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Chapter 1

Preliminary

Hutchinson showed that if the cylinder sets of a self-similar iterated function system (IFS)

are disjoint, then the Hausdor� dimension of its attractor is equals with the similarity

dimension. Also, he showed similar result for self-similar measures which belongs to such

self-similar IFS for which some strong separation condition holds.

When the cylinder sets of an IFS has signi�cant overlap, the dimension is di�cult to

understand, because we have to consider complicated overlapping system of cylinder sets.

Using transversality condition for a self-similar IFS family, then K. Simon, B. Solomyak

and M. Urbanski calculated this dimensions for almost every paramaters of the IFS family.

B. Bárány also proved almost everywhere results, when the self-similar IFS's have �x

points that coincide.

Kamalutdinov and Tetenov studied twofold Cantor sets, which are very similar to the

forward separated systems (De�nition 3.3). In a system of a twofold Cantor set there are

total overlaps. They have results for the properties of the attractor. They calculated the

exact value of the Hausdor� dimension of twofold Cantor sets. They do not mentioned

about the self-similar measures of those systems.

Results of this dissertation

In this work we study self-similar IFS's on the interval [0, 1] for which the so-called forward

separated condition holds (De�nition 3.3). In the considered IFS's there is also total

overlap between the cylinder sets.

Using the argument of Kamalutdinov and Tetenov we proved that forward separated

systems exist. The main result of this dissertation is Theorem 7.1, which states everywhere

result for the Hausdor� dimension of a self-similar measure with respect to a forward

separated system.
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Theorem 7.1 Let α, β, γ ∈ (0, 1
9
). Let S = {S1, S2, S3} be a self-similar IFS on [0, 1]

such that

S = {S1, S2, S3}

S1(x) = αx, S2(x) = βx, S3(x) = γx+ 1− γ.
(1.1)

Let K denote the attractor of S. Moreover, we suppose that

for every m,n ∈ N+, Sm1 S3(K) ∩ Sn2S3(K) = ∅. (1.2)

The natural projection of Sα,β,γ is Πα,β,γ. Let µ = (p1, p2, p3)N
+
be a Bernoulli measure

on Σ for the probability vector p = (p1, p2, p3). Let ν = Πα,β,γ∗µ = µ ◦ Π−1
α,β,γ be the

self-similar measure on the attractor. Then the Hausdor� dimension of ν can be exactly

determined.

The exact value of the dimension is in Chapter 7. To achieve this statement we use

ergodic CP-shift system.
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Chapter 2

Introduction of self-similar iterated

function systems

In this chapter we would like to de�ne the most fundamental notions and we collect the

most important theorems concerning self-similar iterated function systems (IFS).

2.1 De�nitions of self-similar IFS

De�nition 2.1 Let m ≥ 2, m ∈ Z and d ≥ 1, d ∈ Z. We say that S is a self-similar

iterated function system (IFS) on Rd, if

S = {S1, . . . , Sm}, (2.1)

where Si : Rd → Rd is contracting similarity transformation with contraction ratio 0 <

ri < 1 for all i. This means, that

∀i ∈ {1, . . . ,m} ∀x,y ∈ Rd ‖Si(x)− Si(y)‖ = ri ‖x− y‖ . (2.2)

Frequently we use the notation Si1 ◦ · · · ◦ Sin = Si1,...,in .
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Figure 2.1: Example for a self-similar IFS on the line

De�nition 2.2 Let B = B(0, R), where R = max1≤i≤m

{
‖Si(0)‖

1−ri

}
. The set Λ is the

attractor of the self-similar IFS S, if

Λ =
∞⋂
n=1

⋃
(i1,...,in)∈{1,...,m}n

Si1,...,in(B). (2.3)
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Figure 2.2: The �rst, second and third level cylinder sets of the IFS S = {−x
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De�nition 2.3 We call Σ = {1, . . . ,m}N the symbolic space of the IFS S de�ned in

equation (2.1).

On the symbolic space we use the following notation. If i = (i1, . . . , ik) ∈ {1, . . . ,m}k

and j ∈ {1, . . . ,m}l, then let i ∗ j = (i1, i2, . . . , ik, j1, j2, . . . , jl). Denote i2 = i ∗ i and
ik = ik−1 ∗ i. This de�nition is also proper for l =∞.

Let us denote the set of all �nite length word by Σ∗ =
∞⋃
k=1

{1, . . . ,m}k.

We denote the left shift on the symbolic space with σ : Σ→ Σ for all j = (j1, j2, . . . ) ∈
Σ σ(j) = (j2, j3, . . . ).
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De�nition 2.4 The map Π is the natural projection of the IFS S, if

Π : Σ→ Λ Π(i) = lim
n→∞

Si1,...,in(0), (2.4)

where i = (i1, i2, . . . ) ∈ Σ.

It is easy to see that

Λ = Π(Σ). (2.5)

Theorem 2.5 (Hutchinson) The Λ attractor of the IFS S (2.1) is the only non-empty

compact set solution of the following equation on sets

X =
m⋃
i=1

Si(X), (2.6)

where X is the variable.

The proof can be found in [2].

De�nition 2.6 Let Σ = {1, . . . ,m}N+
and i = (i1, . . . ik) ∈ {1, . . . ,m}k, then the set

[i1, . . . , ik] = {j ∈ Σ : j1 = i1, . . . jk = ik} (2.7)

is called a cylinder set.

Let p = (p1, . . . , pm) be a probability vector. Then, let µ = pN be the in�nite product

measure or Bernolli measure on Σ. That is

µ([i1, . . . , ik]) = pi1 . . . pik , (2.8)

where (i1, . . . , ik) ∈ {1, . . . ,m}k. Using Kolmogorov's extension theorem, we can see that

there exists a unique µ Borel measure on Σ de�ned on the σ-algebra generated by the

cylinder sets and for which the equation (2.8) holds.

De�nition 2.7 Let p = (p1, . . . , pm) be a probability vector. We say that ν is a self-

similar measure or invariant measure of the self-similar IFS S with the probabilty vector

p, if ν is the following push-down measure

ν(E) = Π∗p
N(E) = pN ◦ Π−1(E). (2.9)
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Theorem 2.8 Let p = (p1, . . . , pm) a probabilty vector and S is a self-similar IFS in the

form (2.1). Then ν self-similar measure of S with the probabilty vector p if it is the only

ν Borel probabilty measure on Rd for which

ν =
m∑
k=1

pk(ν ◦ S−1
k ) (2.10)

holds.

The proof can be found in [2].

2.2 The size of the attractor

Most of the time the attractor has zero Lebesgue measure, thus we need some de�nition

to be able to compare the size of sets with zero Lebesgue measure.

De�nition 2.9 Let t ≥ 0. The measure Ht is called the t-dimensional Hausdor� measure

on Rd, if it is the restriction of the following outer measure for the σ-algebra of the

measurable sets. Let

Ht(E) = lim
δ→0

{
inf

{
∞∑
i=1

|Ai|t : E ⊆
∞⋃
i=1

Ai, |Ai| ≤ δ

}}
= lim

δ→0
Ht
δ(E), (2.11)

where A ⊆ Rd |A| is the diameter of the set A.

Remark 2.10 The limit in the equation (2.11) is exists, because the function

δ 7→ inf

{
∞∑
i=1

|Ai|t : E ⊆
∞⋃
i=1

Ai, |Ai| ≤ δ

}
(2.12)

is monoton decreasing.

Now, let us introduce some basic facts regarding to Hausdor� measure.

Theorem 2.11 For every t > 0, all Borel set in Rd is measurable with respect to the

t-dimensional Hausdor� measure.

Theorem 2.12 For every n ∈ N+, there exists c ∈ R+ such that for all Borel set B ⊆
Rn Hn(B) = cLn(B) hold.

Lemma 2.13 For every Borel set B ⊆ Rd and every 0 ≤ α < β, we have the following

implications:
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(i) Hα(B) <∞ =⇒ Hβ(B) = 0

(ii) Hβ(B) > 0 =⇒ Hα(B) =∞

De�nition 2.14 By Lemma 2.13 we can de�ne the Hausdor� dimension of a B ⊆ Rd

Borel set by

dimH(B) = inf
t≥0
{Ht(B) = 0} = sup

t≥0
{Ht(B) =∞}. (2.13)

∞
H
t(E)

tdimH(E)

Figure 2.3: The de�nition of the Hausdor� dimension.

De�nition 2.15 If S = {S1, . . . , Sm} is a C1 IFS, then the value of upper and lower

Lyapunov exponents in i = (i1, i2, . . . ) ∈ Σ is de�ned respectively by

λ(i) = lim sup
n→∞

(
− 1

n
log
∥∥S ′i1i2...in(Π(σni))

∥∥) ,
λ(i) = lim inf

n→∞

(
− 1

n
log
∥∥S ′i1i2...in(Π(σni))

∥∥) . (2.14)

When λ(i) = λ(i), then the common value is denoted by λ(i) and we call it the Lyapunov

exponent of the system S at the point i ∈ Σ.

De�nition 2.16 If S is a C1 IFS and µ is a Bernoulli measure on Σ, then we call the

system S is µ-conformal, if λ(i) exists for µ-almost every i ∈ Σ.

De�nition 2.17 Suppose that ν is a Borel probability measure on Rd, then the de�nition

of upper and lower local dimension of ν at x ∈ Rd is respectively

dimν(x) = lim sup
r→0

log ν(B(x, r))

log r
,

dimν(x) = lim inf
r→0

log ν(B(x, r))

log r
,

(2.15)

where B(x, r) denotes the open ball of radius r centered at x. If dimν(x) = dimν(x), then

the common value is denoted by dimν(x) and we call it the local dimension of ν at x.
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De�nition 2.18 We can also de�ne the Hausdor� dimension of a Borel probability mea-

sure ν on Rd with

dimH(ν) = inf{dimH(E) : ν(E) = 1}. (2.16)

Theorem 2.19 If ν is a Borel probability measure on Rd with compact support, then

dimH(ν) = ess sup{dimν(x) : x ∈ Rd} = inf{α : ν({x : dimν(x) ≤ α}) = 1}

Lemma 2.20 If S = {S1, . . . , Sm} is a self-similar IFS and µ is a σ invariant, ergodic

Borel probability measure on Σ, then S is µ-conformal.

Proof: Let φn : Σ→ R such that for i = (i1, i2, . . . ) ∈ Σ φn(i) = − 1
n

log
∥∥S ′i1i2...in(Π(σni))

∥∥.
Using S is self-similar and the chain rule, we get

∥∥S ′i1i2...in(Π(σni))
∥∥ = λi1λi2 . . . λin . Thus

φn(i) = − 1

n

n∑
k=1

log(λik) =
1

n

n∑
k=1

ψ(σk−1i), (2.17)

where ψ(i) = − log(λi1). Using Birkho� ergodic theorem, we get

lim
n→∞

φn(i) =

∫
Σ

ψ(i)dµ(i) for µ-almost every i ∈ Σ. (2.18)

Thus λ is a constant µ-almost everywhere. So S is µ-conformal. �

Lemma 2.21 If S = {S1, . . . , Sm} is a self-similar IFS. The Lipschitz constant of Si is

λi. Assume µ is a Bernoulli measure on Σ for the probability vector p = (p1, . . . , pm).

