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Chapter 1
Preliminary

Hutchinson showed that if the cylinder sets of a self-similar iterated function system (IFS)
are disjoint, then the Hausdorff dimension of its attractor is equals with the similarity
dimension. Also, he showed similar result for self-similar measures which belongs to such
self-similar TF'S for which some strong separation condition holds.

When the cylinder sets of an IF'S has significant overlap, the dimension is difficult to
understand, because we have to consider complicated overlapping system of cylinder sets.

Using transversality condition for a self-similar IF'S family, then K. Simon, B. Solomyak
and M. Urbanski calculated this dimensions for almost every paramaters of the IFS family.
B. Barany also proved almost everywhere results, when the self-similar IFS’s have fix
points that coincide.

Kamalutdinov and Tetenov studied twofold Cantor sets, which are very similar to the
forward separated systems (Definition . In a system of a twofold Cantor set there are
total overlaps. They have results for the properties of the attractor. They calculated the
exact value of the Hausdorff dimension of twofold Cantor sets. This results are important,
because they are the first not only almost everywhere statements for such IF'S’s for which
its cylinder sets have significant overlaps. They do not mentioned about the self-similar

measures of those systems.

Results of this dissertation

In this work we study self-similar IF'S’s on the interval [0, 1] for which the so-called forward
separated condition holds (Definition [3.3). In the considered IFS’s there is also total
overlap between the cylinder sets.

Using the argument of Kamalutdinov and Tetenov we proved that forward separated
systems exist. The main result of this dissertation is Theorem|[6.1] which states everywhere

result for the Hausdorff dimension of a self-similar measure with respect to a forward



separated system.

Theorem Let o, 8,7 € (0, é) Let § = {57,52,55} be a self-similar IF'S on [0, 1]
such that

S - {Sla SQ) 53}

(1.1)
Si(z) =ax, Sy(x)=pzx, S3(x)=~yr+1-—17.

Let K denote the attractor of S. Moreover, we suppose that
for every m,n € Nt S7"S3(K) N SyS3(K) = 0. (1.2)

The natural projection of Sy is lag,. Let g = (p1,pa,ps) be a Bernoulli measure
on X for the probability vector p = (p1,p2,p3). Let v = Ila 5, 0t = po H;}B,v be the
self-similar measure on the attractor. Then the Hausdorff dimension of v can be exactly

determined.

The exact value of the dimension is in Chapter 6. To achieve this statement we used

the theorem of Feng and Hu.



Chapter 2

Introduction of self-similar 1terated

function systems

In this chapter we would like to define the most fundamental notions and we collect the

most important theorems concerning self-similar iterated function systems (IFS).

2.1 Definitions of self-similar IFS

Definition 2.1 Let m > 2, m € Z and d > 1,d € Z. We say that S is a self-similar
iterated function system (IFS) on RY, if

S=1{S1,.... S}, (2.1)

where i S; : R — R? is contracting similarity transformation with contraction ratio

0 <r; <1 for alli. This means, that
Vie{l,....m} Vx,y R [Si(x) = Si(y)ll = r:[x—yll. (2.2)

Frequently we use the notation S;, o---0.5;, =5
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Figure 2.1: Example for a self-similar TF'S on the line

Definition 2.2 Let B = B(0,R), where R = maX1g¢§m{w}- The set A is the
attractor of the self-similar IFS S, if

A=) | 'U Sitsin(B)- (2.3)
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Figure 2.2: The first, second and third level cylinder sets of the I[F'S & = {—% + %, 5+
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Definition 2.3 We call ¥ = {1,....,m}" the symbolic space of the IFS S defined in
equation (12.1)).

On the symbolic space we use the following notation. If i = (iy,...,4,) € {1,...,m}*

and j € {1,...,m}!, then let i *j = (i1,42,...,4x,J1,72,---,1). Denote i’ = i*1i and

i* = i*~1 xi. This definition is also proper for | = cc.

Let us denote the set of all finite length word by ¥* = U{l, C,mE
k=1

We denote the left shift on the symbolic space with o : S — ¥ for all j = (j1,72,...) €
X o) = (2 Js---)-



Definition 2.4 The map 11 is the natural projection of the IFS S, if

I:—A II({) = nli& Siy.in(0), (2.4)
where i = (i1,14,...) € X.
It is easy to see that
A =TI(%). (2.5)

Theorem 2.5 (Hutchinson) The A attractor of the IFS S (2.1)) is the only non-empty

compact set solution of the following equation on sets

X = US@(X), (2.6)

where X is the variable.

The proof can be found in [2].
Definition 2.6 Let ¥ = {1,....m}N" andi= (i1,...i;) € {1,...,m}*, then the set
(i1, .. il ={J €Dt g1 =1, gk =i} (2.7)

1$ called a cylinder set.

Let p = (p1,...,pm) be a probability vector. Then, let ;1 = p™ be the infinite product

measure or Bernolli measure on >. That is

w([it, - i) = Diy -+ iy (2.8)

where (iy,...,ix) € {1,...,m}*. Using Kolmogorov’s extension theorem, we can see that
there exists a unique p Borel measure on ¥ defined on the o-algebra generated by the
cylinder sets and for which the equation ((2.8) holds.

