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Chapter 1
Preliminary

Hutchinson showed that if the cylinder sets of a self-similar iterated function system (IFS)
are disjoint, then the Hausdorff dimension of its attractor is equals with the similarity
dimension. Also, he showed similar result for self-similar measures which belongs to such
self-similar TF'S for which some strong separation condition holds.

When the cylinder sets of an IF'S has significant overlap, the dimension is difficult to
understand, because we have to consider complicated overlapping system of cylinder sets.

Using transversality condition for a self-similar IF'S family, then K. Simon, B. Solomyak
and M. Urbanski calculated this dimensions for almost every paramaters of the IFS family.
B. Barany also proved almost everywhere results, when the self-similar IFS’s have fix
points that coincide.

Kamalutdinov and Tetenov studied twofold Cantor sets, which are very similar to the
forward separated systems (Definition . In a system of a twofold Cantor set there are
total overlaps. They have results for the properties of the attractor. They calculated the
exact value of the Hausdorff dimension of twofold Cantor sets. They do not mentioned

about the self-similar measures of those systems.

Results of this dissertation

In this work we study self-similar IF'S’s on the interval [0, 1] for which the so-called forward
separated condition holds (Definition [3.3). In the considered IFS’s there is also total
overlap between the cylinder sets.

Using the argument of Kamalutdinov and Tetenov we proved that forward separated
systems exist. The main result of this dissertation is Theorem|[7.1] which states everywhere
result for the Hausdorff dimension of a self-similar measure with respect to a forward

separated system.



Theorem Let o, 8,7 € (0, %) Let S = {57, 52,53} be a self-similar IFS on [0, 1]
such that

S - {51752753}
$1() = oz, Sylx) = B, Sale) = e + 1.

(1.1)

Let K denote the attractor of S. Moreover, we suppose that
for every m,n € N*,  S7"S3(K) N SyS3(K) = 0. (1.2)

The natural projection of S, g is I, 5,. Let p = (p1,p2,p3)N" be a Bernoulli measure
on X for the probability vector p = (p1,p2,p3). Let v = Ilapg, 0t = po H;’lﬁ’7 be the
self-similar measure on the attractor. Then the Hausdorff dimension of v can be exactly

determined.

The exact value of the dimension is in Chapter 7. To achieve this statement we use

ergodic CP-shift system.



Chapter 2

Introduction of self-similar 1terated

function systems

In this chapter we would like to define the most fundamental notions and we collect the

most important theorems concerning self-similar iterated function systems (IFS).

2.1 Definitions of self-similar IFS

Definition 2.1 Let m > 2, m € Z and d > 1,d € Z. We say that S is a self-similar
iterated function system (IFS) on RY, if

S=1{S1,.... S}, (2.1)

where S; 1 R — R? is contracting similarity transformation with contraction ratio 0 <

r; < 1 for all i. This means, that
Vie{l,....m} vx,y eR" |[S;(x)=Si(y)|=rilx—yl. (2.2)

Frequently we use the notation S;, o---0.5;, =5
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Figure 2.1: Example for a self-similar TF'S on the line

Definition 2.2 Let B = B(0,R), where R = maxlgigm{w}. The set A is the
attractor of the self-similar IFS S, if

A=) | U Sitin(B)- (2.3)

0 1
0 1
0 i 1
Figure 2.2: The first, second and third level cylinder sets of the IFS & = {—% + %, 5+
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Definition 2.3 We call ¥ = {1,...,m} the symbolic space of the IFS S defined in
equation (12.1)).

On the symbolic space we use the following notation. If i = (iy,...,4;) € {1,...,m}*
and j € {1,...,m}!, then let i % j = (i1,i2,...,ik,J1,J2,---, ). Denote i = i i and
ke k-1

|

= 4" x 4. This definition is also proper for [ = oo.

Let us denote the set of all finite length word by ¥* = U{l, C,mE
k=1

We denote the left shift on the symbolic space with o : 5 — 3 for all j= U1 Jo,---) €
)Y U(]):(j27j3>)



Definition 2.4 The map 11 is the natural projection of the IFS S, if

0:% A () = lm S, ., (0). (2.4)
where 1 = (iy,12,...) € 2.
It is easy to see that

A=TI(). (2.5)

Theorem 2.5 (Hutchinson) The A attractor of the IFS S (2.1)) is the only non-empty

compact set solution of the following equation on sets

X = US@(X), (2.6)

where X is the variable.

The proof can be found in [2].
Definition 2.6 Let ¥ = {1,... ,m}NJr and i = (i1,...ix) € {1,...,m}*, then the set
[il,...,ik]:{zez:jl:il,...jk:ik} (2.7)

1$ called a cylinder set.

Let p = (p1,...,pm) be a probability vector. Then, let 1 = p™ be the infinite product

measure or Bernolli measure on X. That is

w(lit, - yik]) = Diy -+ iy (2.8)

where (iy,...,ix) € {1,...,m}*. Using Kolmogorov’s extension theorem, we can see that
there exists a unique p Borel measure on ¥ defined on the o-algebra generated by the
cylinder sets and for which the equation (2.8) holds.

Definition 2.7 Let p = (p1,...,pm) be a probability vector. We say that v is a self-
stmilar measure or invariant measure of the self-similar IFS S with the probabilty vector

P, if v is the following push-down measure
v(E) =1LpY(E) =p" o II"H(E). (2.9)
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Theorem 2.8 Let p = (p1,...,pm) a probabilty vector and S is a self-similar IFS in the
form (2.1)). Then v self-similar measure of S with the probabilty vector p if it is the only

v Borel probabilty measure on R? for which

v=> proS" (2.10)

holds.

The proof can be found in [2].

2.2 The size of the attractor

Most of the time the attractor has zero Lebesgue measure, thus we need some definition

to be able to compare the size of sets with zero Lebesgue measure.

Definition 2.9 Lett > 0. The measure H' is called the t-dimensional Hausdorff measure
on R®, if it is the restriction of the following outer measure for the o-algebra of the

measurable sets. Let
t 7 . It . ) | < 1 t
H'(E) = lim {mf {; Al - EC ZL:JIA“ |A;| < 5}} lim H5( ), (2.11)
where A C R® |A| is the diameter of the set A.

Remark 2.10 The limit in the equation (2.11)) is exists, because the function
§ — inf {Z A" EC A A < 5} (2.12)
i=1 i=1
1s monoton decreasing.
Now, let us introduce some basic facts regarding to Hausdorff measure.

Theorem 2.11 For every t > 0, all Borel set in RY is measurable with respect to the

t-dimensional Hausdorff measure.

Theorem 2.12 For every n € N, there exists ¢ € RT such that for all Borel set B C
R™ H™(B) = cL"(B) hold.

Lemma 2.13 For every Borel set B C R? and every 0 < a < f3, we have the following

implications:



(i) HY(B) < oo = H?(B) =0
(ii) HP(B) > 0 = H*(B) =

Definition 2.14 By Lemma we can define the Hausdorff dimension of a B C R?
Borel set by

dimg(B) = gg{’Ht(B) =0} = sup{H'(B) = oo}. (2.13)

t>0

H'(E)

dimy(E) t

Figure 2.3: The definition of the Hausdorfl dimension.

Definition 2.15 If S = {S,..., S} is a C' IFS, then the value of upper and lower

Lyapunov exponents in i = (i1,4s,...) € X is defined respectively by

(i) = limsup (—1 log Hszlig...z,,(rl(a”z))u) ,
n—00 n

) (2.14)
Q) =t (= o |5, (0("0) ).

When X(i) = A(i), then the common value is denoted by \(i) and we call it the Lyapunov
exponent of the system S at the point i € X.

Definition 2.16 If S is a C' IFS and p is a Bernoulli measure on X, then we call the

system S is p-conformal, if A(i) exists for p-almost every i € .

Definition 2.17 Suppose that v is a Borel probability measure on R?, then the definition

of upper and lower local dimension of v at x € R? is respectively

- 1 B
dim, (z) = lim sup OEADALT)) 1/1( (z,7)) ,
r=0 oe” (2.15)

logv(B
dim, () = lim inf 22V B@1)
r=0 log r

where B(x,r) denotes the open ball of radius v centered at x. If dim, (r) = dim, (x), then

the common value is denoted by dim,(z) and we call it the local dimension of v at x.

9



Definition 2.18 We can also define the Hausdorff dimension of a Borel probability mea-

sure v on R with
dimy(v) = inf{dimy(E) : v(E) = 1}. (2.16)

Theorem 2.19 If v is a Borel probability measure on R? with compact support, then
dimy (v) = esssup{dim,(z) : z € R} = inf{a : v({z : dim,(7) < a}) =1}

Lemma 2.20 If § = {S1,...,Sn} is a self-similar IFS and p is a o invariant, ergodic

Borel probability measure on X, then S is p-conformal.

