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Chapter 1

Preliminary

Hutchinson showed that if the cylinder sets of a self-similar iterated function system (IFS)

are disjoint, then the Hausdor� dimension of its attractor is equals with the similarity

dimension. Also, he showed similar result for self-similar measures which belongs to such

self-similar IFS for which some strong separation condition holds.

When the cylinder sets of an IFS has signi�cant overlap, the dimension is di�cult to

understand, because we have to consider complicated overlapping system of cylinder sets.

Using transversality condition for a self-similar IFS family, then K. Simon, B. Solomyak

and M. Urbanski calculated this dimensions for almost every paramaters of the IFS family.

B. Bárány also proved almost everywhere results, when the self-similar IFS's have �x

points that coincide.

Kamalutdinov and Tetenov studied twofold Cantor sets, which are very similar to the

forward separated systems (De�nition 3.3). In a system of a twofold Cantor set there are

total overlaps. They have results for the properties of the attractor. They calculated the

exact value of the Hausdor� dimension of twofold Cantor sets. This results are important,

because they are the �rst not only almost everywhere statements for such IFS's for which

its cylinder sets have signi�cant overlaps. They do not mentioned about the self-similar

measures of those systems.

Results of this dissertation

In this work we study self-similar IFS's on the interval [0, 1] for which the so-called forward

separated condition holds (De�nition 3.3). In the considered IFS's there is also total

overlap between the cylinder sets.

Using the argument of Kamalutdinov and Tetenov we proved that forward separated

systems exist. The main result of this dissertation is Theorem 6.1, which states everywhere

result for the Hausdor� dimension of a self-similar measure with respect to a forward
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separated system.

Theorem 6.1 Let α, β, γ ∈ (0, 1
9
). Let S = {S1, S2, S3} be a self-similar IFS on [0, 1]

such that

S = {S1, S2, S3}

S1(x) = αx, S2(x) = βx, S3(x) = γx+ 1− γ.
(1.1)

Let K denote the attractor of S. Moreover, we suppose that

for every m,n ∈ N+, Sm1 S3(K) ∩ Sn2S3(K) = ∅. (1.2)

The natural projection of Sα,β,γ is Πα,β,γ. Let µ = (p1, p2, p3)N
+
be a Bernoulli measure

on Σ for the probability vector p = (p1, p2, p3). Let ν = Πα,β,γ∗µ = µ ◦ Π−1
α,β,γ be the

self-similar measure on the attractor. Then the Hausdor� dimension of ν can be exactly

determined.

The exact value of the dimension is in Chapter 6. To achieve this statement we used

the theorem of Feng and Hu.
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Chapter 2

Introduction of self-similar iterated

function systems

In this chapter we would like to de�ne the most fundamental notions and we collect the

most important theorems concerning self-similar iterated function systems (IFS).

2.1 De�nitions of self-similar IFS

De�nition 2.1 Let m ≥ 2, m ∈ Z and d ≥ 1, d ∈ Z. We say that S is a self-similar

iterated function system (IFS) on Rd, if

S = {S1, . . . , Sm}, (2.1)

where i Si : Rd → Rd is contracting similarity transformation with contraction ratio

0 < ri < 1 for alli. This means, that

∀i ∈ {1, . . . ,m} ∀x,y ∈ Rd ‖Si(x)− Si(y)‖ = ri ‖x− y‖ . (2.2)

Frequently we use the notation Si1 ◦ · · · ◦ Sin = Si1,...,in .
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Figure 2.1: Example for a self-similar IFS on the line

De�nition 2.2 Let B = B(0, R), where R = max1≤i≤m

{
‖Si(0)‖

1−ri

}
. The set Λ is the

attractor of the self-similar IFS S, if

Λ =
∞⋂
n=1

⋃
(i1,...,in)∈{1,...,m}n

Si1,...,in(B). (2.3)
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De�nition 2.3 We call Σ = {1, . . . ,m}N the symbolic space of the IFS S de�ned in

equation (2.1).

On the symbolic space we use the following notation. If i = (i1, . . . , ik) ∈ {1, . . . ,m}k

and j ∈ {1, . . . ,m}l, then let i ∗ j = (i1, i2, . . . , ik, j1, j2, . . . , jl). Denote i2 = i ∗ i and
ik = ik−1 ∗ i. This de�nition is also proper for l =∞.

Let us denote the set of all �nite length word by Σ∗ =
∞⋃
k=1

{1, . . . ,m}k.

We denote the left shift on the symbolic space with σ : Σ→ Σ for all j = (j1, j2, . . . ) ∈
Σ σ(j) = (j2, j3, . . . ).
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De�nition 2.4 The map Π is the natural projection of the IFS S, if

Π : Σ→ Λ Π(i) = lim
n→∞

Si1,...,in(0), (2.4)

where i = (i1, i2, . . . ) ∈ Σ.

It is easy to see that

Λ = Π(Σ). (2.5)

Theorem 2.5 (Hutchinson) The Λ attractor of the IFS S (2.1) is the only non-empty

compact set solution of the following equation on sets

X =
m⋃
i=1

Si(X), (2.6)

where X is the variable.

The proof can be found in [2].

De�nition 2.6 Let Σ = {1, . . . ,m}N+
and i = (i1, . . . ik) ∈ {1, . . . ,m}k, then the set

[i1, . . . , ik] = {j ∈ Σ : j1 = i1, . . . jk = ik} (2.7)

is called a cylinder set.

Let p = (p1, . . . , pm) be a probability vector. Then, let µ = pN be the in�nite product

measure or Bernolli measure on Σ. That is

µ([i1, . . . , ik]) = pi1 . . . pik , (2.8)

where (i1, . . . , ik) ∈ {1, . . . ,m}k. Using Kolmogorov's extension theorem, we can see that

there exists a unique µ Borel measure on Σ de�ned on the σ-algebra generated by the

cylinder sets and for which the equation (2.8) holds.

De�nition 2.7 Let p = (p1, . . . , pm) be a probability vector. We say that ν is a self-

similar measure or invariant measure of the self-similar IFS S with the probabilty vector

p, if ν is the following push-down measure

ν(E) = Π∗p
N(E) = pN ◦ Π−1(E). (2.9)

7



Theorem 2.8 Let p = (p1, . . . , pm) a probabilty vector and S is a self-similar IFS in the

form (2.1). Then ν self-similar measure of S with the probabilty vector p if it is the only

ν Borel probabilty measure on Rd for which

ν =
m∑
k=1

pk(ν ◦ S−1
k ) (2.10)

holds.

The proof can be found in [2].

2.2 The size of the attractor

Most of the time the attractor has zero Lebesgue measure, thus we need some de�nition

to be able to compare the size of sets with zero Lebesgue measure.