Definition 2.7 Let p = (p1,...,pm) be a probability vector. We say that v is a self-
stmilar measure or invariant measure of the self-similar IFS S with the probabilty vector

P, if v is the following push-down measure
v(E) =1LpY(E) =p" o II"H(E). (2.9)
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Theorem 2.8 Let p = (p1,...,pm) a probabilty vector and S is a self-similar IFS in the
form (2.1)). Then v self-similar measure of S with the probabilty vector p if it is the only

v Borel probabilty measure on R? for which

v=> proS" (2.10)

holds.

The proof can be found in [2].

2.2 The size of the attractor

Most of the time the attractor has zero Lebesgue measure, thus we need some definition

to be able to compare the size of sets with zero Lebesgue measure.

Definition 2.9 Lett > 0. The measure H' is called the t-dimensional Hausdorff measure
on R®, if it is the restriction of the following outer measure for the o-algebra of the

measurable sets. Let
t 7 . It . ) | < 1 t
H'(E) = lim {mf {; Al - EC ZL:JIA“ |A;| < 5}} lim H5( ), (2.11)
where A C R® |A| is the diameter of the set A.

Remark 2.10 The limit in the equation (2.11)) is exists, because the function
§ — inf {Z A" EC A A < 5} (2.12)
i=1 i=1
1s monoton decreasing.
Now, let us introduce some basic facts regarding to Hausdorff measure.

Theorem 2.11 For every t > 0, all Borel set in RY is measurable with respect to the

t-dimensional Hausdorff measure.

Theorem 2.12 For every n € N, there exists ¢ € RT such that for all Borel set B C
R™ H™(B) = cL"(B) hold.

Lemma 2.13 For every Borel set B C R? and every 0 < a < f3, we have the following

implications:



(i) HY(B) < oo = H?(B) =0
(ii) HP(B) > 0 = H*(B) =

Definition 2.14 By Lemma we can define the Hausdorff dimension of o B C R?
Borel set by

dimpy(B) = gg{%t(B) =0} = sup{H'(B) = oo}. (2.13)

>0

dimy(E)

Figure 2.3: The definition of the Hausdorfl dimension.

Definition 2.15 If S = {S1,...,S,} is a C' IFS, then the value of upper and lower

Lyapunov exponents in i = (iy,1s,...) € X is defined respectively by

X(i) = lim sup (—1 log Hs;m...in<n<a"i>>u) |
n—00 n

) (2.14)
Q) = imint (L 10g S, (o) ).

When A(i) = A(i), then the common value is denoted by \(i) and we call it the Lyapunov
exponent of the system S at the point i € X.

Definition 2.16 If S is a C' IFS and 1 is a Bernoulli measure on X, then we call the

system S is p-conformal, if N(1) exists for p-almost every i € 3.

Definition 2.17 Suppose that v is a Borel probability measure on R?, then the definition

of upper and lower local dimension of v at x € R? is respectively

- 1 B
dim, (z) = lim sup OEADALT)) 1/1( (z,7)) ,
r—0 o8 T (2.15)

logv(B
dim, () = lim inf 22V B@1)
r=0 log r

where B(x,r) denotes the open ball of radius v centered at x. If dim, (r) = dim, (x), then

the common value is denoted by dim,(z) and we call it the local dimension of v at x.

9



Definition 2.18 We can also define the Hausdorff dimension of a Borel probability mea-

sure v on R with
dimy(v) = inf{dimy(E) : v(E°) = 1}. (2.16)

Theorem 2.19 If v is a Borel probability measure on R? with compact support, then
dimy (v) = esssup{dim,(z) : z € R} = inf{a : v({z : dim,(7) < a}) =1}

Lemma 2.20 If § = {S1,...,Sn} is a self-similar IFS and p is a o invariant, ergodic

Borel probability measure on X, then S is p-conformal.

Proof: Let ¢, : ¥ — Rsuch that fori = (iy,is,...) €5 ¢,(i) = —1log |

Using S is self-similar and the chain rule, we get HS{

(0™i))|| = Ay Aiy - - A, Thus

1i2...in(

n

ali) = == S loghy,) = = S vl ), (217)

k=1

where (i) = —log(\;,). Using Birkhoff ergodic theorem, we get

lim ¢, (i) = /¢(i)d,u(i) for p-almost every i € X. (2.18)
n—oo
)
Thus A is a constant p-almost everywhere. So S is p-conformal. 0J

Lemma 2.21 If S = {S1,...,Sn} is a self-similar IFS. The Lipschitz constant of S; is
Ni. Assume p is a Bernoulli measure on X for the probability vector p = (p1,...,Pm)-

Then S is p-conformal and
[ A@dui) = = 3 prlog(n). (2.19)
¥ k=1

Proof: It is a well-known fact that if 1 is a Bernoulli measure on X2, then it is o invariant
and ergodic, thus due to the previous lemma S is p-conformal. Using the argument in

the previous proof, we can see that
[ At = [ 0@du) = - Y- plogOn). (2.20)
5 > k=1

O
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2.3 Dimension theorems without separation condition

Definition 2.22 We call s the similarity dimension of the self-similar IFS defined in
@.1)), if s is the solution of

d =1 (2.21)

Theorem 2.23 Let S be a self-similar IFS on RY, defined in (2.1). Let A be the attractor

of § and s is the similarity dimension of S. Then
dimg(A) < s. (2.22)

The proof can be found in [2].

Theorem 2.24 Let S = {S,..., S} be a self-similar IFS on RY. The vector v =
(r1,...,7m) contains the contraction ratios of S.The v is the invariant measure of S with
the probabilty vector p = (p1,...,Pm). Then we have

dimy(v) < — 2zt PiloBP_ fp (2.23)

- =Y " pilogr;, X%

The proof can be found in [2].

