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Assistant Professor, Department of Stochastics

2016



Contents

1 Introduction 2

2 Theoretical background 6

2.1 Definition of IFS (Iterated Function System) . . . . . . . . . . 6

2.2 Space of compact subsets and the

Hausdorff metric . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Code space and the address map . . . . . . . . . . . . . . . . 12

2.4 Markov measures . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 IFS with probabilities . . . . . . . . . . . . . . . . . . . . . . . 21

3 Chaos game 28

4 DNA representation 31

5 Conclusions 38

Bibliography 40

1



Chapter 1

Introduction

The motivation for this BSc thesis came from three articles, the work of H.

J. Jeffrey [1], D. Koslicki and D. J. Thompson [2], and M. F. Barnsley and

K. Leśniak [3].

Jeffrey presented a method for representing DNA sequences, called Chaos

Game Representation (CGR), see precisely in Chapter 3. A nucleotide se-

quence is composed of the four acid bases: adenine (A), cytozine (C), guanine

(G) and thymine (T) – or in certain cases uracil (U). Take a square where the

four vertices are labelled ’A’, ’C’, ’G’ and ’T’. The first point is placed halfway

between the center and the vertex corresponding to the first nucleotide in the

sequence. The next point is plotted halfway between the previous point and

the vertex corresponding to the second nucleotide, etc. So our functions are

the following:

fA

(
x

y

)
=

1

2

(
x

y

)
, fT

(
x

y

)
=

1

2

(
x+ 1

y

)
,

fG

(
x

y

)
=

1

2

(
x+ 1

y + 1

)
, fC

(
x

y

)
=

1

2

(
x+ 1

y + 1

)
.

We can see an example for the CGR’s few steps in Fig. 1.1. Following this

algorithm, we get a picture with a complex structure depending on the se-

quence. The chaos game representation of 73 356 bases of HUMHBB (Human

Beta Globin Region on Chromosome 11) is in Fig. 1.2.
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Figure 1.1: CGRs of {C,G,C,T,A,G}. Made with Wolfram Mathematica

Figure 1.2: CGR of Human Beta Globin Region on Chromosome 11 (73 357

bases). Source: [1]
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Barnsley and Leśniak investigated approximations of the attractor of an

iterated function system with probabilities (see later in Section 2.5) with the

use of stochastic process [3]. They showed that the sequences generated with

the chaos game, converges to the attractor of the iterated function system

(3.2).

We tried to represent it on DNA sequences, like Koslicki and Thompson

in [2]. They used topological pressure to approach the nucleotide triplets’

distribution, which is a special topological entropy, but this is out of our

interest, we tried a more simple method. We considered the nucleotide se-

quences as Markov chains. We counted statistical probabilities. We can see

the homogeneity of Mus musculus’ (mouse) nucleotide sequence in Fig. 1.3.
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(a) First (b) From 600 001st

(c) Last

Figure 1.3: CGR of Mus musculus (200 000 bases from different parts). Made

with Wolfram Mathematica
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Chapter 2

Theoretical background

The purpose of this section is to introduce the theory of the iterated function

systems and Hausdorff metric, for which we generally follow the book [4].

2.1 Definition of IFS (Iterated Function Sys-

tem)

Definition 2.1. Let (X, d) be a complete metric space. We call a function

f : X → X Lipschitz continuous if there exists a real constant c such that

d(f(x), f(y)) ≤ c d(x, y) for all x, y ∈ X. We denote the set of the Lipschitz

continuous functions on X by Lip(X).

We will use a special type of Lipschitz continuity, called contraction.

Definition 2.2. Let (X, d) be a complete metric space. We call a function

f : X → X contraction if there exists some c ∈ [0, 1) with d(f(x), f(y)) ≤
c d(x, y) for all x, y ∈ X. The contraction factor for the contraction f is the

smallest such constant c. We denote the set of these functions by Lip1(X).

Definition 2.3 (IFS). Let X be a metric space. Then an iterated function

system on X is a finite collection of mappings fi : X → X, i = 0, 1, . . . , N ,

which are usually contractive. If ci is the conractivity of fi, then the contrac-

tivity of the IFS is c := maxi ci.
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For example, consider the Cantor set C. It is a set of real numbers from

[0, 1], whose ternary expansion in base three does not contain the digit 1. The

Cantor set’s IFS {f0, f1} on X = R, where f0(x) = x/3, f1(x) = x/3 + 1/3

and the contraction factor of the IFS is 1/3 since c0 = c1 = 1/3.

The importance of an IFS lies in the fact that it formally encodes the idea

of self-similarity. Let us just define what we mean by similarity transform.

It is a mapping f : X → X with the property that d(f(x), f(y)) = r d(x, y)

for all x, y, where r > 0 is the similarity ratio. For example, each part of the

Cantor set is clearly similar to the whole set with similiraty ratio r = 1
3
.

2.2 Space of compact subsets and the

Hausdorff metric

Definition 2.4. Let be

H(X) = {A ⊆ X : A 6= ∅ and A is compact}.

In the following we define a metric on this space.

Definition 2.5 (Hausdorff distance). For A,B ∈ H(X), let us define

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

Another way to define the Hausdorff metric is through the idea of an

ε-dilation of a set.

Definition 2.6. If A denotes a subset of a metric space X and ε > 0, then

the ε-dilation of A is the set

Aε = {x : d(x, a) < ε for some a ∈ A}.

Clearly A ⊆ Aε for any ε > 0.
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Notice that

d(a,B) := inf
b∈B

d(a, b)

is the distance from the point a to the compact set B. Then, we can see that

d(A,B) := sup
a∈A

inf
b∈B

d(a, b)

is the least ε for which A ⊆ Bε. Thus it is like a one-sided distance from

B to A. The Hausdorff distance is a maximum of these one-sided distances,

d(A,B) and d(B,A). Thus we proved the following proposition.

Proposition 2.7. If A,B ∈ H(X), then the Hausdorff distance is

dH(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

Now we show that the Hausdorff distance is a metric.

Theorem 2.8. If (X, d) is a metric, then so is the Hausdorff metric based

on d.

Proof. To verify this theorem, we have to prove the symmetry, the non-

negativity and the triangle inequality.

(i) It is clear from the definition that dH(A,B) = dH(B,A).

(ii) We can see that dH(A,B) ≥ 0 for any A,B ∈ H(X). It is obvious that

dH(A,A) = 0. On the other hand, suppose that dH(A,B) = 0, then we

have infb d(a, b) = 0 for each a ∈ A. It means that a ∈ B because B

is compact. Thus A ⊆ B. By similar arguments we get that B ⊆ A,

thus A = B.

