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1
INTRODUCTION

The foundation of fractal theory belongs to Benoit Mandelbrot, who called
these irregular and fragmented objects as fractals in his book "The Fractal Geom-
etry of Nature" [Man83]. As Mandelbrot said "It describes many of the irregular
and fragmented patterns around us, and leads to full-fledged theories, by identi-
fying a family of shapes I call fractals. The most useful fractals involve chance
and both their regularities and their irregularities are statistical. Also, the shapes
described here tend to be scaling, implying that the degree of their irregularity
and/or fragmentation is identical at all scales". There is no proper definition
for fractals, but the mathematical society agreed about fractals have unique fea-
tures. In nature we can found many examples for fractals, like coastlines, pine
cone, cauliflower, etc.. Some fractals can be described via Iterated Function Sys-
tem (IFS), which is a finite collection of contracting maps. There exists a unique
non-empty compact set, which is called the Attractor or if the IFS is formed by
similarity transformations often called the self-similar set [HUT81]. The determi-
nation of the dimension of the attractor of a general iterated function systems
and a general graph-directed iterated function systems (GDIFS) is an open prob-
lem, but under some conditions, we can determine it. To measure the dimension,
we usually use the Hausdorff-dimension, the Box-dimension but there are another
dimensions. The self-similarity means that a set or object is exacly similar to a
part of itself. One of the most famous example for self-similar set is the Sierpiński
triangle.

Figure 1: The Sierpiński triangle
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introduction 2

A Self-affine set is affine image to a part of itself, scaled by different amount
in different directions. A famous illustration for a self-affine set is the Barnsley
fern.

Figure 2: The Barnsley fern

For self-similar separated regular IFS, Hutchinson ([HUT81]) showed that if
the cylinder sets are disjoint, then the Hausdorff dimension of the attractor is
equal to the similarity dimension. Later, Mauldin and Williams ([MW88]) de-
termined the dimension of regular Graph-directed self-similar IFS (GDSSIFS),
which is a natural generalization of an ordinary IFS. Recently Bárány, Hochman
and Rapaport ([BHR19]) determined the dimension of the attractor of self-affine
IFS on the plane, when the matricies of the contracting affine transformations
are strongly irreducible and regular. Our question is, what can we say about the
dimension, when the matricies of the affine functions are singular?
If we have a self-similar IFS or a self-affine IFS with regular matrices then

the attractor of these systems is a perfect set. But if the matrices of the affine
mappings are singular, it can happen, that the attractor of the IFS is not a
perfect set. We explain this via the following example.

Example 1.1. Let F = {fi(x) = Aix+ ti}2i=1 be an IFS, such that

A1 =

1
2 0
0 0

 , A2 =

0 0
0 1

2

 , t1 =

1
2
0

 , t2 =

0
1
2

 ,
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and x ∈ [0, 1]2. Denote I1 := [0, 1]× {0} and I2 := {0} × [0, 1]. Then

f1(I1) = [
1
2, 1]× {0}, f1(I2) =


1

2
0

 ,

f2(I1) =


1

2
0

 , f2(I2) = {0} × [
1
2, 1].

To determine the attractor, we need to continue applying f1 and f2 on the in-
tervals. By symmetry we can split the attractor into two parts, and we can
investigate how it behaves on each axis. Figure 3 shows this behaviour on the x
axis by each layer means an iteration.

x
0.5 1

Figure 3: Iterates on x axis.

Let Λx and Λy be non-empty compact sets, such that

Λx =
∞⋃
n=1


1− 2−n

0

∪

1

0

 , Λy =
∞⋃
n=1


 0

1− 2−n

∪

0

1

 .

(1)

Then for the compact set Λ = Λx
⋃

Λy,

f1(Λ) ∪ f2(Λ) = Λ. (2)
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Figure 4: Attractor of IFS defined in Example 1.1

In this Thesis, we investigate the connection between self-affine IFS on the
plane and GDSSIFS on the line. Using this connection we would like to state
separation conditions, for which the dimension of the attractor can be defined
with the sub-additive pressure.



2
PREL IMINARY

2.1 the hausdorff measure and dimension

In this Thesis, we use the Hausdorff dimension to determine the dimension of
the attractor of an IFS. Some theorems state the Box dimension too, which is

dimB(Λ) = lim inf
δ→0+

Nδ(Λ)

− log δ , dimB(Λ) = lim sup
δ→0+

Nδ(Λ)

− log δ ,

where Nδ(Λ) denotes the measures the minimal number of balls with radius δ
that are covering the attractor Λ. If the limit above exists then we denote it by
dimB(Λ). By the properties below it is more sophisticated to use the Hausdorff
dimension instead of Box dimension in theoretical point of view. In this section,
we discuss the basic definitions and properties of the Hausdorff measure and the
Hausdorff dimension as in [Fal88].

Definition 2.1. Let (X, %) be a complete metric space and E,F be subsets of
X. Then we define the Hausdorff premetric of E and F as

dH(E,F ) = inf {δ > 0 : F ⊆ [E]δ and E ⊆ [F ]δ} ,

where [E]δ = {y ∈ X : there exists x ∈ E, %(x, y) < δ}. Let C = {E ⊆ X :
E is compact} be a collection of compact sets, then dH is a metric on C.

We denote the diameter of a set A by |A|.

Definition 2.2. Let E ⊂ Rd and t ≥ 0. Then the collecton of set {Ai}∞i=1 is
a δ-cover of E for δ > 0, if E ⊂ ⋃∞

i=1Ai and |Ai| < δ. We call Ht(E) the
t-dimensional Hausdorff pre-measure of E, where

Ht(E) = lim
δ→0

{
inf

{ ∞∑
i=1
|Ai|t : E ⊂

∞⋃
i=1

Ai, |Ai| ≤ δ

}}
.

Lemma 2.3. For any Borel set E ⊂ Rd and 0 ≤ α < β we obtain the following
implications:

Hα(E) <∞⇒ Hβ(E) = 0,
0 < Hβ(E)⇒ Hα(E) =∞.

5



2.1 the hausdorff measure and dimension 6

The proof can be found in the book called "The Geometry of Fractal Sets" by
Falconer ([Fal85]).

Definition 2.4. For any set E ⊂ Rd, the Hausdorff-dimension of E is the
following,

dimH(E) = inf{t > 0 : Ht(E) = 0} = sup{t : Ht(E) =∞}.

0 dimH(E) t

t→ Ht(E)

∞

Figure 5: Hausdorff measure of a set E.

The following lemma shows some properties of the Hausdorff-dimension.

Lemma 2.5. 1. Every countable set has Hausdorff-dimension zero.

2. For every F ⊂ Rd, we have dimH(F ) ≤ d.

3. If Ld(E) > 0 then dimH(E) = d.

4. For any k < d the k− dimensional smooth surface in Rd has a Hausdorff
dimension k.

5. For a Lipschitz map f : Rd → Rn and a Borel set E ⊂ Rd we have
dimH(f(E)) ≤ dimH(E).

6. Let E be a Borel set and let f : Rd → Rn be a bi-Lipschitz map. Then
dimH(E) = dimH(f(E)).

7. Let {Ei}∞i=1 be a sequence of Borel sets in Rd. Then

dimH

( ∞⋃
i=1

Ei

)
= sup

i
dimH(Ei).
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2.2 self-similar ifs

This section is a brief introduction to Self-similar Iterated Functions Systems.
First we define the basics of an IFS, then we show how to measure the dimension
of the attractor of an IFS via the Hausdorff-dimension.