2.4 Dimension theorems with separation condition

In the special case, when the cylinder sets satify certain separation condition we are able
to estimate the Hausdorff dimension of the attractor of such IFS. Moreover, in this case

we can study the self-similar measure of the IFS.

Definition 2.25 The Strong Separation Property (SSP) holds for the self-similar IFS S
defined in (2.1), if

Vi£j Si(A)NS;(A)=0. (2.24)

Definition 2.26 The Open Set Condition (OSC) holds for the self-similar IFS S defined
m 7 if

FV CRY open set V#0 ViS;(V)CV and Vi # jSi(V)n S;(V) = 0. (2.25)

11



Theorem 2.27 (Moran, Hutchinson) Let S = {Sy,..., S} be a self-similar IFS on
R? for which the OSC holds. We denote the attractor of S with A and the similarity

dimension of S with s. Then,
dimy(A) = s. (2.26)

The proof can be found in [2].

Theorem 2.28 Let S = {Si,...,Sn} be a self-similar IFS on R for which the OSC
holds. The vector v = (ry,...,r,) contains the contraction ratios of S.The v is the
invariant measure of S with the probabilty vector p = (p1,...,Pm). Then we have
=N pilogp;  h
dimy (v) = Lz Pilogpi _ hy (2.27)

N —Z?ilpilogm X?

The proof can be found in [2].

Remark 2.29 In the case, when we do not know any separation condition holds for the

self-similar IFS S the values s and Z—S in Theorem |2.27 and |2.28 is only an upper bound

r

on the Hausdorff dimension.
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Chapter 3

The systems S, 3

We study a family of self-similar iterated function systems (IF'S) on the interval [0, 1] such
that there is total overlap and for which some separation condition holds.

Kamalutdinov and Tetenov in [3| studied similar iterated function systems, which
called twofold Cantor set.

We follow their argument with similar statements in this chapter.

Definition 3.1 Let o, 3,7 € (0,1) arbitrary. Then Sap, is a system of contractive

stmilarities such that

Soz,ﬁ,’y = {Sla 527 SS}

(3.1)
Si(z) =ax, Sy(zx)=pz, Siz)=yr+1-—7

B. Barany has already considered the Hausdorff dimension of the attractor of the

system introduced in Definition He showed this result for Lebesgue almost every
a, 67 7(07 %)

Let K, .~ be the attractor of the system S, 3,. Let Ly s, = S1(Kapq) U So(Kap)
and Raﬁ,y = Sg(Kaﬁﬁ).
It is easy to see that K3, = Lagy U Rap-

We denote the symbolic space of S, 5, with 3 = {1,2, 3}N+.
Let 11, 5~ : ¥ — K, 3, be the natural projection of the system S, g .

First, we consider some obvious properties of the systems S, g.+:
Lemma 3.2 If o, 8,7 € (0, 3), then:
(i) S1085 =505,
(ii) for all i € {1,2} and every m,n € N with m # n, SI"(Ra~) NS (Rap) =0,
(iii) for all m,n € N, S7S3(Kap) € ST (Ka ) 1S3 (Kaps),

13



(iv) Kap,\{0}= | S7'S5(Rassr) -

n,m=0
Proof:

(i) For every z € [0,1] S1(5:(x)) = a(fz) = B(ax) = Sa(S1(x)).

(ii) We prove only for i = 1, the case i = 2 is similar. Let m,n € N m > n.

Ragn C (3,1), thus S7(Rap,) C (50™,a™) and SP(Rap,) C (307, a"). Since

we can see that the right endpoint of one interval is smaller than the left endpoint

of the other interval that is o™ = a-a™ ! < %a””“l < %a”.

(ili) Let m,n € N, then ST"(K,p~) C Kap and S5 (Ko p,) € Kapy. S0, we conclude
that S5 (Ka) C S5 (Kapy) and S7SY(Kap~) C ST(Kap). Using commuta-
tivity, which is property (i) we get the statements.

(iv) Consider the natural projection Il, ., of Sy . The map II, g, is surjective. It is

easy to see that

M5 (U 8785 (Ragy)) = i€ : 3k iy =3} (3.2)
m,n=0

For those i € 3 such that there is no k for which 7;, = 3, then the image of i is 0.

O
Using Theroem [2.23] we can conclude that the dimension of K, s, is less than £ if

2
aaﬁ?V € (07%)

Definition 3.3 We call the system S, s~ forward separated, if o, 3, € (0, é) and
Vm,neN m,n>0 ST(Rap,) NSy (Rapy) =0. (3.3)

We denote the disjoint union with L.

Lemma 3.4 The system S, g~ is forward separated if and only if

Kag \0} = [ | S7"S5(Ras.). (3:4)

n,m=0

where LI denotes the disjoint union.