Proof: Let ¢, : ¥ — Rsuch that fori = (iy,iz,...) €X  ¢,(i) = —2log |

Using S is self-similar and the chain rule, we get HS{

I(0"1))|| = Ay iy - - - Ai,,. Thus

1i2...in(

n

6all) = =2 Y log(hi) = + D vle* ), (2.17)

k=1

where (i) = —log()\;, ). Using Birkhoff ergodic theorem, we get

lim ¢, (i) = /@/J(Z)d,u(g') for p-almost every i € 3. (2.18)
n—oo
>
Thus A is a constant p-almost everywhere. So S is p-conformal. 0J

Lemma 2.21 If S = {S1,...,Sn} is a self-similar IFS. The Lipschitz constant of S; is
Ni. Assume p is a Bernoulli measure on X for the probability vector p = (p1,...,Pm)-

Then S is p-conformal and
[ A@autt) == 3" pelogn) (2.19)
¥ k=1

Proof: It is a well-known fact that if 1 is a Bernoulli measure on X2, then it is o invariant
and ergodic, thus due to the previous lemma S is p-conformal. Using the argument in

the previous proof, we can see that
[ A = [ oaut) == 3" prlogin) (2.20)
) > k=1

O
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2.3 Dimension theorems without separation condition

Definition 2.22 We call s the similarity dimension of the self-similar IFS defined in
@.1)), if s is the solution of

d =1 (2.21)

Theorem 2.23 Let S be a self-similar IFS on RY, defined in (2.1). Let A be the attractor

of § and s is the similarity dimension of S. Then
dimg(A) < s. (2.22)

The proof can be found in [2].

Theorem 2.24 Let S = {S,..., S} be a self-similar IFS on RY. The vector v =
(r1,...,7m) contains the contraction ratios of S.The v is the invariant measure of S with
the probabilty vector p = (p1,...,Pm). Then we have

dimy(v) < — 2zt PiloBP_ fp (2.23)

- =Y " pilogr;, X%

The proof can be found in [2].

2.4 Dimension theorems with separation condition

In the special case, when the cylinder sets satify certain separation condition we are able
to estimate the Hausdorff dimension of the attractor of such IFS. Moreover, in this case

we can study the self-similar measure of the IFS.

Definition 2.25 The Strong Separation Property (SSP) holds for the self-similar IFS S
defined in (2.1), if

Vi£j Si(A)NS;(A)=0. (2.24)

Definition 2.26 The Open Set Condition (OSC) holds for the self-similar IFS S defined
m 7 if

FV CRY open set V#0 ViS;(V)CV and Vi # jSi(V)n S;(V) = 0. (2.25)

11



S S,

Figure 2.4: The IFS S = {51, Ss, 53, S4} satisfies the OSC.

Theorem 2.27 (Moran, Hutchinson) Let S = {Si,...,S,,} be a self-similar IFS on
R? for which the OSC holds. We denote the attractor of S with A and the similarity

dimension of S with s. Then,
dimg(A) = s. (2.26)

The proof can be found in [2].

Theorem 2.28 Let S = {Si,...,Sn} be a self-similar IFS on R for which the OSC
holds. The vector v = (ry,...,rm) contains the contraction ratios of S.The v is the
invariant measure of S with the probabilty vector p = (p1,...,Pm). Then we have

R U P
dimy (v) = —2zi=tPi108P: _ Pp (2.27)

- 2111 pilogr; Xr

The proof can be found in [2].

Remark 2.29 In the case, when we do not know any separation condition holds for the

self-similar IFS S the values s and Z—,‘; in Theorem |2.27 and |2.28 is only an upper bound

on the Hausdorff dimension.

12



Chapter 3

The systems S, 3

We study a family of self-similar iterated function systems (IF'S) on the interval [0, 1] such
that there is total overlap and for which some separation condition holds.

Kamalutdinov and Tetenov in [3| studied similar iterated function systems, which
called twofold Cantor set.

We follow their argument with similar statements in this chapter.

Definition 3.1 Let o, (3,7 € (0,1) arbitrary. Then S,p. is a system of contractive

stmalarities such that

Sa,ﬁ,’y = {Slv 527 83}

(3.1)
Si(x) =ax, So(zr)= Lz, Ssz(x)=yr+1-—7

S1 S3

0 1
Figure 3.1: The first level cylinder sets of the IFS S, g, = {51, 52, S3}.

Figure 3.2: The first level cylinder sets of a system which belongs to a twofold Cantor set.
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B. Barany has already considered the Hausdorff dimension of the attractor of the

system introduced in Definition He showed this result for Lebesgue almost every
o, 8,71(0,3).

Let K, 3~ be the attractor of the system S, .. Let Lo, = S1(Kapy) U S2(Kop)
and Ry g~ = S5(Kap.-)-
It is easy to see that K, 3, = Lag~y U Rq 8,4

We denote the symbolic space of S, 5, with ¥ = {1,2, 3T
Let II, 5, : ¥ = K, be the natural projection of the system S, .

First, we consider some obvious properties of the systems S, g.4:

Lemma 3.2 If o, 5,7 € (0, %), then:

(Z) 81052252051,

(ii) for all i € {1,2} and every m,n € N with m # n, SI"(Ra~) NS (Rap) =0,

(1it) for allm,n € N, S7"S3(Kayp~) C ST (Kapqy) NS5 (Kapy),

(iv) Kap,\{0}= | S7'S5(Raps.r) -

n,m=0

Proof:

(i)
(i)

(i)

(iv)

For every z € [0,1] S51(S2(z)) = a(Bz) = f(ax) = Sa(S1(x)).

We prove only for ¢ = 1, the case ¢ = 2 is similar. Let m,n € N m > n.
Rapy C (3,1), thus S7*(Rap,) C (30™,a™) and SP(Raps,) C (30" a™). Since
we can see that the right endpoint of one interval is smaller than the left endpoint

of the other interval that is o™ = a - o™ ! < %ozm_l < %o/‘.

Let m,n € N, then S7*(K,3~) C Kap~ and S3(Kap5,) € Ko So, we conclude
that S3ST (Ka,) C S5 (Kapy) and S7SY(Kaps) C STH(Kqp). Using commuta-
tivity, which is property (i) we get the statements.

Consider the natural projection I, 5. of Sy 5. The map Il, 5, is surjective. It is

easy to see that

oL (| SUS3(Raps) ={i€D: 3k iy =3}, (3.2)

m,n=0

For those i € ¥ such that there is no k£ for which i, = 3, then the image of 7 is 0.

14



O
Using Theroem , we can conclude that the dimension of K, g is less than % if

a, 3,7 €(0,3).

Definition 3.3 We call the system S, s~ forward separated, if o, B, € (0, %) and

Ym,n e N m,n >0 S{n(Ra’gﬁ) N S;L(Raﬁﬁ) = 0. (33)

We denote the disjoint union with LI

Lemma 3.4 The system S, 5. 15 forward separated if and only if

Kaﬁﬁ\{o} = |_| STS;(RQ,/?W% (3.4)

n,m=0

where U denotes the disjoint union.

Proof: (=)First, we assume that S, g, is forward separated. Let (mq,ny) # (m2, n2),
then

ST1S8 (R ) = Sy tmmatgrrintmunzl (ghighyg o))

™Mo Qna min{mi,ma} agmin{ni,n2}  aks cla (35)
Sl 52 (Raﬁﬁ) = 51 52 (51 52 (Raﬁ,v))

hold. At least one of ki, ks is zero and one of [i,[y is zero. So if we use the forward
separated property we get the statement.
(<) Now, assume that K, 5,\{0} = |I° _oS7"S%(Rap,~) holds. Then we can get the

n,m=0

statement by using the conditon for the indeces (m,0) and (0,n).
U

Lemma 3.5 If the system S, 3, is forward separated, then for every
m,n € N S7"(Kapq) NS5 (Kapy) = 57"55 (Kaps)- (3.6)

Proof: Using the above results, we get

1" (Kap) N85 (Kapa)\{0} = ST(| SE85(Ras)) NS5({ STS3(Ras)) =

k,l=0 k,l=0

= | S (Rapy) = S7S5( | SFSh(Rasy)) = S7S5 (Kap,)\{0}.

k,1=0 k,1=0

15



In the first and last equation we use Lemma [3.2] (iv) point and in the second equation we
use Lemma dJ

16



Chapter 4
Existence of forward separated systems

Kamalutdinov and Tetenov proved that twofold Cantor sets exist in [3]. In this whole
section we follow their arguement with similar statements.

Due to requirement of completeness we take over the same proof of this Theorem from
13l
Theorem 4.1 (General Position Theorem [3]) Let (D,dp), (L1,dy,), (Lo, dy,) be com-

pact metric spaces and let ¢;(§,x) : D x L; — R™ for i € {1,2} be continuous functions.

If these functions satisfies:

(i) The functions @; are a-Hélder with respect to x which is

there exists o > 0 for all i € {1,2} there exists C; > 0 for all £ € D for all z,y € L;
i (&, 2) — i€ y))|| < Cidp, (z, )%,

where ||-|| is the euclidean norm in R™.