(iii) Let A,B,C ∈ H(X). We can see that

d(a,B) ≤ inf
b∈B

(d(a, c) +d(c, b)) = d(a, c) + inf
b∈B

d(c, b) = d(a, c) +d(c, B)

for any a ∈ A and c ∈ C. We can see that

d(a,B) ≤ inf
c∈C

(d(a, c) + d(c, B)).
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From this follows that

d(a,B) ≤ inf
c∈C

d(a, c) + sup
c∈C

d(c, B) = d(a, C) + d(C,B).

Thus

d(A,B) = sup
a∈A

inf
b∈B

d(a, b) ≤ d(A,C) + d(C,B).

In a similar manner we can see that d(B,A) ≤ d(B,C) + d(C,A), thus

we get that dH(A,B) ≤ dH(A,C) + dH(C,B).

Theorem 2.9. Let (X, d) be complete. Then (H(X), dH) is also complete.

Proof. We begin the proof by suggest that An ∈ H(X) is a Cauchy sequence,

and define the set A by

A =
∞⋂
m=1

⋃
n≥m

An,

where we use the bar to denote closure. We wish to show that An converges,

and for this we have to prove that dH(An, A)→ 0 and A ∈ H(X).

We show first that A ∈ H(X). We know that X is a complete metric

space, so being compact is equivalent to being closed and totally bounded.

Define

Bm =
⋃
n≥m

An.

We will show that each Bm is compact and nonempty, wich would mean that

so is A. It is clear that each Bm is closed and Bm+1 ⊆ Bm, so it will be

sufficient to show that B1 is totally bounded. Let ε > 0 be given. Since An

is Cauchy, there is some m such that dH(Am, An) < ε/2 for any n > m. It

means that An ⊆ (Am)ε/2, where (Am)ε/2 is the ε/2-dilation of Am. From

this follows that Bm ⊆ (Am)ε/2, thus since Am is totally bounded so is Bm.

It is easy to see that

B1 = (A1 ∪ A2 ∪ · · · ∪ Am−1 ∪Bm),

9



so it is the closure of a finite union of totally bounded sets. This implies that

B1 is totally bounded, thus is compact.

Now we show that dH(An, A) → 0. Let ε > 0 be given, then there is

some m such that dH(Am, An) < ε/2 for any n > m. This means that An ⊆
(Bm)ε/2. Moreover, since Bm ⊆ (Am)ε/2 and Am ⊆ (An)ε/2, we have Bm ⊆
(An)ε. From this follows that A ⊆ (An)ε. To show the reverse containing,

let x ∈ An. Then we have a sequence xk ∈ Ak with d(xk, x) < ε/2 for all

k > n. It means that xk ∈ Bn, which is compact, so xk has a cluster point

y ∈ Bn and d(y, x) ≤ ε/2. The tail of xk is in Bl for all l > n, so y ∈ A,

which means that An ⊆ Aε. Thus dH(A,An) < ε.

Any mapping f : X→ X naturally induces another mapping f̂ : H(X)→
H(X), where f̂(A) = {f(a) : a ∈ A}. Although formally these two functions

are different, often we will not distinguish them. An IFS {f0, f1, . . . , fN}
induces a mapping on H(X):

F (S) =
N⋃
i=0

f̂i(S).

Remark 2.10. If {fi} is an IFS on X with contractivity c < 1, then the

induced mapping F on H(X) is also contractive with contractivity c.

Proof. Firstly, it is easy to see that if f : X → X is a contraction with con-

tractivity c < 1, then f̂ : H(X)→ H(X) is also a contraction with contractiv-

ity c, because the one-sided distance satisfies the inequality d(f(x), f(y)) ≤
c d(x, y), so have d(f̂(A), f̂(B)) ≤ c d(A,B).

Now we will prove that

dH(A1 ∪ A2, B1 ∪B2) ≤ max {dH(A1, B1), dH(A2, B2)}.

We can see that for any C ∈ H(X) we have

d(A1 ∪ A2, C) = sup
a∈A1∪A2

d(a, C) =

= max { sup
a∈A1

d(a, C), sup
a∈A2

d(a, C)} =

= max {d(A1, C), d(A2, C)}

10



and we have

d(a,B1 ∪B2) = inf
b∈B1∪B2

d(a, b) =

= min { inf
b∈B1

d(a, b), inf
b∈B2

d(a, b)} =

= min {d(a,B1), d(a,B2)}.

From these follows, that

dH(A1 ∪ A2, B1 ∪B2) =

= max {min {d(A1, B1), d(A1, B2},min {d(A2, B1, d(A2, B2)},

min {d(B1, A1), d(B1, A2)},min {d(B2, A1), d(B2, A2)}} ≤

≤ max {d(A1, B1), d(B1, A1), d(A2, B2), d(B2, A2)} =

= max {dH(A1, B1), dH(A2, B2)}.

From this property of the Hausdorff distance follows the statement.

Theorem 2.11 (Contraction mapping theorem). Assume that (X, d) is a

complete metric space and f : X → X is a contraction with contraction

factor c < 1. Then there exists a unique x̄ ∈ X having the property that

f(x̄) = x̄. Moreover, the sequence defined by xn+1 = f(xn) converges to x̄

with the estimate

d(xn, x̄) ≤ cn d(x0, x̄),

for any x0.

The special strength of this theorem (which is also called Banach’s fixed-

point theorem) lies in the fact that that it not only guarantees a unique fixed

point but also gives an effective construction to approximate this fixed point

to any degree of accuracy – we just iterate the function sufficiently many

times.

Corollary 2.12. Every IFS induced mapping has a unique fixed point A in

H(X), which satisfies the equation

A =
N⋃
i=0

fi(A). (2.1)

This fixed point is called the attractor of the IFS.
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Figure 2.1: The Sierpinski triangle’s iteration’s first few steps. Made with

Wolfram Mathematica

The Sierpinski triangle is composed of three similar copies of itself, with

similarity ratio r = 1/2. The three mappings are the following:

f0

(
x

y

)
=

1

2

(
x

y + 1

)
, f1

(
x

y

)
=

1

2

(
x

y

)
, f2

(
x

y

)
=

1

2

(
x+ 1

y

)
.

In Fig. 2.1 we can see the first few steps of the Sierpinski triangle’s iteration.