Then S is µ-conformal and ∫
Σ

λ(i)dµ(i) = −
m∑
k=1

pk log(λk). (2.19)

Proof: It is a well-known fact that if µ is a Bernoulli measure on Σ, then it is σ invariant

and ergodic, thus due to the previous lemma S is µ-conformal. Using the argument in

the previous proof, we can see that∫
Σ

λ(i)dµ(i) =

∫
Σ

ψ(i)dµ(i) = −
m∑
k=1

pk log(λk). (2.20)

�
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2.3 Dimension theorems without separation condition

De�nition 2.22 We call s the similarity dimension of the self-similar IFS de�ned in

(2.1), if s is the solution of

m∑
i=1

rsi = 1. (2.21)

Theorem 2.23 Let S be a self-similar IFS on Rd, de�ned in (2.1). Let Λ be the attractor

of S and s is the similarity dimension of S. Then

dimH(Λ) ≤ s. (2.22)

The proof can be found in [2].

Theorem 2.24 Let S = {S1, . . . , Sm} be a self-similar IFS on Rd. The vector r =

(r1, . . . , rm) contains the contraction ratios of S.The ν is the invariant measure of S with

the probabilty vector p = (p1, . . . , pm). Then we have

dimH(ν) ≤ −
∑m

i=1 pi log pi
−
∑m

i=1 pi log ri
=
hp
χp
r
. (2.23)

The proof can be found in [2].

2.4 Dimension theorems with separation condition

In the special case, when the cylinder sets satify certain separation condition we are able

to estimate the Hausdor� dimension of the attractor of such IFS. Moreover, in this case

we can study the self-similar measure of the IFS.

De�nition 2.25 The Strong Separation Property (SSP) holds for the self-similar IFS S
de�ned in (2.1), if

∀i 6= j Si(Λ) ∩ Sj(Λ) = ∅. (2.24)

De�nition 2.26 The Open Set Condition (OSC) holds for the self-similar IFS S de�ned

in (2.1), if

∃V ⊆ Rd open set V 6= ∅ ∀i Si(V ) ⊆ V and ∀i 6= j Si(V ) ∩ Sj(V ) = ∅. (2.25)

11



S1 S2

S3S4

Figure 2.4: The IFS S = {S1, S2, S3, S4} satis�es the OSC.

Theorem 2.27 (Moran, Hutchinson) Let S = {S1, . . . , Sm} be a self-similar IFS on

Rd for which the OSC holds. We denote the attractor of S with Λ and the similarity

dimension of S with s. Then,

dimH(Λ) = s. (2.26)

The proof can be found in [2].

Theorem 2.28 Let S = {S1, . . . , Sm} be a self-similar IFS on Rd for which the OSC

holds. The vector r = (r1, . . . , rm) contains the contraction ratios of S.The ν is the

invariant measure of S with the probabilty vector p = (p1, . . . , pm). Then we have

dimH(ν) =
−
∑m

i=1 pi log pi
−
∑m

i=1 pi log ri
=
hp
χp
r
. (2.27)

The proof can be found in [2].

Remark 2.29 In the case, when we do not know any separation condition holds for the

self-similar IFS S the values s and hp
χp
r
in Theorem 2.27 and 2.28 is only an upper bound

on the Hausdor� dimension.
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Chapter 3

The systems Sα,β,γ

We study a family of self-similar iterated function systems (IFS) on the interval [0, 1] such

that there is total overlap and for which some separation condition holds.

Kamalutdinov and Tetenov in [3] studied similar iterated function systems, which

called twofold Cantor set.

We follow their argument with similar statements in this chapter.

De�nition 3.1 Let α, β, γ ∈ (0, 1) arbitrary. Then Sα,β,γ is a system of contractive

similarities such that

Sα,β,γ = {S1, S2, S3}

S1(x) = αx, S2(x) = βx, S3(x) = γx+ 1− γ
(3.1)

0 1

S1

S2

S3

Figure 3.1: The �rst level cylinder sets of the IFS Sα,β,γ = {S1, S2, S3}.

0 1

S1

S2

S3

S4

Figure 3.2: The �rst level cylinder sets of a system which belongs to a twofold Cantor set.
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B. Bárány has already considered the Hausdor� dimension of the attractor of the

system introduced in De�nition 3.1. He showed this result for Lebesgue almost every

α, β, γ(0, 1
2
).

Let Kα,β,γ be the attractor of the system Sα,β,γ. Let Lα,β,γ = S1(Kα,β,γ) ∪ S2(Kα,β,γ)

and Rα,β,γ = S3(Kα,β,γ).

It is easy to see that Kα,β,γ = Lα,β,γ ∪Rα,β,γ.

We denote the symbolic space of Sα,β,γ with Σ = {1, 2, 3}N+
.

Let Πα,β,γ : Σ→ Kα,β,γ be the natural projection of the system Sα,β,γ.
First, we consider some obvious properties of the systems Sα,β,γ:

Lemma 3.2 If α, β, γ ∈ (0, 1
2
), then:

(i) S1 ◦ S2 = S2 ◦ S1,

(ii) for all i ∈ {1, 2} and every m,n ∈ N with m 6= n, Smi (Rα,β,γ) ∩ Sni (Rα,β,γ) = ∅,

(iii) for all m,n ∈ N, Sm1 Sn2 (Kα,β,γ) ⊆ Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ),

(iv) Kα,β,γ\{0} =
∞⋃

n,m=0

Sm1 S
n
2 (Rα,β,γ) .

Proof:

(i) For every x ∈ [0, 1] S1(S2(x)) = α(βx) = β(αx) = S2(S1(x)).

(ii) We prove only for i = 1, the case i = 2 is similar. Let m,n ∈ N m > n.

Rα,β,γ ⊆ (1
2
, 1), thus Sm1 (Rα,β,γ) ⊆ (1

2
αm, αm) and Sn1 (Rα,β,γ) ⊆ (1

2
αn, αn). Since

we can see that the right endpoint of one interval is smaller than the left endpoint

of the other interval that is αm = α · αm−1 < 1
2
αm−1 ≤ 1

2
αn.

(iii) Let m,n ∈ N, then Sm1 (Kα,β,γ) ⊆ Kα,β,γ and Sn2 (Kα,β,γ) ⊆ Kα,β,γ. So, we conclude

that Sn2S
m
1 (Kα,β,γ) ⊆ Sn2 (Kα,β,γ) and S

m
1 S

n
2 (Kα,β,γ) ⊆ Sm1 (Kα,β,γ). Using commuta-

tivity, which is property (i) we get the statements.

(iv) Consider the natural projection Πα,β,γ of Sα,β,γ. The map Πα,β,γ is surjective. It is

easy to see that

Π−1
α,β,γ(

∞⋃
m,n=0

Sm1 S
n
2 (Rα,β,γ)) = {i ∈ Σ : ∃k ik = 3}. (3.2)

For those i ∈ Σ such that there is no k for which ik = 3, then the image of i is 0.

14
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Using Theroem 2.23, we can conclude that the dimension of Kα,β,γ is less than 1
2
if

α, β, γ ∈ (0, 1
9
).

De�nition 3.3 We call the system Sα,β,γ forward separated, if α, β, γ ∈ (0, 1
9
) and

∀m,n ∈ N m,n > 0 Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) = ∅. (3.3)

We denote the disjoint union with t.

Lemma 3.4 The system Sα,β,γ is forward separated if and only if

Kα,β,γ\{0} =
∞⊔

n,m=0

Sm1 S
n
2 (Rα,β,γ), (3.4)

where t denotes the disjoint union.

Proof: (⇒)First, we assume that Sα,β,γ is forward separated. Let (m1, n1) 6= (m2, n2),

then

Sm1
1 Sn1

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk1

1 S
l1
2 (Rα,β,γ))

Sm2
1 Sn2

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk2

1 S
l2
2 (Rα,β,γ))

(3.5)

hold. At least one of k1, k2 is zero and one of l1, l2 is zero. So if we use the forward

separated property we get the statement.

(⇐) Now, assume that Kα,β,γ\{0} =
⊔∞
n,m=0 S

m
1 S

n
2 (Rα,β,γ) holds. Then we can get the

statement by using the conditon for the indeces (m, 0) and (0, n).

�

Lemma 3.5 If the system Sα,β,γ is forward separated, then for every

m,n ∈ N Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ) = Sm1 S
n
2 (Kα,β,γ). (3.6)

Proof: Using the above results, we get

Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ)\{0} = Sm1 (
∞⋃

k,l=0

Sk1S
l
2(Rα,β,γ)) ∩ Sn2 (

∞⋃
k,l=0

Sk1S
l
2(Rα,β,γ)) =

=
∞⋃

k,l=0

Sk+m
1 Sl+n2 (Rα,β,γ) = Sm1 S

n
2 (
∞⋃

k,l=0

Sk1S
l
2(Rα,β,γ)) = Sm1 S

n
2 (Kα,β,γ)\{0}.

15



In the �rst and last equation we use Lemma 3.2 (iv) point and in the second equation we

use Lemma 3.4. �
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Chapter 4

Existence of forward separated systems

Kamalutdinov and Tetenov proved that twofold Cantor sets exist in [3]. In this whole

section we follow their arguement with similar statements.

Due to requirement of completeness we take over the same proof of this Theorem from

[3].

Theorem 4.1 (General Position Theorem [3]) Let (D, dD), (L1, dL1), (L2, dL2) be com-

pact metric spaces and let ϕi(ξ, x) : D × Li → Rn for i ∈ {1, 2} be continuous functions.

If these functions satis�es:

(i) The functions ϕi are α-Hölder with respect to x which is

there exists α > 0 for all i ∈ {1, 2} there exists Ci > 0 for all ξ ∈ D for all x, y ∈ Li
‖ϕi(ξ, x)− ϕi(ξ, y))‖ ≤ CidLi(x, y)α,

where ‖·‖ is the euclidean norm in Rn.

(ii) Let Φ : D × L1 × L2 → Rn Φ(ξ, x1, x2) = ϕ1(ξ, x1)− ϕ2(ξ, x2) such that

there exist M > 0 for all ξ, ξ′ ∈ D for all x1 ∈ L1 for all x2 ∈ L2

‖Φ(ξ, x1, x2)− Φ(ξ′, x1, x2)‖ ≥MdD(ξ, ξ′).
(4.1)

Then the set ∆ = {ξ ∈ D : ϕ1(ξ, L1) ∩ ϕ2(ξ, L2) 6= ∅} is a compact in D and

dimH(∆) ≤ dimH(L1 × L2)

α
. (4.2)

Proof: Let ∆̃ = {(ξ, x1, x2) ∈ D × L1 × L2 : ϕ1(ξ, x1) = ϕ2(ξ, x2)} = {(ξ, x1, x2) ∈
D × L1 × L2 : Φ(ξ, x1, x2) = 0} be the set of those parameters where ϕ1(ξ, L1) and

ϕ2(ξ, L2) intersects. Then ∆ = projD

(
∆̃
)
. Let L = L1 × L2 and ∆L = projL

(
∆̃
)
.
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The map Φ is a continuous map and ∆̃ = Φ−1({0}), thus ∆̃ is closed. Then ∆̃ is

closed in a compact metric space, so it is compact. The projection is continuous, thus ∆

is also compact.

The functions projD : ∆̃ → ∆ and projL : ∆̃ → ∆L are surjective. Moreover, projL

is also injective, because if exist (ξ, x1, x2) 6= (ξ′, x′1, x
′
2) ∈ ∆̃ such that projL (ξ, x1, x2) =

projL (ξ′, x′1, x
′
2), then x′1 = x1, x

′
2 = x2 and ξ′ 6= ξ. By the de�nition of ∆̃ Φ(ξ, x1, x2) =

Φ(ξ′, x1, x2) = 0 and this is contradicts with the second assumption. So projL is injective,

thus it is invertible.