(ii) Let ® : D X Ly X Ly = R™  ®(&, 21, 10) = p1(&,21) — 2(&, x2) such that

there exist M > 0 for all £,& € D for all zy € Ly for all xo € Ly

(4.1)
D€, 21, 22) — (', 21, 22) || = Mdp (€, ).
Then the set A ={& € D :p1(&, L) Na(§, Lay) # 0} is a compact in D and
dimy (A) < dma Ly x La) (4.2)

«

Proof: Let A = {(&,21,25) € D x Ly X Ly : o1(€,21) = @a(&,22)} = {(&,21,25) €
D x Ly x Ly : ®(&,x1,22) = 0} be the set of those parameters where ¢1(&, L) and
©2(&, Lo) intersects. Then A = proj, (A) Let L = Ly X Ly and A = proj, (A)

17



The map ® is a continuous map and A = ®1({0}), thus A is closed. Then A is
closed in a compact metric space, so it is compact. The projection is continuous, thus A
is also compact.

The functions projp, : A = A and proj;, : A — Ay are surjective. Moreover, proj,
is also injective, because if exist (&, 21, x3) # (€', 2, 25) € A such that proj; (€, x1, ;) =
proj, (&, x4), then o} = x, o, = x5 and & # £. By the definition of A Q& x1,29) =
O(&' x1,9) = 0 and this is contradicts with the second assumption. So proj; is injective,
thus it is invertible.

Let g = projp o proj;, = : Ay — A. This is surjective. Let g(zy,22) = ¢ and
g(x),zy) =& Then ®(&, 21, 29) =0 and ®(&', 27, 25) = 0.

M- dD(£7£,) < H(I)(gaxth) - (I)(gl,l’l,l‘g)H = ||(I)(§/,[L’,1,l’l2) - (I)(g/vxlax2)|| <
o1 (€, 21) — er(§, z1)ll + lla(€s 25) — @a(€ )| < O (dry (1, 21)* + dry (22, 25)%)

where C' = max{C},C5}. In the first inequation we use the (ii) assumption, the next

inequation is triangle inequality and the last inequation is the Holder continuity in (i). O

Also for the completeness we take over the same proof of thefollwing theorem from
3]

Lemma 4.2 (Displacement theorem) Let S = {Sy,...,S,} and S = {Si1,...,Sm}
be two iterated function systems on R™. We denote the natural projection of S with 11 :
> — R” and the natural projection of S with 11 : ¥ — R™, where ¥ = {1,...,m" is the
symbolic space. Let V- C R™ be a compact set such that for everyi € {1,...,m}, S;(V) C
V and S;(V) C V. Then

Vi = (i,dg,...) € % HH@ . ﬁ@H <1 (4.3)

where

(5:max{) Si(x) —gz(x)” cied{l,...,m}, x€V} and

3 (4.4)
p= lrélizgn{max{Lip(Si), Lip(S;)}}.

18



Proof: Let i € X arbitrary. We can conclude

) - 1) | =

Sy (M(o)) = S, (M(eri))|| <

<

Su(M(od)) = Sy, (Mi(ari))

_|_

i ([L(01)) = S (I(o1))|| < (45)

< p|[1(o1) ~ Ti(oi)|| + 0.

Using the above inequation n times, then we get

n—1
|16) - 11@) | < o7 |[1omi) — i a) | +5- 30" (4:6)
i=0
If n — oo, then we get HH(g) — f[(g)H < %p, because V' is compact. O

Notation 4.3 Let ¥ = {1,...,m}" and a € (0,1). We can construct a metric space
(3, pa) with metric p,. We define Vi,j € ¥ s(i,j) = min{k — 1 : 4y # ji}, then let
pali, j) = a*®9).

It is a well known fact that the metric space (X, p,) is compact.

Lemma 4.4 Let (3, p,) be a metric space as above. Then

dimp (2) = —11(2) gg(g)). (4.7)

Proof: Let G = {Gy,...,G} be a set of ¥ — ¥ functions.For all k£ € {1,...,m} and
forall i € ¥

G(i) = (k,i1,i,...). (4.8)

Then every () is a contractive function with Lipschitz constant a, so G is an IFS. The
attractor of G is X. G satisfies the strong separation property, so the Hausdorff-dimension
of its attractor is equal to the similarity dimension of the IFS. It is also a well known fact.

The proof can be found in [2]. Thus dimy(X) = —%. O

So using this fact for the symbolic space of the system S,ps,. Remind that ¥ =
{1,2,3}", then
. 1, . 1
dimy(¥) < 5 in the metric p, <= a € <O, 5) . (4.9)
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1

: 5). Then 11, g, natural projection of the system

Sap is 1-Lipschitz with respect to the metric space (X, pq).

Lemma 4.5 Let o, 3,7 < a and a € (0

Proof: Let i,j € ¥ with s(i,j) = k. Then p,(i,j) = o and iy = ji,...,ix = Ji,
thus Ilo 5,(1), a4 (j) € Siy..ir,(Ka,s,). The diameter of S, (Ka,s,) is Lip(S;,) - -
Lip(S;,), which is strictly smaller than a”. So

Mas() = Moy (5)] < a* = pali, 5)- (4.10)
O

Lemma 4.6 Letm,n € NT. o, 8,7 € (0, 5) and consider the system Su p.. If S7(Ra,5)N
S5 (Rapn) # 0, then § < 95 < 3.

Proof: If o, 3,7 € (0,5), then Ry3, C [3,1]. Thus S/"(Rag,) € [3a™ a™] and

S5 (Rap~) C [56" £"]. The intersection can not happen if o™ < gﬁ” or B < gam. Thus

we do not have intersection if % <3Sor CSof<at <9 O

Lemma 4.7 Let m,n € Nt and 8,7 € (0,3) be fived. We denote

Don(B,7) = {a € (o 1) < %_ < g} (4.11)

Let @; : Dy, y(B,7) X 2 = R fori=1,2. We define

Vo€ Dnl(By) Vi€ pa(ani) = Mag (1) 5 (3) #1) = S ST s (0),
Va € Dm,n(ﬁaV) Vi€ 902(0571) = Ha,ﬁ,’y((2>n * (3) *Z) = 3353(1_[04,5,’7(2))7

where 11, g is the natural projection of Sop~. Then for every o, &' € Dy, (B,7) and for
every i,j € X

|o1(a,2) = ala. ) — pr(,0) + (e, )| > Mo — o[, (4.12)
where M (m,n, 3,7v) > 0 constant.
Proof: Let a,a’ € Dy, ,(8,7) and i,j € X be arbitrary. We introduce the notation

S - Saﬁﬁ == {81,52,53}7 Sl = 50/,577 = {Si,Sé,Sé}, let 11 = Ha,ﬁ,y and H/ = Halﬁﬁ.
Then S5 = S, and S5 = Ss.
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Let a < o and § = |&/ — «/, then using Lagrange mean value theorem

mo__ m mo__ m
ma™ ! < & p " _la 5 o < ma™ . (4.13)
o —a

We defined § = |o/ — | and using displacement Theorem [4.2] for S and &', then we
get

for every i € ¥ |TI(z2) — II'(z)| <

0| ©

5. (4.14)

Consider the difference that we have to estimate

p1(,i) — pi(a, i) + pa(d, j) — pa(a, j) =
= S7"S3(I1(8)) — S™S5(IN'(4)) + S5"S5(I(4)) — S3S3(11(4)) =
= S7"S3(I1(4)) — S"S5(I1'(8)) + S5.S5(1'(5)) — S5 S3(1L(5)) =
= STS3(11(4)) — ST S3(I1'(4)) + ST"S5 (1 (1)) — S7™S5(11'(d)) + S3.S5(11' () — S5.53(11(j)) -

J/

A B o
We will use the estimate

|A+ B+C|>|B|—|A+C|>|B|—|4| —|C], (4.15)

where first we use the reversed triangle inewquality and second the triangle inequality.

Consider |A| part of the above calculation
~ m ' m , ” 9 .
Al = 151"55(I1(2)) — ST"S5(IT(2))] = o™y [11(2) — IT ()] < ca™y9,

where in the inequation we use (4.14]).
The next part is

Bl = [S7"S3(I1(d)) — S Ss(I1'(2))| = [o™ — ’mIISs(H’())\>Sma 19,

where in the inequation we use (4.13).

The last part is
!/ - n n ! 9 n
€] = |5595(IT' (7)) = S5.S5(T(7))| = 8"y [M(5) =T ()] < 5876,

where in the inequation we use (4.14)).
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Now estimate

1B| — 4| > (89—72 - §»y> ams > (8 - g) am§ > (8 - 2) 25”5 > 66",  (4.16)

where in the second inequation we use y <1, m > 1, a < %.

The following

O] < 78" < B (4.17)

is true, beacuse 7 < %. Thus
lp1(a,i) — @a(a, j) — or(e, i) + o, )| > 56" [/ — af , (4.18)
so M = 53", 0

Lemma 4.8 Let m,n € N and 8,7 € (0,5). Then the set

Boni) =€ (0.5) ST (Rus) O S} (Rus) 20} 419

is closed in (0,5) and L(Apn(B,7)) =0, where L means the Lebesgue measure on R.

Proof: Let e > 0 be such that § —e > 3,7. Then E,,,(8,7) = Dpnn(B,7) N e, &
is a closed interval in R, so it is compact. We consider the compact metric space (3, p,),
where £ = {1,2,3}" and a = } —=.

