of By .
Let z € RM be a vector such that z; = Y jcgj vg- Then

(Bhvz) = 3 S IAITG 1% = 3 5 3 14, =

J=1lke&d j*l ke&i ekl

Z > D NARmM(A) Pop = Z o ARIM(A) [P0 =

Jj= 1k:e£tle£ﬂ kegrj=1]c&i
> Z!\Akllm ADFor =Y pox = pz;-
kegil=1 kel

Then for every z; > 0, z is an eigenvector of B](\Z)W with p > 0 eigenvalue. So, by

Perron-Frobenius theorem

p=p(Biiy)-
0

Proof of Theorem 3.6. If ;o p;(A)Npiop(A) = 0if j # [ for every
i,7,0 =1,...,n. By definiton of Aj and ¢;, we have A; = ¢;(A). Since fe(z) =
pi(z) for every z € Im(yp;) then fe(A;) = @iopi(A). So piopi(A)Ng;o
©i1(A) = () satisfies the eparation condition in Mauldin-Williams theorem. Then
by applying Theorem 2.21, sg is a unique solution for the equation

By Lemma 4.10, p = p(Bj;y) = p(B®)) and by Mauldin-Williams theorem,

50 is the unique solution for the equation p(B(0)) = 1. Then

dimH(A) = S50.
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4.3 LOWER BOUND

4.3.2  One singular between requlars

In this subsection we prove Proposition 3.8, but first we show some necessary
conditions when the statement will be true. Let us begin with the basic definitions.
Assume, in this section for a singular matrix A;(f) we use the notation of

Ar=o- (;) : (cos(ﬁ) sin(ﬁ)) for every 8 € [0,27] and o < 1.

We would like to associate Im(A;(5)) to the real line R. Let v be a fixed
vector, such that ||v]| = 1 and v € Im(A;). Let p: Im(A;1) — R be a function,
such that

p(w) = (v,w) = 7. (16)

By rearrange (16), we have w = p(w) - v. Now we will investigate the function p
on the similarity transformations ¢ and ;.

p(p1(pr(w))) = (v, AvAmw + Arty) = p(w) - (v, A1 Aw) + (Aity, v) .

Definition 4.11. Let A; be a regular matrix where 7 € ¥, and A; be singular

matrix. Then let ¢g1; : R — R be a function such that, for an arbitrary 7 € R
917 (7) = (v, A1 Aw) - 7 + (v, Arts) (17)
Observe that, (v, A1 Aw)| = [[A1Az|[Im(A1)]).

Definition 4.12. Let g%’?): R — R be a function as defined in equation (17),
then let ITg(2) : Q, — T',, 3 be a function such that,

Ig(7) = lim_ gt 0 gt) o gl (0),

N
where ),, = (Zsmg X XN ) and I',, is the attractor of the IFS {g1}.

reg

Lemma 4.13. Let A1(53) be a singular matriz and let A; be reqular matrices for
every i = 2,...,n. Let p1(x) = A1(B)z and ¢;(z) = A;x +t; be contracting
similarity functions. If the Elliptic Strong Separation Condition holds,

I13(2) = I1g()) for every B if and only if i = j € Qy,.

Proof. First, we note that the contraction rate 8 +— (v, A1(3)Azv) and the trans-
lation 3 + (v, A1(B)t;) are real analytic for every 7 € X7, .
contradiction, so assume

[Ty (3) = T14() for i # J. (18)

Let us argue by
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4.3 LOWER BOUND

Then without loss of generality, assume 7; # 71, there are two possibe position
to the iterates of ¢; because of the Elliptic Strong Separation. First, when they
are disjoint, and the second, when one of them is contained in the other one.

o (S Nep(Sh) =0 (19)
Yu (Sl) C 9051(51) (20)
F——— v (e1(sh)
F——— @5 (p1(s1)
F—— «i(sh)
————— Ker(A1(8))
Figure 6: Cylinders in case (19)
By our assumption on 7 and j, we have
15(o?) s(o7)) ) _ (0
Al 6 i 2 g —¥7 = )
[ () o (109)) <
which is equivalent with
II5(0? I[15(07 —sin
oo (D) o (D) e (RN = ket e
0 0 cos(p)
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4.3 LOWER BOUND

The image of ¢ is independent of 3, so we can define a cone in S* such that

o) en@—enly) e } |
1 {'9051(13) _Soil(Q)H v,y € Im(pr)

: . 1 ey (2) =7 (y)
Since the range of Ker(A;1(8)) is the whole S*, and Tom @ =g )] © Cy, for all

z,y € Im(A1(8)). Hence C; C S, thereisa 8 € [0, 27] for which our assumption
(18) does not holds, i.e there is a vector wy, such that

e — —sin(f) C
wy (cos(ﬁ) ) ¢ Ci,

which is a contradiction.