The initial set S0 is a simple triangle, and it seems clear that the limit should

be the Sierpinski triangle. That is the fixed point of the mapping F , so that

F is a contraction on H(X).

2.3 Code space and the address map

There is a recursive “addressing scheme” which labels all the points of the

attractor of an IFS. Let A denote the attractor of the IFS {f0, f1, . . . , fN}.
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We can see that A satisfies the self-similarity identity

A = f0(A) ∪ f1(A) ∪ · · · ∪ fN(A) =
N⋃
i=0

fi(A).

If we apply this decomposing again, we get the equation

A = f0

(
N⋃
i=0

fi(A)

)
∪ f1

(
N⋃
i=0

fi(A)

)
∪ · · · ∪ fN

(
N⋃
i=0

fi(A)

)
.

Continuing, the nth decomposition is

A =
N⋃
i0=0

N⋃
i1=0

· · ·
N⋃

in=0

fi0 ◦ fi1 ◦ · · · ◦ fin(A).

Definition 2.13 (Code space). The code space of the IFS {f0, . . . fN} is the

set

Σ = {0, 1, . . . , N}N = {ı̄ = {i0, i1, . . . } : in ∈ {0, 1, . . . , N}, n ∈ N}.

We define a metric on Σ:

d(̄ı, ̄) =
∞∑
n=0

|in − jn|
(N + 1)n

Definition 2.14 (Address map). Let us fix x ∈ X. The address map is

π : Σ→ X where

π(̄ı) = lim
n→∞

fi0 ◦ fi1 ◦ · · · ◦ fin−1 ◦ fin(x).

Let us introduce some notations. Sometimes we denote the space of

sequences of length n by Σn = {0, 1, . . . , N}n,

Ai0i1...in := fi0 ◦ fi1 ◦ · · · ◦ fin(A),

and the truncation of ı̄ to the first n + 1 terms by in. Thus we get the

following notation:

Ain = fin(A) = fi0 ◦ fi1 ◦ · · · ◦ fin(A).
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Figure 2.2: The Sierpinski triangle with addresses

If we have a point x ∈ A, there must be an i0 ∈ {0, 1, . . . , N} such that

x ∈ Ai0 . After this, there must be an i1 such that x ∈ Ai0i1 , and continuing,

we get a sequence in for each n such that x ∈ Ain . The longer sequence

we know, the more precisely we know the location of the point x. This

“addressing” of the points for the Sierpinski triangle is illustrated in Fig.

2.2.

The address map is independent from the chosen point. Let x, y be two

different points, and let c be the contraction factor of the IFS. Then, for

ı̄ ∈ Σ,

d(fi0 ◦ · · · ◦ fin(x), fi0 ◦ · · · ◦ fin(y)) ≤ cn+1 d(x, y).

It is clear that as n→∞, the distance goes to zero, thus the address map is

independent of the chosen point x. Notice that:

Ai0i1...in−1in = fi0 ◦fi1 ◦· · ·◦fin−1 ◦fin(A) ⊆ fi0 ◦fi1 ◦· · ·◦fin−1(A) = Ai0i1...in−1 .

Since lim
n→∞

fi0 ◦ fi1 ◦ · · · ◦ fin(x) is some single point in R2, it implies that

∞⋂
n=0

Ai0i1...in = {z},

where z ∈ R2.

Now we show that the range of π is contained in the attractor A of the

IFS. We saw that π is independent of the chosen point x, so let x be such

that x ∈ A. But then, because of the self-tiling equation (2.1), fik(x) ∈ A

14



for each ik = 0, 1, . . . , N . This means that the limit will also be a point in

A, thus π(Σ) ⊆ A.

Next we show that the address map is continuous and surjective. Fix an

ε > 0, and let ı̄, ̄ ∈ Σ. The contraction factor of the IFS is c = maxi ci.

Then we know that there is some n such that cn+1 diam(A) < ε. Now we

have to find a suitable δ. Let be δ such that 0 < δ < N−1
N(N+1)n+1 . Thus if

d(̄ı, ̄) < δ, then they have to agree at least in the first n terms. It means

that π(̄ı), π(̄) ∈ Ain . Since diam(Ain) ≤ cn+1 < ε, we have d(π(̄ı), π(̄)) < ε,

so π is continuous.

Note that the address map is a surjection. Let x ∈ A be given. Then we

know that there is a sequence ı̄ = i0i1 . . . such that x ∈ Ain for each n. Let

y = π(̄ı). Then y ∈ Ain for each n because of the construction of the address

map. It means that d(x, y) ≤ diam(Ain) → 0, thus x = y, so the address

map is surjective.

2.4 Markov measures

For the better understanding, let us define a probability measure on the code

space. In this part we will refer to the book [5], more exactly to Chapter 0

and Chapter 1.

Let X be a set and B ⊆ P(X). B is a σ-algebra, if

(i) X ∈ B;

(ii) B ∈ B ⇒ X\B ∈ B;

(iii) Bn ∈ B (n ≥ 1)⇒
∞⋃
n=0

Bn ∈ B.

We call (X,B) a measurable space. Let µ : B → R+ be a function. It is

a finite measure on (X,B), if µ(∅) = 0 and µ(
⋃
Bn) =

∑
µ(Bn) where

(n = 1, 2, . . . ), Bn ∈ B for each n and they are pairwise disjoint. This

(X,B, µ) triple is called probability space if µ(X) = 1.

Let (Xi,Bi, µi) be a probability space for each i ∈ N. Let X =
∏∞

i=0 Xi

and the σ-algebra B be the product of the σ-algebras Bi. Let µ be such that

15



µ(A0× · · · ×An) =
∏n

j=0 µj(Aj) where Aj ∈ Bj for each j. Then we call the

probability space (X,B, µ) the direct product of the spaces (Xi,Bi, µi).

Theorem 2.15. Let S = {0, 1, . . . , N} and (Σ,B) =
∏∞

k=0 (S, 2S) is a mea-

surable space. There is given a non-negative real number pn(i0, . . . , in) for

each n ∈ N and i0, . . . , in ∈ S, which satisfies the following conditions:∑
i0∈S

p0(i0) = 1

and

pn(i0, . . . , in) =
∑

in+1∈S

pn+1(i0, . . . , in+1).

Then there exists a unique probability measure µ on (Σ,B) with µ([i0, . . . , im]) =

pm(i0, . . . , im) for all ik ∈ S, k ≤ m.