Definition 2.6. Let (X, %) be a complete metric space, then we call the map
f : X → X contraction, if there exists a λ ∈ (0, 1) such that

%(f(x), f(y)) ≤ λ · %(x, y)

for every x, y ∈ X.

Definition 2.7. We say that a finite collection of contractions F = {f1, . . . , fn}
is an iterated function system (IFS).

Now we show that, the previously defined Hausdorff pre-metric is a metric
on a compact set C. Let us check the properties of a metric. First, dH(E,F ) =
dH(F ,E) is trivial. Let δ1 > dH(E,G) and δ2 > dH(G,F ) then E ⊆ [G]δ1 and
G ⊆ [F ]δ2 . Which means E ⊆ [F ]δ1+δ2 , then

dH(E,F ) ≤ dH(E,G) + dH(G,F ).

dH(E,F ) ≥ 0 can be seen by the definition. If dH(E,F ) = 0, then [F ]δ ⊇ E for
every δ > 0. So

∞⋂
n=1

[F ] 1
n
⊇ E,

where ⋂∞n=1[F ] 1
n
= F . Since F is compact F = F . That is dH(E,F ) = 0 if and

only if E = F .
The following lemmas are essential to proof the existence and uniqueness of

the attractor of an IFS.

Lemma 2.8. If f : X → X is a contraction with ratio λ ∈ (0, 1) and E,F ⊆ X,
then

dH(f(E), f(F )) ≤ λ · dH(E,F ). (3)

Proof. Let δ > dH(E,F ). Since [E]δ ⊇ F then

f(F ) ⊆ f([E]δ).

By definition

[E]δ = {y : there exists x, %(x, y) < δ}.
f([E]δ) = {f(y) : there exists x ∈ E, %(x, y) < δ}
⊆ {f(y) : there exists x ∈ E, %(f(x), f(y)) < λ · δ} .
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By previous calculations, f(F ) ⊆ [f(E)]λ·δ, which implies

dH(f(E), f(F )) ≤ λ · dH(E,F ).

Lemma 2.9. For every subsets A,B,C,D ⊆ X we have

dH(A∪B,C ∪D) ≤ max{dH(A,C), dH(B,D)}. (4)

Proof. Let δ > dH(A,C), dH(B,D), then A ⊆ [C]δ and B ⊆ [D]δ. By definition

A∪B ⊆ [C]δ ∪ [D]δ.

Since [C]δ ∪ [D]δ = {y : there exists x ∈ C or there exists x ∈ D, %(x, y) < δ}.
Then

A∪B ⊆ [C ∪D]δ.

Theorem 2.10 (Hutchinson [HUT81]). Assume that the IFS F = {fi}mi=1 con-
sits of functions fi : X → X with Lipschitz constants λi < 1. Then for the closed
ball

B := B(x0,R) where R := max
i

{
%(fi(x0),x0)

1− λi

}
(5)

we have fi(B) ⊆ B for all i = 1, . . . ,m. Furthermore, we call the non-empty
compact set

Λ =
∞⋂
n=1

⋃
(i1,...,in)∈{1,...,m}n

fi1 ◦ · · · ◦ fin(B)

the attractor or invariant set of the IFS F . Then Λ is the unique non-empty
compact set which satisfies

Λ =
m⋃
i=1

fi(Λ).

Proof. First, we show the existence. Let (X, %) be a compact metric space, let
x0 ∈ X be arbitrary and choose R > 0 sufficiently large, such that for every
i = {1, . . . ,n}

fi(B(x0,R)) ⊆ B(x0,R), (6)
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where B(x0,R) is an open ball around x0 with radius R. Then for every y ∈
fi(B(x0,R)), %(x0, y) ≤ R. There exists z ∈ B(x0,R) such that y = fi(z).

%(fi(z),x0) ≤ %(fi(z), fi(x0)) + %(x0, fi(x0)) ≤ λi · %(z,x0) + %(fi(x0),x0)

≤ λi ·R+ %(fi(x0),x0) < R.

Which means that

max
i

{
%(fi(x0),x0)

1− λi

}
< R.

Let

Λn =
m⋃
i1=1

m⋃
i2=1
· · ·

m⋃
in=1

fi1 ◦ · · · ◦ fin
(
B(x0,R)

)
.

By the property (6), Λn+1 ⊆ Λn that is Λn is a sequence of shrinking compact
sets. We use Cantor’s intersection theorem on Λn and let Λ be the non-empty
compact set

Λ :=
∞⋂
n=0

Λn.

Clearly, Λ :=
⋃m
i=0 fi(Λ). Now, we show the uniqueness of the attractor. Let Λ′

be another non-empty compact set such that,

Λ′ =
m⋃
i=1

fi(Λ′).

Then investigate the distance of Λ and Λ′ by the Hausdorf metric,

0 < dH(Λ, Λ′) = dH

(
m⋃
i=1

fi(Λ),
m⋃
i=1

fi(Λ′)
)

(4)
≤ max

i=1,...,m
dH

(
fi(Λ), fi(Λ′)

)
(3)
≤ max

i=1,...,m
λi · dH

(
Λ, Λ′

)
< dH

(
Λ, Λ′

)
.

Which is a contradiction, so that means the distance of Λ and Λ′ has to be
zero.

Definition 2.11. Let (X, %) be a compact metric space, then the IFS of maps
fi : X → X is called self-similar if it contains only similarities, i.e

%(fi(x), fi(y)) = λi · %(x, y),

or some λi ∈ (0, 1) and for every x, y ∈ X.
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Now we show a construction for a Graph-directed self-similar IFS by Mauldin
and Williams [MW88]. Furthermore, for each Graph-directed self-similar IFS
there exists an attractor.

Definition 2.12. Let{Ii}Ni=1 be a set of closed intervals of R and let G = (V , E)
be a directed graph, where Ei,j denotes the set of edges from i to j, and V =

(Ij)
N
j=1. Furthermore, a contracting similarity mapping fe : Ij → Ii on the fol-

lowing metric spaces (Ij , d), j = 1, . . . ,N with contraction ratio re ∈ (0, 1).
Then

d(fe(x), fe(y)) = re · d(x, y) for every x, y ∈ Ij .

We call the system (G, {fe, e ∈ E}) as graph directed self-similar IFS (GDSSIFS).

Theorem 2.13 (Mauldin and Williams [MW88]). For each geometric construc-
tion, there exists a unique collection of compact sets, (Λ1, . . . , ΛN ) such that
for N ∈N

Λi =
N⋃
j=1

⋃
e∈Ei,j

fe(Λj) for every i = 1, . . . ,N .

The construction object is defined as

Λ :=
N⋃
i=1

Λi

called the attractor.

The proof can be found in [MW88, Theorem 1]. Note that, in Theorem 2.13
the authors reefer to the previously define Graph-directed system as a geometric
consruction.

Definition 2.14. Let F be an IFS and let Σ = {1, . . . ,m}N be the symbolic
space. Then Π : Σ→ Λ is the natural projection, that is

Π(ı̄) = lim
n→∞ fi1 ◦ fi2 ◦ · · · ◦ fin(0) for every ı̄ = (i1, i2, . . . , in, . . . ).

Denote σ the left shift on the symbolic space Σ.