14



Proof: (=)First, we assume that S, g, is forward separated. Let (mq,ny) # (m2, na),
then

ST S5 (Rap ) = Sy tmmel gyrintennad (g GH (R, 5.))

ma N min{mi,m min{ni,n (35)
S 55 (Ra, ) = Sy et Sy md (S 52 (R )

hold. At least one of ki, ko is zero and one of [i, [y is zero. So if we use the forward
separated property we get the statement.
(<) Now, assume that K, g.,\{0} = | _,S7"S5(Rap,~) holds. Then we can get the

n,m=0

statement by using the conditon for the indeces (m,0) and (0,n).
O

Lemma 3.5 If the system S, 5. s forward separated, then for every
m,n €N S7"(Kapy) NS5 (Kapy) = 5755 (Kapy)- (3.6)

Proof: Using the above results, we get

ST (Kapq) NSy (Kap)\0} = S| SFSY(Rapn) NSE(| SFSh(Raps)) =

k,1=0 k,1=0

= | S (Ray) = S7S5( | SFSh(Rass)) = S7'85 (Kap4)\{0}.

k,1=0 k,1=0

In the first and last equation we use Lemma [3.2] (iv) point and in the second equation we
use Lemma O

15



Chapter 4
Existence of forward separated systems

Kamalutdinov and Tetenov proved that twofold Cantor sets exist in [3]. In this whole
section we follow their arguement with similar statements.

Due to requirement of completeness we take over the same proof of this Theorem from
13l
Theorem 4.1 (General Position Theorem [3]) Let (D,dp), (L1,dy,), (Lo, dy,) be com-

pact metric spaces and let ¢;(§,x) : D x L; — R™ for i € {1,2} be continuous functions.

If these functions satisfies:

(i) The functions @; are a-Hélder with respect to x which is

there exists o > 0 for all i € {1,2} there exists C; > 0 for all £ € D for all z,y € L;
i (&, 2) — i€ y))|| < Cidp, (z, )%,

where ||-|| is the euclidean norm in R™.

(ii) Let ® : D X Ly X Ly = R™  ®(&, 21, 10) = p1(&,21) — 2(&, x2) such that

there exist M > 0 for all £,& € D for all zy € Ly for all xo € Ly

(4.1)
D€, 21, 22) — (', 21, 22) || = Mdp (€, ).
Then the set A ={& € D :p1(&, L) Na(§, Lay) # 0} is a compact in D and
dimy (A) < dma Ly x La) (4.2)

«

Proof: Let A = {(&,21,25) € D x Ly X Ly : o1(€,21) = @a(&,22)} = {(&,21,25) €
D x Ly x Ly : ®(&,x1,22) = 0} be the set of those parameters where ¢1(&, L) and
©2(&, Lo) intersects. Then A = proj, (A) Let L = Ly X Ly and A = proj, (A)

16



The map ® is a continuous map and A = ®1({0}), thus A is closed. Then A is
closed in a compact metric space, so it is compact. The projection is continuous, thus A
is also compact.

The functions projp, : A = A and proj;, : A — Ay are surjective. Moreover, proj,
is also injective, because if exist (&, 21, x3) # (€', 2, 25) € A such that proj; (€, x1, ;) =
proj, (&, x4), then o} = x, o, = x5 and & # £. By the definition of A Q& x1,29) =
O(&' x1,9) = 0 and this is contradicts with the second assumption. So proj; is injective,
thus it is invertible.

Let g = projp o proj;, = : Ay — A. This is surjective. Let g(zy,22) = ¢ and
g(x),zy) =& Then ®(&, 21, 29) =0 and ®(&', 27, 25) = 0.

M- dD(£7£,) < H(I)(gaxth) - (I)(gl,l’l,l‘g)H = ||(I)(§/,[L’,1,l’l2) - (I)(g/vxlax2)|| <
o1 (€, 21) — er(§, z1)ll + lla(€s 25) — @a(€ )| < O (dry (1, 21)* + dry (22, 25)%)

where C' = max{C},C5}. In the first inequation we use the (ii) assumption, the next

inequation is triangle inequality and the last inequation is the Holder continuity in (i). O

Also for the completeness we take over the same proof of thefollwing theorem from
3]

Lemma 4.2 (Displacement theorem) Let S = {Sy,...,S,} and S = {Si1,...,Sm}
be two iterated function systems on R™. We denote the natural projection of S with 11 :
> — R” and the natural projection of S with 11 : ¥ — R™, where ¥ = {1,...,m" is the
symbolic space. Let V- C R™ be a compact set such that for everyi € {1,...,m}, S;(V) C
V and S;(V) C V. Then

)

Vi=(i1,is,...) €3 Hmn—ﬁmHgTj? (4.3)

where

(5:max{) Si(x) —gz(x)” cied{l,...,m}, x€V} and

3 (4.4)
p= lrélizgn{max{Lip(Si), Lip(S;)}}.

17



Proof: Let i€ X arbitrary. We can conclude

i (11(a)) - 5, (11(6) | <

Si(1(ai)) — 5, (11(o1))| < (4.5)

<p ‘H(ai) - f[(ai)” +5.

Using the above inequation n times, then we get

n—1
HH(i) - f[(i)H < p*|[m(omi) — f[(a”i)H +5-3 0 (4.6)
i=0
If n — oo, then we get HH(I) — 1:[(1)” < %pv because V' is compact. O

Let © = {1,...,m}" and a € (0,1). We can construct a metric space (X, p,) with
metric p,. We define Vi,j € ¥ s(i,j) = min{k > 1 : 4, # ji.}, then let po(i,j) = a*09. It

is a well known fact that the metric space (X, p,) is compact.

Lemma 4.3 Let (X, p,) be a metric space as above. Then

dimy (%) = — 080 (4.7)

~ log(a)

Proof: Let G = {Gy,...,Gn} be a set of ¥ — ¥ functions.For all £ € {1,...,m} and
forallie X

Gr@) = (k, i, s, ... ). (4.8)

Then every G} is a contractive function with Lipschitz constant a, so G is an IFS. The
attractor of G is . G satisfies the strong separation property, so the Hausdorff-dimension
of its attractor is equal to the similarity dimension of the IFS. It is also a well known fact.