Let g = projD ◦ projL
−1 : ∆L → ∆. This is surjective. Let g(x1, x2) = ξ and

g(x′1, x
′
2) = ξ′. Then Φ(ξ, x1, x2) = 0 and Φ(ξ′, x′1, x

′
2) = 0.

M · dD(ξ, ξ′) ≤ ‖Φ(ξ, x1, x2)− Φ(ξ′, x1, x2)‖ = ‖Φ(ξ′, x′1, x
′
2)− Φ(ξ′, x1, x2)‖ ≤

‖ϕ1(ξ′, x′1)− ϕ1(ξ′, x1)‖+ ‖ϕ2(ξ′, x′2)− ϕ2(ξ′, x2)‖ ≤ C (dL1(x1, x
′
1)α + dL2(x2, x

′
2)α) ,

where C = max{C1, C2}. In the �rst inequation we use the (ii) assumption, the next

inequation is triangle inequality and the last inequation is the Hölder continuity in (i). �

Also for the completeness we take over the same proof of thefollwing theorem from

[3].

Lemma 4.2 (Displacement theorem) Let S = {S1, . . . , Sm} and S̃ = {S̃1, . . . , S̃m}
be two iterated function systems on Rn. We denote the natural projection of S with Π :

Σ→ Rn and the natural projection of S̃ with Π̃ : Σ→ Rn, where Σ = {1, . . . ,m}N+
is the

symbolic space. Let V ⊆ Rn be a compact set such that for every i ∈ {1, . . . ,m}, Si(V ) ⊆
V and S̃i(V ) ⊆ V . Then

∀i = (i1, i2, . . . ) ∈ Σ
∥∥∥Π(i)− Π̃(i)

∥∥∥ ≤ δ

1− p
, (4.3)

where

δ = max{
∥∥∥Si(x)− S̃i(x)

∥∥∥ : i ∈ {1, . . . ,m}, x ∈ V } and

p = max
1≤i≤m

{max{Lip(Si),Lip(S̃i)}}.
(4.4)
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Proof: Let i ∈ Σ arbitrary. We can conclude∥∥∥Π(i)− Π̃(i)
∥∥∥ =

∥∥∥Si1(Π(σi))− S̃i1(Π̃(σi))
∥∥∥ ≤

≤
∥∥∥Si1(Π(σi))− Si1(Π̃(σi))

∥∥∥+
∥∥∥Si1(Π̃(σi))− S̃i1(Π̃(σi))

∥∥∥ ≤
≤ p

∥∥∥Π(σi)− Π̃(σi)
∥∥∥+ δ.

(4.5)

Using the above inequation n times, then we get

∥∥∥Π(i)− Π̃(i)
∥∥∥ ≤ pn

∥∥∥Π(σni)− Π̃(σni)
∥∥∥+ δ ·

n−1∑
i=0

pi. (4.6)

If n→∞, then we get
∥∥∥Π(i)− Π̃(i)

∥∥∥ ≤ δ
1−p , because V is compact. �

Notation 4.3 Let Σ = {1, . . . ,m}N+
and a ∈ (0, 1). We can construct a metric space

(Σ, ρa) with metric ρa. We de�ne ∀i, j ∈ Σ s(i, j) = min{k − 1 : ik 6= jk}, then let

ρa(i, j) = as(i,j).

It is a well known fact that the metric space (Σ, ρa) is compact.

Lemma 4.4 Let (Σ, ρa) be a metric space as above. Then

dimH(Σ) = − log(m)

log(a)
. (4.7)

Proof: Let G = {G1, . . . , Gm} be a set of Σ → Σ functions.For all k ∈ {1, . . . ,m} and
for all i ∈ Σ

Gk(i) = (k, i1, i2, . . . ). (4.8)

Then every Gk is a contractive function with Lipschitz constant a, so G is an IFS. The

attractor of G is Σ. G satis�es the strong separation property, so the Hausdor�-dimension

of its attractor is equal to the similarity dimension of the IFS. It is also a well known fact.

The proof can be found in [2]. Thus dimH(Σ) = − log(m)
log(a)

. �

So using this fact for the symbolic space of the system Sα,β,γ. Remind that Σ =

{1, 2, 3}N+
, then

dimH(Σ) <
1

2
in the metric ρa ⇐⇒ a ∈

(
0,

1

9

)
. (4.9)
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Lemma 4.5 Let α, β, γ < a and a ∈
(
0, 1

9

)
. Then Πα,β,γ natural projection of the system

Sα,β,γ is 1-Lipschitz with respect to the metric space (Σ, ρa).

Proof: Let i, j ∈ Σ with s(i, j) = k. Then ρa(i, j) = ak and i1 = j1, . . . , ik = jk,

thus Πα,β,γ(i),Πα,β,γ(j) ∈ Si1...ik(Kα,β,γ). The diameter of Si1...ik(Kα,β,γ) is Lip(Si1) · · · · ·
Lip(Sik), which is strictly smaller than ak. So

∣∣Πα,β,γ(i)− Πα,β,γ(j)
∣∣ < ak = ρa(i, j). (4.10)

�

Lemma 4.6 Letm,n ∈ N+. α, β, γ ∈
(
0, 1

9

)
and consider the system Sα,β,γ. If Sm1 (Rα,β,γ)∩

Sn2 (Rα,β,γ) 6= ∅, then 8
9
≤ αm

βn
≤ 9

8
.

Proof: If α, β, γ ∈
(
0, 1

9

)
, then Rα,β,γ ⊆ [8

9
, 1]. Thus Sm1 (Rα,β,γ) ⊆ [8

9
αm, αm] and

Sn2 (Rα,β,γ) ⊆ [8
9
βn, βn]. The intersection can not happen if αm < 8

9
βn or βn < 8

9
αm. Thus

we do not have intersection if αm

βn
< 8

9
or αm

βn
> 9

8
. So 8

9
≤ αm

βn
≤ 9

8
. �

Lemma 4.7 Let m,n ∈ N+ and β, γ ∈ (0, 1
9
) be �xed. We denote

Dm,n(β, γ) =

{
α ∈

(
0,

1

9

)
:

8

9
≤ αm

βn
≤ 9

8

}
. (4.11)

Let ϕi : Dm,n(β, γ)× Σ→ R for i = 1, 2. We de�ne

∀α ∈ Dm,n(β, γ) ∀i ∈ Σ ϕ1(α, i) = Πα,β,γ((1)m ∗ (3) ∗ i) = Sm1 S3(Πα,β,γ(i)),

∀α ∈ Dm,n(β, γ) ∀i ∈ Σ ϕ2(α, i) = Πα,β,γ((2)n ∗ (3) ∗ i) = Sn2S3(Πα,β,γ(i)),

where Πα,β,γ is the natural projection of Sα,β,γ. Then for every α, α′ ∈ Dm,n(β, γ) and for

every i, j ∈ Σ

∣∣ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)
∣∣ ≥M |α− α′| , (4.12)

where M(m,n, β, γ) > 0 constant.

Proof: Let α, α′ ∈ Dm,n(β, γ) and i, j ∈ Σ be arbitrary. We introduce the notation

S = Sα,β,γ = {S1, S2, S3}, S ′ = Sα′,β,γ = {S ′1, S ′2, S ′3}, let Π = Πα,β,γ and Π′ = Πα′,β,γ.

Then S ′2 = S2 and S ′3 = S3.
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Let α < α′ and δ = |α′ − α|, then using Lagrange mean value theorem

mαm−1 ≤ α′m − αm

α′ − α
=
|α′m − αm|

δ
≤ mα′m−1. (4.13)

We de�ned δ = |α′ − α| and using displacement Theorem 4.2 for S and S ′, then we

get

for every i ∈ Σ |Π(i)− Π′(i)| ≤ 9

8
δ. (4.14)

Consider the di�erence that we have to estimate

ϕ1(α, i)− ϕ1(α′, i) + ϕ2(α′, j)− ϕ2(α, j) =

= Sm1 S3(Π(i))− S ′m1 S ′3(Π′(i)) + S ′n2 S
′
3(Π′(j))− Sn2S3(Π(j)) =

= Sm1 S3(Π(i))− S ′m1 S3(Π′(i)) + Sn2S3(Π′(j))− Sn2S3(Π(j)) =

= Sm1 S3(Π(i))− Sm1 S3(Π′(i))︸ ︷︷ ︸
A

+ Sm1 S3(Π′(i))− S ′m1 S3(Π′(i))︸ ︷︷ ︸
B

+Sn2S3(Π′(j))− Sn2S3(Π(j))︸ ︷︷ ︸
C

.

We will use the estimate

|A+B + C| ≥ |B| − |A+ C| ≥ |B| − |A| − |C| , (4.15)

where �rst we use the reversed triangle inewquality and second the triangle inequality.

Consider |A| part of the above calculation

|A| = |Sm1 S3(Π(i))− Sm1 S3(Π′(i))| = αmγ |Π(i)− Π′(i)| ≤ 9

8
αmγδ,

where in the inequation we use (4.14).

The next part is

|B| = |Sm1 S3(Π′(i))− S ′m1 S3(Π′(i))| = |αm − α′m| |S3(Π′(i))| ≥ 8

9
mαm−1δ,

where in the inequation we use (4.13).

The last part is

|C| =
∣∣Sn2S3(Π′(j))− Sn2S3(Π(j))

∣∣ = βnγ
∣∣Π(j)− Π′(j)

∣∣ ≤ 9

8
βnγδ,

where in the inequation we use (4.14).
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Now estimate

|B| − |A| ≥
(

8m

9α
− 9

8
γ

)
αmδ ≥

(
8− 9

8

)
αmδ ≥

(
8− 9

8

)
8

9
βnδ > 6βnδ, (4.16)

where in the second inequation we use γ < 1, m ≥ 1, α < 1
9
.

The following

|C| ≤ 9

8
γβnδ < βnδ (4.17)

is true, beacuse γ < 1
9
. Thus

∣∣ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)
∣∣ ≥ 5βn |α′ − α| , (4.18)

so M = 5βn. �

Lemma 4.8 Let m,n ∈ N+ and β, γ ∈ (0, 1
9
). Then the set

∆m,n(β, γ) =

{
α ∈

(
0,

1

9

)
: Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) 6= ∅

}
(4.19)

is closed in (0, 1
9
) and L(∆m,n(β, γ)) = 0, where L means the Lebesgue measure on R.

Proof: Let ε > 0 be such that 1
9
− ε > β, γ. Then Em,n(β, γ) = Dm,n(β, γ) ∩ [ε, 1

9
− ε]

is a closed interval in R, so it is compact. We consider the compact metric space (Σ, ρa),

where Σ = {1, 2, 3}N+
and a = 1

9
− ε.

Let ϕi : Em,n(β, γ)× Σ→ R for i = 1, 2. We de�ne

ϕ1(α, i) = Πα,β,γ((1)m ∗ (3) ∗ i) = Sm1 S3(Πα,β,γ(i)),

ϕ2(α, i) = Πα,β,γ((2)n ∗ (3) ∗ i) = Sn2S3(Πα,β,γ(i)).
(4.20)

Let

Ξε
m,n(β, γ) = ∆m,n(β, γ) ∩

[
ε,

1

9
− ε
]
.