Let @; : Epn(B,7) x 2 — R for i = 1,2. We define

_5]

pr(e,1) = Hap,((1)™ * (3) % 1) = 57" Ss(Ila,p4(2)),

(4.20)
pa(a, i) = Mo s ((2)" * (3) % 0) = 5553110 5,4(2))-

Let

Zn(52) = (B2} e~

For an o the ST"(Rq,5,) NS5 (Ra,p,) 7 0 holds if and only if there exist 7, j € ¥ such that
o1(o, i) = 902(04,1), thus

Ern(B8,7) ={a € Enn(B,7) : 01(a, X) Npa(a, X) # 0} (4.21)
Using Lemma 4.5 one can see that ¢; is Holder continuous with respect to the second
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variable for ¢ = 1,2. Applying Lemma [4.7] we get that the conditions of the General
Position Theorem [4.T holds. Using General Position Theorem [4.1] then get

dimg (25, ,(8,7)) < dimy (X x ¥) < 2dimg(¥) < 1, (4.22)

the last inequation is true because of the equation (4.9). So L(Z;,,,(8,7)) = 0. Moreover,

Am,n(ﬁa ’7) = U E%Z(ﬁ? ’7)7 (423)
k=1

thus the continuity of measure yields that £(A,,.(8,7)) = 0.
General Position Theorem implies that =5, (8,7) is closed for every ¢ > 0, so
A (B,7) is also closed. O

Lemma 4.9 Let m,n € Nt be arbitrary. Then the set
- 1\?
Am,n = {(CY, 57 ’7) € (07 §) : S?L(RO&,/B,’Y) N S;L(Raﬁﬁ) 7é @} (424)

is closed in (0, %) and L3(A,,,) = 0, that is its Lebesque measure is zero in R®.

Proof: TLet I =(0,5)* and ¥ : I x % — R be such that

U0 5,760 = Mo % () ¢ ) ~Taan("+ @) e D=
= S7"S3(Ila 5,4(2)) — S5 S3(Ma54(5))-

Then W is a continuous function and A,,,, = proj; (¥~*({0})). Because ¥ is continuous
U~1({0}) is closed, and because X is compact Am,n is closed. This is because if z € I is

an accumulation point of proj; (¢=({0})), then there exists an (z,y) € I x £? such that
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is an accumulation point of ¥~1({0}). Consider the integral

B /// 15, (0. 8.7) AL B,7) =

// /]1 (0, B,7) dL(@)dL(B,y) =
// / Ly o) (0) AL(@)AL*(8,7) =

//L A n(B,7)AL3(B,7) = //Odﬁzﬁvo

(0,5)2

(4.26)

where we use Fubini’s theorem in the second equality and the fourth equality we use
Lemma [4.8 0]

Theorem 4.10 Let J = (0, %)3. We define
Q= {(a,B,7) € J: Sapy is a forward separated system} . (4.27)

Then L3(J/Q) =0 and J/Q is uncountable and dense in J.

Proof: The set

J/Q = U A s thus £3(J/Q) < Z L3(An) =0, (4.28)

m,n=1 m,n=1

where we use Lemma [4.9]in the last equality. Thus £3(J/Q) = 0.

If @™ = " for m,n € N*, then S, 4., is not a forward separated system, so

log o
log

A= {( ,B,7) € J € Q} C J/Q. (4.29)

Then for every z € (0, §) the set

(apnediv== U {@n@aiac(0g). no=s} @

qeQt

is union of smooth curves. From this one can easily see that A is dense and uncountable.

This implies J/€2 is also dense and uncountable. O
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Chapter 5

The tools of calculating
Hausdorff-dimension of the self-similar

measure

We would like to calculate the Hausdorfl dimension of the self-similar measure of the

forward separated system S, . and for this we require the following statements.

5.1 Conditional expectation

Definition 5.1 Let G C B be an arbilrary o-algebra. Let ¢ € L' (Z,B,u), then the
function ¢ € LY(Z,B, 1) is the conditional expectation of @ with respect to the o-algebra

g, if
(i) ¥ is G-measurable,
(ii) for every G € G

/ o(2)16 (z) du(z) = / () e () dpu(z). (5.1)

Z Z

Theorem 5.2 Let G C B be an arbitrary o-algebra. If 1 and ¥ are conditional expec-

tations of the function ¢ € L'(Z, B, i) with respect to G, then (2) = 1(z) for p-almost
every z € 4.

We denote the conditional expectation of ¢ € L'(Z, B, ) with respect to G with
E.(#]G).
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5.2 Conditional measure

The proof of the statements that contained in this section can be found in [4].

Let Z be a compact metric space. We consider the probability space (Z, B, i), where
B is the Borel g-algebra of Z and p is a probability measure on Z.

Moreover, let F be a g-algebra such that there exists some Ei, Fs,--- € B for which

F = Q{Eza Z|E;}, (5-2)

where V denotes the generated o-algebra. Indeed, if A; C B is a o-algebra for all i =
1,2,..., then \/ A; is the generated o-algebra by U A,.

i=1 i=1
Definition 5.3 The P C B is a partition of Z, if for every P, # P, e P PN P, =10

and U P=7.
PeP

Let P be a partition of Z. Then for z € Z the set P(z) denotes those P(z) € P such
that z € P(2).
For every n = 1,2,... let P, be a partition of Z such that

o(Pn) = V{Ei, Z/Ei}, (5.3)

where o(A) denotes the generated sigma algebra by A.

Definition 5.4 The set {y.}.cz of Borel probability measures on Z is a system of con-

ditional measures of p with respect to the o-algebra F, if

(i) forevery E€F, z€ E pu,(E) =1 holds for u-almost every z € Z |
(ii) for every bounded measurable function ¢ : Z — R the function z — /god/,az 18
Z

F-measurable and

[e@an) = [ [ o) dunta) duto) (5.4)

Theorem 5.5 If {y,}.cz and {v,}.cz are two systems of condtional measures of u with

respect to F, then u, = v, for p-almost every z € Z.
The proof is in [4].
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Theorem 5.6 The limit of the measures

Hlp, (=
pl = lim 7.t

—"— exists for pu-almost every z € Z, 5.5
TENE) / >

where the limit is meant in the weak-star topology.
Moreover, the set {ul }.cz is a system of conditional measures of u with respect to the

o-algebra F.

The proof can be found in [4].

Theorem 5.7 Let ¢ : Z — R s bounded and measurable, then the function

®: 7 — R for which

O(z) = /gp(m)d,uz(x) for p-almost every z € Z
Z

is the conditional expectation of ¢ with respect to F, thus E,(p|F) = ®.

The proof is in [4].
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Chapter 6
Dimension conservation

In this chapter we follow the paper [1], but we reach different formulas with similar
argument.

In this chapter we study the relation between the dimension of a measure and the
dimension of its projected measure.

If k € Z*, then we will use the notation Q¥ = [0,1]* C R*. In this chapter we fix
the dimension, so let Q = QF = QF+* = @' x Q" for ki, ky € ZT, where Q' = Q" and
Q" = Q™. Let P': Q — Q' be the projection from Q to Q" and let P” : Q — Q" be the
projection from @ to Q. For (x,y) € R¥ x R*2 the images are P'(x,y) = x € R* and
P'(x,y) =y € Rk,

Further, let m € Z* and F = {Fy,..., F,,} be a self-similar IFS on R* such that for
every i the function is Fj(x) = a;x + t;, where o; € (0,1) and t; € R*. For every i the
image F;(Q) C Q. We suppose that

for every i # 7  Fi(Q) N F;(Q) = 0. (6.1)

Let ¥ = {1,...,m}*" be the symbolic space and A = {1,...,m} be the set of the
characters. Let A be the attractor of F, then A C (). Moreover, we denote the natural
projection of F with II. Let u = (py,... ,pm)Z+ be a product measure on X and v = IL,u.
Let S = {Sy,...,Sp}, where forevery i S; : Q' — Q' such that S;(x) = P'(F,(P'""'(x))).
The P’ is not a function, it is the inverse image of the set {x}. Then S is a self-similar

IFS on R*! with the same contraction ratios as F.

6.1 Natural partition of the attractor

We introduce a natural partition of the attractor A which is defined by the IFS F.
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Let i = (i1, ...,i,) € A* for some k € Z*, then

Qi:Qh ..... 1k :Fil ..... ik(Q):<E1OE20"'OFik)<Q)' (62)

First we consider some elementary properties of the above notation:

e for aHZ: (i17...,ik+1) c Akl Qil _____ i1 C Qil ..... i

,,,,,

.....

k=1
Due to equation (6.1, we can easily see that for every k € Z* and for all  # j €
Using equation (2.6 k-times, then we get

Thus we get a disjoint cover of A

Ac | ] e (6.4)
ic Ak

which we call a natural partition defined by F.

Notation 6.1 Let x € A, then for some i € ¥ 1I(i) = x. We will use the notation
Qn(x) = Qiy.i-

6.2 Dimensions regarded to the natural partitions

Notation 6.2 Let A* = U A* be the set of finite length words which is formed from the

k=1
character set A.