The proof can be found in [2]. Thus dimg(X) = —1ﬁ)gg($)). O

So using this fact for the symbolic space of the system S,p,. Remind that ¥ =
{1,2,3}" then

1 1
dimg(X) < 5 in the metric p, <= a € (O, §> . (4.9)

18



1

: 5). Then 11, g, natural projection of the system

Sap is 1-Lipschitz with respect to the metric space (X, pq).

Lemma 4.4 Let o, 3,7 < a and a € (0

Proof: Let i,j € ¥ with s(i,j) = k. Then p,(i,j) = a* and i, = ji,...,ix = j, thus
o p~(1), 10 5~() € Siy.ix(Kap~). The diameter of S, ;. (Ka ) is Lip(S;,)-- - --Lip(S;,),

which is strictly smaller than a*. So

a5y (1) = Masy(3)] < a" = pa(ij)- (4.10)
U

Lemma 4.5 Letm,n € NT. , 8,7 € (0, 5) and consider the system Su p.. If S7(Ra,)N
S5 (Rapn) # 0, then § < 95 < 3.

Proof: If o, 3,7 € (0,5), then Ry3, C [3,1]. Thus S/"(Rag,) € [3a™ a™] and

S5 (Ra,) C [38™, 6"]. The intersection can not happen if a™ < 3™ or f" < Sa™. Thus

we do not have intersection if % <3Sor CSof<at <9 O

Lemma 4.6 Let m,n € N and 8,7 € (0,3) be fived. We denote

Don(B,7) = {a € (o 1) < %_ < g} (4.11)

Let @; : Dy, y(B,7) X 2 = R fori=1,2. We define

Va € Dy pn(B,7) VieX ¢i(a,i) =1l z,((1)" % (3) i) = S7"S3(Ils 4(1)),
Va € Dpn(B,7) VieX ola,i) =1la5,((2)" * (3) xi) = 55595(I1s54(1)),

where 11, g is the natural projection of Sy . Then for every o, ' € Dy, n(B,7) and for
every i,j € X

pr(er, 1) — o, j) = p1(d/,1) + pa(,j)| = M| — o], (4.12)
where M (m,n, 3,7v) > 0 constant.
Proof: Let o, € Dy, n(B8,7) and i,j € ¥ be arbitrary. We introduce the notation

S - Saﬁﬁ == {81,52,53}7 Sl = Soél,ﬁ77 = {Si,Sé,Sé}, let 11 = Ha,ﬁ,y and H/ = Halﬂﬁ.
Then S5 = S, and S§ = Ss.
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Let a < o and § = |&/ — «/, then using Lagrange mean value theorem

mo__ m mo__ m
ma™ ! < & p " _la 5 o < ma™ . (4.13)
o —a

We defined § = |o/ — | and using displacement Theorem [4.2] for S and &', then we
get

9
for everyie ¥ |II(i) — IT'(Q)] < §5' (4.14)
Consider the difference that we have to estimate

i) — (1) + o, j) — pa(a,j) =

= ST"S3(I1(1)) — SymS5(IV(1)) + S3"S5(11'(J)) — S3.95(11()) =

= ST"S3(I1(1)) — Sy"S5(IV(1)) + S3.55(11(§)) — S5.55(11(j)) =

= STSS(IT) — STSs(IT(0) + STSs(IT() — SY"Ss(IT() + SESH(I(3) — S3Sy(11G).

A B C

o1(a, i

1

We will use the estimate
| A+ B+C|>|B|-|A+C| > |B|—|A|l —|C], (4.15)

where first we use the reversed triangle inewquality and second the triangle inequality.

Consider |A| part of the above calculation
m : m . m : : 9 m
Al = [S7"55(I1(1)) = S7"S5(I1(1))] = o™ [I(H) — IT'(i)] < ga™7s,

where in the inequation we use (4.14)).
The next part is

m e m 1( m m /[ 8 m—
Bl = [S7"S5(IT'(1)) — 57" S5(IV ()] = o™ — o[ [S3(I'(1))] = gma™™5,

where in the inequation we use (4.13).

The last part is
(s n . n . /[ 9 n
|C] = [5353(I1'(j)) — S3.53(I1(j))| = B [11(G) — II'(j)| < 38",

where in the inequation we use (4.14)).
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Now estimate

1B| — 4| > (89—72 - §»y> ams > (8 - g) am§ > (8 - 2) 25”5 > 66",  (4.16)

where in the second inequation we use y <1, m > 1, a < %

The following

O] < 78" < B (4.17)

is true, beacuse 7 < %. Thus
[o1(a, ) = @a(a, ) = pr(a,§) + pa(d, )] 2 58" o' —af, (4.18)
so M = 53", 0

Lemma 4.7 Let m,n € N and 8,7 € (0,5). Then the set

Boni) =€ (0.5) ST (Rus) O S} (Rus) 20} 419

is closed in (0,5) and L(Apn(B,7)) =0, where L means the Lebesgue measure on R.

Proof: Let e > 0 be such that § —e > 3,7. Then E,,,(8,7) = Dpnn(B,7) N e, &
is a closed interval in R, so it is compact. We consider the compact metric space (3, p,),
where £ = {1,2,3}" and a = } —=.