Proof. It is a special case of the Kolmogorov consistency theorem, which

guarantees that a suitably “consistent” collection of finite-dimensional dis-

tributions will define a stochastic process.:

Let X be a set, and I an index set. Suppose that there exists a probability

measure µt0,...,tn on Xn+1 for each t0, . . . , tn ∈ I, which satisfy two conditions:

(i) µt0,...,tn(A0 × · · · × An) = µtπ(0),...,tπ(n)(Aπ(0) × · · · × Aπ(n));

(ii) µt0,...,tn+m(A0 × · · · × An ×X × · · · ×X︸ ︷︷ ︸
m

) = µt0,...,tn(A0 × · · · × An)

for any Ai ∈ B(X). Then there exists a unique probability space and a

stochastic process (Xt)t≥0 on it, where (Xt)t≥0 is uniquely defined by the

finite dimensional distributions given by the probability measures above.

With X = S, I = N and µt0,...,tn = pn we get the theorem.

In the following we will show some measure-preserving transformations.

Definition 2.16 (Measure-preserving transformation). Let (X1,B1, µ1) and

(X2,B2, µ2) be two probability spaces, and T : X1 → X2 is a transformation.

(i) T is measurable if B2 ∈ B2 ⇒ T−1B2 ∈ B1.
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(ii) T is measure-preserving if T is measurable and µ1(T
−1B2) = µ2(B2)

for each B2 ∈ B2.

(iii) T is an invertible measure-preserving transformation if T is measure-

preserving, bijective, and T−1 is also measure-preserving.

Let S = {0, 1, . . . , N} and (X,B) =
∏∞

k=0 (S, 2S). Define the shift trans-

formation T : X → X by T ((i0, i1, i2, . . . )) = (i1, i2, . . . ).

Let S be a finite set {0, 1, . . . , N}, B the σ-algebra generated by 2S,

and Σ = SN the code space. Let (Σ,B, µ) be a probability space, which is

the direct product of (S, 2S, ν). We call A ⊂ Σ a measurable rectangle if

A = A0 × · · · × An = {ı̄ ∈ Σ | ik ∈ Ak ∀k ≤ n}. Now let us define a measure

on Σ, given by a probability vector (p0, . . . , pN) where pj = ν({j}):

µ([i0, i1, . . . , in]) =
n∏
k=0

pik

where [i0, i1, . . . , in] := {̄ ∈ Σ : j0 = i0, . . . , jn = in}. This µ is called the

(p0, . . . , pN)-product measure.

An example of the measure-preserving transformations provided by the

Markov chains is the (p, P )-Markov shift. Here p = (p0, p1, . . . , pN) is a prob-

ability vector, and P = (Pij)i,j∈S is a stochastic matrix (Pij ≥ 0,
∑N

j=0 Pij = 1).

The matrix is such that
∑N

i=0 piPij = pj and the probability of a sequence is

p(i0, . . . , in) = pi0Pi0i1 · · ·Pin−1in .

In the similar manner we can define the n-step Markov shift, but here

the probability vector is p = (p0···0, p0···1, . . . , pN ···N) and the stochastic ma-

trix is P = |S|n × |S|n. The probability of a sequence is pn(i0, . . . , im) =

pi0···inPi0···in,i1···in+1Pi1···in+1,i2···in+2 · · ·Pim−n−1···im−1,im−n···im .

Definition 2.17. Let (X,B, µ) be a probability space, and T : X → X a

measure-preserving transformation. We call T ergodic if every B ∈ B with

T−1B = B satisfies µ(B) = 0 or µ(B) = 1.

Theorem 2.18. Let (X,B, µ) be a probability space. If T : X → X is a

measure-preserving transformation then the following statements are equiva-

lent:
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(i) T is ergodic.

(ii) For every A,B ∈ B with µ(A), µ(B) > 0 there is an n > 0 with

µ(T−nA ∩B) > 0.

Proof. (i) ⇒ (ii). Assume A,B ∈ B with µ(A), µ(B) > 0 is such that

µ(T−nA ∩ B) = 0, ∀n > 0. Then we have µ((
⋃∞
n=0 T

−nA) ∩ B) = 0. Let be

I =
⋃
n T
−nA, it is clear that T−1I ⊆ I. Let be J =

⋂∞
k=0 T

−kI, then J is

T -invariant, because

T−1J =
∞⋂
k=1

T−kI ⊇ J =
∞⋂
k=0

T−kI = J

and

T−1J =
∞⋂
k=0

T−k−1I ⊆
∞⋂
k=0

T−kI = J.

Thus µ(J) = 0 or 1. Since µ(I ∩ B) = 0, we have µ(T−nI ∩ B) = 0 for any

n, so that µ(J ∩B) = 0. Then µ(J) = 0, and it means that

∃k µ(
∞⋃
n=k

T−nA) < ε,

which implies

µ(
∞⋃
n=0

T−nA) < ε

because of the T -invariance. From this follows that µ(
⋃
T−nA) = 0, thus

µ(A) = 0, which contradicts the assumptions.

(ii) ⇒ (i). Assume B ∈ B with T−1B = B is such that 0 < µ(B) < 1.

Then 0 = µ(B∩(X\B)) = µ(T−nB∩(X\B)) for all n ≥ 1, which contradicts

the assumptions.

Theorem 2.19. Let (X,B, µ) be a probability space. If T : X → X is a

measure-preserving transformation then the following statements are equiva-

lent:

(i) T is ergodic.
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(ii) For every measurable f with (f ◦ T )(x) = f(x) a.e., f is constant a.e.

(iii) For every f ∈ L2 with (f ◦ T )(x) = f(x) a.e., f is constant a.e.

Proof. (i)⇒ (ii). Suppose that T is ergodic, f is measurable and (f ◦T )(x) =

f(x) a.e. Let be

S(k, n) =

{
x :

k

2n
≤ f(x) <

k + 1

2n

}
∀k ∈ Z, n > 0.

Then we have

T−1S(k, n)4S(k, n) ⊂ {x : (f ◦ T )(x) 6= f(x)}.

Thus µ(T−1S(k, n)4S(k, n)) = 0 so that µ(S(k, n)) = 0 or 1. We have⋃
k∈Z S(k, n) = X which is a disjoint union, so ∀n ∃!kn with µ(S(kn, n)) = 1.

From this follows that µ(
⋂∞
n=1 S(kn, n)) = 1 and f is constant on it so that

f is constant a.e.

(ii)⇒ (iii) is trivial, because if f is measurable, then f ∈ L2.