2.3 dimension theorems for self-similar ifs

This section is an introduction to the dimension theory of IFS. We give condi-
tions and cases, when we can determine the Hausdorff dimension of the attractor
of an IFS.
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2.3.1 Non-overlapping case

This case is the simplest one. The images of the contracting similarity trans-
formations does not intersect, then we can give nice separation conditions as
follows.

Definition 2.15. Let F = {f1, . . . , fm} be a contracting IFS and Λ the attrac-
tor, then the Strong Separation Property holds for F if,

fi(Λ) ∩ fj(Λ) = ∅ for all i 6= j.

Definition 2.16. The Open Set Condition (OSC) hold for F if there exists a
non-empty open set V ∈ Rd such that

fi(V ) ⊂ V holds for every i = 1, . . . ,m;
fi(V ) ∩ fj(V ) = ∅ for every i 6= j.

Definition 2.17. The Strong Open Set Condition holds for F if the set V in
teh definition of OSC can be chosen such that

V ∩Λ 6= ∅.

Using the previously defined separations conditions, we can state two different
theorems for the dimension. The first one by Moran and Hutchinson for Self-
similar IFS, the second by Mauldin and Williams for Graph-directed IFS.

Theorem 2.18 (Moran [Mor46], Hutchinson [HUT81]). Let F be a self-similar
IFS which satisfies the OSC. Let 0 < λi < 1 be the contraction ratio of fi and let
s be the similarity dimension, that is λs1 + · · ·+ λsm = 1, then for the attractor
Λ of F we have

0 < Hs(Λ) <∞.

Moreover,

dimH(Λ) = dimB(Λ) = s.

Now we define a matrix calledMauldin−Williamsmatrix by the construction
of a Graph Directed Self-Similar IFS (see in Definition 2.12) as the following.

Definition 2.19. Let (B(s)
MW )i, j =

(
b(s)(i, j)

)
be an n× n matrix, where

b(s)(i, j) =


0, if Ei,j = ∅,∑
e∈Ei,j

rse, otherwise,
for every s > 0.
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Lemma 2.20. Let ρ(B(s)
MW ) be the spectral radius of B(s)

MW . The mapping s 7→
ρ(B

(s)
MW ) is continuous, strictly decreasing, ρ(s) ≥ 1 if s = 0 and ρ(B(s)

MW ) −−−→
s→∞

0. Then, there exists a unique s0 ≥ 0 for which

ρ(B
(s0)
MW ) = 1.

The proof can be found in [MW88, Theorem 2].

Theorem 2.21. (Mauldin and Williams [MW88]) Consider a GDSSIFS such
that, G is strongly connected and {fi,j(Λj) : (i, j) ∈ E} is a disjoint family of
sets, then for every i = 1, . . . ,N we have

dimH Λi = dimB Λi = s0 and 0 < Hs0(Λi) <∞.

2.3.2 IFS with overlaps

This section it is clear that we investigate those IFS, which image spaces can
intersect.

Theorem 2.22 (Simon, Solomyak [SS02]). Let F = {λix + ti}mi=1 be a self-
similar IFS on R such that 0 < |λi| < 1 and ti ∈ R for every i = 1, . . . ,m. De-
note Λ the attractor of F and let s be the similarity dimension, that is∑m

i=1|λi|s =
1. Then

dimH(Λ) = dimB(Λ) = min{1, s} for Lebesgue almost every
t = (t1, . . . , tm) ∈ R× · · · ×R.

Moreover if s > 1, then

L1(Λ) > 0 for almost every t = (t1, . . . , tm) ∈ R× · · · ×R,

where L1 denotes the Lebesgue measure.

Let Σ = {1, . . . ,m}N be a set of every infinite words and let Σn be a set of
every finite words with lenght at most n. For a finite word ı̄ ∈ Σ, denote |ı̄| the
length of ı̄. If ı̄ = i1 · . . . in we denote by Aı̄ the finite product Ai1 · . . . ·Ain .
Let fi = λix+ ti be a contracting similarity transformations with contraction
ratio λi and fı̄ = fi1 ◦ · · · ◦ fin for every ı̄ ∈ Σn. Let I be the set of parameters,
then λi : I → (−1, 1) \ {0} and ai : I → R for every i ∈ {1, . . . ,m}. For each
t ∈ I ⊆ R define fı̄,t : R → R such that fi,t(x) = λi(t)(x− ai(t)). For any
ı̄ ∈ Σn let fı̄,t = fi1,t ◦ · · · ◦ fin,t and ∆ı̄,̄ = fı̄,t(0)− f̄,t(0), and for every ı̄, ̄ ∈ Σ
let ∆ı̄,̄ = Πt(ı̄)−Πt(̄).
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Theorem 2.23 (Hochman [Hoc14]). Let Ft = {fi,t}mi=1 be a parametrized IFS
with attractor Λt. For every ε > 0 let

Eε =
∞⋃
N=1

⋂
n>N

 ⋃
ı̄,̄∈Σn

(∆ı̄,̄)−1(−εn, εn)
 ,

and

E =
⋂
ε>0

Eε.

Then for every t ∈ I \ E and for the attractor Λt of Ft satisfies dimH Λt =
dimB(Λt) = min{1, s(t)}, where ∑m

i=1|λi(t)|s(t) ≡ 1.

Theorem 2.24 (Hochman [Hoc14]). Let I ⊂ R be a compact interval, let
λi : I → (−1, 1) \ {0} and ai : I → R be real analytic, and let Ft = {fi,t}mi=1
be associated parametric family of IFS-s, as above. Suppose that

∆ı̄,̄ ≡ 0 on I if and only if ı̄ = ̄ ∈ Σ.

Then the set E of "exceptional" parameters in Theorem 2.23 has Hausdorff di-
mension 0.

2.4 self-affine ifs

This section is a brief introduction to self-affine IFS. Every affine transfor-
mation can be represented by a matrix. In this section we assume that, these
matrices are regular. We show the earlier results on the dimension of self-affine
IFS.

Definition 2.25. An IFS F = {f1, . . . , fm} called self-affine if it is only contains
affinities i.e.

fi(x) = Aix+ ti,

where Ai ∈ Rd×d, ti ∈ Rd and ‖Ai‖ < 1.

Definition 2.26. Let T be a d× d real valued matrix, then the singular value
function ϕt(T ) of T can be defined,

ϕt(T ) :=

α1 · · ·αk−1 · α
t−(k−1)
k , if k− 1 < t ≤ k ≤ d;

(α1 · · ·αd)
t
d , if t ≥ d,

where α1 ≥ · · · ≥ αd are the singular values of T .
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If ı̄ = i1 · . . . in we denote by Aı̄ the finite product Ai1 · . . . · Ain for every
i = 1, . . . ,n and for every n ∈N.

Definition 2.27. Denote s(A1, . . . ,Am) the affinity dimension of the self-affine
IFS F = {Aix+ ti}mi=1, that is,

s(A1, . . . ,Am) = inf

t > 0 :
∞∑
m=0

∑
|ı̄|=m

ϕt(Aı̄) <∞

 .

Falconer ([Fal94]) defined the sub-additive pressure function P : R+ → R,

P (s) = lim
n→∞

1
n

log
∑
|ı̄|=n

ϕs(Aı̄)

 . (7)

Because of the submultiplicativity of the singular value function (see in [Fal88,
Lemma 2]) the following holds,∑

|ı̄|=n+m
ϕt(Aı̄) =

∑
|̄|=n

∑
|k̄|=m

ϕt(Ā ·Ak̄) ≤
∑
|̄|=n

∑
|k̄|=m

ϕt(Ā) · ϕt(Ak̄).