De�nition 2.9 Let t ≥ 0. The measure Ht is called the t-dimensional Hausdor� measure

on Rd, if it is the restriction of the following outer measure for the σ-algebra of the

measurable sets. Let

Ht(E) = lim
δ→0

{
inf

{
∞∑
i=1

|Ai|t : E ⊆
∞⋃
i=1

Ai, |Ai| ≤ δ

}}
= lim

δ→0
Ht
δ(E), (2.11)

where A ⊆ Rd |A| is the diameter of the set A.

Remark 2.10 The limit in the equation (2.11) is exists, because the function

δ 7→ inf

{
∞∑
i=1

|Ai|t : E ⊆
∞⋃
i=1

Ai, |Ai| ≤ δ

}
(2.12)

is monoton decreasing.

Now, let us introduce some basic facts regarding to Hausdor� measure.

Theorem 2.11 For every t > 0, all Borel set in Rd is measurable with respect to the

t-dimensional Hausdor� measure.

Theorem 2.12 For every n ∈ N+, there exists c ∈ R+ such that for all Borel set B ⊆
Rn Hn(B) = cLn(B) hold.

Lemma 2.13 For every Borel set B ⊆ Rd and every 0 ≤ α < β, we have the following

implications:
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(i) Hα(B) <∞ =⇒ Hβ(B) = 0

(ii) Hβ(B) > 0 =⇒ Hα(B) =∞

De�nition 2.14 By Lemma 2.13 we can de�ne the Hausdor� dimension of a B ⊆ Rd

Borel set by

dimH(B) = inf
t≥0
{Ht(B) = 0} = sup

t≥0
{Ht(B) =∞}. (2.13)

∞

0

dimH(E)

Figure 2.3: The de�nition of the Hausdor� dimension.

De�nition 2.15 If S = {S1, . . . , Sm} is a C1 IFS, then the value of upper and lower

Lyapunov exponents in i = (i1, i2, . . . ) ∈ Σ is de�ned respectively by

λ(i) = lim sup
n→∞

(
− 1

n
log
∥∥S ′i1i2...in(Π(σni))

∥∥) ,
λ(i) = lim inf

n→∞

(
− 1

n
log
∥∥S ′i1i2...in(Π(σni))

∥∥) . (2.14)

When λ(i) = λ(i), then the common value is denoted by λ(i) and we call it the Lyapunov

exponent of the system S at the point i ∈ Σ.

De�nition 2.16 If S is a C1 IFS and µ is a Bernoulli measure on Σ, then we call the

system S is µ-conformal, if λ(i) exists for µ-almost every i ∈ Σ.

De�nition 2.17 Suppose that ν is a Borel probability measure on Rd, then the de�nition

of upper and lower local dimension of ν at x ∈ Rd is respectively

dimν(x) = lim sup
r→0

log ν(B(x, r))

log r
,

dimν(x) = lim inf
r→0

log ν(B(x, r))

log r
,

(2.15)

where B(x, r) denotes the open ball of radius r centered at x. If dimν(x) = dimν(x), then

the common value is denoted by dimν(x) and we call it the local dimension of ν at x.
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De�nition 2.18 We can also de�ne the Hausdor� dimension of a Borel probability mea-

sure ν on Rd with

dimH(ν) = inf{dimH(E) : ν(Ec) = 1}. (2.16)

Theorem 2.19 If ν is a Borel probability measure on Rd with compact support, then

dimH(ν) = ess sup{dimν(x) : x ∈ Rd} = inf{α : ν({x : dimν(x) ≤ α}) = 1}

Lemma 2.20 If S = {S1, . . . , Sm} is a self-similar IFS and µ is a σ invariant, ergodic

Borel probability measure on Σ, then S is µ-conformal.

Proof: Let φn : Σ→ R such that for i = (i1, i2, . . . ) ∈ Σ φn(i) = − 1
n

log
∥∥S ′i1i2...in(Π(σni))

∥∥.
Using S is self-similar and the chain rule, we get

∥∥S ′i1i2...in(Π(σni))
∥∥ = λi1λi2 . . . λin . Thus

φn(i) = − 1

n

n∑
k=1

log(λik) =
1

n

n∑
k=1

ψ(σk−1i), (2.17)

where ψ(i) = − log(λi1). Using Birkho� ergodic theorem, we get

lim
n→∞

φn(i) =

∫
Σ

ψ(i)dµ(i) for µ-almost every i ∈ Σ. (2.18)

Thus λ is a constant µ-almost everywhere. So S is µ-conformal. �

Lemma 2.21 If S = {S1, . . . , Sm} is a self-similar IFS. The Lipschitz constant of Si is

λi. Assume µ is a Bernoulli measure on Σ for the probability vector p = (p1, . . . , pm).

Then S is µ-conformal and ∫
Σ

λ(i)dµ(i) = −
m∑
k=1

pk log(λk). (2.19)

Proof: It is a well-known fact that if µ is a Bernoulli measure on Σ, then it is σ invariant

and ergodic, thus due to the previous lemma S is µ-conformal. Using the argument in

the previous proof, we can see that∫
Σ

λ(i)dµ(i) =

∫
Σ

ψ(i)dµ(i) = −
m∑
k=1

pk log(λk). (2.20)

�
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2.3 Dimension theorems without separation condition

De�nition 2.22 We call s the similarity dimension of the self-similar IFS de�ned in

(2.1), if s is the solution of

m∑
i=1

rsi = 1. (2.21)

Theorem 2.23 Let S be a self-similar IFS on Rd, de�ned in (2.1). Let Λ be the attractor

of S and s is the similarity dimension of S. Then

dimH(Λ) ≤ s. (2.22)

The proof can be found in [2].

Theorem 2.24 Let S = {S1, . . . , Sm} be a self-similar IFS on Rd. The vector r =

(r1, . . . , rm) contains the contraction ratios of S.The ν is the invariant measure of S with

the probabilty vector p = (p1, . . . , pm). Then we have

dimH(ν) ≤ −
∑m

i=1 pi log pi
−
∑m

i=1 pi log ri
=
hp
χp
r
. (2.23)

The proof can be found in [2].

2.4 Dimension theorems with separation condition

In the special case, when the cylinder sets satify certain separation condition we are able

to estimate the Hausdor� dimension of the attractor of such IFS. Moreover, in this case

we can study the self-similar measure of the IFS.

De�nition 2.25 The Strong Separation Property (SSP) holds for the self-similar IFS S
de�ned in (2.1), if

∀i 6= j Si(Λ) ∩ Sj(Λ) = ∅. (2.24)

De�nition 2.26 The Open Set Condition (OSC) holds for the self-similar IFS S de�ned

in (2.1), if

∃V ⊆ Rd open set V 6= ∅ ∀i Si(V ) ⊆ V and ∀i 6= j Si(V ) ∩ Sj(V ) = ∅. (2.25)
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Theorem 2.27 (Moran, Hutchinson) Let S = {S1, . . . , Sm} be a self-similar IFS on

Rd for which the OSC holds. We denote the attractor of S with Λ and the similarity

dimension of S with s. Then,

dimH(Λ) = s. (2.26)

The proof can be found in [2].