(iii) ⇒ (i). Let be B ∈ B such that T−1B = B. Since χB ∈ L2 and

(χB◦T )(x) = χB(x) ∀x ∈ X, by the assumption we have thatχB is constant

a.e. From this follows that χB = 0 or 1 a.e., and thus µ(B) =
∫
χB dµ = 0

or 1.

Theorem 2.20. The (p0, . . . , pN)-shift is ergodic.

Proof. Suppose that E ∈ B is such that T−1E = E. We will show that then

µ(E) = 0 or µ(E) = 1.

Denote the algebra of all finite unions of measurable rectangles by A, let

be ε > 0 given and A ∈ A such that µ(E4A) < ε. We can see that

|µ(E)− µ(A)| = |µ(E \ A) + µ(E ∩ A)− µ(A \ E)− µ(A ∩ E)|

< µ(E \ A) + µ(A \ E) < ε.

Let n be so large that B = T−nA depends upon different coordinates from

A. Then µ(B ∩ A) = µ(B)µ(A) = µ(A)2 since µ is a product measure, and

we have

µ(E4B) = µ(T−nE4T−nA) = µ(E4A) < ε.

19



We can see that µ(E4(A ∩ B)) < 2ε because we know that E4(A ∩ B) ⊂
(E4A) ∪ (E4B). Thus

|µ(E)− µ(A ∩B)| = |µ(E \ (A ∩B)) + µ(E ∩ (A ∩B))

−µ((A ∩B) \ E)− µ((A ∩B) ∩ E)| <

< µ(E \ (A ∩B)) + µ(A \ (A ∩B)) < 2ε.

and

|µ(E)− µ(E)2| ≤ |µ(E)− µ(A ∩B)|+ |µ(A ∩B)− µ(E)2| <

< 2ε+ |µ(A)2 − µ(E)2| ≤

≤ 2ε+ µ(A)|µ(A)− µ(E)|+ µ(E)|µ(A)− µ(E)| <

< 4ε.

From this follows that µ(E) = µ(E)2, which implies that µ(E) = 0 or 1.

Theorem 2.21. Let T be the (p, P ) Markov shift. Then T is ergodic iff P

is irreducible (i.e. ∀i, j ∃n > 0 with p
(n)
i,j > 0 where p

(n)
i,j is the (i, j)-entry of

the matrix P n).

For the proof see [5, p.42].

Theorem 2.22 (Birkhoff). Let T : (X,B, µ)→ (X,B, µ) be measure-preserving

and f ∈ L1(µ). Then 1
n

∑n−1
i=0 f(T i(x)) converges a.e. to a function f ∗ ∈

L1(µ), f ∗ ◦ T = f ∗ and if µ(X) <∞, then
∫
f ∗ dµ =

∫
f dµ.

Theorem 2.23 (Lp Ergodic Theorem of Von Neumann). Let (X,B, µ) be

a probability space, T : X → X a measure-preserving transformation and

1 ≤ p <∞. If f ∈ Lp(µ) then there exists f ∗ ∈ Lp(µ) such that f ∗ ◦ T = f ∗

a.e. and ∥∥∥∥∥ 1

n

n−1∑
i=0

f(T ix)− f ∗(x)

∥∥∥∥∥
p

→ 0.

For the proof see [5, p.36]
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Definition 2.24. Let (X,B, µ) be a probability space and T : X → X a

measure-preserving transformation. Then T is strong-mixing if ∀A,B ∈ B

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

Remark 2.25. Every strong-mixing transformation is ergodic, because if

{an} is a sequence of real numbers then limn→∞ an = 0 implies

lim
n→∞

1

n

n−1∑
i=1

ai = 0.

Theorem 2.26. The (p0, . . . , pN)-shift is strong-mixing.

Proof. Let A,B ∈ B. There exist C1, C2 finite unions of rectangles such

that µ(A4C1) < ε and µ(B4C2) < ε. Thus it is enough to show that

µ(T−nC1 ∩ C2)→ µ(C1)µ(C2). Let be ı̄ ∈ C1 and ̄ ∈ C2. We can see that

µ(T−n[i0, i1, . . . , ik] ∩ [j0, j1, . . . jl]) = pi0 · · · pik · 1 · · · 1 · pj0 · · · pjl

if n > l + 1. Thus if n→∞, then µ(T−nC1 ∩ C2)→ µ(C1)µ(C2).

Theorem 2.27. Let T be the (p, P ) Markov shift. Then the following state-

ments are equivalent:

(i) T is strong-mixing.

(ii) P is irreducible and aperiodic.

(iii) P
(n)
ij → pj for all i, j.

For the proof see [5, p.51].

2.5 IFS with probabilities

In this section, we define an IFS whose attractor will no longer be a set,

but an analytic object, a Borel probability measure. This will be the basic

structure used in the chaos game. We will refer again to the book [4].
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Definition 2.28 (IFS with probabilities). A finite collection of contractions

{f0, . . . , fN} on the complete metric space X along with a finite collection of

probabilities {p0, . . . , pN} (where pi ≥ 0 and
∑

i pi = 1) is called an IFS with

probabilities.

For each IFSP there is an invariant measure (also called fractal measure

or self-similar measure). This measure can be given as a fixed point of a

contraction called the Markov operator.

Definition 2.29 (IFSP Markov operator). Let X be a metric space. Denote

the space of all Borel probability measures on X by P(X), and let {fi, pi} be

an N-map IFSP. The Markov operator M : P(X) → P(X) associated with

this IFSP is

(Mµ)(B) =
N∑
i=0

piµ(f−1i (B))

for each Borel set B ⊆ X.

Notice that Mµ is a combination of “smaller” and “distorted” copies of

µ, as M uses the maps fi to “contract” and “rotate”.

We are looking for the measures such that Mµ = µ. Let M(X) denote

the space of all measures on X. We can see that M is linear on it, thus if M is

contractive on the wholeM(X), then the only possible fixed point would be

the zero measure. To get a nontrivial solution, we will restrict our attention

to a subspace, the probability measures.

The Markov operator maps a probability measure to another one, so it

is a well-defined map. Now we need to define a metric on P(X) for M to be

a contraction. This metric will be the Monge-Kantorovich metric. First we

define a subspace of the probability measures.

Definition 2.30. Let a ∈ X. Let us define a subspace of the probability

measure P(X):

P1(X) =

{
µ ∈ P(X) :

∫
X
d(a, x) dµ(x) <∞

}
.
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We should remark that from the triangle inequality and the fact that µ

is a probability measure, we get that if the integral above is finite for some

given a, then it is also finite for any other fixed b.