Since the logarithm function is strictly monotone increasing and continuous,
then the sequence {log∑|ı̄|=n ϕt(Aı̄)}n is subadditive. Then by Fekete’s lemma
[Fek23], there exists a limit of the equation (7).

Theorem 2.28 (Falconer [Fal88]). Let F = {Aix+ ti}mi=1 be a self-affine IFS
in Rd with attractor Λ, such that the matrices Ai are regular. Then

dimB(Λ) ≤ min{d, s(A1, . . . ,Am)}.

Theorem 2.29 (Falconer [Fal88], Solomyak [SOL98]). Form ≥ 2 let {A1, . . . ,Am}
be non-singular d× d matrices, such that their Euklidean norm satisfies,

‖Ai‖ <
1
2, i = 1, . . . ,m.

For t := (t1, . . . , tm) ∈ Rd×· · ·×Rd define the m-parameter family of self-affine
IFS on Rd,

F t := {Aix+ ti}mi=1.

Let Λt be the attractor of F t. Then for Lmd-almost all t we have

dimH(Λ) = dimB(Λ) = min{d, s(A1, . . . ,Am)}.

The original version of the previous theorem was weaker than we stated here.
It was proved by Falconer for regular matrices, such that ‖Ai‖ ≤ 1

3 . Later in
1998, Boris Solomyak proved for ‖Ai‖ ≤ 1

2 .
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Definition 2.30. Let A = {A1, . . . ,An} be a collection of regular d× d matrices.
We say that A is strongly irreducible if there is no finite collection V1, . . . ,Vk of
proper subspaces of Rd such that

Ai

 k⋃
j=1

Vj

 =
k⋃
j=1

Vj for every i = 1, . . . ,n.

Theorem 2.31 (Bárány, Hochman and Rapaport [BHR19]). Let F = {fi(x) =
Aix+ ti}mi=1 be a planar self-affine IFS, such that F satisfies the Strong Open-set
Condition and the collection of regular matrices A = {A1, . . . ,Am} is strongly
irreducible. Then,

dimH(Λ) = dimB(Λ) = s(A1, . . . ,Am).



3
MAIN RESULTS

In the previous Chapter we showed dimension theorems for regular IFS. Now
we move on to the main question of this Thesis: What happens to the dimension
if we allow singular matrices in the IFS? In the following, we show our results
about dimension and the connection between self-affine sets and graph directed
iterated function systems with singular matrices. Let Σ = {1, . . . ,n}N be a
symbolic space, furthermore we can define Σreg = {i : Ai are regular matrices}
and Σsing = {i : Ai are singular matrices}. Let Σn be the set of words with lenght
of at most n and let Σ∗ be the set of all finite words. Then define Σnreg and Σ∗reg
as

Σnreg = {(i1, . . . , ik) : k ≤ n and il ∈ Σreg} for every l = (1, . . . , k),

Σ∗reg =
∞⋃
k=1

Σkreg.

Now we construct a matrix formed by the contracting ratios and motivated by
the Mauldin-Williams matrix.

Definition 3.1. Let A be a 2× 2 matrix and let V be a subspace of R2, then
for every x ∈ V the norm of A conditioned on V defined as

‖A|V ‖ = sup
x∈V

‖Ax‖
‖x‖

Let B(s) be an n× n matrix and n = |Σsing|, where

(B(s))i,j =

 ∑
ı̄∈Σ∗reg

‖AiAı̄|Im(Aj)‖s

i,j∈Σsing

. (8)

Observe that, the previously defined B(s) matrix will be not well defined for
every s. In the following we will show some cases, when we can determine the
dimension of a singular IFS via the B(s) matrix. We use the notation of

Psing(s) = log
(
ρ(B(s))

)
,

Preg(s) = lim
k→∞

1
k

log

 ∑
̄∈Σk

reg\Σk−1
reg

ϕs(Ā)

 .

16
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Furthermore, let us define ssing as a unique solution for the equation

ρ
(
B(ssing)

)
= 1.

And let sreg be the unique root of Preg.

3.1 upper bound

This section is a brief introduction to the theorems we gave for the upper
bound of the dimension of the attractor of a self-affine IFS.

Theorem 3.2. For every F = {Aix+ ti}ni=1 let s0 = inf{s :
∑
ı̄∈Σ∗ ϕ

s(Aı̄) <∞}
be the affinity dimension, then for the attractor Λ of F ,

dimH(Λ) ≤ s0.

We will proof the previous Theorem 3.2 in the following Chapter 4. By defi-
nition of sreg and ssing we can investigate the root of the pressure function P (s).
Since the self-affine IFS contains singular matrix, then the pressure function will
shift at s = 1. The question is, what can we say about the dimension of the
attractor of the self-affine IFS? The following figure represents that, how does
the changes in sreg and ssing affect the shift of the pressure function.

x

P (s)

0 1 2

1

2

(a) sreg > 1

x

P (s)

0 1 2

1

2

(b) ssing > 1 > sreg

x

P (s)

0 1 2

−1

1

(c) 1 > ssing

In the following we will answer the previous question. First let us investigate
the affinity dimension in different cases of sreg and ssing.

Proposition 3.3. Consider s0 = inf{s > 0 :
∑
̄∈Σ∗ ϕ

s(Ā) < ∞}, sreg and
ssing as defined previously, then

s0 =

sreg if sreg > 1,

min{1, max{ssing, sreg}} if sreg ≤ 1.
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Theorem 3.4. Assume that sreg > 1, consider F a self-affine IFS with singular
and regular matrices, then let Freg ⊂ F be a self-affine IFS with regular matrices
only, such that Freg satisfies the Strong Separation Property and the collection
of regular matrices Areg = {A1, . . . ,Am} is strongly irreducible, then

dimH(Λ) = sreg.

Proof. By Theorem 3.2 s0 will be an upper for dimH(Λ), but by Proposition
3.3 s0 = sreg. On the other hand, by Theorem 2.31 and by the definition of
sreg we have dimH(Λ) ≥ sreg.

3.2 self-affine sets with singular matrices only

This section is an introduction to the case when the matrices of the contracting
similarity functions of the IFS F = {ϕi = Aix+ ti}ni=1 are singular.

Remark 3.5. If we only consider singular matrices, then the matrix B(s) defined
in (8) simplifies to the following form.

b(s)(i, j) = ‖Ai|Im(Aj)‖s for every i, j = 1, . . . ,n.

By this construction we eliminated the problem that, the dimension of B(s)

will not equal to the number of transformations. Now, we will show the dimension
of the attractor of an IFS by the B(s) matrix.

Theorem 3.6. Let F = {ϕi = Aix+ ti}ni=1 be an IFS for every matrix Ai is
singular. If ϕi ◦ ϕj(Λ) ∩ ϕi ◦ ϕk(Λ) = ∅ for every i and j 6= k then

dimH(Λ) = s0,

where s0 is the unique solution of ρ(B(s0)) = 1.

3.3 one singular between regulars

In this section we investigate those self-affine IFS, which contains regular matri-
ces and only one singular matrix. Then by our new assumption we will determine
the dimension of the attractor such self-affine IFS.