Theorem 2.28 Let S = {S1, . . . , Sm} be a self-similar IFS on Rd for which the OSC

holds. The vector r = (r1, . . . , rm) contains the contraction ratios of S.The ν is the

invariant measure of S with the probabilty vector p = (p1, . . . , pm). Then we have

dimH(ν) =
−
∑m

i=1 pi log pi
−
∑m

i=1 pi log ri
=
hp
χp
r
. (2.27)

The proof can be found in [2].

Remark 2.29 In the case, when we do not know any separation condition holds for the

self-similar IFS S the values s and hp
χp
r
in Theorem 2.27 and 2.28 is only an upper bound

on the Hausdor� dimension.
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Chapter 3

The systems Sα,β,γ

We study a family of self-similar iterated function systems (IFS) on the interval [0, 1] such

that there is total overlap and for which some separation condition holds.

Kamalutdinov and Tetenov in [3] studied similar iterated function systems, which

called twofold Cantor set.

We follow their argument with similar statements in this chapter.

De�nition 3.1 Let α, β, γ ∈ (0, 1) arbitrary. Then Sα,β,γ is a system of contractive

similarities such that

Sα,β,γ = {S1, S2, S3}

S1(x) = αx, S2(x) = βx, S3(x) = γx+ 1− γ
(3.1)

B. Bárány has already considered the Hausdor� dimension of the attractor of the

system introduced in De�nition 3.1. He showed this result for Lebesgue almost every

α, β, γ(0, 1
2
).

Let Kα,β,γ be the attractor of the system Sα,β,γ. Let Lα,β,γ = S1(Kα,β,γ) ∪ S2(Kα,β,γ)

and Rα,β,γ = S3(Kα,β,γ).

It is easy to see that Kα,β,γ = Lα,β,γ ∪Rα,β,γ.

We denote the symbolic space of Sα,β,γ with Σ = {1, 2, 3}N+
.

Let Πα,β,γ : Σ→ Kα,β,γ be the natural projection of the system Sα,β,γ.
First, we consider some obvious properties of the systems Sα,β,γ:

Lemma 3.2 If α, β, γ ∈ (0, 1
2
), then:

(i) S1 ◦ S2 = S2 ◦ S1,

(ii) for all i ∈ {1, 2} and every m,n ∈ N with m 6= n, Smi (Rα,β,γ) ∩ Sni (Rα,β,γ) = ∅,

(iii) for all m,n ∈ N, Sm1 Sn2 (Kα,β,γ) ⊆ Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ),

13



(iv) Kα,β,γ\{0} =
∞⋃

n,m=0

Sm1 S
n
2 (Rα,β,γ) .

Proof:

(i) For every x ∈ [0, 1] S1(S2(x)) = α(βx) = β(αx) = S2(S1(x)).

(ii) We prove only for i = 1, the case i = 2 is similar. Let m,n ∈ N m > n.

Rα,β,γ ⊆ (1
2
, 1), thus Sm1 (Rα,β,γ) ⊆ (1

2
αm, αm) and Sn1 (Rα,β,γ) ⊆ (1

2
αn, αn). Since

we can see that the right endpoint of one interval is smaller than the left endpoint

of the other interval that is αm = α · αm−1 < 1
2
αm−1 ≤ 1

2
αn.

(iii) Let m,n ∈ N, then Sm1 (Kα,β,γ) ⊆ Kα,β,γ and Sn2 (Kα,β,γ) ⊆ Kα,β,γ. So, we conclude

that Sn2S
m
1 (Kα,β,γ) ⊆ Sn2 (Kα,β,γ) and S

m
1 S

n
2 (Kα,β,γ) ⊆ Sm1 (Kα,β,γ). Using commuta-

tivity, which is property (i) we get the statements.

(iv) Consider the natural projection Πα,β,γ of Sα,β,γ. The map Πα,β,γ is surjective. It is

easy to see that

Π−1
α,β,γ(

∞⋃
m,n=0

Sm1 S
n
2 (Rα,β,γ)) = {i ∈ Σ : ∃k ik = 3}. (3.2)

For those i ∈ Σ such that there is no k for which ik = 3, then the image of i is 0.

�

Using Theroem 2.23, we can conclude that the dimension of Kα,β,γ is less than 1
2
if

α, β, γ ∈ (0, 1
9
).

De�nition 3.3 We call the system Sα,β,γ forward separated, if α, β, γ ∈ (0, 1
9
) and

∀m,n ∈ N m,n > 0 Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) = ∅. (3.3)

We denote the disjoint union with t.

Lemma 3.4 The system Sα,β,γ is forward separated if and only if

Kα,β,γ\{0} =
∞⊔

n,m=0

Sm1 S
n
2 (Rα,β,γ), (3.4)

where t denotes the disjoint union.

14



Proof: (⇒)First, we assume that Sα,β,γ is forward separated. Let (m1, n1) 6= (m2, n2),

then

Sm1
1 Sn1

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk11 S

l1
2 (Rα,β,γ))

Sm2
1 Sn2

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk21 S

l2
2 (Rα,β,γ))

(3.5)

hold. At least one of k1, k2 is zero and one of l1, l2 is zero. So if we use the forward

separated property we get the statement.

(⇐) Now, assume that Kα,β,γ\{0} =
⊔∞
n,m=0 S

m
1 S

n
2 (Rα,β,γ) holds. Then we can get the

statement by using the conditon for the indeces (m, 0) and (0, n).

�

Lemma 3.5 If the system Sα,β,γ is forward separated, then for every

m,n ∈ N Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ) = Sm1 S
n
2 (Kα,β,γ). (3.6)

Proof: Using the above results, we get

Sm1 (Kα,β,γ) ∩ Sn2 (Kα,β,γ)\{0} = Sm1 (
∞⋃

k,l=0

Sk1S
l
2(Rα,β,γ)) ∩ Sn2 (

∞⋃
k,l=0

Sk1S
l
2(Rα,β,γ)) =

=
∞⋃

k,l=0

Sk+m
1 Sl+n2 (Rα,β,γ) = Sm1 S

n
2 (
∞⋃

k,l=0

Sk1S
l
2(Rα,β,γ)) = Sm1 S

n
2 (Kα,β,γ)\{0}.

In the �rst and last equation we use Lemma 3.2 (iv) point and in the second equation we

use Lemma 3.4. �
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Chapter 4

Existence of forward separated systems

Kamalutdinov and Tetenov proved that twofold Cantor sets exist in [3]. In this whole

section we follow their arguement with similar statements.

Due to requirement of completeness we take over the same proof of this Theorem from

[3].