Definition 2.31 (Monge-Kantorovich metric). Let X be compact and let

µ, ν ∈ P1(X). The Monge-Kantorovich metric is given as

dMK(µ, ν) = sup


∣∣∣∣∣∣
∫
X

g dµ−
∫
X

g dν

∣∣∣∣∣∣ : g ∈ Lip1(X)

 .

It is obvious that dMK(µ, ν) = dMK(ν, µ) and dMK(µ, ν) = 0 if µ = ν.

Let be dMK(µ, ν) = 0. It means that
∫
X
g dµ =

∫
X
g dν ∀g ∈ Lip1(X), so that

it is true for Lipschitz functions with any Lipschitz constant. Then, since

they are dense in the Banach space of continuous functions, there exists a

subsequence gn of g, that gn → χA, thus µ(A) = ν(A), for every A open set.

It implies that µ = ν on the σ-algebra generated by open sets.

The triangle inequality is also clear:

dMK (µ1, µ2) = sup


∣∣∣∣∣∣
∫
X

g dµ1 −
∫
X

g dµ2

∣∣∣∣∣∣
 ≤

≤ sup


∣∣∣∣∣∣
∫
X

g dµ1 −
∫
X

g dν

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
X

g dν −
∫
X

g dµ2

∣∣∣∣∣∣
 ≤

≤ sup


∣∣∣∣∣∣
∫
X

g dµ1 −
∫
X

g dν

∣∣∣∣∣∣
+ sup


∣∣∣∣∣∣
∫
X

g dν −
∫
X

g dµ2

∣∣∣∣∣∣
 =

= dMK (µ1, ν) + dMK (ν, µ2).

Thus dMK is metric.

Now let prove the completeness. Suppose that (µn)n≥1 is a Cauchy se-

quence in dMK. There exists a subsequence (µnk)k≥1 and a µ such that∫
f dµnk →

∫
f dµ for all continuous f.
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Let be ε > 0. Since (µn)n≥1 is Cauchy in dMK, there exists an N(ε) such that

for all n, nk ≥ N(ε) we have∣∣∣∣∣∣
∫
X

f dµnk −
∫
X

f dµn

∣∣∣∣∣∣ < ε for all f ∈ Lip1(X).

If k →∞, we get ∣∣∣∣∣∣
∫
X

f dµ−
∫
X

f dµn

∣∣∣∣∣∣ ≤ 2ε.

It means that dMK(µ, µn)→ 0.

Theorem 2.32 (Completeness of space of probability measures). If X is a

complete, separable metric space then P1(X) is a complete space under the

Monge-Kantorovich metric. Moreover, if X is compact, then P(X) = P1(X)

and both are compact under the Monge-Kantorovich metric.

For the proof see [4, p.53].

Theorem 2.33. Let {fi, pi} be an IFSP and c := maxi ci where ci is the

contraction factor of fi. The IFSP Markov operator satisfies the following

inequality:

dMK (Mµ1,Mµ2) ≤
(∑

i

pici

)
dMK (µ1, µ2).

From this follows that if
∑

i pici < 1, then M is a contraction on (P1(X), dMK)

and there exists a unique Borel probability measure µ ∈ P1(X) such that

M(µ) = µ

or

µ(B) =
∑
i

piµ(f−1i (B)) for every B ⊆ X Borel set.

Proof. Let g ∈ Lip1(X,R). Then∣∣∣∣∣∣
∫
X

g(x) d(Mµ1)(x)−
∫
X

g(x) d(Mµ2)(x)

∣∣∣∣∣∣ =
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=

∣∣∣∣∣∣
∫
X

g(x)
∑
i

pi d(µ1 ◦ f−1i )(x)−
∫
X

g(x)
∑
i

pi d(µ2 ◦ f−1i )(x)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
X

∑
i

pig(fi(y)) dµ1(y)−
∫
X

∑
i

pig(fi(y)) dµ2(y)

∣∣∣∣∣∣
Let ĝ :=

∑
i

pig ◦ fi.

|ĝ(x)− ĝ(y)| =

∣∣∣∣∣∑
i

pi (g(fi(x))− g(fi(y)))

∣∣∣∣∣ ≤
≤
∑
i

pi |g(fi(x))− g(fi(y))| ≤

≤
∑
i

pi · 1 · |fi(x)− fi(y)| ≤

≤

(∑
i

pici

)
|x− y|.

We can see the ĝ is Lipschitz with factor
∑

i pici for any g ∈ Lip1. Thus we

get

sup
g∈Lip1


∣∣∣∣∣∣
∫
X

∑
i

pig(fi(y)) dµ1(y)−
∫
X

∑
i

pig(fi(y)) dµ2(y)

∣∣∣∣∣∣
 =

= sup
ĝ∈Lip(∑i pici)


∣∣∣∣∣∣
∫
X

ĝ(y) dµ1(y)−
∫
X

ĝ(y) dµ2(y)

∣∣∣∣∣∣
 ≤

≤
∑
i

pici · sup
ĝ


∣∣∣∣∣∣
∫
X

ĝ(y)∑
i pici

dµ1(y)−
∫
X

ĝ(y)∑
i pici

dµ2(y)

∣∣∣∣∣∣
 =

=
∑
i

pici · sup
g∈Lip1


∣∣∣∣∣∣
∫
X

g(y) dµ1(y)−
∫
X

g(y) dµ2(y)

∣∣∣∣∣∣


From this follows the theorem.

In order to see the connection between the invariant measure µ of an

IFSP and the geometric attractor of the IFS (without the probabilities), we

define the support of a measure.
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Definition 2.34 (Support of a measure). The support of the measure µ on

X is

supp(µ) = X \
⋃
{U : U is an open set with µ(U) = 0}.

Theorem 2.35. Let {fi, pi} be an IFSP with contraction factors ci, where

pi > 0 and ci < 1 for each i, and let µ be the invariant measure. Then the

support of µ is equal to the attractor A of the IFS {fi}.

For the proof see [4, p.56].

The following theorem gives the connection between the invariant measure

µ and an appropriate measure P on the codespace Σ. Before we state this

theorem let us define the measure P on Σ as the product measure given by

the measure P(x = i) = pi on each factor {0, 1, . . . , N}. We know that the

address map π is a continuous mapping from Σ to X. Now let us define the

push-forward measure of P :

Definition 2.36. The push-forward measure of P via π is the measure

π#(P ) defined on X and given by π#(P )(B) = P (π−1(B)) for each B ⊆ X
Borel set. It is a Borel measure since π is continuous, thus the preimage of

a Borel set is a Borel set.