Definition 3.7. Let B be a ball of Rd and an IFS F = {ϕ1, . . . ,ϕn} such that
ϕi(B) ⊆ B for every i. Then we say that F is Elliptically Strong Separated or
satisfies the Elliptic Strong Separation Property, if

ϕi(B) ∩ ϕj(B) = ∅, if i 6= j.
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Proposition 3.8. We assume Σsing = {1} and Σreg = {2, . . . ,n}, furthermore
let A1(β) be the singular matrix as follows

A1(β) = %

1
0

 · (cos(β) sin(β)
)

, for every β ∈ [0, 2π] and % < 1.

Let Fβ = {A1(β)x+ t1, . . . ,Anx+ tn} be the modified IFS and define the set
I = {β ∈ [0, 2π] : Elliptic separation property holds}. Then there exists a set
E ⊂ I such that dimH(E) = 0 and for every β ∈ I \E

dimH(Λβ) = s0(β),

where Λβ is the attractor of the IFS Fβ.

Remark 3.9. For every singular matrix A with rank(A) = 1 there is a trans-
formation, B such that

BAB−1 = %

1
0

 · (cos(β) sin(β)
)

, for some β ∈ [0, 2π] and % > 0.

The transformation g(x) = Bx is a bi-Lipschitz, so it does not affect the dimen-
sion of the attractor g(Λ), which is the attractor of the IFS {g ◦ Fi ◦ g−1}ni=1.



4
PROOFS

In this chapter we give a detailed proofs of the results in the previous chapter.
First, it is practical to prove a general upper bound, then we show the lower
bound for the dimension in specific cases. In R2 with regular matrices by The-
orem 2.29, 2 will be an upper bound for the dimension of the attractor at any
time.

4.1 upper bound

Lemma 4.1. For every singular matrices A and B and for every subspace V we
have

‖AB|V ‖ = ‖A|Im(B)‖ · ‖B|V ‖.

Proof. For every v ∈ V and ‖v‖ = 1,

‖AB|V ‖ = ‖ABv‖ =

=

0, if Ker(B) = V

‖ABv‖
‖Bv‖ · ‖Bv‖ = ‖A|Im(B)‖ · ‖B|V ‖ if Ker(B) 6= V

If Ker(B) = V then ‖B|V ‖ = 0 and ‖A|Im(B)‖ · ‖B|V ‖ = 0.

Lemma 4.2. Let F = {Aix+ ti}ni=1 then for every s ≤ 1
∑
ı̄∈Σ∗

ϕs(Aı̄) <∞ if and only if
∞∑
k=0

∥∥∥∥(B(s)
)k∥∥∥∥

1
<∞ and

∑
ı̄∈Σ∗reg

ϕs(Aı̄) <∞.

Remark 4.3. In Lemma 4.2 for a matrix A we use

‖A‖1 =
∑
i,j
|aij |.

Proof. For the reverse direction of the implication we have,∑
ı̄∈Σ∗

ϕs(Aı̄) ≥
∑

i,j∈Σsing

∑
ı̄∈Σ∗

ϕs(AiAı̄Aj) +
∑

ı̄∈Σ∗reg

ϕs(Aı̄). (9)

By Lemma 4.1,

(9) =
∑

i,j∈Σsing

∑
ı̄∈Σ∗

‖AiAı̄|Im(Aj)‖s · ‖Aj‖s +
∑

ı̄∈Σ∗reg

ϕs(Aı̄). (10)

20
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Then by the definition of B(s), see in equation (8)

(10) =
∞∑
k=0

∑
i,j∈Σsing

(
(B(s))k

)
i,j
· ‖Aj‖s +

∑
ı̄∈Σ∗reg

ϕs(Aı̄)

≥ min
j∈Σsing

‖Aj‖s1 ·
∞∑
k=0

∥∥∥∥(B(s)
)k∥∥∥∥

1
+

∑
ı̄∈Σ∗reg

ϕs(Aı̄).

On the other hand similarly to previous calculations we have,∑
ı̄∈Σ∗

ϕs(Aı̄) =
∑

ı̄∈Σ∗reg

ϕs(Aı̄) +
∑

i∈Σsing

∑
ı̄1,ı̄2∈Σ∗reg

ϕs(Aı̄1AiAı̄2)+

∑
i,j∈Σsing

∑
ı̄1,ı̄2∈Σ∗reg

∑
̄∈Σ∗

ϕs(Aı̄1AiĀAjAı̄2) ≤

≤
∑

ı̄∈Σ∗reg

ϕs(Aı̄) +
∑

i∈Σsing

∑
ı̄1,ı̄2∈Σ∗reg

ϕs(Aı̄1)‖Ai‖sϕs(Aı̄2)+

+
∑

i,j∈Σsing

∑
ı̄1,ı̄2∈Σ∗reg

∑
̄∈Σ∗

ϕs(Aı̄1)‖AiĀ|Im(Aj)‖s · ‖Aj‖sϕs(Aı̄2) ≤

≤
∑

ı̄∈Σ∗reg

ϕs(Aı̄) +

 ∑
ı̄∈Σ∗reg

ϕs(Aı̄)

2 ∑
j∈Σsing

‖Aj‖s
+

+

 ∑
ı̄∈Σ∗reg

ϕs(Aı̄)

2

·
∞∑
k=0

∑
i,j∈Σsing

(
(B(s))k

)
i,j
· ‖Aj‖s

≤
∑

ı̄∈Σ∗reg

ϕs(Aı̄) ·

 ∑
ı̄∈Σ∗reg

ϕs(Aı̄)

 ·
 ∑
j∈Σsing

‖Aj‖s
+

 ∑
ı̄∈Σ∗reg

ϕs(Aı̄)

2

·max
j
‖Aj‖s ·

 ∞∑
k=0

∥∥∥(B(s))k
∥∥∥

1

 .

Proof of Proposition 3.3. For sreg > 1,∑
ı̄∈Σ∗

ϕs(Aı̄) =
∑

ı̄∈Σ∗reg

ϕs(Aı̄).

Hence, it is clear that sreg = s0.
On the other hand, if sreg ≤ 1, then we have two cases. In first case, for every

s ∈ (0, 1] the ∑ı̄∈Σ∗ ϕ
s(Aı̄) =∞. Then it is clear, s0 = 1 and by Lemma 4.2

∞∑
k=0

∥∥∥∥(B(s)
)k∥∥∥∥

1
=∞.
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Then by Lemma 2.20 ρ(B(s)) ≥ 1, which implies ssing ≥ 1. In the second
case, there exists 0 ≤ s ≤ 1, such that ∑ı̄∈Σ∗ ϕ

s(Aı̄) < ∞. Then s0 ≤ 1 and by
Lemma 4.2

∞∑
k=0

∥∥∥(B(s))k
∥∥∥

1
<∞ and

∑
ı̄∈Σ∗reg

ϕs(Aı̄) <∞.

By Lemma 2.20 ρ(B(s)) ≤ 1, which implies that ssing ≤ s. Since,∑ı̄∈Σ∗reg
ϕs(Aı̄) <

∞ then by Lemma 4.2 sreg ≤ s. The above implies that,

max{sreg, ssing} ≤ s.

Proof of Theorem 3.2. If s0 > 1 then the affinity dimension s0 = sreg, by
Proposition 3.3 and Falconer Theorem 2.29 On the other hand, let x ∈ Λ
be a point. Then we can determine x as

x = lim
n→∞ϕi1 ◦ · · · ◦ ϕin(0) for some ı̄ = (i1, . . . in, . . . ) ∈ Σ.