Theorem 4.1 (General Position Theorem [3]) Let (D, dD), (L1, dL1), (L2, dL2) be com-

pact metric spaces and let ϕi(ξ, x) : D × Li → Rn for i ∈ {1, 2} be continuous functions.

If these functions satis�es:

(i) The functions ϕi are α-Hölder with respect to x which is

there exists α > 0 for all i ∈ {1, 2} there exists Ci > 0 for all ξ ∈ D for all x, y ∈ Li
‖ϕi(ξ, x)− ϕi(ξ, y))‖ ≤ CidLi

(x, y)α,

where ‖·‖ is the euclidean norm in Rn.

(ii) Let Φ : D × L1 × L2 → Rn Φ(ξ, x1, x2) = ϕ1(ξ, x1)− ϕ2(ξ, x2) such that

there exist M > 0 for all ξ, ξ′ ∈ D for all x1 ∈ L1 for all x2 ∈ L2

‖Φ(ξ, x1, x2)− Φ(ξ′, x1, x2)‖ ≥MdD(ξ, ξ′).
(4.1)

Then the set ∆ = {ξ ∈ D : ϕ1(ξ, L1) ∩ ϕ2(ξ, L2) 6= ∅} is a compact in D and

dimH(∆) ≤ dimH(L1 × L2)

α
. (4.2)

Proof: Let ∆̃ = {(ξ, x1, x2) ∈ D × L1 × L2 : ϕ1(ξ, x1) = ϕ2(ξ, x2)} = {(ξ, x1, x2) ∈
D × L1 × L2 : Φ(ξ, x1, x2) = 0} be the set of those parameters where ϕ1(ξ, L1) and

ϕ2(ξ, L2) intersects. Then ∆ = projD

(
∆̃
)
. Let L = L1 × L2 and ∆L = projL

(
∆̃
)
.
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The map Φ is a continuous map and ∆̃ = Φ−1({0}), thus ∆̃ is closed. Then ∆̃ is

closed in a compact metric space, so it is compact. The projection is continuous, thus ∆

is also compact.

The functions projD : ∆̃ → ∆ and projL : ∆̃ → ∆L are surjective. Moreover, projL

is also injective, because if exist (ξ, x1, x2) 6= (ξ′, x′1, x
′
2) ∈ ∆̃ such that projL (ξ, x1, x2) =

projL (ξ′, x′1, x
′
2), then x′1 = x1, x

′
2 = x2 and ξ′ 6= ξ. By the de�nition of ∆̃ Φ(ξ, x1, x2) =

Φ(ξ′, x1, x2) = 0 and this is contradicts with the second assumption. So projL is injective,

thus it is invertible.

Let g = projD ◦ projL
−1 : ∆L → ∆. This is surjective. Let g(x1, x2) = ξ and

g(x′1, x
′
2) = ξ′. Then Φ(ξ, x1, x2) = 0 and Φ(ξ′, x′1, x

′
2) = 0.

M · dD(ξ, ξ′) ≤ ‖Φ(ξ, x1, x2)− Φ(ξ′, x1, x2)‖ = ‖Φ(ξ′, x′1, x
′
2)− Φ(ξ′, x1, x2)‖ ≤

‖ϕ1(ξ′, x′1)− ϕ1(ξ′, x1)‖+ ‖ϕ2(ξ′, x′2)− ϕ2(ξ′, x2)‖ ≤ C (dL1(x1, x
′
1)α + dL2(x2, x

′
2)α) ,

where C = max{C1, C2}. In the �rst inequation we use the (ii) assumption, the next

inequation is triangle inequality and the last inequation is the Hölder continuity in (i). �

Also for the completeness we take over the same proof of thefollwing theorem from

[3].

Lemma 4.2 (Displacement theorem) Let S = {S1, . . . , Sm} and S̃ = {S̃1, . . . , S̃m}
be two iterated function systems on Rn. We denote the natural projection of S with Π :

Σ→ Rn and the natural projection of S̃ with Π̃ : Σ→ Rn, where Σ = {1, . . . ,m}N+
is the

symbolic space. Let V ⊆ Rn be a compact set such that for every i ∈ {1, . . . ,m}, Si(V ) ⊆
V and S̃i(V ) ⊆ V . Then

∀i = (i1, i2, . . . ) ∈ Σ
∥∥∥Π(i)− Π̃(i)

∥∥∥ ≤ δ

1− p
, (4.3)

where

δ = max{
∥∥∥Si(x)− S̃i(x)

∥∥∥ : i ∈ {1, . . . ,m}, x ∈ V } and

p = max
1≤i≤m

{max{Lip(Si),Lip(S̃i)}}.
(4.4)
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Proof: Let i ∈ Σ arbitrary. We can conclude∥∥∥Π(i)− Π̃(i)
∥∥∥ =

∥∥∥Si1(Π(σi))− S̃i1(Π̃(σi))
∥∥∥ ≤

≤
∥∥∥Si1(Π(σi))− Si1(Π̃(σi))

∥∥∥+
∥∥∥Si1(Π̃(σi))− S̃i1(Π̃(σi))

∥∥∥ ≤
≤ p

∥∥∥Π(σi)− Π̃(σi)
∥∥∥+ δ.

(4.5)

Using the above inequation n times, then we get

∥∥∥Π(i)− Π̃(i)
∥∥∥ ≤ pn

∥∥∥Π(σni)− Π̃(σni)
∥∥∥+ δ ·

n−1∑
i=0

pi. (4.6)

If n→∞, then we get
∥∥∥Π(i)− Π̃(i)

∥∥∥ ≤ δ
1−p , because V is compact. �

Let Σ = {1, . . . ,m}N+
and a ∈ (0, 1). We can construct a metric space (Σ, ρa) with

metric ρa. We de�ne ∀i, j ∈ Σ s(i, j) = min{k ≥ 1 : ik 6= jk}, then let ρa(i, j) = as(i,j). It

is a well known fact that the metric space (Σ, ρa) is compact.

Lemma 4.3 Let (Σ, ρa) be a metric space as above. Then

dimH(Σ) = − log(m)

log(a)
. (4.7)

Proof: Let G = {G1, . . . , Gm} be a set of Σ → Σ functions.For all k ∈ {1, . . . ,m} and
for all i ∈ Σ

Gk(i) = (k, i1, i2, . . . ). (4.8)

Then every Gk is a contractive function with Lipschitz constant a, so G is an IFS. The

attractor of G is Σ. G satis�es the strong separation property, so the Hausdor�-dimension

of its attractor is equal to the similarity dimension of the IFS. It is also a well known fact.

The proof can be found in [2]. Thus dimH(Σ) = − log(m)
log(a)

. �

So using this fact for the symbolic space of the system Sα,β,γ. Remind that Σ =

{1, 2, 3}N+
, then

dimH(Σ) <
1

2
in the metric ρa ⇐⇒ a ∈

(
0,

1

9

)
. (4.9)
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Lemma 4.4 Let α, β, γ < a and a ∈
(
0, 1

9

)
. Then Πα,β,γ natural projection of the system

Sα,β,γ is 1-Lipschitz with respect to the metric space (Σ, ρa).