Let @; : Epn(B,7) x 2 — R for i = 1,2. We define

_5]

pr(a;i) = Tap,((1)™ * (3) 1) = 57" S5, p(1)),

(4.20)
pa(a, i) = a4 ((2)" % (3) #1) = 5555(Ia,p4(1)).

Let

Zn(52) = (B2} [~

For an a the S7"(Ra.,) N SY(Rap,) # 0 holds if and only if there exist i,j € ¥ such that
o1(a,1) = po(a,j), thus

Enn(8,7) ={a € Emn(B,7) : p1(@, X) N p2(a, X) # 0} (4.21)
Using Lemma 4.4 one can see that ¢; is Holder continuous with respect to the second
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variable for ¢ = 1,2. Applying Lemma [4.6] we get that the conditions of the General
Position Theorem [4.T holds. Using General Position Theorem [4.1] then get

dimg (25, ,(8,7)) < dimy (X x ¥) < 2dimg(¥) < 1, (4.22)

the last inequation is true because of the equation (4.9). So L(Z;,,,(8,7)) = 0. Moreover,

Am,n(ﬁa ’7) = U E%Z(ﬁ? ’7)7 (423)
k=1

thus the continuity of measure yields that £(A,,.(8,7)) = 0.
General Position Theorem implies that =5, (8,7) is closed for every ¢ > 0, so
A (B,7) is also closed. O

Lemma 4.8 Let m,n € Nt be arbitrary. Then the set
- 1\?
Am,n = {(CY, 57 ’7) € (07 §) : S?L(RO&,/B,’Y) N S;L(Raﬁﬁ) 7é @} (424)

is closed in (0, %) and L3(A,,,) = 0, that is its Lebesque measure is zero in R®.

Proof: TLet I =(0,5)* and ¥ : I x % — R be such that

(e, B,7,1,§) = Haga ()™ (3) % 1) = Tlap 4 ((2)" * (3) * j) =

(4.25)
= 51" 53(Ila,p,4(1)) — 5593(Ha,p4())-

Then W is a continuous function and A,,,, = proj; (¥~*({0})). Because ¥ is continuous
U~1({0}) is closed, and because X is compact Am,n is closed. This is because if z € I is

an accumulation point of proj; (¥=({0})), then there exists an (z,y) € I x £? such that
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is an accumulation point of ¥~1({0}). Consider the integral

B /// 15, (0. 8.7) AL B,7) =

// /]1 (0, B,7) dL(@)dL(B,y) =
// / Ly o) (0) AL(@)AL*(8,7) =

//L A n(B,7)AL3(B,7) = //Odﬁzﬁvo

(0,5)2

(4.26)

where we use Fubini’s theorem in the second equality and the fourth equality we use
Lemma 4.7 O

Theorem 4.9 Let J = (0, %)3. We define
Q= {(a,B,7) € J: Sapy is a forward separated system} . (4.27)

Then L3(J/Q) =0 and J/Q is uncountable and dense in J.

Proof: The set

J/Q = U Ay s thus £3(J/Q) < Z L3(An) =0, (4.28)

m,n=1 m,n=1

where we use Lemma [4.8]in the last equality. Thus £3(J/Q) = 0.

If @™ = " for m,n € N*, then S, 4., is not a forward separated system, so

log o
log

A= {( ,B,7) € J € Q} C J/Q. (4.29)

Then for every z € (0, §) the set

(apnediv== U {@n@aiac(0g). no=s} @

qeQt

is union of smooth curves. From this one can easily see that A is dense and uncountable.

This implies J/€2 is also dense and uncountable. O
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Chapter 5

The tools of calculating
Hausdorff-dimension of the self-similar

measure

We would like to calculate the Hausdorfl dimension of the self-similar measure of the

forward separated system S, . and for this we require the following statements.

5.1 Conditional expectation

Definition 5.1 Let G C B be an arbilrary o-algebra. Let ¢ € L' (Z,B,u), then the
function ¢ € LY(Z,B, 1) is the conditional expectation of @ with respect to the o-algebra

g, if
(i) ¥ is G-measurable,
(ii) for every G € G

/ o(2)16 (z) du(z) = / () e () dpu(z). (5.1)

Z Z

Theorem 5.2 Let G C B be an arbitrary o-algebra. If 1 and ¥ are conditional expec-

tations of the function ¢ € L'(Z, B, i) with respect to G, then (2) = 1(z) for p-almost
every z € 4.

We denote the conditional expectation of ¢ € L'(Z, B, ) with respect to G with
E.(#]G).
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5.2 Conditional measure

The proof of the statements that contained in this section can be found in [4].

Let Z be a compact metric space. We consider the probability space (Z, B, i), where
B is the Borel g-algebra of Z and p is a probability measure on Z.

Moreover, let F be a g-algebra such that there exists some Ei, Fs,--- € B for which

F = Q{Eza Z|E;}, (5-2)

where V denotes the generated o-algebra. Indeed, if A; C B is a o-algebra for all i =
1,2,..., then \/ A; is the generated o-algebra by U A,.

i=1 i=1
Definition 5.3 The P C B is a partition of Z, if for every P, # P, e P PN P, =10

and U P=7.
PeP

Let P be a partition of Z. Then for z € Z the set P(z) denotes those P(z) € P such
that z € P(2).
For every n = 1,2,... let P, be a partition of Z such that

o(Pn) = V{Ei, Z/Ei}, (5.3)

where o(A) denotes the generated sigma algebra by A.