Notation 6.3 For i € A* the length of i is k, if i € A*. We denote the lenght of i with
10}

Definition 6.4 For a Borel set E C A and t > 0, let

K

Bt (E) = inf {Z(%)t KeZt, EC|JQ,. Vhe{l,... . K} 1) > n} . (6.5)

k=1 =
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The t-dimensional F-measure of the set E is

B(E) = lim B, (). (6:6)

Lemma 6.5 Fort >0 the function B% is a Borel measure on A.

Proof: It can be proved by using Carathéodory’s extension theorem for the outer mea-

sure. U
Lemma 6.6 For a Borel set E C A and 0 < s <t the following are true:
(i) if B(E) = oo, then [5(FE) = oo,

(ii) if B3(E) = 0, then 8-(E) = 0.

Proof: (i) Suppose that f%(E) = co. Let & > 0 be arbitrary and fix. For n € Z*

Kn K'VL
let {ng}ﬁH be a cover such that £ C U Qir, for every k I(iy) > n and Z(az-g)s <
k=1 k=1

B% n(E)+e. For every i € A* 0 < oy < 1, thus (a;)" < (oy)°. Using this we get

Kn Kn
Bra(B) <Y (ag) < (ay)’ < B3, (B) +e. (6.7)
k=1 k=1

If we take the limit in n , then we get 8%(F) = occ.
(ii) Suppose that p%(E) = 0. Let ¢ > 0 be arbitrary and fix. Again, for n € Z*

Ky Ky
let {sz}kK£1 be a cover such that £ C U Qin, for every k I(iy) > n and Z(O‘ZZ)S <

k=1 k=1
B% n(E) 4 €. Then as above, we get
Kn Ky
0 < BEa(E) <> (i) <D (aip)® < B3 (B) +e (6.8)
k=1 k=1

If we take the limit in n, then we get 0 < 8%(F) < e. This holds for every £ > 0, thus
BL(E) = 0. .

Definition 6.7 Let E C A be a Borel set, then

dimz(F) = sup{t : f%(F) = oo} = inf{t : B%(F) = 0} (6.9)

1s the F-dimension of E.
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Lemma 6.8 If E C A is a compact set, then
dimz(F) = dimy(E). (6.10)

Proof: If we use the definition of Hausdorff measure (is defined in equation (2.11))) for
E. then it is enough to see the finite cover of F with balls, beacuse E is a compac set.

Let ¢ > 0 arbitrary fixed. Suppose that H'(F) < oc.
Ks

Let £ > 0 arbitrary. For a § > 0, let {Ai}f:‘sl be such that £ C U AY for every k A2
k=1

K
is a ball with [AJ| <6 and Y |A2" < HY(E) +e.
k=1
We would like to get a cover with (); cubes. So let @5 : {1,..., K5} — A* be the map

which corresponds each A to a cube Q, Consider the ball A9. Let x € AN E,
if there is no such x, then we did not need the set A2 in the cover. Because E C A,
there is an i = (i1,42,13,...) € X such that II(z) = x. Let A = min{d(F;(Q), F;(Q)) :
i #7€{l,...,m}}, where we use the following notation. If A, B C @, then d(A, B) =
inf{|la—b| :a€ A, b € B}, where ||| is the Euclidean norm on Q.

77777 im*

For every (il, . 7Zn> 7é l c A" d(Qil,h ..... ins Ql) 2 AOéily-n’in—l' (611)
There is a unique m € Z* such that

(6.12)

7777777777 tm—1"

The only m-level cylinder set, which intersects with A¢ is Qy, . ;.. Thus we can conclude

77777

that
ANECANACQ. i (6.13)
Using the above observations we can define ps(k) = (i1, ...,4,) € A*.
Ks
The set {Q%(k)}fﬁl satisfies &/ C U Qus(k)- Moreover, for every k the Aay,x <

k=1
|Ai‘ < § holds. Let & = min{ay : K € A}. Then using this, we get Aa™*F) < Aot (k)-

If we order the equation Aa@™%*) < §, then we get

m(6.k) > In{$} _ In(d) — ln(A).

NG In(a) (6.14)
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Using equation (6.12]), we can see

Ks Ks
t
Atﬁ;[lnwl)—(l;;(A)](E) <A Z(@w(k))t = Z AN < H5(B) +e. (6.15)
e k=1 k=1

If we let 6 — 0, then we get S%(E) < oo, because we supposed that H!(E) < .

Now, we fixed an arbitrary ¢ > 0 number. We suppose that % (E) < cc.
Ky

Let € > 0 be arbitrary. For every n let {Q;» ,fgl be such that £ C U Qip, for every
k=1

Kn
k the length 1(if) > n and Y (ayp)" < 8% ,(E) +e.
k=1
The diameter of Qg is !Qzﬂ = \/EO@-Z, where k = dim(Q). Moreover, for a fix n for

every k € {1,..., K,} the diameter |Q;r| < VEk(max;e 4 o;)". Thus

Kn , Kn .
H sy () € > (Vhag) = (VE) Y (ag) < (VE) (Bru(B) +2).  (6.16)
k=1 k=1
If n — oo, then we get H'(E) < oo, because we supposed that S5 (F) < oc. O

Notation 6.9 Let X be a metric space. We denote the set of Borel probability measures
on X with P(X).

Definition 6.10 Let 0 € P(Q) and x € A. The i = (i1,i2...) € ¥ satisfies 11(i) = x.
Then the F-local dimension of 6 at the point x is

dimz(0,x) = lim M

6.17
n—00 10g<@il ,,,,, zn> ’ ( )

if the limit exists.

Definition 6.11 We say that the measure 0 € P(Q) is F-regular, if there is a constant
C such that

dimg(0,x) =C for f-a.e. x € Q. (6.18)

We denote this C constant with dimz(6).

Lemma 6.12 Let 0 € P(Q) be a measure such that spt(6) C A. Let x € A andi € ¥ for

which 11(1) = x. Then we can conclude that

if there exists dimg(0,x), then there exists dimg(x), (6.19)
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where dimgy(x) is the local dimension of the measure 0 at x, which can be found in Defi-

nition [2.17. Moreover, if dimz(0,x) exists, then
dimz(6,x) = dimp(x). (6.20)

Proof: We suppose that dimz(0,x) exists. Then for an arbitrary r» > 0 consider the
ball B,(x) centered at x with radius r.

Let A = min{d(F;(Q), Fj(Q)) : i # j € {l,...,m}}, where we use d(A,B) =
inf{|la—b|| : a € A, b € B} to denote the distance of the sets A, B C Q. The |||
is the Euclidean norm on Q).

For every n € Z*

gooo

for every j € A" d(Qy,..., ile) > Ay iy (6.21)

(6.22)

Thus, B,(x) intersects with only one m(r) cylinder set. The support of the measure 6 is
a subset in A, so we can see that 0(B,.(x)) < 0(Q,