Proof: Let i, j ∈ Σ with s(i, j) = k. Then ρa(i, j) = ak and i1 = j1, . . . , ik = jk, thus

Πα,β,γ(i),Πα,β,γ(j) ∈ Si1...ik(Kα,β,γ). The diameter of Si1...ik(Kα,β,γ) is Lip(Si1)·· · ··Lip(Sik),

which is strictly smaller than ak. So

|Πα,β,γ(i)− Πα,β,γ(j)| < ak = ρa(i, j). (4.10)

�

Lemma 4.5 Letm,n ∈ N+. α, β, γ ∈
(
0, 1

9

)
and consider the system Sα,β,γ. If Sm1 (Rα,β,γ)∩

Sn2 (Rα,β,γ) 6= ∅, then 8
9
≤ αm

βn ≤ 9
8
.

Proof: If α, β, γ ∈
(
0, 1

9

)
, then Rα,β,γ ⊆ [8

9
, 1]. Thus Sm1 (Rα,β,γ) ⊆ [8

9
αm, αm] and

Sn2 (Rα,β,γ) ⊆ [8
9
βn, βn]. The intersection can not happen if αm < 8

9
βn or βn < 8

9
αm. Thus

we do not have intersection if αm

βn < 8
9
or αm

βn > 9
8
. So 8

9
≤ αm

βn ≤ 9
8
. �

Lemma 4.6 Let m,n ∈ N+ and β, γ ∈ (0, 1
9
) be �xed. We denote

Dm,n(β, γ) =

{
α ∈

(
0,

1

9

)
:

8

9
≤ αm

βn
≤ 9

8

}
. (4.11)

Let ϕi : Dm,n(β, γ)× Σ→ R for i = 1, 2. We de�ne

∀α ∈ Dm,n(β, γ) ∀i ∈ Σ ϕ1(α, i) = Πα,β,γ((1)m ∗ (3) ∗ i) = Sm1 S3(Πα,β,γ(i)),

∀α ∈ Dm,n(β, γ) ∀i ∈ Σ ϕ2(α, i) = Πα,β,γ((2)n ∗ (3) ∗ i) = Sn2S3(Πα,β,γ(i)),

where Πα,β,γ is the natural projection of Sα,β,γ. Then for every α, α′ ∈ Dm,n(β, γ) and for

every i, j ∈ Σ

|ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)| ≥M |α− α′| , (4.12)

where M(m,n, β, γ) > 0 constant.

Proof: Let α, α′ ∈ Dm,n(β, γ) and i, j ∈ Σ be arbitrary. We introduce the notation

S = Sα,β,γ = {S1, S2, S3}, S ′ = Sα′,β,γ = {S ′1, S ′2, S ′3}, let Π = Πα,β,γ and Π′ = Πα′,β,γ.

Then S ′2 = S2 and S ′3 = S3.
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Let α < α′ and δ = |α′ − α|, then using Lagrange mean value theorem

mαm−1 ≤ α′m − αm

α′ − α
=
|α′m − αm|

δ
≤ mα′m−1. (4.13)

We de�ned δ = |α′ − α| and using displacement Theorem 4.2 for S and S ′, then we

get

for every i ∈ Σ |Π(i)− Π′(i)| ≤ 9

8
δ. (4.14)

Consider the di�erence that we have to estimate

ϕ1(α, i)− ϕ1(α′, i) + ϕ2(α′, j)− ϕ2(α, j) =

= Sm1 S3(Π(i))− S ′m1 S ′3(Π′(i)) + S ′n2 S
′
3(Π′(j))− Sn2S3(Π(j)) =

= Sm1 S3(Π(i))− S ′m1 S3(Π′(i)) + Sn2S3(Π′(j))− Sn2S3(Π(j)) =

= Sm1 S3(Π(i))− Sm1 S3(Π′(i))︸ ︷︷ ︸
A

+ Sm1 S3(Π′(i))− S ′m1 S3(Π′(i))︸ ︷︷ ︸
B

+Sn2S3(Π′(j))− Sn2S3(Π(j))︸ ︷︷ ︸
C

.

We will use the estimate

|A+B + C| ≥ |B| − |A+ C| ≥ |B| − |A| − |C| , (4.15)

where �rst we use the reversed triangle inewquality and second the triangle inequality.

Consider |A| part of the above calculation

|A| = |Sm1 S3(Π(i))− Sm1 S3(Π′(i))| = αmγ |Π(i)− Π′(i)| ≤ 9

8
αmγδ,

where in the inequation we use (4.14).

The next part is

|B| = |Sm1 S3(Π′(i))− S ′m1 S3(Π′(i))| = |αm − α′m| |S3(Π′(i))| ≥ 8

9
mαm−1δ,

where in the inequation we use (4.13).

The last part is

|C| = |Sn2S3(Π′(j))− Sn2S3(Π(j))| = βnγ |Π(j)− Π′(j)| ≤ 9

8
βnγδ,

where in the inequation we use (4.14).
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Now estimate

|B| − |A| ≥
(

8m

9α
− 9

8
γ

)
αmδ ≥

(
8− 9

8

)
αmδ ≥

(
8− 9

8

)
8

9
βnδ > 6βnδ, (4.16)

where in the second inequation we use γ < 1, m ≥ 1, α < 1
9
.

The following

|C| ≤ 9

8
γβnδ < βnδ (4.17)

is true, beacuse γ < 1
9
. Thus

|ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)| ≥ 5βn |α′ − α| , (4.18)

so M = 5βn. �

Lemma 4.7 Let m,n ∈ N+ and β, γ ∈ (0, 1
9
). Then the set

∆m,n(β, γ) =

{
α ∈

(
0,

1

9

)
: Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) 6= ∅

}
(4.19)

is closed in (0, 1
9
) and L(∆m,n(β, γ)) = 0, where L means the Lebesgue measure on R.

Proof: Let ε > 0 be such that 1
9
− ε > β, γ. Then Em,n(β, γ) = Dm,n(β, γ) ∩ [ε, 1

9
− ε]

is a closed interval in R, so it is compact. We consider the compact metric space (Σ, ρa),

where Σ = {1, 2, 3}N+
and a = 1

9
− ε.

Let ϕi : Em,n(β, γ)× Σ→ R for i = 1, 2. We de�ne

ϕ1(α, i) = Πα,β,γ((1)m ∗ (3) ∗ i) = Sm1 S3(Πα,β,γ(i)),

ϕ2(α, i) = Πα,β,γ((2)n ∗ (3) ∗ i) = Sn2S3(Πα,β,γ(i)).
(4.20)

Let

Ξε
m,n(β, γ) = ∆m,n(β, γ) ∩

[
ε,

1

9
− ε
]
.