For an α the Sm1 (Rα,β,γ)∩Sn2 (Rα,β,γ) 6= ∅ holds if and only if there exist i, j ∈ Σ such that

ϕ1(α, i) = ϕ2(α, j), thus

Ξε
m,n(β, γ) = {α ∈ Em,n(β, γ) : ϕ1(α,Σ) ∩ ϕ2(α,Σ) 6= ∅}. (4.21)

Using Lemma 4.5 one can see that ϕi is Hölder continuous with respect to the second
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variable for i = 1, 2. Applying Lemma 4.7, we get that the conditions of the General

Position Theorem 4.1 holds. Using General Position Theorem 4.1, then get

dimH(Ξε
m,n(β, γ)) ≤ dimH(Σ× Σ) ≤ 2dimH(Σ) < 1, (4.22)

the last inequation is true because of the equation (4.9). So L(Ξε
m,n(β, γ)) = 0. Moreover,

∆m,n(β, γ) =
∞⋃
k=1

Ξ1/k
m,n(β, γ), (4.23)

thus the continuity of measure yields that L(∆m,n(β, γ)) = 0.

General Position Theorem 4.1 implies that Ξε
m,n(β, γ) is closed for every ε > 0, so

∆m,n(β, γ) is also closed. �

Lemma 4.9 Let m,n ∈ N+ be arbitrary. Then the set

∆̃m,n =

{
(α, β, γ) ∈

(
0,

1

9

)3

: Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) 6= ∅

}
(4.24)

is closed in (0, 1
9
)3 and L3(∆̃m,n) = 0, that is its Lebesgue measure is zero in R3.

Proof: Let I = (0, 1
9
)3 and Ψ : I × Σ2 → R be such that

Ψ(α, β, γ, i, j) = Πα,β,γ((1)m ∗ (3) ∗ i)− Πα,β,γ((2)n ∗ (3) ∗ j) =

= Sm1 S3(Πα,β,γ(i))− Sn2S3(Πα,β,γ(j)).
(4.25)

Then Ψ is a continuous function and ∆̃m,n = projI (Ψ−1({0})). Because Ψ is continuous

Ψ−1({0}) is closed, and because Σ is compact ∆̃m,n is closed. This is because if x ∈ I is

an accumulation point of projI (Ψ−1({0})), then there exists an (x, y) ∈ I ×Σ2 such that
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is an accumulation point of Ψ−1({0}). Consider the integral

L3(∆̃m,n) =

∫∫∫
(0, 1

9
)3

1∆̃m,n
(α, β, γ) dL3(α, β, γ) =

=

∫∫
(0, 1

9
)2

∫
(0, 1

9
)

1∆̃m,n
(α, β, γ) dL(α)dL2(β, γ) =

=

∫∫
(0, 1

9
)2

∫
(0, 1

9
)

1∆m,n(β,γ) (α) dL(α)dL2(β, γ) =

=

∫∫
(0, 1

9
)2

L(∆m,n(β, γ))dL2(β, γ) =

∫∫
(0, 1

9
)2

0dL2(β, γ) = 0,

(4.26)

where we use Fubini's theorem in the second equality and the fourth equality we use

Lemma 4.8. �

Theorem 4.10 Let J =
(
0, 1

9

)3
. We de�ne

Ω = {(α, β, γ) ∈ J : Sα,β,γ is a forward separated system} . (4.27)

Then L3(J/Ω) = 0 and J/Ω is uncountable and dense in J .

Proof: The set

J/Ω =
∞⋃

m,n=1

∆̃m,n , thus L3(J/Ω) ≤
∞∑

m,n=1

L3(∆̃m,n) = 0, (4.28)

where we use Lemma 4.9 in the last equality. Thus L3(J/Ω) = 0.

If αm = βn for m,n ∈ N+, then Sα,β,γ is not a forward separated system, so

∆̃ =

{
(α, β, γ) ∈ J :

logα

log β
∈ Q

}
⊆ J/Ω. (4.29)

Then for every z ∈ (0, 1
9
) the set

{(α, β, γ) ∈ ∆̃ : γ = z} =
⋃
q∈Q+

{
(α, fq(α), z) : α ∈

(
0,

1

9

)
, fq(x) = xq

}
(4.30)

is union of smooth curves. From this one can easily see that ∆̃ is dense and uncountable.

This implies J/Ω is also dense and uncountable. �
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Chapter 5

The tools of calculating

Hausdor�-dimension of the self-similar

measure

We would like to calculate the Hausdor� dimension of the self-similar measure of the

forward separated system Sα,β,γ and for this we require the following statements.

5.1 Conditional expectation

De�nition 5.1 Let G ⊆ B be an arbitrary σ-algebra. Let ϕ ∈ L1(Z,B, µ), then the

function ψ ∈ L1(Z,B, µ) is the conditional expectation of ϕ with respect to the σ-algebra

G, if

(i) ψ is G-measurable,

(ii) for every G ∈ G ∫
Z

ϕ(x)1G (x) dµ(x) =

∫
Z

ψ(x)1G (x) dµ(x). (5.1)

Theorem 5.2 Let G ⊆ B be an arbitrary σ-algebra. If ψ and ψ̃ are conditional expec-

tations of the function ϕ ∈ L1(Z,B, µ) with respect to G, then ψ(z) = ψ̃(z) for µ-almost

every z ∈ Z.

We denote the conditional expectation of ϕ ∈ L1(Z,B, µ) with respect to G with

Eµ(ϕ|G).
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5.2 Conditional measure

The proof of the statements that contained in this section can be found in [4].

Let Z be a compact metric space. We consider the probability space (Z,B, µ), where

B is the Borel σ-algebra of Z and µ is a probability measure on Z.

Moreover, let F be a σ-algebra such that there exists some E1, E2, · · · ∈ B for which

F =
∞∨
i=1

{Ei, Z/Ei}, (5.2)

where ∨ denotes the generated σ-algebra. Indeed, if Ai ⊆ B is a σ-algebra for all i =

1, 2, . . . , then
∞∨
i=1

Ai is the generated σ-algebra by
∞⋃
i=1

Ai.

De�nition 5.3 The P ⊆ B is a partition of Z, if for every P1 6= P2 ∈ P P1 ∩ P2 = ∅
and

⋃
P∈P

P = Z.

Let P be a partition of Z. Then for z ∈ Z the set P(z) denotes those P(z) ∈ P such

that z ∈ P(z).

For every n = 1, 2, . . . let Pn be a partition of Z such that

σ(Pn) =
n∨
i=1

{Ei, Z/Ei}, (5.3)

where σ(A) denotes the generated sigma algebra by A.

De�nition 5.4 The set {µz}z∈Z of Borel probability measures on Z is a system of con-

ditional measures of µ with respect to the σ-algebra F , if

(i) for every E ∈ F , z ∈ E µz(E) = 1 holds for µ-almost every z ∈ Z ,

(ii) for every bounded measurable function ϕ : Z → R the function z 7→
∫
Z

ϕ dµz is

F-measurable and ∫
Z

ϕ(x) dµ(x) =

∫
Z

∫
Z

ϕ(x) dµz(x) dµ(z). (5.4)

Theorem 5.5 If {µz}z∈Z and {νz}z∈Z are two systems of condtional measures of µ with

respect to F , then µz = νz for µ-almost every z ∈ Z.

The proof is in [4].
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Theorem 5.6 The limit of the measures

µFz = lim
n→∞

µ|Pn(z)

µ(Pn(z))
exists for µ-almost every z ∈ Z, (5.5)

where the limit is meant in the weak-star topology.

Moreover, the set {µFz }z∈Z is a system of conditional measures of µ with respect to the

σ-algebra F .

The proof can be found in [4].

Theorem 5.7 Let ϕ : Z → R is bounded and measurable, then the function

Φ : Z → R for which

Φ(z) =

∫
Z

ϕ(x)dµz(x) for µ-almost every z ∈ Z (5.6)

is the conditional expectation of ϕ with respect to F , thus Eµ(ϕ|F) = Φ.

The proof is in [4].
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Chapter 6

Dimension conservation

In this chapter we follow the paper [1], but we reach di�erent formulas with similar

argument.

In this chapter we study the relation between the dimension of a measure and the

dimension of its projected measure.

If k ∈ Z+, then we will use the notation Qk = [0, 1]k ⊂ Rk. In this chapter we �x

the dimension, so let Q = Qk = Qk1+k2 = Q′ × Q′′ for k1, k2 ∈ Z+, where Q′ = Qk1 and

Q′′ = Qk2 . Let P ′ : Q→ Q′ be the projection from Q to Q′ and let P ′′ : Q→ Q′′ be the

projection from Q to Q′′. For (x,y) ∈ Rk1 × Rk2 the images are P ′(x,y) = x ∈ Rk1 and

P ′′(x,y) = y ∈ Rk2 .

Further, let m ∈ Z+ and F = {F1, . . . , Fm} be a self-similar IFS on Rk such that for

every i the function is Fi(x) = αix + ti, where αi ∈ (0, 1) and ti ∈ Rk. For every i the

image Fi(Q) ⊆ Q. We suppose that

for every i 6= j Fi(Q) ∩ Fj(Q) = ∅. (6.1)

Let Σ = {1, . . . ,m}Z+
be the symbolic space and A = {1, . . . ,m} be the set of the

characters. Let Λ be the attractor of F , then Λ ⊆ Q. Moreover, we denote the natural

projection of F with Π. Let µ = (p1, . . . , pm)Z
+
be a product measure on Σ and ν = Π∗µ.

Let S = {S1, . . . , Sm}, where for every i Si : Q′ → Q′ such that Si(x) = P ′(Fi(P
′−1(x))).

The P ′−1 is not a function, it is the inverse image of the set {x}. Then S is a self-similar

IFS on Rk1 with the same contraction ratios as F .

6.1 Natural partition of the attractor

We introduce a natural partition of the attractor Λ which is de�ned by the IFS F .
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Let i = (i1, . . . , ik) ∈ Ak for some k ∈ Z+, then

Qi = Qi1,...,ik = Fi1,...,ik(Q) = (Fi1 ◦ Fi2 ◦ . . . ◦ Fik)(Q). (6.2)

First we consider some elementary properties of the above notation:

• for all i = (i1, . . . , ik+1) ∈ Ak+1 Qi1,...,ik+1
⊂ Qi1,...,ik ,

• for every i = (i1, . . . , ik) ∈ Ak the side length of Qi is αi1,...,ik = αi1 · αi2 · . . . · αik ,

• for every i = (i1, i2, . . .) ∈ Σ, if x ∈
∞⋂
k=1

Qi1,...,ik , then x = Π(i).

Due to equation (6.1), we can easily see that for every k ∈ Z+ and for all i 6= j ∈
Ak Qi ∩Qj = ∅.

Using equation (2.6) k-times, then we get

Λ =
⋃

(i1,...,ik)∈Ak
Fi1,...,ik(Λ) ⊆

⋃
(i1,...,ik)∈Ak

Fi1,...,ik(Q) =
⋃

(i1,...,ik)∈Ak
Qi1,...,ik . (6.3)

Thus we get a disjoint cover of Λ

Λ ⊆
⊔
i∈Ak

Qi, (6.4)

which we call a natural partition de�ned by F .

Notation 6.1 Let x ∈ Λ, then for some i ∈ Σ Π(i) = x. We will use the notation

Qn(x) = Qi1,...,in.

6.2 Dimensions regarded to the natural partitions

Notation 6.2 Let A∗ =
∞⋃
k=1

Ak be the set of �nite length words which is formed from the

character set A.

Notation 6.3 For i ∈ A∗ the length of i is k, if i ∈ Ak. We denote the lenght of i with

l(i).

De�nition 6.4 For a Borel set E ⊆ Λ and t ≥ 0, let

βtF ,n(E) = inf

{
K∑
k=1

(αik)
t : K ∈ Z+, E ⊆

K⋃
k=1

Qik
, ∀k ∈ {1, . . . , K} l(ik) ≥ n

}
. (6.5)

29



The t-dimensional F-measure of the set E is

βtF(E) = lim
n→∞

βtF ,n(E). (6.6)

Lemma 6.5 For t ≥ 0 the function βtF is a Borel measure on Λ.