We remind that the dimension of @) is k. Let us introduce ap,.e = max;eq ;. Let L

~~~~~ i'm('r) ) ‘

be a fixed integer such that

In(A) — ln(\/E)'

L > 6.23
In(max) ( )
If Q = [ay,b1] X ... x [ay, by] € Q is a cube with side length ¢ = by —ay = ... = by, — ay,
then the diameter ’Q‘ = Vke. Now, we can get the estimate
1
‘Qil ----- Ym(r)+L = \/Eaila---im('r')+[/ = \/EZ ' (AO{H ----- im(r)) ) Oéim(7')+1 et O{im(rH»L S
1 1 (6.24)
< k'Z'r'aim(rHl T Qg S\/%'Z'T'O‘éax<rv

where we use equation (6.22)) in the first inequality and the definition of L in the last step,
which is in equation (6.23)).

The definition of L does not depend on r and @);, C B,(x). This implies that

77777 im(r)+L —
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0(Qiy.iimryrr) < 0(Br(x)) < 0(Qiy..i,,,)- Using equation (6.22)) we get that

azm(r) aim(r)«kL _ A
r < A . aZI 7777 ()1 S A . ai1 .... im('r)—l . o LR _— = aﬁlj;ll . Oé’h ..... I (r)+L° (625)
where we use the notation ay,;, = min;c4 ;. Summarize the above observations
1n<0<Q741 ----- im(r)+L)) < ln(e(BT(X))) < 1n<0<Q741 ----- Zm(r))) (626)

n(Br) + 0, o 00) © () () +n(as,..)

For m(r) the m(r) > % holds, thus if we let » — 0, then hm m(r) = oco. Take

50
r — 0 in equality (6.25)), then we can see that dimg(x) exists and dlmg(X) = dimz (0, x).
U

Lemma 6.13 Let 0 € P(Q) such that the support of 0 spt(0) C A. Assume that for every

[1(iy,ds,...) = x € A outside of O-meaure O

lim inf 10g 6(Qn(x))
n—00 log(ail, .. 7ain)

> p. (6.27)

Then dimg (spt(0)) > 3.

Proof: Indirectly suppose that dimg(spt(6)) < 3, then there is 5’ such that dimg(spt(6)) <

p" < B. Using Egorov’s theorem there exist a set A and N > 1 such that 6(A) > 1/2 and

log 6(Q,,
for every x € A and for every n > N 08 6(@n(x)) > 3. (6.28)
lOg(Oéil, e ,Oél'n)
This implies that
for every x € A and for every n > N 0(Q,(x)) < aiﬂl/ 7777 i (6.29)

Using Lemma [6.8] for any € > 0 there exists N > N and {Qi, }i—, such that

K
AC U Qi,, for every k I(i;) > N an Z : (6.30)

k=1

We can assume that for every & Q; N A # (). Thus for every & 6(Q;,) < af;. We get
the following

0(A) <D 0(Q) <D ol <e. (6.31)



This is a contradiction, if € < 1/2. O

6.3 Ergodic CP-shift systems

In this section we would like to introduce dinamical systems which we will call ergodic
CP-shift systems.

Definition 6.14 For every n € Z7* let 0, € P(Q) and 0 € P(Q). We say that the

sequence of 0, converges to 0 in the weak-* topology, if

for every f: Q — R continuous function lim [ f(x)df,(x)= /f(x)d@(x). (6.32)

n—o0

Q Q

We denote this convergence with lim 6, = 6.
n—oo

Lemma 6.15 For every n € Z* let 0, € P(Q) and 6 € P(Q). Then the following are

equivalent:
¥ 530 =,

(11) for every closed set C C Q) limsup®,(C) < 6(C),

n—oo

(iii) for every open set O C @ liminf6,(0O) > 6(0).

n—o0

Lemma 6.16 The weak-* topology on P(Q) is induced by a metric on P(Q).

The symbolic space X is also a metric space with the metric, which is introduced in
Notation

Let M = {0 € P(Q) : for every L (k-1)-dimensional subspace 6(LNQ) =0 }. That
is M is the set of those 6 measures on () such that the 6 measure of all (k-1)-dimensional

subspace intersected with () is zero.
Let

O ={(0,i)) e MxX : forevery n € Z* 0(Q.(II(z))) >0} C P(Q) x X. (6.33)
Lemma 6.17 The set ® is closed in P(Q) x X, thus it is a Borel set.

Proof: For every n € Z* let (6",i") € ® such that lim (6",i") = (0,i) € P(Q) x X.

n—oo
For every n let i" = (i},i4,...) and i = (i1, 4z, .. .).
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First we want to prove (#,i) € ®. For this, it is enough to prove that for every
E>1 0(Qk(II(2))) > 0. Let k > 1 be arbitrary. There is an M such that for every

m > M iy =1", ..., 4 = i}'. Using this, we get
O(Qu(T1(2))) > Tim sup b (Qi(T1(2))) = lim sup b, (Qi(TI(™))) > 0, (6.34)
m—00 m—00

where we use Lemma

Now, we would like to see that § € M. Let L C R* be a (k-1)-dimensional subspace
in R* and A = LN Q. Then by continuity of measure implies §(A) = lg% O(N:(A)). Let
£ > 0 be arbitrary. Then for every m there exists F,, > 0 such that for every 0 < ¢ < E,,
the inequality 6,,(N:(A)) < 6,,(A) + £, because the continuity of the measures. Thus

6(A) =limO(N.(A)) < limsup liminf 0,,(N.(A)) < liminf(6,,(A) +&) =&,  (6.35)

e—0 e—0 m—oo m—o00

where we use Lemma, If we let € — 0, then we get § € M. O
We restrict F; for every 4, that is we consider F; as F; : Q — @Q; function and F, ' :
Q; — @ function. For (0,i) € ®, i = (i1,1a,...) let

T(,i) = (%01) € P(Q) x %, (6.36)

where o : 2 — X is the left-shift on X.

Lemma 6.18 The map T is a continuous function.

The proof of this Lemma can be easily see. As a corollary, T" is a Borel measurable

map.

Lemma 6.19 For (0,i) € ® the image T(0,i) € P.

Proof: Let i= (i1,is,...) € X.
We denote the image

(0,7) =T(0,i) = (f(i:@)f,az) . (6.37)

The meaure 6 is in M, because if L is a (k-1)-dimensional subspace in R*, then

(F, )0

0(F,(LNQ)) _ 0(F,(L)NQ)

0(Qn) 0Qn) (6.58)

(LNQ) =
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because Fj, preserves the (k-1)-dimensional subspaces.
Let n be an arbitrary positive integer. Then we would like to prove that 0(Q,(I1(z))) >
0. We use the definition of 7" to calculate

0(F, (@n(I1(01)))) _ 6(Qni1(I1()))

0(Qu(11(2))) =

O

Definition 6.20 A probability measure n on P(Q) XX is said to be adapted, if there exists
a measure p on P(Q) such that for every bounded, measurable map f: P(Q) x ¥ — R

/ 70, 1)dn(6,1) = //fez //fen a6(x)dp(0).

PQ) PQ)
Definition 6.21 The (9,7, 1) is an ergodic CP-shift system (ECPS system), if the mea-
sure 1 on P is adapted, T-invariant and the corresponding system is ergodic.

The CP refers to conditional probability measure, which appears in the image of
T(0,i).

Lemma 6.22 Suppose that (®,T,n) is an ECPS system. Then [, —log(,)dn(6,1) < oo

and

1
lim ——log(ay,. 4,) :/—log(ail)dn(ﬁ,Z) for n-a.e. (0,1), (6.40)
®

n—oo N

where i = (iy,1i3,...) € 2.

Proof: Let L:® — R be such that L(6,1) = —log(ay, ), where i = (i,1s,...) € . The
function L is integrable, because L(0,1) < —log(aumin), where api, = minge ;. We can
easily calculate L(T*(0,4)) = —log(c;, ). Then the Birkhoff’s sum is

n—1

1 kip 1
~ D L(TM0.9) =~ log(a,,..i.)- (6.41)
k=0
We get the statement, if we use Birkhoff’s ergodic theorem. 0

Lemma 6.23 If (®,T,n) is an ECPS system. Then [, —log0(Q:(I1(2)))dn(0,i) < oo

and

Tim Qs ) = / —log O(Qu(TI@)dn(0,8)  for n-ae. (0.1),  (6.42)

where i = (i1, 19, ...).
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Proof: Let I : ® — R such that I(0,i) = —In(6(Q;,)) for (0,i) € ®, where i =
(11,172,...). The map I is a positive measurable map.

We will use Birkhoff’s ergodic theorem for the function I. First, we calulate the
Birhoft’s sum.

We iterate the map T k-times, then we get

Flo...oF™).0
T(0,1) = <( i O"l ) ,a’%). (6.43)

We replace this into [

[(T*(0,i)) = —In (9((E1 °---° E%)(Q"’““))) ~— In (90(%—’“:))) . (6.44)

We can calculate the sum
1
[(TH0,1)) = ——m(0(Qin,...00)): (6.45)

Using Birkhoff’s ergodic theorem if [, 1(#,7)dn(6, 1) exists, then

lim —lln(e( i1yin)) = /I(Q,Z)dn(é,z) for n-a.e. (0,1). (6.46)

n—oo N
(]

If I is not integrable, then because I > 0 then in this case the limit is oo for n almost

every (6,1). Thus there exists a constant 0 < C' < oo such that

lim —lln(é( i) =C  for n-ae. (6,1), (6.47)

n—oo N

where i = (iy,1ia,...). If C'= oo, then using Lemma |6.22] we get that the F-local dimen-
sion of @ is infinity almost everywhere. This contradicts with the assertion in Lemma|[6.13],
because dimy (spt(f)) < k = dim(Q). Thus C is finite, so [, —log0(Q:(I1(2)))dn(8,i) <
00. 0

6.4 Fubini decomposition