Definition 5.4 The set {y.}.cz of Borel probability measures on Z is a system of con-

ditional measures of p with respect to the o-algebra F, if

(i) forevery E€F, z€ E pu,(E) =1 holds for u-almost every z € Z |
(ii) for every bounded measurable function ¢ : Z — R the function z — /god/,az 18
Z

F-measurable and

[e@an) = [ [ o) dunta) duto) (5.4)

Theorem 5.5 If {y,}.cz and {v,}.cz are two systems of condtional measures of u with

respect to F, then u, = v, for p-almost every z € Z.
The proof is in [4].
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Theorem 5.6 The limit of the measures

7 = lim /~L|7>n<)

—"— exists for pu-almost every z € Z, 5.5
= L LPa(2) g >

where the limit is meant in the weak-star topology.
Moreover, the set {ul }.cz is a system of conditional measures of u with respect to the

o-algebra F.

The proof can be found in [4].

Theorem 5.7 Let ¢ : Z — R s bounded and measurable, then the function

®: 7 — R for which

O(z) = /gp(m)d,uz(x) for p-almost every z € Z
Z

is the conditional expectation of ¢ with respect to F, thus E,(p|F) = @

The proof is in [4].

5.3 Feng-Hu theorem

First, we introduce some notations, which we will use in this section. Let (X, F,m) be
a probability space. Let & C A be a countable partition of X. Denote with A C F an
arbitrary o-algebra. Then I,,(£|.A) denotes the conditional information of the partition &
given by A, which is

(€l A) (@) = =) 1p (2)log[En(LplA)(z)]. (5.7)

Eeg

The conditional entropy of ¢ given A is defined by the following formula

fmmmz/%mmmL (5.8)

Let S = {S1,...,5,} be an IFS on R% The attractor of Sis A and ¥ = {1,...,m}N"
is the symbolic space. The natural projection of S is I : ¥ — A. We denote the left shift

on X with o.
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Let (X,C, ) be a probability space, where C is the o-algera generated by the cylinder
sets. The Borel probability measure p on X is such that p is invariant for 0. We define
the measure v on A with v =,y = poII"t. P ={[1],...,[m]} is a Borel partition of %
and ~ denotes the Borel o-algebra on R,

We define the projection entropy of p under IT to the IFS S as
hi(o, 1) = Hy(Plo™' T 'y) — H,(P|ITy). (5.9)

The Theorem 2.8 in [I] states the following:

Theorem 5.8 (Feng-Hu) Assume that p is a o-invariant ergodic Bernoulli probabilty

measure on X. S is a p-conformal IFS and v =1, = poII71, then

_ hn((f, :u)
J Adp

Lemma 5.9 Let S = {S1,...,Sn} be an IFS. If 1 is a Bernoulli measure on 3 for the
probability vector p = (p1,...,Pm), then

dim,, () for v-almost every x € A. (5.10)

Hy(Plo™'TI™'y) = = pilog(pe). (5.11)
k=1

Proof: The definition of conditional entropy and conditional information is contained
in equation and respectively. Let [k] € P, then the generated o-algebra by the
function Ly is o(Lyy) = {[k], X/[k]} € o(P), where o(P) is the generated o-algebra by P.
We can easily check that o(P) and o~ 'II" !y are independent o-algebras. We know that if
¢ € L*(X,C, ), o(p) and G are independent g-algebras, then E,(¢]|G) = E,(p) = [ ¢dpu.
Thus E, (Lo "I 1y) = u([k]) = pe. So we can conclude that H,(Plo I 1y) =

- Zpk log(pk)- O
k=1

Theorem 5.10 (Feng-Hu theorem in a special case) We assume that S = {S1,..., S}
15 a self-similar IFS and the Lipschitz constant of S; is A\;. p is a Bernoulli measure on

Y3 for the probability vector p = (p1,...,pm) and v =T u = oI~ then

— > prlog(ps) — Hy(PIT ')
k=1

dimpy(v) = (5.12)

= prlog(\)
k=1
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Proof: The proof is using Lemma [2.21] Lemma [5.9| and Theorem in the Feng-Hu
Theorem (.8 O
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Chapter 6

Hausdorff-dimension of a self-similar

measure of a forward separated system

Soz,ﬁﬁ

Theorem 6.1 Let S, 5, = {51,592, 53} be a forward separated system. (See Definition
and . The symbolic space is ¥ = {1,2, 3" and the natural projection of Sa
is o pgq. Let p = (pl,pg,pg)N+ be a Bernoulli measure on X for the probability vector
P = (p1,p2,p3). And let v = gt = po H;}B,v is the self-similar measure on the

attractor with respect to p. Then the Hausdorff dimension of v can be exactly determined

as
—(p1 ] ]
dimy () = —PL108(P1) + 2108(p2) + ps 108(ps)) + Sp1, P2, ps) (6.1)
—(p1log(cv) + palog(B) + pslog(v))

where

© (k=1 m k-1 k—m
O(p1,p2,ps) = Y (Z <m B 1) log <E) prpEps + ) ( N ) log ( - )pinp’g“"”pg> -

k=1 \m=1 m=0

Proof: We introduce easier notation for further use. We denote S, 3, with S and I, g 5
is II. The K, s, attractor of Sis K. Let R = S3(K) and L = S;(K) U Sy(K).