Proof: It can be proved by using Carathéodory's extension theorem for the outer mea-

sure. �

Lemma 6.6 For a Borel set E ⊆ Λ and 0 < s < t the following are true:

(i) if βtF(E) =∞, then βsF(E) =∞,

(ii) if βsF(E) = 0, then βtF(E) = 0.

Proof: (i) Suppose that βtF(E) = ∞. Let ε > 0 be arbitrary and �x. For n ∈ Z+

let {Qink
}Knk=1 be a cover such that E ⊆

Kn⋃
k=1

Qink
, for every k l(ink) ≥ n and

Kn∑
k=1

(αink )s ≤

βsF ,n(E) + ε. For every i ∈ A∗ 0 < αi < 1, thus (αi)
t ≤ (αi)

s. Using this we get

βtF ,n(E) ≤
Kn∑
k=1

(αink )t ≤
Kn∑
k=1

(αink )s ≤ βsF ,n(E) + ε. (6.7)

If we take the limit in n , then we get βsF(E) =∞.

(ii) Suppose that βsF(E) = 0. Let ε > 0 be arbitrary and �x. Again, for n ∈ Z+

let {Qink
}Knk=1 be a cover such that E ⊆

Kn⋃
k=1

Qink
, for every k l(ink) ≥ n and

Kn∑
k=1

(αink )s ≤

βsF ,n(E) + ε. Then as above, we get

0 ≤ βtF ,n(E) ≤
Kn∑
k=1

(αink )t ≤
Kn∑
k=1

(αink )s ≤ βsF ,n(E) + ε. (6.8)

If we take the limit in n, then we get 0 ≤ βtF(E) ≤ ε. This holds for every ε > 0, thus

βtF(E) = 0. �

De�nition 6.7 Let E ⊆ Λ be a Borel set, then

dimF(E) = sup{t : βtF(E) =∞} = inf{t : βtF(E) = 0} (6.9)

is the F-dimension of E.
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Lemma 6.8 If E ⊆ Λ is a compact set, then

dimF(E) = dimH(E). (6.10)

Proof: If we use the de�nition of Hausdor� measure (is de�ned in equation (2.11)) for

E, then it is enough to see the �nite cover of E with balls, beacuse E is a compac set.

Let t > 0 arbitrary �xed. Suppose that Ht(E) <∞.

Let ε > 0 arbitrary. For a δ > 0, let {Aδk}
Kδ
k=1 be such that E ⊆

Kδ⋃
k=1

Aδk, for every k A
δ
k

is a ball with
∣∣Aδk∣∣ ≤ δ and

Kδ∑
k=1

∣∣Aδk∣∣t ≤ Ht
δ(E) + ε.

We would like to get a cover with Qi cubes. So let ϕδ : {1, . . . , Kδ} → A∗ be the map

which corresponds each Aδk to a cube Qi1,...,im . Consider the ball Aδk. Let x ∈ Aδk ∩ E,
if there is no such x, then we did not need the set Aδk in the cover. Because E ⊆ Λ,

there is an i = (i1, i2, i3, . . .) ∈ Σ such that Π(i) = x. Let ∆ = min{d(Fi(Q), Fj(Q)) :

i 6= j ∈ {1, . . . ,m}}, where we use the following notation. If A,B ⊆ Q, then d(A,B) =

inf{‖a− b‖ : a ∈ A,b ∈ B}, where ‖·‖ is the Euclidean norm on Q.

For every (i1, . . . , in) 6= j ∈ An d(Qi1,i2,...,in , Qj) ≥ ∆αi1,...in−1 . (6.11)

There is a unique m ∈ Z+ such that

∆αi1,...,im ≤
∣∣Aδk∣∣ < ∆αi1,...,im−1 . (6.12)

The only m-level cylinder set, which intersects with Aδk is Qi1,...,im . Thus we can conclude

that

Aδk ∩ E ⊆ Aδk ∩ Λ ⊆ Qi1,...,im . (6.13)

Using the above observations we can de�ne ϕδ(k) = (i1, . . . , im) ∈ A∗.

The set {Qϕδ(k)}Kδk=1 satis�es E ⊆
Kδ⋃
k=1

Qϕδ(k). Moreover, for every k the ∆αϕδ(k) ≤∣∣Aδk∣∣ ≤ δ holds. Let α̃ = min{αk : k ∈ A}. Then using this, we get ∆α̃m(δ,k) ≤ ∆αϕδ(k).

If we order the equation ∆α̃m(δ,k) ≤ δ, then we get

m(δ, k) ≥
ln
{
δ
∆

}
ln(α̃)

=
ln(δ)− ln(∆)

ln(α̃)
. (6.14)
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Using equation (6.12), we can see

∆tβt
F ,[ ln(δ)−ln(∆)

ln(α̃) ]
(E) ≤ ∆t

Kδ∑
k=1

(αϕδ(k))
t ≤

Kδ∑
k=1

∣∣Aδk∣∣t ≤ Ht
δ(E) + ε. (6.15)

If we let δ → 0, then we get βtF(E) <∞, because we supposed that Ht(E) <∞.

Now, we �xed an arbitrary t > 0 number. We suppose that βtF(E) <∞.

Let ε > 0 be arbitrary. For every n let {Qink
}Knk=1 be such that E ⊆

Kn⋃
k=1

Qink
, for every

k the length l(ink) ≥ n and
Kn∑
k=1

(αink )t ≤ βtF ,n(E) + ε.

The diameter of Qink
is
∣∣Qink

∣∣ =
√
kαink , where k = dim(Q). Moreover, for a �x n for

every k ∈ {1, . . . , Kn} the diameter
∣∣Qink

∣∣ ≤ √k(maxi∈A αi)
n. Thus

Ht√
k(maxi∈A αi)n

(E) ≤
Kn∑
k=1

(
√
kαink )t =

(√
k
)t Kn∑

k=1

(αink )t ≤
(√

k
)t

(βtF ,n(E) + ε). (6.16)

If n→∞, then we get Ht(E) <∞, because we supposed that βtF(E) <∞. �

Notation 6.9 Let X be a metric space. We denote the set of Borel probability measures

on X with P(X).

De�nition 6.10 Let θ ∈ P(Q) and x ∈ Λ. The i = (i1, i2 . . .) ∈ Σ satis�es Π(i) = x.

Then the F-local dimension of θ at the point x is

dimF(θ,x) = lim
n→∞

log(θ(Qn(x)))

log(αi1,...,in)
, (6.17)

if the limit exists.

De�nition 6.11 We say that the measure θ ∈ P(Q) is F-regular, if there is a constant

C such that

dimF(θ,x) = C for θ-a.e. x ∈ Q. (6.18)

We denote this C constant with dimF(θ).

Lemma 6.12 Let θ ∈ P(Q) be a measure such that spt(θ) ⊆ Λ. Let x ∈ Λ and i ∈ Σ for

which Π(i) = x. Then we can conclude that

if there exists dimF(θ,x), then there exists dimθ(x), (6.19)
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where dimθ(x) is the local dimension of the measure θ at x, which can be found in De�-

nition 2.17. Moreover, if dimF(θ,x) exists, then

dimF(θ,x) = dimθ(x). (6.20)

Proof: We suppose that dimF(θ,x) exists. Then for an arbitrary r > 0 consider the

ball Br(x) centered at x with radius r.

Let ∆ = min{d(Fi(Q), Fj(Q)) : i 6= j ∈ {1, . . . ,m}}, where we use d(A,B) =

inf{‖a− b‖ : a ∈ A,b ∈ B} to denote the distance of the sets A,B ⊆ Q. The ‖·‖
is the Euclidean norm on Q.

For every n ∈ Z+

for every j ∈ An d(Qi1,...,in , Qj) ≥ ∆αi1,...in−1 . (6.21)

There is a unique m(r) such that

∆αi1,...,im(r)
≤ r < ∆αi1,...,im(r)−1

. (6.22)

Thus, Br(x) intersects with only one m(r) cylinder set. The support of the measure θ is

a subset in Λ, so we can see that θ(Br(x)) ≤ θ(Qi1,...,im(r)
).

We remind that the dimension of Q is k. Let us introduce αmax = maxi∈A αi. Let L

be a �xed integer such that

L >
ln(∆)− ln(

√
k)

ln(αmax)
. (6.23)

If Q̃ = [a1, b1]× . . .× [ak, bk] ⊆ Q is a cube with side length c = b1−a1 = . . . = bk−ak,
then the diameter

∣∣∣Q̃∣∣∣ =
√
kc. Now, we can get the estimate

∣∣∣Qi1,...,im(r)+L

∣∣∣ =
√
kαi1,...im(r)+L

=
√
k· 1

∆
· (∆αi1,...,im(r)

) · αim(r)+1
· . . . · αim(r)+L

≤

≤
√
k · 1

∆
· r · αim(r)+1

· . . . · αim(r)+L
≤
√
k · 1

∆
· r · αLmax < r,

(6.24)

where we use equation (6.22) in the �rst inequality and the de�nition of L in the last step,

which is in equation (6.23).

The de�nition of L does not depend on r and Qi1,...,im(r)+L
⊆ Br(x). This implies that
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θ(Qi1,...,im(r)+L
) ≤ θ(Br(x)) ≤ θ(Qi1,...,im(r)

). Using equation (6.22) we get that

r < ∆ · αi1,...,im(r)−1
≤ ∆ · αi1,...,im(r)−1

·
αim(r)

αmin

· . . . ·
αim(r)+L

αmin

=
∆

αL+1
min

· αi1,...,im(r)+L
, (6.25)

where we use the notation αmin = mini∈A αi. Summarize the above observations

ln(θ(Qi1,...,im(r)+L
))

ln( ∆

αL+1
min

) + ln(αi1,...,im(r)+L
)
≤ ln(θ(Br(x)))

ln(r)
≤

ln(θ(Qi1,...,im(r)
))

ln(∆) + ln(αi1,...,im(r)
)
. (6.26)

For m(r) the m(r) ≥ ln(r)−ln(∆)
ln(αmin)

holds, thus if we let r → 0, then lim
r→0

m(r) = ∞. Take

r → 0 in equality (6.25), then we can see that dimθ(x) exists and dimθ(x) = dimF(θ,x).

�

Lemma 6.13 Let θ ∈ P(Q) such that the support of θ spt(θ) ⊆ Λ. Assume that for every

Π(i1, i2, . . .) = x ∈ Λ outside of θ-meaure 0

lim inf
n→∞

log θ(Qn(x))

log(αi1 , . . . , αin)
≥ β. (6.27)

Then dimH(spt(θ)) ≥ β.

Proof: Indirectly suppose that dimH(spt(θ)) < β, then there is β′ such that dimH(spt(θ)) <

β′ < β. Using Egorov's theorem there exist a set A and N ≥ 1 such that θ(A) > 1/2 and

for every x ∈ A and for every n ≥ N
log θ(Qn(x))

log(αi1 , . . . , αin)
≥ β′. (6.28)

This implies that

for every x ∈ A and for every n ≥ N θ(Qn(x)) ≤ αβ
′

i1,...,in
. (6.29)

Using Lemma 6.8 for any ε > 0 there exists Ñ ≥ N and {Qik
}Kk=1 such that

A ⊆
K⋃
k=1

Qik
, for every k l(ik) ≥ Ñ and

K∑
k=1

αβ
′

ik
< ε. (6.30)

We can assume that for every k Qik
∩ A 6= ∅. Thus for every k θ(Qik

) ≤ αβ
′

ik
. We get

the following

θ(A) ≤
K∑
k=1

θ(Qik
) ≤

K∑
k=1

αβ
′

ik
< ε. (6.31)
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This is a contradiction, if ε < 1/2. �

6.3 Ergodic CP-shift systems

In this section we would like to introduce dinamical systems which we will call ergodic

CP-shift systems.