Let 6 be a Borel probability measure on Q = Q' xQ", where Q' = [0, 1]* and Q" = [0, 1]*2.
We denoted the projections from(@ to Q' with P’ and from @ to Q" with P”.
Let A=0c({BxQ": B C Q' is a Borel set}), where o denotes the generated o-algebra
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by sets. Let
n—1 50
Pn = o | X
U 2)

Then P,’s are finite measurable partitions of )’ such that \/ o(P,) is the Borel o-
n=1
algebra on ', where \/ denotes the generated o-algebra by the elements of o-algebras.

Thus, A is a o-algebra with the same property as F in equation . Using Theorem
for  almost every x there exists 62 and the set {#{'}1cq is a system of conditional
measures of 6 with respect to the o-algebra A. The conditional measures are the same
on the sets x; X Q”, where x; € @'. That is, if X,y € x; x Q”, then 0 = 0;‘. We know
that for every bounded, measurable f : () — R

b — 1 J o . n
X {]lﬂQn 732%) Sy Joy gk € {1, ...,2 }} (6.48)

/f(X17X2)d9(X17X2) ://f(XhX2)d9(y1,y2)(X1,X2)d9(yl>Yz)a (6.49)
Q Q Q

where x1,y1 € Q' and Xo,y2 € Q". Let § = P/0 be a measure on @’'. We can think of the
measure 0, x,) as a measure on x; X Q. S0 f(x, x,) = 0x, X Ox,, where 65, € P(Q").

Thus, we can write equation in the form that for every bounded, measurable
f:Q—R

[ ot = [ [ 1oxaxa)d(s, <o) xddv), (6.50)
Q Q Q

where x1,y; € Q' and x5 € Q”. We call this measure decomposition as Fubini decompo-

sition.

Lemma 6.24 If 0 € M is a measure on Q, which has Fubini decomposition 6 € P(Q’)
and for 0-a.c. x € Q' Oy as in equation (6.50). Then

0u(F) = lim O(Pn(x) x E)

M BP0 x Q) (031

where x € Q" and E =1, x ... x I, C Q" is a cube such that I},’s are intervals. The
P.(x) € P, is the unique set in P, such that x € P,(x).

Proof: We can see if we use Theorem [5.6) Lemma [6.15 and that 6 € M. O
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6.5 Dimension conservation regarded to ECPS systems

Definition 6.25 Let 0 € P(Q) with Fubini decomposition 0 = fQ, Oy X 0xdO(x), where
0 € P(Q) and for G-a.e. x € Q' 05 € P(Q"). Then we say that 0 satisfies dimension
conservation, if 0, 6 are F-regular and for f-a.e. x € Q) the measure Oy is F-regular,

moreover
dim#(0) = dimz(0) + dimz(0y) holds for 0-a.e. x € Q. (6.52)

Theorem 6.26 (Maker) Let (X,B,n,T) be a measure-preserving system, where (X, B, n)
be a probability space with the Borel measure 1. For every n € Z* let f, : X — R be
a measurable function such that for n almost every x € X lim f,(z) = fo(x). We
suppose that sup,, | fn(x)| = g(x) is an integrable function. n_m

Then

n—1 n—1
1 1
nh_}ralo - kZ:O fow(T*(2)) = 7}1_}{20 - kZ:O fo(T*(x))  forn-a.ex € X. (6.53)

Lemma 6.27 Let (X,B,n) be a Borel probability space. The set A € B is a measurable
set. For every n € Z* let F, be a finite o-algebra such that for every n F, C Fni1. We

use the notation n(A|F,) = E,(14|F,) for the conditional expectation of 14 with respect
to F,,. Let

flx) = La(x) sup (= Inn(AlF) (@), (6.54)

then f is an integrale function and [y f(x)dn(z) < oco.

Proof: It is enough to prove that Z n({z : f(x) > N}) < co. For every n let P, =
N=0
{Pr',..., P¢ } be a measurable partition of X such that o(P,) = F,, where o denotes
the generated o-algebra by sets. For every n the map n(A|F,) is constant on each P!
and for x € P n(A|F,)(z) = n(n/(llgfi)'
We define inductively the following sets

ANE
Blz{Eépli—ln(M) ZN}, BTZIPl\Bl;

i) (6.55)

ANE
Bk:{EePk:—ln(%) zN}ﬂBg_lﬁ...ﬂBf, BS =P, \ B.



We can easily see that if E, E € U B, then ENE = () and

n=1

{o:f(x)>N G U ANE. (6.56)

For every n and arbitrary FE € B, n(AN E) < e Vn(F). Thus

n({x: f(z) > N}) <ZZnAmE *szn (6.57)

n=1 EeB, n=1 EeB,

If we take the sum over N, then we get Z n({xz: f(z) > N}) < o0. O
N=0

Theorem 6.28 Let (9,7, 1) be an ECPS system such that the corresponding measure on
P(Q) is p, then p-a.e. 0 € P(Q) satisfies dimension conservation.

Proof: For n € Z* define the function J,, : ® — R such that

UP'Q.(11(0) x P'Qu(T1(0)))

Jo(0.1) = 6.58
0D = TR, D) < @) (0:55)
Using Lemma [6.24] we can easily see that
Joo(0,) = Op () (P"Q1(11()))- (6.59)
So, we can see that lim J,(0,1) = J(0,17) holds for every (0,i) € ®. We repeat that
n—oo
_ (F,lo...0oF Y0 |
TH9,i) = | —= L oM. (6.60)
( 0(Qi.....ir)

We calculate

J,(T*(0,7)) _O(F, - Fy (P'Qn(T1(071)) x P"Q1(T(074))))

O(F, ... Fi, (P'Qu(Il(c%)) x Q"))

0P Ques11() X P'Qu(11(1) (061
O(P'Qur(11(2)) x P'Qu(I1(i))) -
Replace n by n — k, then
Jn—k(Tk(eyl)) _ (P/Qn( (Z)) X P”Qk-i-l(n(i))) (662)

O(P'Qn(I1(2)) x P"Qr(I1(1)))
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Let the functions K,, : ® — R and K : & — R such that K,(0,i) = —In(J,(0,7)) and

Koo(0,1) = —In(J (0, 2)).
Then

—ZKnk ‘92
(ﬂ (P'Q, (T xPQmmm>

P/Qn >< P”Qk(H(l)))

L[ 0P Qn(IT (@) P'Q,(I1(1))) (6.63)
)
(

~
I

(P Qn (11 (z))xp”Qo( (1)

_% Ind(Qu (1)) + L1 4(P'Q. (1)) =
= W,(6,i) — Ra(6,1).

Fix k and let n tends to infinity

Koo(T*(0,4)) = —In Oy (P Qpr1 (T1(0))) + In rrey (P Qi (T1(3))). (6.64)

We can easily calculate the Birkhoff’s sum

n—1

1 1
=Y KalTH(0.0) = = 0pmgp (P'Qu(TI(0))) = S,(0,1). (6.65)
k=0
If we use Birkhofl’s ergodic theorem for the function K. (6,7) = — In(0p ) (P"Q1(11(2)))) >
0, then there exists a constant 0 < C < oo such that

n—1

.1 k(g ~ ,
JL%OE;KOO(T (0,i)) =C for n-a.e. (0,i) € P. (6.66)

We want to use Maker’s theorem Thus, we have to verify that sup,, K,(0,1) is
an integrable function.

We already know, that

L (BPQU) x P'Qy(I1()
Ral6,9) = 1( 0P Qu(IT(D) * Q) )'

(6.67)
We want to use Lemma so we try to write K,(6,4) as a function of conditional

measures. Let F, = o({P'Q; x Q" : i € A™}) be a finite o-algebra for every n. The o

denotes the generated o-algebra by sets. We can express the following with conditional
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measure for i = (iy,4z,...) € X and j € A

O(P' Qn(I(@))*xQ") 7

0Q X PQIFNIW) =1 ey

OP QLI P Q) if;
=J
(6.68)

We can use this to get
ZILQ, pro, (T1(1)) (— In6(Q' x P"Q;|F,)( ZMJ (6, T1(3

where MI(0,-): Q — R.
If we use Lemma [6.27] for the functions M7(6,-), then we get that the supremum in
n is an integrable function with respect to the measure 6, thus the supremum in n of its

finite sum is also an integrable function.
Let

M(0,11(1)) = sup K (6, 1), (6.69)

we have seen that M (0, -) is integrable on @) with respect to 6. That is fQ (0,x)do0(x) <

oo. This implies

L) = / M (0, TI(2))d(I)10(0) = / M(9,%)d0(x) < oo. (6.70)

by

The function L : P(Q) — R is continuous and finite on a compact set, thus L is an
integrable function with respect to the measure p and fP(Q) L(0)dp(f) < co. Now, using
that 7 is adapted we can easily see that sup,, K,,(6,17) is an integrable function on ® with
respect to 7.

We have seen that Maker’s theorem is applicable. Using this theorem for the

sequence K, then we get that
~ 1 n—1 1 n—1
C = JL%E;KOO(T’“(Q,Z)) = lim ;Knk(Tk(e,g)) for n-a.e. (,i) € ®. (6.71)
With the above notation, this is
lim S,(0,i) = lim W, (0,i1) — lim R,(0,i) for n-a.e. (6,i) € P, (6.72)

n—o0 n—0o0 n—o0

where the limits exist and are finite 1 almost everywhere, due to the arguement, which is

in the proof of Lemma [6.23]
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Thus the corresponding integrals exist

/—m%mﬁpvmmmmma@=

P

=/—mm@awmmw@—/—mmW@awmmw@.

] ]

(6.73)

-----

dim]:(epq‘[@), P”H(L)) = dlm]:(e, H(Z)) - dlm]:(é, P,H(Z)) for n-a.e. ((9,@) ed (674)

and each F-local dimension is constant for n-a.e. (0,7). Thus, if we use that the measure

n is adapted, then we get the statement for p almost every measure. U

Corollary 6.29 Let (®,7T,n) be an ECPS system with the corresponding measure p on
P(Q). Then p almost every 6 € P(Q) is such that 0,0 is F-regular and