Then we have those x which can be represented by all regular matrices Λreg and
those, which contains at least one singular Λsing. So we can devide the attractor,

Λ = Λreg

⋃
Λsing, where

Λsing =
⋃

i∈Σsing

⋃
̄∈Σ∗reg

ϕ̄ ◦ ϕi(Λ)

Λreg =
⋃

j∈Σreg

ϕj (Λreg) .

We know that, for every i ∈ Σsing, ϕi(Λ) is contained in a line segment. Let B
be a ball as defined in Theorem 2.10, then ϕi(B) ⊂ B. So ϕi(Λ) ⊂ ϕi(B).
Since dim ϕi(B) = 1 if i ∈ Σsing, then

dimH(Λsing) = sup
i

sup
̄∈Σ∗reg

dimH ϕ̄ ◦ ϕi(Λ) ≤ 1.

By the 7. property in Lemma 2.5

dimH(Λ) = max{dimH(Λreg), dimH(Λsing)} ≤ max{sreg, 1} = sreg.

Now we turn to the case when s0 ≤ 1. By definition of a ball B, ϕi(B) ⊂ B.
So Λ ⊂ ⋃

ı̄∈Σ∗
ϕı̄(B). For the diameter of ϕı̄ it follows,

|ϕı̄(B)| = ‖Aı̄‖ · |B| . (11)

Then (11) implies ϕs(Aı̄) = ‖Aı̄‖s. If
∑
ı̄∈Σ∗

ϕs(Aı̄) <∞, then

Hs(Λ) = 0.

This implies that, dimH(Λ) ≤ s0.
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4.2 study of pressure function

In this section we investigate the previously defined B(s) matrix with the
pressure. We will show under which condition the matrix will be well defined.
First we consider the case, when we have singular and regular matrices in the
IFS.

Proposition 4.4. Let Aj be a regular matrix and Ā = Aj1 · . . . ·Ajn. Then for
every ε > 0 there exists c > 0, such that for every n ∈N

c−1 · en(Preg(s)+ε) ≤
∑

ı̄∈Σ∗reg
|ı̄|=n

ϕs(Aı̄) ≤ c · en(Preg(s)+ε).

Proof. By definition of Preg(s), there exists N ,n > 0, for every ε > 0 if n > N

then, ∣∣∣∣∣∣∣∣∣
1
n

log

 ∑
ı̄∈Σ∗reg
|ı̄|=n

ϕs(Aı̄)

− Preg(s)
∣∣∣∣∣∣∣∣∣ < ε.

Lemma 4.5. If sreg < 1 then the matrix B(s) is well defined for every s > sreg.

Proof. ∑
̄∈Σ∗reg

‖AiĀ|Im(Aj)‖s ≤
∑

̄∈Σ∗reg

‖AiĀ‖s. (12)

By the sub-additivity of the norm,

(12) ≤
∑

̄∈Σ∗reg

‖Ai‖ · ‖Ā‖s. (13)

By Proposition 4.4,

(13) ≤ ‖Ai‖s
∞∑
n=0

c · en(Preg(s)+ε) <∞, if Preg(s) + ε < 0.

But there exists such ε if s > sreg.

In the following we investigate the case, when the IFS contains only singular
matrices.
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Lemma 4.6. Let Aı̄ be an arbitrary product of the singular matrices Ai1 , . . . ,Ain
for every n ∈N. Then,

Im(Aı̄) = Im(Ai1) or Im(Aı̄) = {0}.

Proof. Let Ai be a matrix with rank(Ai) = 1. Assume that,

Ai =

ci · ai ci · bi
di · ai di · bi

 =

ci
di

 · (ai bi
)

,

for every i = 1, . . . ,n and for every a, b, c, d ∈ R. Obviously,

Im(Ai) = span

〈ci
di

〉 and Ker(Ai) = span

〈ai
bi

〉 .

If n = 1 then

Aı̄ = Ai1 , so Im(Aı̄) = Im(Ai1).

If n = 2 we have,

Aı̄ = Ai1 ·Ai2 =

=

ci1 · ai2 (ci2 · ai1 + bi1 · di2) ci1 · bi2 (ci2 · ai1 + bi1 · di2)
di1 · ai2 (ci2 · ai1 + bi1 · di2) di1 · bi2 (ai1 · ci2 + bi1 · di2 · ci2)

 .

The image of Aı̄

Aı̄ · x =

ci1 · (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)
di1 · (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)

 =

= (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)

ci1
di1

 .

Then unless Ker(Ai1) = Im(Ai2),

Im(Aı̄) = span

〈ci1
di1

〉 = Im(Ai1).

If |ı̄| = n we can split the product Aı̄ into two parts

Aı̄ = Ai1 ·A|ı̄|−1.

Then using the case n = 2 and induction we get the result.
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Lemma 4.7. A generalization of Lemma 4.1, for every ı̄ = (i1, . . . , in) we
have

‖Ai1Ai2 . . . Ain−1|Im(Ain)‖ = ‖Ai1|Im(Ai2)‖ . . . ‖Ain−1|Im(Ain)‖.

Proof. For every v ∈ Im(Ain) and ‖v‖ if Ai2 · · ·Ain−1v 6= 0,

‖Ai1 · · ·Ain−1|Im(Ain)‖ = ‖Ai1 · · ·Ainv‖ =

= ‖Ai1
Ai2 . . . Ain−1v

‖Ai2 . . . Ain−1v‖
‖ · ‖Ai2 . . . Ain−1v‖

We know thatAi2 . . . Ain−1v ∈ Im(Ai2 . . . Ain−1) by Lemma 4.6 Im(Ai2 . . . Ain−1) =
Im(Ai2) then

‖Ai1
Ai2 . . . Ain−1v

‖Ai2 . . . Ain−1v‖
‖ = ‖Ai1|Im(Ai2)‖.

By induction we use the previous calculation for ‖Ai2 . . . Ain−1v‖.
Proposition 4.8. Let A1, . . . ,An be singular matrices of an IFS F and α1(Ai)
be maximum of the singular values of Ai. Then there exists constants m,M > 0
such that for every k ≥ 1 and s ∈ (0, 1],

m · ‖(B(s))k‖1 ≤
∑
|ı̄|=k+1

α1(Aı̄)
s ≤M · ‖(B(s))k‖1. (14)

Proof. We know that, α1(Ai) = ‖Ai‖. Observe that∑
|ı̄|=k+1

α1(Aı̄) =
∑

i,j=1,...,n

∑
|̄|=k−1

‖AiĀ|Im(Aj)‖ · ‖Aj‖. (15)

Then denote M = max
j
{‖Aj‖} and m = min

j
{‖Aj‖}. By using m and M in

equation (15)

m · ‖(B(s))k‖1 ≤
∑
|ı̄|=k+1

α1(Aı̄)
s ≤M · ‖(B(s))k‖1.

Proposition 4.9. Let A1, . . . ,An be singular matrices. Then,

P (s) = log
(
ρ(B(s))

)
for 0 ≤ s ≤ 1.

Proof. By using inequality (14) and taking logarithm and dividing by n we have

1
n

log(ρ(B(s))n) ≤ 1
n

log
 ∑
|ı̄|=n+1

α1(Aı̄)
s

 ≤ 1
n

log(ρ(B(s))n).

Then by Gelfand’s formula ‖Bn‖1/n → ρ(B) as n→∞. Thus, we have

P (s) = log(ρ(B(s))).
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4.3 lower bound

To give a proper lower bound for the dimension of the attractor is not as simple
as the upper bound.