De�nition 6.14 For every n ∈ Z+ let θn ∈ P(Q) and θ ∈ P(Q). We say that the

sequence of θn converges to θ in the weak-* topology, if

for every f : Q→ R continuous function lim
n→∞

∫
Q

f(x)dθn(x) =

∫
Q

f(x)dθ(x). (6.32)

We denote this convergence with lim
n→∞

θn = θ.

Lemma 6.15 For every n ∈ Z+ let θn ∈ P(Q) and θ ∈ P(Q). Then the following are

equivalent:

(i) lim
n→∞

θn = θ,

(ii) for every closed set C ⊆ Q lim sup
n→∞

θn(C) ≤ θ(C),

(iii) for every open set O ⊆ Q lim inf
n→∞

θn(O) ≥ θ(O).

Lemma 6.16 The weak-* topology on P(Q) is induced by a metric on P(Q).

The symbolic space Σ is also a metric space with the metric, which is introduced in

Notation 4.3.

LetM = {θ ∈ P(Q) : for every L (k-1)-dimensional subspace θ(L∩Q) = 0 }. That
isM is the set of those θ measures on Q such that the θ measure of all (k-1)-dimensional

subspace intersected with Q is zero.

Let

Φ = {(θ, i) ∈M× Σ : for every n ∈ Z+ θ(Qn(Π(i))) > 0} ⊂ P(Q)× Σ. (6.33)

Lemma 6.17 The set Φ is closed in P(Q)× Σ, thus it is a Borel set.

Proof: For every n ∈ Z+ let (θn, in) ∈ Φ such that lim
n→∞

(θn, in) = (θ, i) ∈ P(Q) × Σ.

For every n let in = (in1 , i
n
2 , . . .) and i = (i1, i2, . . .).
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First we want to prove (θ, i) ∈ Φ. For this, it is enough to prove that for every

k ≥ 1 θ(Qk(Π(i))) > 0. Let k ≥ 1 be arbitrary. There is an M such that for every

m ≥M i1 = im1 , . . . , ik = imk . Using this, we get

θ(Qk(Π(i))) ≥ lim sup
m→∞

θm(Qk(Π(i))) = lim sup
m→∞

θm(Qk(Π(im))) > 0, (6.34)

where we use Lemma 6.15.

Now, we would like to see that θ ∈ M. Let L ⊂ Rk be a (k-1)-dimensional subspace

in Rk and A = L ∩ Q. Then by continuity of measure implies θ(A) = lim
ε→0

θ(Nε(A)). Let

ε̃ > 0 be arbitrary. Then for every m there exists Em > 0 such that for every 0 < ε < Em

the inequality θm(Nε(A)) ≤ θm(A) + ε̃, because the continuity of the measures. Thus

θ(A) = lim
ε→0

θ(Nε(A)) ≤ lim sup
ε→0

lim inf
m→∞

θm(Nε(A)) ≤ lim inf
m→∞

(θm(A) + ε̃) = ε̃, (6.35)

where we use Lemma 6.15. If we let ε̃→ 0, then we get θ ∈M. �

We restrict Fi for every i, that is we consider Fi as Fi : Q → Qi function and F−1
i :

Qi → Q function. For (θ, i) ∈ Φ, i = (i1, i2, . . .) let

T (θ, i) =

(
(F−1

i1
)∗θ

θ(Qi1)
, σi

)
∈ P(Q)× Σ, (6.36)

where σ : Σ→ Σ is the left-shift on Σ.

Lemma 6.18 The map T is a continuous function.

The proof of this Lemma can be easily see. As a corollary, T is a Borel measurable

map.

Lemma 6.19 For (θ, i) ∈ Φ the image T (θ, i) ∈ Φ.

Proof: Let i = (i1, i2, . . .) ∈ Σ.

We denote the image

(θ̃, ĩ) = T (θ, i) =

(
(F−1

i1
)∗θ

θ(Qi1)
, σi

)
. (6.37)

The meaure θ̃ is inM, because if L is a (k-1)-dimensional subspace in Rk, then

(F−1
i1

)∗θ

θ(Qi1)
(L ∩Q) =

θ(Fi1(L ∩Q))

θ(Qi1)
≤ θ(Fi1(L) ∩Q)

θ(Qi1)
= 0, (6.38)
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because Fi1 preserves the (k-1)-dimensional subspaces.

Let n be an arbitrary positive integer. Then we would like to prove that θ̃(Qn(Π(̃i))) >

0. We use the de�nition of T to calculate

θ̃(Qn(Π(̃i))) =
θ(Fi1(Qn(Π(σi))))

θ(Qi1)
=
θ(Qn+1(Π(i)))

θ(Qi1)
> 0. (6.39)

�

De�nition 6.20 A probability measure η on P(Q)×Σ is said to be adapted, if there exists

a measure ρ on P(Q) such that for every bounded, measurable map f : P(Q)× Σ→ R∫
P(Q)×Σ

f(θ, i)dη(θ, i) =

∫
P(Q)

∫
Σ

f(θ, i)d(Π−1)∗θ(i)dρ(θ) =

∫
P(Q)

∫
Λ

f(θ,Π−1(x))dθ(x)dρ(θ).

De�nition 6.21 The (Φ, T, η) is an ergodic CP-shift system (ECPS system), if the mea-

sure η on Φ is adapted, T -invariant and the corresponding system is ergodic.

The CP refers to conditional probability measure, which appears in the image of

T (θ, i).

Lemma 6.22 Suppose that (Φ, T, η) is an ECPS system. Then
∫

Φ
− log(αi1)dη(θ, i) <∞

and

lim
n→∞

− 1

n
log(αi1...,in) =

∫
Φ

− log(αi1)dη(θ, i) for η-a.e. (θ, i), (6.40)

where i = (i1, i2, . . .) ∈ Σ.

Proof: Let L : Φ→ R be such that L(θ, i) = − log(αi1), where i = (i1, i2, . . .) ∈ Σ. The

function L is integrable, because L(θ, i) ≤ − log(αmin), where αmin = mini∈A αi. We can

easily calculate L(T k(θ, i)) = − log(αik). Then the Birkho�'s sum is

1

n

n−1∑
k=0

L(T k(θ, i)) = − 1

n
log(αi1,...,in). (6.41)

We get the statement, if we use Birkho�'s ergodic theorem. �

Lemma 6.23 If (Φ, T, η) is an ECPS system. Then
∫

Φ
− log θ(Q1(Π(i)))dη(θ, i) < ∞

and

lim
n→∞

− 1

n
ln(θ(Qi1,...,in)) =

∫
Φ

− log θ(Q1(Π(i)))dη(θ, i) for η-a.e. (θ, i), (6.42)

where i = (i1, i2, . . .).
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Proof: Let I : Φ → R such that I(θ, i) = − ln(θ(Qi1)) for (θ, i) ∈ Φ, where i =

(i1, i2, . . .). The map I is a positive measurable map.

We will use Birkho�'s ergodic theorem for the function I. First, we calulate the

Birho�'s sum.

We iterate the map T k-times, then we get

T k(θ, i) =

(
(F−1

ik
◦ . . . ◦ F−1

i1
)∗θ

θ(Qi1,...,ik)
, σki

)
. (6.43)

We replace this into I

I(T k(θ, i)) = − ln

(
θ((Fi1 ◦ . . . ◦ Fik)(Qik+1

))

θ(Qi1,...,ik)

)
= − ln

(
θ(Qi1,...,ik+1

)

θ(Qi1,...,ik)

)
. (6.44)

We can calculate the sum

1

n

n−1∑
k=0

I(T k(θ, i)) = − 1

n
ln(θ(Qi1,...,in)). (6.45)

Using Birkho�'s ergodic theorem if
∫

Φ
I(θ, i)dη(θ, i) exists, then

lim
n→∞

− 1

n
ln(θ(Qi1,...,in)) =

∫
Φ

I(θ, i)dη(θ, i) for η-a.e. (θ, i). (6.46)

If I is not integrable, then because I ≥ 0 then in this case the limit is ∞ for η almost

every (θ, i). Thus there exists a constant 0 ≤ C ≤ ∞ such that

lim
n→∞

− 1

n
ln(θ(Qi1,...,in)) = C for η-a.e. (θ, i), (6.47)

where i = (i1, i2, . . .). If C =∞, then using Lemma 6.22, we get that the F -local dimen-

sion of θ is in�nity almost everywhere. This contradicts with the assertion in Lemma 6.13,

because dimH(spt(θ)) ≤ k = dim(Q). Thus C is �nite, so
∫

Φ
− log θ(Q1(Π(i)))dη(θ, i) <

∞. �

6.4 Fubini decomposition

Let θ be a Borel probability measure on Q = Q′×Q′′, where Q′ = [0, 1]k1 and Q′′ = [0, 1]k2 .

We denoted the projections fromQ to Q′ with P ′ and from Q to Q′′ with P ′′.

Let A = σ({B×Q′′ : B ⊆ Q′ is a Borel set}), where σ denotes the generated σ-algebra
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by sets. Let

Pn =

{[
j1 − 1

2n
,
j1

2n

)
× . . .×

[
jk1 − 1

2n
,
jk1

2n

)
: j1, j2, . . . , jk1 ∈ {1, . . . , 2n}

}
(6.48)

Then Pn's are �nite measurable partitions of Q′ such that
∞∨
n=1

σ(Pn) is the Borel σ-

algebra on Q′, where
∨

denotes the generated σ-algebra by the elements of σ-algebras.

Thus, A is a σ-algebra with the same property as F in equation (5.2). Using Theorem

5.6 for θ almost every x there exists θAx and the set {θAx }x∈Q is a system of conditional

measures of θ with respect to the σ-algebra A. The conditional measures are the same

on the sets x1 ×Q′′, where x1 ∈ Q′. That is, if x,y ∈ x1 ×Q′′, then θAx = θAy . We know

that for every bounded, measurable f : Q→ R∫
Q

f(x1,x2)dθ(x1,x2) =

∫
Q

∫
Q

f(x1,x2)dθ(y1,y2)(x1,x2)dθ(y1,y2), (6.49)

where x1,y1 ∈ Q′ and x2,y2 ∈ Q′′. Let θ̂ = P ′∗θ be a measure on Q′. We can think of the

measure θ(x1,x2) as a measure on x1 ×Q′′. So θ(x1,x2) = δx1 × θx1 , where θx1 ∈ P(Q′′).

Thus, we can write equation (6.49) in the form that for every bounded, measurable

f : Q→ R ∫
Q

f(x1,x2)dθ(x1,x2) =

∫
Q′

∫
Q

f(x1,x2)d(δy1 × θy1)(x1,x2)dθ̂(y1), (6.50)

where x1,y1 ∈ Q′ and x2 ∈ Q′′. We call this measure decomposition as Fubini decompo-

sition.

Lemma 6.24 If θ ∈ M is a measure on Q, which has Fubini decomposition θ̂ ∈ P(Q′)

and for θ̂-a.e. x ∈ Q′ θx as in equation (6.50). Then

θx(E) = lim
n→∞

θ(Pn(x)× E)

θ(Pn(x)×Q′′)
, (6.51)

where x ∈ Q′ and E = I1 × . . . × Ik2 ⊆ Q′′ is a cube such that Ik's are intervals. The

Pn(x) ∈ Pn is the unique set in Pn such that x ∈ Pn(x).