For an α the Sm1 (Rα,β,γ)∩Sn2 (Rα,β,γ) 6= ∅ holds if and only if there exist i, j ∈ Σ such that

ϕ1(α, i) = ϕ2(α, j), thus

Ξε
m,n(β, γ) = {α ∈ Em,n(β, γ) : ϕ1(α,Σ) ∩ ϕ2(α,Σ) 6= ∅}. (4.21)

Using Lemma 4.4 one can see that ϕi is Hölder continuous with respect to the second
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variable for i = 1, 2. Applying Lemma 4.6, we get that the conditions of the General

Position Theorem 4.1 holds. Using General Position Theorem 4.1, then get

dimH(Ξε
m,n(β, γ)) ≤ dimH(Σ× Σ) ≤ 2dimH(Σ) < 1, (4.22)

the last inequation is true because of the equation (4.9). So L(Ξε
m,n(β, γ)) = 0. Moreover,

∆m,n(β, γ) =
∞⋃
k=1

Ξ1/k
m,n(β, γ), (4.23)

thus the continuity of measure yields that L(∆m,n(β, γ)) = 0.

General Position Theorem 4.1 implies that Ξε
m,n(β, γ) is closed for every ε > 0, so

∆m,n(β, γ) is also closed. �

Lemma 4.8 Let m,n ∈ N+ be arbitrary. Then the set

∆̃m,n =

{
(α, β, γ) ∈

(
0,

1

9

)3

: Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) 6= ∅

}
(4.24)

is closed in (0, 1
9
)3 and L3(∆̃m,n) = 0, that is its Lebesgue measure is zero in R3.

Proof: Let I = (0, 1
9
)3 and Ψ : I × Σ2 → R be such that

Ψ(α, β, γ, i, j) = Πα,β,γ((1)m ∗ (3) ∗ i)− Πα,β,γ((2)n ∗ (3) ∗ j) =

= Sm1 S3(Πα,β,γ(i))− Sn2S3(Πα,β,γ(j)).
(4.25)

Then Ψ is a continuous function and ∆̃m,n = projI (Ψ−1({0})). Because Ψ is continuous

Ψ−1({0}) is closed, and because Σ is compact ∆̃m,n is closed. This is because if x ∈ I is

an accumulation point of projI (Ψ−1({0})), then there exists an (x, y) ∈ I ×Σ2 such that
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is an accumulation point of Ψ−1({0}). Consider the integral

L3(∆̃m,n) =

∫∫∫
(0, 1

9
)3

1∆̃m,n
(α, β, γ) dL3(α, β, γ) =

=

∫∫
(0, 1

9
)2

∫
(0, 1

9
)

1∆̃m,n
(α, β, γ) dL(α)dL2(β, γ) =

=

∫∫
(0, 1

9
)2

∫
(0, 1

9
)

1∆m,n(β,γ) (α) dL(α)dL2(β, γ) =

=

∫∫
(0, 1

9
)2

L(∆m,n(β, γ))dL2(β, γ) =

∫∫
(0, 1

9
)2

0dL2(β, γ) = 0,

(4.26)

where we use Fubini's theorem in the second equality and the fourth equality we use

Lemma 4.7. �

Theorem 4.9 Let J =
(
0, 1

9

)3
. We de�ne

Ω = {(α, β, γ) ∈ J : Sα,β,γ is a forward separated system} . (4.27)

Then L3(J/Ω) = 0 and J/Ω is uncountable and dense in J .

Proof: The set

J/Ω =
∞⋃

m,n=1

∆̃m,n , thus L3(J/Ω) ≤
∞∑

m,n=1

L3(∆̃m,n) = 0, (4.28)

where we use Lemma 4.8 in the last equality. Thus L3(J/Ω) = 0.

If αm = βn for m,n ∈ N+, then Sα,β,γ is not a forward separated system, so

∆̃ =

{
(α, β, γ) ∈ J :

logα

log β
∈ Q

}
⊆ J/Ω. (4.29)

Then for every z ∈ (0, 1
9
) the set

{(α, β, γ) ∈ ∆̃ : γ = z} =
⋃
q∈Q+

{
(α, fq(α), z) : α ∈

(
0,

1

9

)
, fq(x) = xq

}
(4.30)

is union of smooth curves. From this one can easily see that ∆̃ is dense and uncountable.

This implies J/Ω is also dense and uncountable. �
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Chapter 5

The tools of calculating

Hausdor�-dimension of the self-similar

measure

We would like to calculate the Hausdor� dimension of the self-similar measure of the

forward separated system Sα,β,γ and for this we require the following statements.

5.1 Conditional expectation

De�nition 5.1 Let G ⊆ B be an arbitrary σ-algebra. Let ϕ ∈ L1(Z,B, µ), then the

function ψ ∈ L1(Z,B, µ) is the conditional expectation of ϕ with respect to the σ-algebra

G, if

(i) ψ is G-measurable,

(ii) for every G ∈ G ∫
Z

ϕ(x)1G (x) dµ(x) =

∫
Z

ψ(x)1G (x) dµ(x). (5.1)

Theorem 5.2 Let G ⊆ B be an arbitrary σ-algebra. If ψ and ψ̃ are conditional expec-

tations of the function ϕ ∈ L1(Z,B, µ) with respect to G, then ψ(z) = ψ̃(z) for µ-almost

every z ∈ Z.

We denote the conditional expectation of ϕ ∈ L1(Z,B, µ) with respect to G with

Eµ(ϕ|G).
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5.2 Conditional measure

The proof of the statements that contained in this section can be found in [4].

Let Z be a compact metric space. We consider the probability space (Z,B, µ), where

B is the Borel σ-algebra of Z and µ is a probability measure on Z.

Moreover, let F be a σ-algebra such that there exists some E1, E2, · · · ∈ B for which

F =
∞∨
i=1

{Ei, Z/Ei}, (5.2)

where ∨ denotes the generated σ-algebra. Indeed, if Ai ⊆ B is a σ-algebra for all i =

1, 2, . . . , then
∞∨
i=1

Ai is the generated σ-algebra by
∞⋃
i=1

Ai.

De�nition 5.3 The P ⊆ B is a partition of Z, if for every P1 6= P2 ∈ P P1 ∩ P2 = ∅
and

⋃
P∈P

P = Z.

Let P be a partition of Z. Then for z ∈ Z the set P(z) denotes those P(z) ∈ P such

that z ∈ P(z).

For every n = 1, 2, . . . let Pn be a partition of Z such that

σ(Pn) =
n∨
i=1

{Ei, Z/Ei}, (5.3)

where σ(A) denotes the generated sigma algebra by A.