4.3.1 Singular case

Let us recall the definition of B(s)
MW from equation (2.19) and our constructed

matrix B(s) from equation (8). To begin the investigation of these matrices, one
can see that if there are more than one mapping to the same affine space, the sum
of their contraction ratio will appear in the Mauldin-Williams matrix. On the
other hand, in matrix B(s), we record every contraction ratio one by one. Hence
the dimension of the matrices satisfies dim(B

(s)
MW ) ≤ dim(B(s)). We construct

an eigenvector for the same positive eigenvalue from B(s) to B(s)
MW . By Perron-

Frobenius theorem this eigenvector is unique and positive, so the spectral radius
of the matrices should equal. This is necessary step which allows us to use the
Mauldin-Williams theorem 2.21 for the matrix B(s).
Now we show a Grap-directed IFS corresponds to the self-affine IFS F =
{ϕi(x) = Aix + ti}mi=1. By definition Im(ϕi) = Im(Ai) + ti for every i =
1, . . . ,m. Let I be the set of all image spaces of ϕi which are distinct. In other
words

I = {Im(ϕi) : i = 1, . . . ,m} := {V1, . . . ,VM},

where Vi 6= Vj for i 6= j. Furthermore, by definition Ei,j := {k : Im(ϕk) =
Vi and Ker(Ak) 6= Vj} and define E i = {k : Im(ϕk) = Vi}. Then we can define
fe : Im(ϕi)→ Im(ϕj) for every i, j and e : i→ j, e ∈ E . In this case

fe(x) = ϕj(x) for every x ∈ Im(ϕi).

Since for every i, Vi is a hyperspace, we need to construct a set with subspaces
to determine the norm of the matrix B(s)

MW . For every Vi there is a unique Wi

subspace in R2 such that for every x, y ∈ Vi, x− y ∈ Wi. Then the elements of
the matrix B(s)

MW will be(
B

(s)
MW

)
i,j

=
∑
k∈Ei,j

‖Ai|Wj‖s for every i, j = 1, . . . ,M .

Lemma 4.10. Let {ϕi(x) = Aix+ ti}mi=1 be an IFS for every x ∈ R2and for
every m > 1. Consider the following matrices B(s)

MW and B(s) for the IFS. Then
the spectral radius of the matrices are equal,

ρ = ρ(B
(s)
MW ) = ρ(B(s)).
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Proof. Previously we saw the elements of the B(s)
MW matrix. On the other hand,

the elements of the matrix B(s) will be(
B(s)

)
i,j

= ‖Ai|Im(Aj)‖s for every i, j = 1, . . . ,m.

There exists a unique vector v ∈ Rm such that ‖v‖ = 1 and for every i =
1, . . . ,m, vi > 0. The spectral radius of ρ(B(s)) = ρ and by the Perron Frobenius
theorem,

B(s)v = ρv.

Now we construct a vector, by v then we will see this constructed vector is an
eigenvector of B(s)

MW .
Let z ∈ RM be a vector such that zj =

∑
k∈Ej vk. Then

(
B

(s)
MW z

)
i
=

M∑
j=1

∑
k∈Ei

‖Ak|Wj‖szj =
M∑
j=1

∑
k∈Ei

∑
l∈Ej

‖Ak|Wj‖svl =

M∑
j=1

∑
k∈Ei

∑
l∈Ej

‖Ak|Im(Al)‖svl =
∑
k∈Ei

M∑
j=1

∑
l∈Ej

‖Ak|Im(Al)‖svl =

∑
k∈Ei

m∑
l=1
‖Ak|Im(Al)‖svl =

∑
k∈Ei

ρvk = ρzi.

Then for every zi > 0, z is an eigenvector of B(s)
MW with ρ > 0 eigenvalue. So, by

Perron-Frobenius theorem

ρ = ρ(B
(s)
MW ).

Proof of Theorem 3.6. If ϕi ◦ ϕj(Λ) ∩ ϕi ◦ ϕl(Λ) = ∅ if j 6= l for every
i, j, l = 1, . . . ,n. By definiton of Λj and ϕj , we have Λj = ϕj(Λ). Since fe(x) =
ϕj(x) for every x ∈ Im(ϕi) then fe(Λj) = ϕi ◦ ϕj(Λ). So ϕi ◦ ϕj(Λ) ∩ ϕi ◦
ϕl(Λ) = ∅ satisfies the eparation condition in Mauldin-Williams theorem. Then
by applying Theorem 2.21, s0 is a unique solution for the equation

ρ(B
(s0)
MW ) = 1.

By Lemma 4.10, ρ = ρ(Bs
MW ) = ρ(B(s)) and by Mauldin-Williams theorem,

s0 is the unique solution for the equation ρ(B(s0)) = 1. Then

dimH(Λ) = s0.
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4.3.2 One singular between regulars

In this subsection we prove Proposition 3.8, but first we show some necessary
conditions when the statement will be true. Let us begin with the basic definitions.
Assume, in this section for a singular matrix A1(β) we use the notation of

A1 = % ·

1
0

 · (cos(β) sin(β)
)

for every β ∈ [0, 2π] and % < 1.

We would like to associate Im(A1(β)) to the real line R. Let v be a fixed
vector, such that ‖v‖ = 1 and v ∈ Im(A1). Let p : Im(A1) → R be a function,
such that

p(w) = 〈v,w〉 = τ . (16)

By rearrange (16), we have w = p(w) · v. Now we will investigate the function p
on the similarity transformations ϕ1 and ϕı̄.

p(ϕ1(ϕı̄(w))) = 〈v,A1Aı̄w+A1tı̄〉 = p(w) · 〈v,A1Aı̄v〉+ 〈A1tı̄, v〉 .

Definition 4.11. Let Aı̄ be a regular matrix where ı̄ ∈ Σnreg and A1 be singular
matrix. Then let g1ı̄ : R→ R be a function such that, for an arbitrary τ ∈ R

g
(β)
1ı̄ (τ ) = 〈v,A1Aı̄v〉 · τ + 〈v,A1tı̄〉 . (17)

Observe that, |〈v,A1Aı̄v〉| = ‖A1Aı̄|Im(A1)‖.

Definition 4.12. Let g(β)1ı̄ : R → R be a function as defined in equation (17),
then let Πβ(ı̂) : Ωn → Γn,β be a function such that,

Πβ(ı̂) = lim
n→∞ g

(β)
1ı̄1 ◦ g

(β)
1ı̄2 ◦ . . . g

(β)
1ı̄n (0),

where Ωn =
(

Σsing × Σnreg
)N

and Γn is the attractor of the IFS {g1,ı̄}.

Lemma 4.13. Let A1(β) be a singular matrix and let Ai be regular matrices for
every i = 2, . . . ,n. Let ϕ1(x) = A1(β)x and ϕi(x) = Aix+ ti be contracting
similarity functions. If the Elliptic Strong Separation Condition holds,

Πβ(ı̂) ≡ Πβ(̂) for every β if and only if ı̂ = ̂ ∈ Ωn.

Proof. First, we note that the contraction rate β 7→ 〈v,A1(β)Aı̄v〉 and the trans-
lation β 7→ 〈v,A1(β)tı̄〉 are real analytic for every ı̄ ∈ Σ∗reg. Let us argue by
contradiction, so assume

Πβ(ı̂) ≡ Πβ(̂) for ı̂ 6= ̂. (18)
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Then without loss of generality, assume ı̄1 6= ̄1, there are two possibe position
to the iterates of ϕı̄ because of the Elliptic Strong Separation. First, when they
are disjoint, and the second, when one of them is contained in the other one.