Theorem 2.37. The invariant measure µ of an IFSP {fi, pi} is the push-

forward measure π#(P ) where P is the natural product measure defined on

the code space Σ via the address map π : Σ→ X.

Proof. Define τk : Σ → Σ by τk(i0, i1, . . . ) = (k, i0, i1, . . . ). Then it is clear

that π ◦ τk = fk ◦ π and thus τ−1k ◦ π−1 = π−1 ◦ f−1k . By the definition of the

product measure, we have P (τk(B)) = pkP (B) for any B ⊆ Σ. Hence we
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can see that

Mπ#(P )(B) =
∑
k

pkπ#(P )(f−1k (B)) =
∑
k

pkP (π−1(f−1k (B))) =

=
∑
k

pkP (τ−1(π−1(B))) =

=
∑
k

P (τk(τ
−1
k (π−1(B)))) =

∑
k

P (π−1(B)) =

= P (π−1(B)) = π#(P )(B).

Thus π#(P ) is invariant under M, so it must be equal to µ.
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Chapter 3

Chaos game

In this part we will refer to the articles [3],[6].

We have seen one way to generate the attractor of an IFS: start from an

initial set and iterate the mapping on H(X) which is induced by the IFS. In

this mode we composed the IFS maps from the “outside” to the “inside”:

fi1 ◦ · · · ◦ fin(x) → π(̄ı). Another method is the chaos game, where the

composition of the maps is in the opposite order. It generates a random

sequence of points that approximate the attractor. The algorithm is the

following:

(i) Choose an initial point x0 ∈ X.

(ii) Choose i1 ∈ {1, 2, . . . , N} with the probabilities {p1, . . . , pN}, compute

x1 = fi1(x0) and plot it.

(iii) For the general step, choose in+1 ∈ {1, 2, . . . , N} with the probabilities,

compute xn+1 = fin+1(xn) = fin+1 ◦ · · · ◦ fi1(x0) and plot it.

Often, the first few points are not between the points of the attractor. One

solution is to wait some number of iteration before plotting the points, an-

other is to start with x0 ∈ A (the fixed point of f1 will be a suitable choice).

Theorem 3.1. Let X be a compact metric space and {fi, pi} be a contractive

IFSP. Choose some x0 ∈ X, and define the sequence xn by selecting ı̄ ∈ Σ
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according to the probability measure P and setting

xn = fin ◦ · · · ◦ fi1(x0).

Let µ be the invariant measure for the IFSP. Then we have

lim
n

1

n

∑
k≤n

g(xk) =

∫
X

g(x) dµ(x)

for any continuous g : X→ R and for P almost all ı̄ ∈ Σ.

Sometimes the restriction to continuous functions is not convenient. With

a complete X metric space the theorem is true for every g ∈ L1(µ).

For the proof see [4, p.66].

Corollary 3.2. Let X be a complete metric space and {fi, pi} be a contractive

IFSP. Then for all B Borel sets, the sequence generated by the chaos game,

xn = fin ◦ · · · ◦ fi1(x0), satisfies

µ(B) = lim
n

1

n
#{1 ≤ k ≤ n : xk ∈ B} (3.1)

for µ almost all x0 and for P almost all ı̄ ∈ Σ.

Corollary 3.3. Let {fi} be an IFS with the attractor A, and let {xn} be the

sequence defined by the chaos game above. Then

∞⋂
N=1

∞⋃
k=N

{xk} = A. (3.2)

Proof. The
⋂⋃
{xk} ⊆ A containing is clear, since A is compact and x0 ∈ A.

For the other direction, let x ∈ A. Then ∀δ µ(Bδ(x)) > 0 because of

Theorem 2.35. From this and (3.1) follows that xk ∈ Bδ(x) infinitely often.

It means that x is an accumulation point of
⋃
{xk}, thus

x ∈
∞⋂
N=1

∞⋃
k=N

{xk}.
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The chaos game representation of an n-step Markov chain is the following:

(i) Choose an initial point x0 ∈ X.

(ii) Choose i1, . . . , in with the transition probabilities {p1...1, . . . , pN...N},
compute x1 = fi1(x0) and plot it.

(iii) For the general step, choose xk+1 with the transition probabilities

Pik−n+1...ik,ik+2−n...ik+1
, compute xk+1 = fik+1

(xk) and plot it.
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Chapter 4

DNA representation

At [7], there are available the nucleotide sequences of many species (both

animals and plants), coded in FASTA, which is a text-based format. Every

genome sequence contains many gene sequences. They are separated with

header lines, which include the names of the sequences and some additional

information. We dropped these parts, thus we got one long list from the

acid bases. In FASTA format they use not only ’A’, ’C’, ’T’ and ’G’, but for

the unidentified nucleic acids there are other letters, for example ’N’, which

means that it is one of the previous four. Since there is negligible amount

of them, we dropped these letters from the sequences. In the Mus musculus’

genome sequence, the number of unidentified nucleic acids are less than 0.1%.

Figure 4.1: 0-step approximation of Mus musculus with Markov chains.

Made with Wolfram Mathematica
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In the approximation of the Mus musculus’ sequence, the 0-step Markov

chain is not suitable because the numbers of the four bases are roughly equal,

so we get a homogene square, as we can see in Fig. 4.1.

The 1 and 2-step transition probabilities we got from the original genome

sequence by the following:

pij = lim
n→∞

#{l ≤ n : (Xl−1, Xl) = (i, j)}
#{l ≤ n− 1 : Xl = i}

= lim
n→∞

n∑
l=1

χij(Xl−1, Xl)

n−1∑
l=0

χi(Xl)

pijk = lim
n→∞

#{l ≤ n : (Xl−2, Xl−1, Xl) = (i, j, k)}
#{l ≤ n− 1 : (Xl−1, Xl) = (i, j)}

= lim
n→∞

n∑
l=2

χijk(Xl−2, Xl−1, Xl)

n−1∑
l=1

χij(Xl−1, Xl)

,

where Xi denotes nucleotide sequence’s elements, and χi1...ik
is a k-step in-

dicator function:

χi1...ik
(X1, . . . , Xk) =

{
1 if (X1, . . . , Xk) = (i1, . . . , ik),

0 else.