On the other hand, if we have 7 (S1) C 7 (S?), then we can lead back
the solution to the previous case. By the Elliptic Strong Separation Condition
P = P51 O PR, then we have

() ()

which is equivalent to

A ((Hﬁéﬁ)) ¥R ((Hﬁéaj)) )) € Ker(A1(B)) for every f3,

(Hﬂ(ai)) — e, ((Hﬂédj)>) c Aj—_llK(BT‘(Al(B)) for every f.

Since gz, (T5(07)) € ¢x, (91(5Y)) and @5, (TT5(0%)) € o, (91(S1)). Again, we
might define a cone

e — {|w—% (v)

: for every z,y € Im(¢1) ¢ .
z —¢r, W) N

Similarily to the previous case, A7.' Ker(Ai1(8)) ranges over the whole S!, and

%Lkl@ € Cy, where z,y € R. Hence Co € S, so there is a 3 € [0,2n] for
lz—¢7, W Z =

which our assumption does not holds i.e there is a vector wy, such that
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4.3 LOWER BOUND 31

:A—_l —Sln(ﬁ) C
Wwo T (Cos(ﬁ) é 25

which is again a contradiction.

Figure 7: Cylinders in case (20)

]

Proof of Proposition 3.8. If sy > 1 we proved this case before, so without
loss of generality, we can assume sg < 1. We know that, by Proposition 3.3 sy =

Max{Syeq, Ssing }- Let Py, = {gi@ (7)} be an IFS formed by gig) (1) functions and
let TT5(7) = lim g%i 0---0 ggﬁli (7). Furthermore, let T',, 5 be the attractor of ®;,.
Then by Lemma 4.13, ®,, satisfies the condition of Hochman’s Theorem 2.24.

Hence, there is a set E C [0, 27| such that dimg (E) = 0 for every § € [0, 27] \ E.
Then by Hochman’s Theorem 2.23

dimgy (Ty,) = min{s, (), 1},
where s, () is the unique solution of the equation

> AL A Im (A" = 1.
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4.3 LOWER BOUND

By definition Sy, (/) is the unique solution of the following equation

> [ALAIm( Ay = 1,

1€ S eg

hence s,,() converges to sging (). This implies that, dimg (Ag) > min{s,(5),1}
for every 8 € [0,27] \ E. Then by Bérany, Hochman and Rapaport Theorem
2.31,

dimz (Ag) > Sreg-
All of the above implies

dimg (Ag) > so(B) for every € [0,27] \ E.
Then, by Theorem 3.6

dimH(AB) = 80(6).
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CONCLUSIONS

In contrast to regular self-affine IF'S, the attractor of a singular self-affine IF'S
is not always a perfect set, but these systems behaviour does not change too
much. In general, we do not have any answer for the general question of this
Thesis, but we have results in more specific areas.

For singular self-affine IF'S we can construct a graph-directed IFS and a matrix
B®) from equation (8), then by Perron-Frobenius theorem and Mauldin-Williams
theorem, the dimension of the attractor of the self-affine IFS, will equal to the
affinity dimension sq.

If the matrices of the contracting similarity transformations are both singular
and regular, we need more assumptions to determine the dimension of the attrac-
tor. First we need to define Py, (s) the pressure of the system and we have a sub-
system, which contains only regular matrices with its pressure function Preg(s).
Furthermore we defined sging as the unique solution to p( B(Ssmg)) =1 and Syeq
as the unique root of Pre4(s). By the singular matrices in the self-affine IFS, the
sub-additive pressure function has a shiftat s = 1. We showed that, the affinity
dimension sy = Sy¢q in the case if s.c4 > 1 and sop = min{1, max{ssing, Sreg}} in
the case if 5.4 < 1. The main result of this section is a theorem, which deter-
mines the dimension of the attractor of such a self-affine IFS. If s, > 1 and the
regular sub-system satisfies the Strong Separation Property, and the collection
of the regular matrices is strongly irreducible, then the Hausdorff-dimension of
the attractor equals to sy¢g.

In the last part of the Thesis, we investigated self-affine IFS with only one
singualr matrix. In this case, with a new assumption called the Elliptic Separation
Property, we can determine the dimension of the attractor, if it depends on some
B € [0,27]. Then, the dimension of A(S) will equal to sy in both cases when
Sreg > 1 Or Speg < 1.

There are a lot more open question related to this topic. For example: if 5,04 < 1
will the dimension of the attractor always equals to sp 7 Maybe we could answer
it later.
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