ϕı̄1(S
1) ∩ ϕ̄1(S1) = ∅ (19)

ϕı̄1(S
1) ⊂ ϕ̄1(S

1) (20)

S1

Ker(A1(β))

ϕı̄1 (ϕ1(S
1))

ϕ̄1 (ϕ1(S
1))

ϕ1(S
1)

ϕı̄1 (ϕ1(S
1))

ϕ̄1 (ϕ1(S
1))

ϕ1(S
1)

ϕı̄1 (Πβ (σı̂))ϕı̄1 (Πβ (σı̂))

Ker(A1(β))

Figure 6: Cylinders in case (19)

By our assumption on ı̂ and ̂, we have

A1(β) ·

ϕı̄1
Πβ(σı̂)

0

− ϕ̄1
Πβ(σ̂)

0

 ≡
0

0

 ,

which is equivalent with

ϕi1

Πβ(σı̂)

0

− ϕ̄1
Πβ(σ̂)

0

 ∈ 〈
− sin(β)

cos(β)

〉 = Ker(A1(β)). (21)
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The image of ϕ1 is independent of β, so we can define a cone in S1 such that

C1 =

 ϕı̄1(x)− ϕ̄1(y)∥∥∥ϕı̄1(x)− ϕ̄1(y)∥∥∥ : for every x, y ∈ Im(ϕ1)

 .

Since the range of Ker(A1(β)) is the whole S1, and ϕı̄1 (x)−ϕ̄1 (y)
‖ϕı̄1 (x)−ϕ̄1 (y)‖

∈ C1, for all
x, y ∈ Im(A1(β)). Hence C1 ( S1, there is a β ∈ [0, 2π] for which our assumption
(18) does not holds, i.e there is a vector w1, such that

w1 =

− sin(β)
cos(β)

 /∈ C1,

which is a contradiction.
On the other hand, if we have ϕı̄1(S1) ⊂ ϕ̄1(S

1), then we can lead back
the solution to the previous case. By the Elliptic Strong Separation Condition
ϕı̄1 = ϕ̄1 ◦ ϕk1

, then we have

ϕ1

ϕk1

Πβ(σı̂)

0

 ≡ ϕ1

ϕ̄1
Πβ(σ̂)

0

 ,

which is equivalent to

Ā1

Πβ(σı̂)

0

− ϕk1

Πβ(σ̂)

0

 ∈ Ker(A1(β)) for every β,

and soΠβ(σı̂)

0

− ϕk1

Πβ(σ̂)

0

 ∈ A−1
̄1 Ker(A1(β)) for every β.

Since ϕk1
(Πβ(σı̂)) ∈ ϕk1

(ϕ1(S1)) and ϕ̄1(Πβ(σı̂)) ∈ ϕ̄1(ϕ1(S1)). Again, we
might define a cone

C2 =

 x− ϕk1

(
y
)

‖x− ϕk1
(y)‖

: for every x, y ∈ Im(ϕ1)

 .

Similarily to the previous case, A−1
̄1 Ker(A1(β)) ranges over the whole S1, and

x−ϕ
k1

(y)

‖x−ϕ
k1

(y)‖ ∈ C2, where x, y ∈ R. Hence C2 ( S1, so there is a β ∈ [0, 2π] for
which our assumption does not holds i.e there is a vector w2, such that
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w2 = A−1
̄1

− sin(β)
cos(β)

 /∈ C2,

which is again a contradiction.

S1

ϕ1
(ϕ1(S

1))ϕ1
(ϕ1(S

1))

ϕ
k1

(ϕ1(S
1))ϕ

k1
(ϕ1(S

1))

ϕ
k
(S1)ϕ
k
(S1)

ϕ̄(S
1)ϕ̄(S
1)

Figure 7: Cylinders in case (20)

Proof of Proposition 3.8. If s0 > 1 we proved this case before, so without
loss of generality, we can assume s0 ≤ 1. We know that, by Proposition 3.3 s0 =

max{sreg, ssing}. Let Φn = {g(β)1,ı̄ (τ )} be an IFS formed by g(β)1,ı̄ (τ ) functions and
let Πβ(ı̂) = lim

n→∞ g
(β)
1,ı̄1 ◦ · · · ◦ g

(β)
1,ı̄n(τ ). Furthermore, let Γn,β be the attractor of Φn.

Then by Lemma 4.13, Φn satisfies the condition of Hochman’s Theorem 2.24.
Hence, there is a set E ⊆ [0, 2π] such that dimH(E) = 0 for every β ∈ [0, 2π] \E.
Then by Hochman’s Theorem 2.23

dimH(Γn) = min{sn(β), 1},

where sn(β) is the unique solution of the equation∑
ı̄∈Σn

reg

‖A1Aı̄|Im(A1)‖sn = 1.
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By definition ssing(β) is the unique solution of the following equation∑
ı̄∈Σ∗reg

‖A1Aı̄|Im(A1)‖ssing = 1,

hence sn(β) converges to ssing(β). This implies that, dimH(Λβ) ≥ min{sn(β), 1}
for every β ∈ [0, 2π] \E. Then by Bárány, Hochman and Rapaport Theorem
2.31,

dimH(Λβ) ≥ sreg.

All of the above implies

dimH(Λβ) ≥ s0(β) for every β ∈ [0, 2π] \E.

Then, by Theorem 3.6

dimH(Λβ) = s0(β).



5
CONCLUS IONS

In contrast to regular self-affine IFS, the attractor of a singular self-affine IFS
is not always a perfect set, but these systems behaviour does not change too
much. In general, we do not have any answer for the general question of this
Thesis, but we have results in more specific areas.

For singular self-affine IFS we can construct a graph-directed IFS and a matrix
B(s) from equation (8), then by Perron-Frobenius theorem and Mauldin-Williams
theorem, the dimension of the attractor of the self-affine IFS, will equal to the
affinity dimension s0.
If the matrices of the contracting similarity transformations are both singular

and regular, we need more assumptions to determine the dimension of the attrac-
tor. First we need to define Psing(s) the pressure of the system and we have a sub-
system, which contains only regular matrices with its pressure function Preg(s).
Furthermore we defined ssing as the unique solution to ρ(B(ssing)) = 1 and sreg
as the unique root of Preg(s). By the singular matrices in the self-affine IFS, the
sub-additive pressure function has a shiftat s = 1. We showed that, the affinity
dimension s0 = sreg in the case if sreg > 1 and s0 = min{1, max{ssing, sreg}} in
the case if sreg ≤ 1. The main result of this section is a theorem, which deter-
mines the dimension of the attractor of such a self-affine IFS. If sreg > 1 and the
regular sub-system satisfies the Strong Separation Property, and the collection
of the regular matrices is strongly irreducible, then the Hausdorff-dimension of
the attractor equals to sreg.
In the last part of the Thesis, we investigated self-affine IFS with only one

singualr matrix. In this case, with a new assumption called the Elliptic Separation
Property, we can determine the dimension of the attractor, if it depends on some
β ∈ [0, 2π]. Then, the dimension of Λ(β) will equal to s0 in both cases when
sreg > 1 or sreg ≤ 1.
There are a lot more open question related to this topic. For example: if sreg ≤ 1

will the dimension of the attractor always equals to s0 ? Maybe we could answer
it later.
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