o =0 0(@Qu(ILO))An(6.) = [, = 1n by (P"Qu(T1(0)))dn 0, i)

dim(6) = Jo —log (e, )dn(8, )

(6.75)

6.6 Dimension conservation in a special case

In this section we construct a measure 7 such that (®,7,7) is an ECPS system.

Let (2,G,P) be a probability space. Let Xj,Xs,... : © — A be independent,
identically distributed random variables such that for every k P(X, = i) = p;. Let
X : Q — ¥ such that for w € Q@ X (w) = (X;(w), Xo(w)...). Then the distribution of
Xis X.P=u=(p,... ,pm)w. Further, let Z, : Q — A random variables such that
Zp(w) =1(c"X (w)).

Lemma 6.30 Let n be the distribution of (8z,, X), that isn = (dz,, X)«P. Then (®,T,n)
forms an ECPS system with the corresponding measure p =9, on P(Q).

Proof: First, we would like to see that 7 is a T-invariant measure. Let A C ® be an
arbitrary measurable set. Because 7 is the distribution function of (dz,, X), thus it is

enough to see the elements of A which is in the form (6z,.), X(w)). So,

A= {0 X()) 1w € V). (6.76)

44



The map T acts on the image by (dz,, X) the way
T (6zy(w), X(W)) = (62, (), 0 X(W)). (6.77)
Then
T7HA) = {(0z9w), X(w)) : (0z,(0), 0 X (w)) € A}. (6.78)
The n measure of T-(A) is

(T~ A) =P(w: (dnpxw) 0 X(w)) € A}) =

(6.79)
=P({w : (6z(w), X(w)) € A}) =n(4),

because the distribution of X is invariant under o.
We prove that 1 defines an ergodic system. For this let A be a T-invariant set, that is
T—'A = A with respect to 7. Then

(020(), X(w)) € A = (0zpw), X(w)) €T 'A <= (6z,(),0X(w)) € A (6.80)
holds for 7 almost every (0zy(.), X (w)). We can write
A= {07y X(@)) : X(w) € W}, (6.81)
because the set W determines A. Then we can easily see that =11 = . Thus

n(A) =P({w: (620(@7&(‘”)) € A}) =

(6.82)
P({w :X(w) € W}) = X,P(W) = u(W) = 0 or 1,

because (3, 0, i) is an ergodic, o-invariant dynamical system.
Last, we have to prove that the measure n is adapted. Take an f integrable function,
then

/ £(0,1)dn(0, i) = / F(02y(), X(w))dP(w) = / JOnxen, X(@)dPW).  (6.83)
> Q Q
We can easily see that

/ FOnix (), T y) Ao x(w)) (v)- (6.84)
A
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Replace this into the above calculation

f(0,4)dn(0,1) = FOnx(w), T y)don x ) (y) =
frosmn- [ |

= [ [ 6.1 ) ds(w)a(ons).Bi6) -

P@) A

//f9y 0(y)ds,(6),

where we use in the last step that (dpx)«P = d,. This is because

(6.85)

(6.86)

U

Theorem 6.31 The self-similar measure v on A\ satisfies dimension conservation and

Jy = Inv(Qi(x)dv(x) — [ = vps(P"Qy(x))dy

dimz(?) = Js —log(a, )dpu(i)

Proof: The proof is the use of Lemma [6.30] Theorem and Corollary
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Chapter 7

Hausdorff-dimension of a self-similar

measure of a forward separated system

Soz,ﬁﬁ

Theorem 7.1 Let S, 5, = {51,592, 53} be a forward separated system. (See Definition
and . The symbolic space is ¥ = {1,2, 3" and the natural projection of Sa
is o pgq. Let p = (pl,pg,pg)N+ be a Bernoulli measure on X for the probability vector
P = (p1,p2,p3). And let v = g, 0 = po H;}B,v is the self-similar measure on the

attractor with respect to p. Then the Hausdorff dimension of U can be exactly determined

as
—(p1 ] ]
dimy () = —PL108(P1) + 2108(pa) + ps 10g(ps)) + Gp1, P, ps) (7.1)
—(p1log(cv) + palog(B) + pslog(v))

where

© (k=1 m k-1 k—m
O(p1,p2,ps) = Y (Z <m B 1) log <E) prpEps + ) ( N ) log ( - )pinp’g“"”pg> -

k=1 \m=1 m=0

Proof: We introduce easier notation for further use. We denote S, 3, with S and I, g 5
is II. The K, s, attractor of Sis K. Let R = S3(K) and L = S;(K) U Sy(K).

Let F = {F1, Fy, F3} be a self-similar TF'S on [0, 1]? such that Fi(x) = ax, Fy(x) =
Bx+(0,1—f), F5(x) = yx + (1 —~,0). Let II the natural projection of F and v = II,p.

The invariant measure v is the projection of the measure v. Thus using Theorem [6.31],
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it is enough to calculate

/ —Invpy(P"Q1(x))dr(x). (7.2)

A

Let v be the Borel o-algebra on [0, 1] C R.

The o-algebra v can be generated by countable many finite partition. Let
k k+1
¢QZ{E? ;:>ﬁ§k§2”—%, (7.3)

this is a finite partition of [0, 1] and \/ P; is the Borel o-algebra on [0, 1]. Using this fact

i=1
and Theorem , then we get that {u;}iex system of conditional measures with respect

to the o-algebra I17 1y exists. We can see that

~ [P @) () = ~ [ ol (7.4)

A 2

Using Theorem [5.6, we conclude that

o -1 (e, may)
pe= I e T W))

where limit is meant in the weak-star topology. We know the property of weak-star

(7.5)

convergence, that if v,,v are Borel probability measures on the compact metric space

X and lim v, = v in weak-star sense, then for all U C X open and Z C X closed
n—oo

liminf v, (U) > v(U) and limsup v,,(Z) < v(Z) hold. Because [k] C ¥ is open and closed,

n—00 n—00

then
. o p(IITH (P (I1(2))) N [ ])
wi([71]) = lim : (7.6)
S s (T H(P(TI(0)))
For every € > 0 there exists n € N enough large such that P,(I1(7)) C B(Il(7), ).
We define for all m,n =0,1,... the set
H(m,n)={i= (i1,l9,...) €X : 4 #3 Vi=1,...m+n, (7.7)

imins1 =3, {1 <k<m+n:iy=1} =m}.

We can see that II(H(m,n)) = S7"S3S3(K) = S7*ST(R).
Let i € H(m,n) C X. Then I1(2) # 0, because i, 4,11 = 3, thus II(z) € S7"S7S5(K) C

la(m,n), 1], where a(m, n) = L (min{a, })™"
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If (max{a, B})F < @, then the sets SFSL(R) C (0, “(Vg’")). Thus there exist

M(m,n) € N such that if k +1 > M(m,n), then SFSS(R) C (0, a(n;’n))-

We introduce
H={S{SyR) : k+1< M(m,n), k1=01,...}. (7.8)

We can notice that S7"SY(R) € H. The set H is finite and the elements are disjoint

compact sets, thus there exists €; > 0 such that
VHl 7£ H2 c H Ns1 (Hl) ﬂ ]\/'51 (HQ) — @, (79)

where N.(H) means the € neighbourhood of the set H.
Using K/{0} = U S¥SL(R), then there exists e, such that

k,l=0
Ve, 1=0,1... N.,(S/"Sy(R))N N, (SFSL(R)) =0, (7.10)

Thus we can conclude that B(I1(i), o) NK C S7*ST(R). For every € > 0 there exists n € N
enough large such that P, (I1(z)) € B(II(i), ). So there exist N(n,m) € N such that for all
N(m,n) < z P,(II(z)) € B(II(%),e2). Moreover, for all N(m,n) < z TP, (II(7)) C
H(m,n).

Let z > N(m,n) be fix, then

- YP.(11(7))) = E x T., where
E={(i1,  imint1) © bmint1 =3, {k:ig =1} =m, {k:ix =2} =n}

T, = {1 jor---) € {1,2,3}" : 3k € T HPLILA)))  Jusmrt = Entmits Jntmez = Fnmazs- -

The above equation is true, because if k € IT7'(P,(I1(7))), then if permute the first n+m
coordinates and in this way we get k', then I1(k) = TI(k"). Then

wEXT ML) p((EN[n]) xT.)  p(EN[a])u(T:)  p((E0][0H]])

— = = , 7.11
W(ExT.) W(E  T.) WED@) uEy o
where [F]={ieX:3je€ £ JkeX¥ i=jxk}.
Because p is a Bernoulli measure, then
(mtn) .,
ME) = = P Paps. (7.12)
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Suppose that ¢; = 1, then

(m+n-1)~

p(ENT[in]) = (m — 1) Py P53

In this case for large 2

pU(PI@) N[0n])  pwEXT.N[h])  m

p(IH(P(()  WEXT)  m+n

Suppose that ¢; = 2, then

(m+n-1)"

p(EN[i]) = ) P'D5P3-

m!(n

In this case for large z

pIH(P.(11(0)) N [ia])  p(E x T2 N [0]) n

p(IN(P.(@))  wEXT)  m+n

Suppose that i; = 3, then for enough large 2 we get IT7(P,(I1())) N [3]

thus for large z

pIHP(1@) N [a]) _
p(I-1(P-(11(2)))) '

From the above observations, if i € H(m,n) then

s =1,
Ml([ll]) = mL_,_na if Z'1 = 27
1, if 1, = 3.
Using Kolmogorov 0-1 law we get
(U H(mn) =

The integral that we want to calculate is

/ log(a([i1]))du(i) =

oo k—1

(k — 1)!

(7.13)

(7.14)

(7.15)

(7.18)

(7.19)

m, k—m

==§i§:k%<%)(m_ﬁﬁ&?! ,M%ﬁ"%m+§:§:k%<k 7n>nm

k=1 m=0
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k—m —
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where we use combinatorics calculation.
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