De�nition 5.4 The set {µz}z∈Z of Borel probability measures on Z is a system of con-

ditional measures of µ with respect to the σ-algebra F , if

(i) for every E ∈ F , z ∈ E µz(E) = 1 holds for µ-almost every z ∈ Z ,

(ii) for every bounded measurable function ϕ : Z → R the function z 7→
∫
Z

ϕ dµz is

F-measurable and ∫
Z

ϕ(x) dµ(x) =

∫
Z

∫
Z

ϕ(x) dµz(x) dµ(z). (5.4)

Theorem 5.5 If {µz}z∈Z and {νz}z∈Z are two systems of condtional measures of µ with

respect to F , then µz = νz for µ-almost every z ∈ Z.

The proof is in [4].
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Theorem 5.6 The limit of the measures

µFz = lim
n→∞

µ|Pn(z)

µ(Pn(z))
exists for µ-almost every z ∈ Z, (5.5)

where the limit is meant in the weak-star topology.

Moreover, the set {µFz }z∈Z is a system of conditional measures of µ with respect to the

σ-algebra F .

The proof can be found in [4].

Theorem 5.7 Let ϕ : Z → R is bounded and measurable, then the function

Φ : Z → R for which

Φ(z) =

∫
Z

ϕ(x)dµz(x) for µ-almost every z ∈ Z (5.6)

is the conditional expectation of ϕ with respect to F , thus Eµ(ϕ|F) = Φ.

The proof is in [4].

5.3 Feng-Hu theorem

First, we introduce some notations, which we will use in this section. Let (X,F ,m) be

a probability space. Let ξ ⊆ A be a countable partition of X. Denote with A ⊆ F an

arbitrary σ-algebra. Then Im(ξ|A) denotes the conditional information of the partition ξ

given by A, which is

Im(ξ|A)(x) = −
∑
E∈ξ

1E (x) log[Em(1E|A)(x) ]. (5.7)

The conditional entropy of ξ given A is de�ned by the following formula

Hm(ξ|A) =

∫
Im(ξ|A)dm. (5.8)

Let S = {S1, . . . , Sm} be an IFS on Rd. The attractor of S is Λ and Σ = {1, . . . ,m}N+

is the symbolic space. The natural projection of S is Π : Σ→ Λ. We denote the left shift

on Σ with σ.
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Let (Σ, C, µ) be a probability space, where C is the σ-algera generated by the cylinder

sets. The Borel probability measure µ on Σ is such that µ is invariant for σ. We de�ne

the measure ν on Λ with ν = Π∗µ = µ ◦Π−1. P = {[1], . . . , [m]} is a Borel partition of Σ

and γ denotes the Borel σ-algebra on Rd.

We de�ne the projection entropy of µ under Π to the IFS S as

hΠ(σ, µ) = Hµ(P|σ−1Π−1γ)−Hµ(P|Π−1γ). (5.9)

The Theorem 2.8 in [1] states the following:

Theorem 5.8 (Feng-Hu) Assume that µ is a σ-invariant ergodic Bernoulli probabilty

measure on Σ. S is a µ-conformal IFS and ν = Π∗µ = µ ◦ Π−1, then

dimν(x) =
hΠ(σ, µ)∫

λdµ
for ν-almost every x ∈ Λ. (5.10)

Lemma 5.9 Let S = {S1, . . . , Sm} be an IFS. If µ is a Bernoulli measure on Σ for the

probability vector p = (p1, . . . , pm), then

Hµ(P|σ−1Π−1γ) = −
m∑
k=1

pk log(pk). (5.11)

Proof: The de�nition of conditional entropy and conditional information is contained

in equation (5.8) and (5.7) respectively. Let [k] ∈ P , then the generated σ-algebra by the

function 1[k] is σ(1[k]) = {[k],Σ/[k]} ⊆ σ(P), where σ(P) is the generated σ-algebra by P .
We can easily check that σ(P) and σ−1Π−1γ are independent σ-algebras. We know that if

ϕ ∈ L1(Σ, C, µ), σ(ϕ) and G are independent σ-algebras, then Eµ(ϕ|G) = Eµ(ϕ) =
∫
ϕdµ.

Thus Eµ(1[k]|σ−1Π−1γ) = µ([k]) = pk. So we can conclude that Hµ(P|σ−1Π−1γ) =

−
m∑
k=1

pk log(pk). �

Theorem 5.10 (Feng-Hu theorem in a special case) We assume that S = {S1, . . . , Sm}
is a self-similar IFS and the Lipschitz constant of Si is λi. µ is a Bernoulli measure on

Σ for the probability vector p = (p1, . . . , pm) and ν = Π∗µ = µ ◦ Π−1, then

dimH(ν) =

−
m∑
k=1

pk log(pk)−Hµ(P|Π−1γ)

−
m∑
k=1

pk log(λk)

. (5.12)
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Proof: The proof is using Lemma 2.21, Lemma 5.9 and Theorem 2.19 in the Feng-Hu

Theorem 5.8. �
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Chapter 6

Hausdor�-dimension of a self-similar

measure of a forward separated system

Sα,β,γ

Theorem 6.1 Let Sα,β,γ = {S1, S2, S3} be a forward separated system. (See De�nition

3.1 and 3.3). The symbolic space is Σ = {1, 2, 3}N+
and the natural projection of Sα,β,γ

is Πα,β,γ. Let µ = (p1, p2, p3)N
+
be a Bernoulli measure on Σ for the probability vector

p = (p1, p2, p3). And let ν = Πα,β,γ∗µ = µ ◦ Π−1
α,β,γ is the self-similar measure on the

attractor with respect to p. Then the Hausdor� dimension of ν can be exactly determined

as

dimH(ν) =
−(p1 log(p1) + p2 log(p2) + p3 log(p3)) + φ(p1, p2, p3)

−(p1 log(α) + p2 log(β) + p3 log(γ))
, (6.1)

where

Φ(p1, p2, p3) =
∞∑
k=1

(
k∑

m=1

(
k − 1

m− 1

)
log
(m
k

)
pm1 p

k−m
2 p3 +

k−1∑
m=0

(
k − 1

m

)
log

(
k −m
k

)
pm1 p

k−m
2 p3

)
.

Proof: We introduce easier notation for further use. We denote Sα,β,γ with S and Πα,β,γ

is Π. The Kα,β,γ attractor of S is K. Let R = S3(K) and L = S1(K) ∪ S2(K).

The system S is self-similar IFS and the measure µ is a Bernoulli measure on the

symbolic space Σ. Thus, we can use the special form of Feng-Hu Theorem 5.10. So the

only thing that we have to calculate is Hµ(P|Π−1γ), where P = {[k] : k = 1, 2, 3} is a
partition of Σ and γ is the Borel σ-algebra on [0, 1] ⊆ R.