The system S is self-similar IF'S and the measure g is a Bernoulli measure on the
symbolic space ¥. Thus, we can use the special form of Feng-Hu Theorem So the
only thing that we have to calculate is H,(P|II"'y), where P = {[k] : k = 1,2,3} is a
partition of ¥ and ~y is the Borel o-algebra on [0, 1] C R.
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To the calculation of H,(P|II"'v), we need
3
L(PIT ') (i) = = > 1y (i) log (B, (L [TT9)) (0). (6.2)
k=1

The o-algebra v can be generated by countable many finite partition. Let
k k+1
Pn:{L—W ;);ogk§2n—1}, (6.3)

this is a finite partition of [0, 1] and \/ P; is the Borel o-algebra on [0, 1]. Using this fact
i=1
and Theorem , then we get that {y; ey system of conditional measures with respect

to the o-algebra II7 1~y exists. Using Theorem we get

1o : pi(lin]), ifi =k
(L)) = [ 2 G) () = (4] = R 6y
J 0, if i, #k
Using the above observation, one get
H(PII) = = [ og(uu((i))dt ©.5)
5
Using Theorem [5.6, we conclude that
1 = lim i1 e, ) (6.6)

n—oo p(II-H(P, (I1(1))))’

where limit is meant in the weak-star topology. We know the property of weak-star

convergence, that if v,,v are Borel probability measures on the compact metric space

X and lim v, = v in weak-star sense, then for all U C X open and Z C X closed
n—oo

liminf v, (U) > v(U) and limsup v,(Z) < v(Z) hold. Because [k] C ¥ is open and closed,
n—oo

n—oo
then

(TP (II(E))) N [i4])
n—o00 /L(Hfl(lpna_l(l)))) .

(6.7)

For every € > 0 there exists n € N enough large such that P,(I1(i)) C B(Il(i), ¢).
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We define for all m,n =0,1,... the set

H(m,n)={i= (i1,i2,...) €L : 4 #3 Vi=1,...m+n,

(6.8)
imant1 =3, {1 <k<m+n:ip=1} =m}.

We can see that II(H(m,n)) = S7*S5S3(K) = S7"SF(R).
Let i € H(m,n) C X. Then II(i) # 0, because i, 4,41 = 3, thus II(i) € S7"S7S5(K) C
la(m,n), 1], where a(m, n) = L(min{a, })™"
If (max{a, S})F < 22 then the sets SFSL(R) C (0, %™ Thus there exist
)

2 2

M(m,n) € N such that if k +1 > M(m,n), then SFS5(R) C (0, a(@’")).

We introduce
H={S{Sy(R) : k+1< M(m,n), k1=01,...}. (6.9)

We can notice that S7"SY(R) € H. The set H is finite and the elements are disjoint

compact sets, thus there exists €; > 0 such that
VHl 7£ HQ c 7‘[ NEl (Hl) ﬂ Nel(HQ) — @, (610)

where N.(H) means the € neighbourhood of the set H.
Using K/{0} = U SFSL(R), then there exists e, such that
k,1=0

Vk,l=0,1... N.,(S""S}(R))NN.,(SFSL(R)) =0, (6.11)

Thus we can conclude that B(II(i),e9) NK C S7*ST(R). For every € > 0 there exists n € N
enough large such that P, (I1(i)) € B(II(i), ). So there exist N(n, m) € N such that for all
N(m,n) < z P,(II(i)) € B(II(i),e3). Moreover, for all N(m,n) < z TTI7Y(P,(II(i)) C
H(m,n).

Let z > N(m,n) be fix, then

1Y (P.(I1(i))) = E x T., where
E={(i1,.  imint1) * Gmgnyr =3, {kip =1} =m, {k: i =2} =n}
T, = {(jhj?? e ) S {17 27 3}N+ cJk e H_I(PZ<H(1))) jn+m+1 = kn—&-m—i—la jn+m+2 = kn+m+27 . }

The above equation is true, because if k € TI"!(P,(TI(i))), then if permute the first n+m
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coordinates and in this way we get k', then TI(k) = II(k’). Then

pEXT.NhL])  p(BENL]) xT)  p(EN D) p(EN[L]])

— = = , 6.12
W(E = T) W(E  T0) WED@) . uEy o O
where [F]={ieX:Jje £ JkeX i=jxk}
Because u is a Bernoulli measure, then
WE) = =P pips. (6.13)
Suppose that ¢; = 1, then
(mAn-=-1)
u(E N i) (m — D)l V1 PEPs (6.14)
In this case for large z
P (PI@) N i) w(EXTAf]) __ m 015
p(I-1(P-(11(1)))) u(E < T?) m+n
Suppose that i; = 2, then
. (mAen—=—1)
u(E N i]) = Snl(n — 1)1 PrPeps (6.16)
In this case for large 2
pI (PN O ) B X T0l0) 0 617

p(I-H(P.(11(1)))) p(E < T:) m+n

Suppose that i; = 3, then for enough large z we get II"*(P,(I1(1))) N [3] = T (P,(I1(i))),

thus for large z

(I (P(1(5) N [1a])

~ 1. (6.18)
p(I-H(P-(11(1))))
From the above observations, if i € H(m,n) then
iy =1,
1, ifi =3
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Using Kolmogorov 0-1 law we get

p( | Himn)=1. (6.20)

The integral that we want to calculate is

/ log (s ([ia]) ) (i) =

0o k oo k—1
=) D log <E> (m—l)!(k o TiEch 3+;mz:olog< ) ik —m— )it P

where we use combinatorics calculation. O
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