The average of the frequency of a subsequence (i1, . . . , ik) is

Si
k

n (X) =
1

n

n∑
l=k−1

χi1...ik
(Xl−k+1, . . . , Xl),

if n � k. In our case k = 2 and 3. Since the measure µ is ergodic, from

Theorem 2.22, we have that lim
n→∞

Si
k

n (X) =
∫
χik(̄) dµ(̄) = µ[̄ık] =

∏k
l=0 pil .

In the sequences, every 2 and 3 long permutation of the acid bases occurs, so

if they are Markov chains, they have to be irreducible and aperiodic. Thus

there must exist the spectral gap of the transition matrix, therefore there

exists c > 0 such that D2(Si
k

n ) ≤ c
n
. From this and the Chebisev inequality

we get µ(|Sn −
∫
χ dµ| ≥ ε) ≤ c

εn
→ 0 as n → ∞. Apriori we do not know

the precise value of this constant without any further information. So we

chose n = 180 000. It is also confirmed by the fact that the 1 and 2-step

Markov chains’ pictures are both quite similar to the original one, as we can

see in Fig. 4.2.

32



(a) 1-step (b) 2-step

(c) CGR

Figure 4.2: The first 200 000 acid bases of Mus musculus represented with

CGR and its approximations with Markov chains. Made with Wolfram Math-

ematica
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A T G C

A 0,298 0,2240 0,2730 0,2050

T 0,187 0,2810 0,2850 0,2470

G 0,269 0,2220 0,2680 0,2410

C 0,313 0,313 0,096 0,278

Table 4.1: The transition matrix of the 1-step Markov chain of the Mus

musculus’ approximation

A T G C

AA 0,305 0,203 0,297 0,195

AT 0,3000 0,2640 0,2060 0,2300

AG 0,3080 0,1890 0,2950 0,2080

AC 0,258 0,204 0,326 0,212

TA 0,2154 0,2711 0,2851 0,2284

TT 0,1808 0,3156 0,2375 0,2661

TG 0,1694 0,2555 0,3350 0,2400

TC 0,1301 0,2804 0,3424 0,2471

GA 0,276 0,196 0,28 0,248

GT 0,2300 0,2370 0,2950 0,2380

GG 0,3006 0,2260 0,2386 0,2349

GC 0,237 0,185 0,329 0,249

CA 0,346 0,289 0,096 0,269

CT 0,2788 0,3386 0,0880 0,2947

CG 0,2950 0,3086 0,1057 0,2907

CC 0,356 0,298 0,113 0,233

Table 4.2: The transition matrix of the 2-step Markov chain of the Mus

musculus’ approximation
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In Table 4.2, 4.3 and 4.4, we compacted the transition matrices. In the

header row, we left the first bases, thus we did not indicate the events with

zero probability.

If we consider the nucleotide sequence of the Beta vulgaris (carrot), we

can see that it is not homogene, the CGR of the first and last 200 000 bases

are different, see in Fig. 4.3. But we tried to approximate the different parts

of the sequence. They are quite similar to the original pictures, thus we can

(a) First CGR (b) Last CGR

(c) First approximation (d) Last approximation

Figure 4.3: The first and last 200 000 acid bases of Beta vulgaris represented

with CGR and its approximations with Markov chains. Made with Wolfram

Mathematica
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draw the conclusion that while the whole sequence can not be approach with

Markov chain, the different subsequences can be. See the transition matrices

in Table 4.3 and 4.4.

A T G C

AA 0,264 0,262 0,293 0,181

AT 0,23 0,37 0,19 0,21

AG 0,31 0,32 0,24 0,14

AC 0,3 0,3 0,2 0,2

TA 0,17 0,28 0,32 0,23

TT 0,15 0,3 0,31 0,24

TG 0,19 0,34 0,26 0,21

TC 0,18 0,32 0,3 0,2

GA 0,32 0,2 0,25 0,23

GT 0,26 0,24 0,29 0,21

GG 0,34 0,30 0,20 0,17

GC 0,3 0,29 0,24 0,17

CA 0,35 0,32 0,09 0,24

CT 0,304 0,341 0,12 0,235

CG 0,31 0,42 0,07 0,20

CC 0,4 0,3 0,1 0,2

Table 4.3: The transition matrix of the 2-step Markov chain of the Beta

vulgaris’ approximation (from the first 200 000 bases)
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0 A T G C

AA 0,52 0,196 0,137 0,147

AT 0,37 0,341 0,122 0,167

AG 0,451 0,212 0,202 0,135

AC 0,41 0,24 0,14 0,21

TA 0,289 0,368 0,151 0,192

TT 0,17 0,48 0,15 0,2

TG 0,21 0,38 0,23 0,18

TC 0,17 0,40 0,15 0,28

GA 0,33 0,19 0,3 0,18

GT 0,27 0,252 0,293 0,185

GG 0,23 0,16 0,46 0,15

GC 0,25 0,19 0,37 0,19

CA 0,332 0,254 0,1 0,314

CT 0,237 0,357 0,087 0,319

CG 0,275 0,264 0,135 0,326

CC 0,20 0,22 0,10 0,48

Table 4.4: The transition matrix of the 2-step Markov chain of the Beta

vulgaris’ approximation (from the last 200 000 bases)
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Chapter 5

Conclusions

We demonstrated that empirically certain parts of the DNA sequences can

be approximated by 1 and 2-step Markov chains, but proving it is beyond the

scope of this BSc thesis. We do not have proper estimation of the standard

deviation, thus we can not define the value of n. The comparison of the

original and the simulated sequences in Hausdorff metric may not be effective.

It would be 200 000× 200 000 computation two times to get their distance.

It propounds further questions. Can we use this method to improve gene

mapping?

Jeffrey also propounded some open questions in [1]. One of them is the fol-

lowing: ”Mathematically characterize the sparse sequences that produce the

’double scoop’ pattern, which to date has been found only in non-oncogene

vertebrate sequences and in some genes from viruses that can infect verte-

brates?”

We can represent this ’double scoop’ pattern superficially as a Markov chain.

Its transition probability matrix is in Table 5.1, and its CGR is in Fig. 5.1.

Thus we get the conclusion that G rarely comes after C. If we comparise this

transition matrix with the 1-step Markov chain’s transition matrix, we can

see that the probability values approximately match, the average difference

is 0.035.
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A T G C

A 1/4 1/4 1/4 1/4

T 1/4 1/4 1/4 1/4

G 1/4 1/4 1/4 1/4

C 1/3 1/3 0 1/3

Table 5.1: The transition matrix of the Markov chain with PCG = 0

Figure 5.1: Representation of 1-step Markov chain with PCG = 0. Made with

Wolfram Mathematica
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