29



To the calculation of Hµ(P|Π−1γ), we need

Iµ(P|Π−1γ)(i) = −
3∑

k=1

1[k] (i) log(Eµ(1[k] |Π−1γ))(i). (6.2)

The σ-algebra γ can be generated by countable many �nite partition. Let

Pn =

{[
k

2n
,
k + 1

2n

)
: 0 ≤ k ≤ 2n − 1

}
, (6.3)

this is a �nite partition of [0, 1] and
∞∨
i=1

Pi is the Borel σ-algebra on [0, 1]. Using this fact

and Theorem 5.6, then we get that {µi}i∈Σ system of conditional measures with respect

to the σ-algebra Π−1γ exists. Using Theorem 5.7, we get

Eµ(1[k]|Π−1γ)(i) =

∫
Σ

1[k] (j) dµi(j) = µi([k]) =

{
µi([i1]), if i1 = k

0, if i1 6= k
. (6.4)

Using the above observation, one get

Hµ(P|Π−1γ) = −
∫
Σ

log(µi([i1]))dµ(i). (6.5)

Using Theorem 5.6, we conclude that

µi = lim
n→∞

µ|Π−1(Pn(Π(i)))

µ(Π−1(Pn(Π(i))))
, (6.6)

where limit is meant in the weak-star topology. We know the property of weak-star

convergence, that if νn, ν are Borel probability measures on the compact metric space

X and lim
n→∞

νn = ν in weak-star sense, then for all U ⊆ X open and Z ⊆ X closed

lim inf
n→∞

νn(U) ≥ ν(U) and lim sup
n→∞

νn(Z) ≤ ν(Z) hold. Because [k] ⊆ Σ is open and closed,

then

µi([i1]) = lim
n→∞

µ(Π−1(Pn(Π(i))) ∩ [i1])

µ(Π−1(Pn(Π(i))))
. (6.7)

For every ε > 0 there exists n ∈ N enough large such that Pn(Π(i)) ⊆ B(Π(i), ε).
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We de�ne for all m,n = 0, 1, . . . the set

H(m,n) = {i = (i1, i2, . . . ) ∈ Σ : il 6= 3 ∀l = 1, . . .m+ n,

im+n+1 = 3, |{1 ≤ k ≤ m+ n : ik = 1}| = m} .
(6.8)

We can see that Π(H(m,n)) = Sm1 S
n
2S3(K) = Sm1 S

n
2 (R).

Let i ∈ H(m,n) ⊆ Σ. Then Π(i) 6= 0, because im+n+1 = 3, thus Π(i) ∈ Sm1 Sn2S3(K) ⊆
[a(m,n), 1], where a(m,n) = 1

2
(min{α, β})m+n

If (max{α, β})k+l < a(m,n)
2

, then the sets Sk1S
l
2(R) ⊆ (0, a(m,n)

2
). Thus there exist

M(m,n) ∈ N such that if k + l > M(m,n), then Sk1S
l
2(R) ⊆ (0, a(m,n)

2
).

We introduce

H =
{
Sk1S

l
2(R) : k + l ≤M(m,n), k, l = 0, 1, . . .

}
. (6.9)

We can notice that Sm1 S
n
2 (R) ∈ H. The set H is �nite and the elements are disjoint

compact sets, thus there exists ε1 > 0 such that

∀H1 6= H2 ∈ H Nε1(H1) ∩Nε1(H2) = ∅, (6.10)

where Nε(H) means the ε neighbourhood of the set H.

Using K/{0} =
∞⋃

k,l=0

Sk1S
l
2(R), then there exists ε2 such that

∀k, l = 0, 1 . . . Nε2(S
m
1 S

n
2 (R)) ∩Nε2(S

k
1S

l
2(R)) = ∅, (6.11)

Thus we can conclude that B(Π(i), ε2)∩K ⊆ Sm1 S
n
2 (R). For every ε > 0 there exists n ∈ N

enough large such that Pn(Π(i)) ⊆ B(Π(i), ε). So there existN(n,m) ∈ N such that for all

N(m,n) < z Pz(Π(i)) ⊆ B(Π(i), ε2). Moreover, for all N(m,n) < z Π−1(Pz(Π(i)) ⊆
H(m,n).

Let z > N(m,n) be �x, then

Π−1(Pz(Π(i))) = E × Tz, where

E = {(i1, . . . , im+n+1) : im+n+1 = 3, |{k : ik = 1}| = m, |{k : ik = 2}| = n}

Tz = {(j1, j2, . . . ) ∈ {1, 2, 3}N
+

: ∃k ∈ Π−1(Pz(Π(i))) jn+m+1 = kn+m+1, jn+m+2 = kn+m+2, . . . }.

The above equation is true, because if k ∈ Π−1(Pz(Π(i))), then if permute the �rst n+m
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coordinates and in this way we get k′, then Π(k) = Π(k′). Then

µ(E × Tz ∩ [i1])

µ(E × Tz)
=
µ((E ∩ [i1])× Tz)

µ(E × Tz)
=
µ([E ∩ [i1] ])µ(Tz)

µ([E])µ(Tz)
=
µ([E ∩ [i1] ])

µ([E])
, (6.12)

where [E] = {i ∈ Σ : ∃j ∈ E ∃k ∈ Σ i = j ∗ k}.
Because µ is a Bernoulli measure, then

µ(E) =
(m+ n)!

m!n!
pm1 p

n
2p3. (6.13)

Suppose that i1 = 1, then

µ(E ∩ [i1]) =
(m+ n− 1)!

(m− 1)!n!
pm1 p

n
2p3. (6.14)

In this case for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
=
µ(E × Tz ∩ [i1])

µ(E × Tz)
=

m

m+ n
. (6.15)

Suppose that i1 = 2, then

µ(E ∩ [i1]) =
(m+ n− 1)!

m!(n− 1)!
pm1 p

n
2p3. (6.16)

In this case for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
=
µ(E × Tz ∩ [i1])

µ(E × Tz)
=

n

m+ n
. (6.17)

Suppose that i1 = 3, then for enough large z we get Π−1(Pz(Π(i)))∩ [3] = Π−1(Pz(Π(i))),

thus for large z

µ(Π−1(Pz(Π(i))) ∩ [i1])

µ(Π−1(Pz(Π(i))))
= 1. (6.18)

From the above observations, if i ∈ H(m,n) then

µi([i1]) =


m

m+n
, if i1 = 1,

n
m+n

, if i1 = 2,

1, if i1 = 3.

(6.19)
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Using Kolmogorov 0-1 law we get

µ(
∞⋃

m,n=0

H(m,n)) = 1. (6.20)

The integral that we want to calculate is∫
Σ

log(µi([i1]))dµ(i) =

=
∞∑
k=1

k∑
m=1

log
(m
k

) (k − 1)!

(m− 1)!(k −m)!
pm1 p

k−m
2 p3 +

∞∑
k=1

k−1∑
m=0

log

(
k −m
k

)
(k − 1)!

m!(k −m− 1)!
pm1 p

k−m
2 p3,

where we use combinatorics calculation. �
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