Proof: We can see if we use Theorem 5.6, Lemma 6.15 and that θ ∈M. �
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6.5 Dimension conservation regarded to ECPS systems

De�nition 6.25 Let θ ∈ P(Q) with Fubini decomposition θ =
∫
Q′
δx × θxdθ̂(x), where

θ̂ ∈ P(Q′) and for θ̂-a.e. x ∈ Q′ θx ∈ P(Q′′). Then we say that θ satis�es dimension

conservation, if θ, θ̂ are F-regular and for θ̂-a.e. x ∈ Q′ the measure θx is F-regular,
moreover

dimF(θ) = dimF(θ̂) + dimF(θx) holds for θ̂-a.e. x ∈ Q′. (6.52)

Theorem 6.26 (Maker) Let (X,B, η, T ) be a measure-preserving system, where (X,B, η)

be a probability space with the Borel measure η. For every n ∈ Z+ let fn : X → R be

a measurable function such that for η almost every x ∈ X lim
n→∞

fn(x) = f∞(x). We

suppose that supn |fn(x)| = g(x) is an integrable function.

Then

lim
n→∞

1

n

n−1∑
k=0

fn−k(T
k(x)) = lim

n→∞

1

n

n−1∑
k=0

f∞(T k(x)) for η-a.e x ∈ X. (6.53)

Lemma 6.27 Let (X,B, η) be a Borel probability space. The set A ∈ B is a measurable

set. For every n ∈ Z+ let Fn be a �nite σ-algebra such that for every n Fn ⊆ Fn+1. We

use the notation η(A|Fn) = Eη(1A|Fn) for the conditional expectation of 1A with respect

to Fn. Let

f(x) = 1A(x) sup
n

(− ln η(A|Fn)(x)) , (6.54)

then f is an integrale function and
∫
X
f(x)dη(x) <∞.

Proof: It is enough to prove that
∞∑
N=0

η({x : f(x) ≥ N}) < ∞. For every n let Pn =

{P n
1 , . . . , P

n
Kn
} be a measurable partition of X such that σ(Pn) = Fn, where σ denotes

the generated σ-algebra by sets. For every n the map η(A|Fn) is constant on each P n
i

and for x ∈ P n
i η(A|Fn)(x) =

η(A∩Pni )

η(Pni )
.

We de�ne inductively the following sets

B1 =

{
E ∈ P1 : − ln

(
η(A ∩ E)

η(E)

)
≥ N

}
, Bc1 = P1 \ B1,

Bk =

{
E ∈ Pk : − ln

(
η(A ∩ E)

η(E)

)
≥ N

}
∩ Bck−1 ∩ . . . ∩ Bc1, Bck = Pk \ Bk.

(6.55)
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We can easily see that if E, Ẽ ∈
∞⋃
n=1

Bn, then E ∩ Ẽ = ∅ and

{x : f(x) ≥ N} ⊆
∞⋃
n=1

⋃
E∈Bn

A ∩ E. (6.56)

For every n and arbitrary E ∈ Bn η(A ∩ E) ≤ e−Nη(E). Thus

η({x : f(x) ≥ N}) ≤
∞∑
n=1

∑
E∈Bn

η(A ∩ E) ≤ e−N
∞∑
n=1

∑
E∈Bn

η(E) ≤ e−N . (6.57)

If we take the sum over N , then we get
∞∑
N=0

η({x : f(x) ≥ N}) <∞. �

Theorem 6.28 Let (Φ, T, η) be an ECPS system such that the corresponding measure on

P(Q) is ρ, then ρ-a.e. θ ∈ P(Q) satis�es dimension conservation.

Proof: For n ∈ Z+ de�ne the function Jn : Φ→ R such that

Jn(θ, i) =
θ(P ′Qn(Π(i))× P ′′Q1(Π(i)))

θ(P ′Qn(Π(i))×Q′′)
. (6.58)

Using Lemma 6.24, we can easily see that

J∞(θ, i) = θP ′(Π(i))(P
′′Q1(Π(i))). (6.59)

So, we can see that lim
n→∞

Jn(θ, i) = J∞(θ, i) holds for every (θ, i) ∈ Φ. We repeat that

T k(θ, i) =

(
(F−1

ik
◦ . . . ◦ F−1

i1
)∗θ

θ(Qi1,...,ik)
, σki

)
. (6.60)

We calculate

Jn(T k(θ, i)) =
θ(Fi1 . . . Fik(P

′Qn(Π(σki))× P ′′Q1(Π(σki))))

θ(Fi1 . . . Fik(P
′Qn(Π(σki))×Q′′))

=

=
θ(P ′Qn+k(Π(i))× P ′′Qk+1(Π(i)))

θ(P ′Qn+k(Π(i))× P ′′Qk(Π(i)))
.

(6.61)

Replace n by n− k, then

Jn−k(T
k(θ, i)) =

θ(P ′Qn(Π(i))× P ′′Qk+1(Π(i)))

θ(P ′Qn(Π(i))× P ′′Qk(Π(i)))
. (6.62)
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Let the functions Kn : Φ → R and K∞ : Φ → R such that Kn(θ, i) = − ln(Jn(θ, i)) and

K∞(θ, i) = − ln(J∞(θ, i)).

Then

1

n

n−1∑
k=0

Kn−k(T
k(θ, i)) =

= − 1

n
ln

(
n−1∏
k=0

θ(P ′Qn(Π(i))× P ′′Qk+1(Π(i)))

θ(P ′Qn(Π(i))× P ′′Qk(Π(i)))

)
=

= − 1

n
ln

(
θ(P ′Qn(Π(i))× P ′′Qn(Π(i)))

θ(P ′Qn(Π(i))× P ′′Q0(Π(i)))

)
=

= − 1

n
lnθ(Qn(Π(i))) +

1

n
ln θ̂(P ′Qn(Π(i))) =

= Wn(θ, i)−Rn(θ, i).

(6.63)

Fix k and let n tends to in�nity

K∞(T k(θ, i)) = − ln θΠ(i)(P
′′Qk+1(Π(i))) + ln θΠ(i)(P

′′Qk(Π(i))). (6.64)

We can easily calculate the Birkho�'s sum

1

n

n−1∑
k=0

K∞(T k(θ, i)) = − 1

n
ln θP ′Π(i)(P

′′Qn(Π(i))) = Sn(θ, i). (6.65)

If we use Birkho�'s ergodic theorem for the functionK∞(θ, i) = − ln(θP ′(Π(i))(P
′′Q1(Π(i)))) ≥

0, then there exists a constant 0 ≤ C̃ ≤ ∞ such that

lim
n→∞

1

n

n−1∑
k=0

K∞(T k(θ, i)) = C̃ for η-a.e. (θ, i) ∈ Φ. (6.66)

We want to use Maker's theorem 6.26. Thus, we have to verify that supnKn(θ, i) is

an integrable function.

We already know, that

Kn(θ, i) = − ln

(
θ(P ′Qn(Π(i))× P ′′Q1(Π(i)))

θ(P ′Qn(Π(i))×Q′′)

)
. (6.67)

We want to use Lemma 6.27, so we try to write Kn(θ, i) as a function of conditional

measures. Let Fn = σ({P ′Qi × Q′′ : i ∈ An}) be a �nite σ-algebra for every n. The σ

denotes the generated σ-algebra by sets. We can express the following with conditional
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measure for i = (i1, i2, . . .) ∈ Σ and j ∈ A

θ(Q′ × P ′′Qj|Fn)(Π(i)) =

{
θ(P ′Qn(Π(i))×P ′′Q1(Π(i)))

θ(P ′Qn(Π(i))×Q′′) , if i1 = j

0, if i1 6= j
. (6.68)

We can use this to get

Kn(θ, i) =
m∑
j=1

1Q′×P ′′Qj (Π(i)) (− ln θ(Q′ × P ′′Qj|Fn)(Π(i))) =
m∑
j=1

M j
n(θ,Π(i)),

where M j
n(θ, ·) : Q→ R.

If we use Lemma 6.27 for the functions M j
n(θ, ·), then we get that the supremum in

n is an integrable function with respect to the measure θ, thus the supremum in n of its

�nite sum is also an integrable function.

Let

M(θ,Π(i)) = sup
n
Kn(θ, i), (6.69)

we have seen thatM(θ, ·) is integrable on Q with respect to θ. That is
∫
Q
M(θ,x)dθ(x) <

∞. This implies

L(θ) =

∫
Σ

M(θ,Π(i))d(Π)−1
∗ θ(i) =

∫
Λ

M(θ,x)dθ(x) <∞. (6.70)

The function L : P(Q) → R is continuous and �nite on a compact set, thus L is an

integrable function with respect to the measure ρ and
∫
P(Q)

L(θ)dρ(θ) < ∞. Now, using

that η is adapted we can easily see that supnKn(θ, i) is an integrable function on Φ with

respect to η.

We have seen that Maker's theorem 6.26 is applicable. Using this theorem for the

sequence Kn, then we get that

C̃ = lim
n→∞

1

n

n−1∑
k=0

K∞(T k(θ, i)) = lim
n→∞

1

n

n−1∑
k=0

Kn−k(T
k(θ, i)) for η-a.e. (θ, i) ∈ Φ. (6.71)

With the above notation, this is

lim
n→∞

Sn(θ, i) = lim
n→∞

Wn(θ, i)− lim
n→∞

Rn(θ, i) for η-a.e. (θ, i) ∈ Φ, (6.72)

where the limits exist and are �nite η almost everywhere, due to the arguement, which is

in the proof of Lemma 6.23.
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Thus the corresponding integrals exist∫
Φ

− ln θP ′Π(i)(P
′′Q1(Π(i)))dη(θ, i) =

=

∫
Φ

− ln θ(Q1(Π(i)))dη(θ, i)−
∫
Φ

− ln θ̂(P ′′Q1(Π(i)))dη(θ, i).

(6.73)

If we divide equation (6.72) with lim
n→∞

− 1

n
ln(αi1,...,in), then we get

dimF(θP ′Π(i), P
′′Π(i)) = dimF(θ,Π(i))− dimF(θ̂, P ′Π(i)) for η-a.e. (θ, i) ∈ Φ (6.74)

and each F -local dimension is constant for η-a.e. (θ, i). Thus, if we use that the measure

η is adapted, then we get the statement for ρ almost every measure. �

Corollary 6.29 Let (Φ, T, η) be an ECPS system with the corresponding measure ρ on

P(Q). Then ρ almost every θ ∈ P(Q) is such that θ, θ̂ is F-regular and

dimF(θ̂) =

∫
Φ
− ln θ(Q1(Π(i)))dη(θ, i)−

∫
Φ
− ln θP ′Π(i)(P

′′Q1(Π(i)))dη(θ, i)∫
Φ
− log(αi1)dη(θ, i)

. (6.75)

6.6 Dimension conservation in a special case

In this section we construct a measure η such that (Φ, T, η) is an ECPS system.

Let (Ω,G,P) be a probability space. Let X1, X2, . . . : Ω → A be independent,

identically distributed random variables such that for every k P(Xk = i) = pi. Let

X : Ω → Σ such that for ω ∈ Ω X(ω) = (X1(ω), X2(ω) . . .). Then the distribution of

X is X∗P = µ = (p1, . . . , pm)Z
+
. Further, let Zn : Ω → Λ random variables such that

Zn(ω) = Π(σnX(ω)).

Lemma 6.30 Let η be the distribution of (δZ0 , X), that is η = (δZ0 , X)∗P. Then (Φ, T, η)

forms an ECPS system with the corresponding measure ρ = δν on P(Q).

