MORE ON CARDINAL INVARIANTS OF ANALYTIC P-IDEALS

BARNABÁS FARKAS AND LAJOS SOUKUP

Abstract: Given an ideal \mathcal{I} on ω let $\mathfrak{a}(\mathcal{I})$ ($\overline{\mathfrak{a}}(\mathcal{I})$) be minimum of the cardinalities of infinite (uncountable) maximal \mathcal{I} -almost disjoint subsets of $[\omega]^{\omega}$. We show that $\mathfrak{a}(\mathcal{I}_h) > \omega$ if \mathcal{I}_h is a summable ideal; but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$ including the density zero ideal \mathcal{Z} . On the other hand, you have $\mathfrak{b} \leq \overline{\mathfrak{a}}(\mathcal{I})$ for any analytic *P*-ideal \mathcal{I} , and $\overline{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$.

For each ideal \mathcal{I} on ω denote $\mathfrak{b}_{\mathcal{I}}$ and $\mathfrak{d}_{\mathcal{I}}$ the unbounding and dominating numbers of $\langle \omega^{\omega}, \leq_{\mathcal{I}} \rangle$ where $f \leq_{\mathcal{I}} g$ iff $\{n \in \omega : f(n) > g(n)\} \in \mathcal{I}$. We show that $\mathfrak{b}_{\mathcal{I}} = \mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}} = \mathfrak{d}$ for each analytic P-ideal \mathcal{I} .

Given a Borel ideal \mathcal{I} on ω we say that a poset \mathbb{P} is \mathcal{I} -bounding iff $\forall x \in \mathcal{I} \cap V^{\mathbb{P}}$ $\exists y \in \mathcal{I} \cap V \ x \subseteq y$. \mathbb{P} is \mathcal{I} -dominating iff $\exists y \in \mathcal{I} \cap V^{\mathbb{P}} \ \forall x \in \mathcal{I} \cap V \ x \subseteq^* y$.

For each analytic P-ideal \mathcal{I} if a poset \mathbb{P} has the Sacks property then \mathbb{P} is \mathcal{I} -bounding; moreover if \mathcal{I} is tall as well then the property \mathcal{I} -bounding/ \mathcal{I} -dominating implies ω^{ω} -bounding/adding dominating reals, and the converses of these two implications are false.

For the density zero ideal \mathcal{Z} we can prove more: (i) a poset \mathbb{P} is \mathcal{Z} -bounding iff it has the Sacks property, (ii) if \mathbb{P} adds a slalom capturing all ground model reals then \mathbb{P} is \mathcal{Z} -dominating.

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS (BME) E-mail address: barnabasfarkas@gmail.com

Alfréd Rényi Institute of Mathematics *E-mail address:* soukup@renyi.hu

 $Key\ words\ and\ phrases.$ analytic P-ideals, cardinal invariants, forcing.

²⁰⁰⁰ Mathematics Subject Classification. 03E35, 03E17.

The preparation of this paper was supported by Hungarian National Foundation for Scientific Research grant no 61600 and 63066.