Proof: First, we would like to see that η is a T -invariant measure. Let A ⊆ Φ be an

arbitrary measurable set. Because η is the distribution function of (δZ0 , X), thus it is

enough to see the elements of A which is in the form (δZ0(ω), X(ω)). So,

A = {(δZ0(ω), X(ω)) : ω ∈ V }. (6.76)
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The map T acts on the image by (δZ0 , X) the way

T (δZ0(ω), X(ω)) = (δZ1(ω), σX(ω)). (6.77)

Then

T−1(A) = {(δZ0(ω), X(ω)) : (δZ1(ω), σX(ω)) ∈ A}. (6.78)

The η measure of T−1(A) is

η(T−1A) = P(ω : (δΠ(σX(ω)), σX(ω)) ∈ A}) =

= P({ω : (δZ0(ω), X(ω)) ∈ A}) = η(A),
(6.79)

because the distribution of X is invariant under σ.

We prove that η de�nes an ergodic system. For this let A be a T -invariant set, that is

T−1A = A with respect to η. Then

(δZ0(ω), X(ω)) ∈ A ⇐⇒ (δZ0(ω), X(ω)) ∈ T−1A ⇐⇒ (δZ1(ω), σX(ω)) ∈ A (6.80)

holds for η almost every (δZ0(ω), X(ω)). We can write

A = {(δZ0(ω), X(ω)) : X(ω) ∈ W}, (6.81)

because the set W determines A. Then we can easily see that σ−1W = W . Thus

η(A) = P({ω : (δZ0(ω), X(ω)) ∈ A}) =

P({ω :X(ω) ∈ W}) = X∗P(W ) = µ(W ) = 0 or 1,
(6.82)

because (Σ, σ, µ) is an ergodic, σ-invariant dynamical system.

Last, we have to prove that the measure η is adapted. Take an f integrable function,

then ∫
Φ

f(θ, i)dη(θ, i) =

∫
Ω

f(δZ0(ω), X(ω))dP(ω) =

∫
Ω

f(δΠ(X(ω)), X(ω))dP(ω). (6.83)

We can easily see that ∫
Λ

f(δΠ(X(ω)),Π
−1y)dδΠ(X(ω))(y). (6.84)
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Replace this into the above calculation∫
Φ

f(θ, i)dη(θ, i) =

∫
Ω

∫
Λ

f(δΠ(X(ω)),Π
−1y)dδΠ(X(ω))(y) =

=

∫
P(Q)

∫
Λ

f(θ,Π−1y)dθ(y)d(δΠX)∗P(θ) =

=

∫
P(Q)

∫
Λ

f(θ, y)d(Π−1)∗θ(y)dδν(θ),

(6.85)

where we use in the last step that (δΠX)∗P = δν . This is because

(δΠX)∗P(ν) = 1. (6.86)

�

Theorem 6.31 The self-similar measure ν on Λ satis�es dimension conservation and

dimF(ν̂) =

∫
Λ
− ln ν(Q1(x))dν(x)−

∫
Λ
− ln νP ′x(P ′′Q1(x))dν(x)∫

Σ
− log(αi1)dµ(i)

. (6.87)

Proof: The proof is the use of Lemma 6.30, Theorem 6.28 and Corollary 6.29. �
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Chapter 7

Hausdor�-dimension of a self-similar

measure of a forward separated system

Sα,β,γ

Theorem 7.1 Let Sα,β,γ = {S1, S2, S3} be a forward separated system. (See De�nition

3.1 and 3.3). The symbolic space is Σ = {1, 2, 3}N+
and the natural projection of Sα,β,γ

is Πα,β,γ. Let µ = (p1, p2, p3)N
+
be a Bernoulli measure on Σ for the probability vector

p = (p1, p2, p3). And let ν̂ = Πα,β,γ∗µ = µ ◦ Π−1
α,β,γ is the self-similar measure on the

attractor with respect to p. Then the Hausdor� dimension of ν̂ can be exactly determined

as

dimH(ν̂) =
−(p1 log(p1) + p2 log(p2) + p3 log(p3)) + φ(p1, p2, p3)

−(p1 log(α) + p2 log(β) + p3 log(γ))
, (7.1)

where

Φ(p1, p2, p3) =
∞∑
k=1

(
k∑

m=1

(
k − 1

m− 1

)
log
(m
k

)
pm1 p

k−m
2 p3 +

k−1∑
m=0

(
k − 1

m

)
log

(
k −m
k

)
pm1 p

k−m
2 p3

)
.

Proof: We introduce easier notation for further use. We denote Sα,β,γ with S and Πα,β,γ

is Π. The Kα,β,γ attractor of S is K. Let R = S3(K) and L = S1(K) ∪ S2(K).

Let F = {F1, F2, F3} be a self-similar IFS on [0, 1]2 such that F1(x) = αx, F2(x) =

βx+ (0, 1− β), F3(x) = γx+ (1− γ, 0). Let Π̃ the natural projection of F and ν = Π̃∗µ.

The invariant measure ν̂ is the projection of the measure ν. Thus using Theorem 6.31,
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it is enough to calculate ∫
Λ

− ln νP ′x(P ′′Q1(x))dν(x). (7.2)

Let γ be the Borel σ-algebra on [0, 1] ⊆ R.
The σ-algebra γ can be generated by countable many �nite partition. Let

Pn =

{[
k

2n
,
k + 1

2n

)
: 0 ≤ k ≤ 2n − 1

}
, (7.3)

this is a �nite partition of [0, 1] and
∞∨
i=1

Pi is the Borel σ-algebra on [0, 1]. Using this fact

and Theorem 5.6, then we get that {µi}i∈Σ system of conditional measures with respect

to the σ-algebra Π−1γ exists. We can see that

−
∫
Λ

ln νP ′x(P ′′Q1(x))dν(x) = −
∫
Σ

log(µi([i1]))dµ(i). (7.4)

Using Theorem 5.6, we conclude that

µi = lim
n→∞

µ|Π−1(Pn(Π(i)))

µ(Π−1(Pn(Π(i))))
, (7.5)

where limit is meant in the weak-star topology. We know the property of weak-star

convergence, that if νn, ν are Borel probability measures on the compact metric space

X and lim
n→∞

νn = ν in weak-star sense, then for all U ⊆ X open and Z ⊆ X closed

lim inf
n→∞

νn(U) ≥ ν(U) and lim sup
n→∞

νn(Z) ≤ ν(Z) hold. Because [k] ⊆ Σ is open and closed,

then

µi([i1]) = lim
n→∞

µ(Π−1(Pn(Π(i))) ∩ [i1])

µ(Π−1(Pn(Π(i))))
. (7.6)

For every ε > 0 there exists n ∈ N enough large such that Pn(Π(i)) ⊆ B(Π(i), ε).

We de�ne for all m,n = 0, 1, . . . the set

H(m,n) = {i = (i1, i2, . . . ) ∈ Σ : il 6= 3 ∀l = 1, . . .m+ n,

im+n+1 = 3, |{1 ≤ k ≤ m+ n : ik = 1}| = m} .
(7.7)

We can see that Π(H(m,n)) = Sm1 S
n
2S3(K) = Sm1 S

n
2 (R).

Let i ∈ H(m,n) ⊆ Σ. Then Π(i) 6= 0, because im+n+1 = 3, thus Π(i) ∈ Sm1 Sn2S3(K) ⊆
[a(m,n), 1], where a(m,n) = 1

2
(min{α, β})m+n
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If (max{α, β})k+l < a(m,n)
2

, then the sets Sk1S
l
2(R) ⊆ (0, a(m,n)

2
). Thus there exist

M(m,n) ∈ N such that if k + l > M(m,n), then Sk1S
l
2(R) ⊆ (0, a(m,n)

2
).

We introduce

H =
{
Sk1S

l
2(R) : k + l ≤M(m,n), k, l = 0, 1, . . .

}
. (7.8)

We can notice that Sm1 S
n
2 (R) ∈ H. The set H is �nite and the elements are disjoint

compact sets, thus there exists ε1 > 0 such that

∀H1 6= H2 ∈ H Nε1(H1) ∩Nε1(H2) = ∅, (7.9)

where Nε(H) means the ε neighbourhood of the set H.

Using K/{0} =
∞⋃

k,l=0

Sk1S
l
2(R), then there exists ε2 such that

∀k, l = 0, 1 . . . Nε2(Sm1 S
n
2 (R)) ∩Nε2(Sk1S

l
2(R)) = ∅, (7.10)

Thus we can conclude that B(Π(i), ε2)∩K ⊆ Sm1 S
n
2 (R). For every ε > 0 there exists n ∈ N

enough large such that Pn(Π(i)) ⊆ B(Π(i), ε). So there existN(n,m) ∈ N such that for all

N(m,n) < z Pz(Π(i)) ⊆ B(Π(i), ε2). Moreover, for all N(m,n) < z Π−1(Pz(Π(i)) ⊆
H(m,n).

Let z > N(m,n) be �x, then

Π−1(Pz(Π(i))) = E × Tz, where

E = {(i1, . . . , im+n+1) : im+n+1 = 3, |{k : ik = 1}| = m, |{k : ik = 2}| = n}

Tz = {(j1, j2, . . . ) ∈ {1, 2, 3}N
+

: ∃k ∈ Π−1(Pz(Π(i))) jn+m+1 = kn+m+1, jn+m+2 = kn+m+2, . . . }.

The above equation is true, because if k ∈ Π−1(Pz(Π(i))), then if permute the �rst n+m

coordinates and in this way we get k′, then Π(k) = Π(k′). Then

µ(E × Tz ∩ [i1])

µ(E × Tz)
=
µ((E ∩ [i1])× Tz)

µ(E × Tz)
=
µ([E ∩ [i1] ])µ(Tz)

µ([E])µ(Tz)
=
µ([E ∩ [i1] ])

µ([E])
, (7.11)

where [E] = {i ∈ Σ : ∃j ∈ E ∃k ∈ Σ i = j ∗ k}.
Because µ is a Bernoulli measure, then

µ(E) =
(m+ n)!

m!n!
pm1 p

n
2p3. (7.12)

49



Suppose that i1 = 1, then

µ(E ∩ [i1]) =
(m+ n− 1)!

(m− 1)!n!
pm1 p

n
2p3. (7.13)

In this case for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
=
µ(E × Tz ∩ [i1])

µ(E × Tz)
=

m

m+ n
. (7.14)

Suppose that i1 = 2, then

µ(E ∩ [i1]) =
(m+ n− 1)!

m!(n− 1)!
pm1 p

n
2p3. (7.15)

In this case for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
=
µ(E × Tz ∩ [i1])

µ(E × Tz)
=

n

m+ n
. (7.16)

Suppose that i1 = 3, then for enough large z we get Π−1(Pz(Π(i)))∩ [3] = Π−1(Pz(Π(i))),

thus for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
= 1. (7.17)

From the above observations, if i ∈ H(m,n) then

µi([i1]) =


m

m+n
, if i1 = 1,

n
m+n

, if i1 = 2,

1, if i1 = 3.

(7.18)

Using Kolmogorov 0-1 law we get

µ(
∞⋃

m,n=0

H(m,n)) = 1. (7.19)

The integral that we want to calculate is∫
Σ

log(µi([i1]))dµ(i) =

=
∞∑
k=1

k∑
m=1

log
(m
k

) (k − 1)!

(m− 1)!(k −m)!
pm1 p

k−m
2 p3 +

∞∑
k=1

k−1∑
m=0

log

(
k −m
k

)
(k − 1)!

m!(k −m− 1)!
pm1 p

k−m
2 p3,
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where we use combinatorics calculation. �
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