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Abstract. We study cardinal invariants connected to certain classical order-
ings on the family of ideals on ω. We give topological and analytic charac-
terizations of these invariants using the idealized version of Fréchet-Urysohn
property and, in a special case, using sequential properties of the space of
�nitely-supported probability measures with the weak∗ topology. We inves-
tigate consistency of some inequalities between these invariants and classical
ones, and other related combinatorial questions. At last, we discuss maximal-
ity properties of almost disjoint families related to certain ordering on ideals.

1. Introduction

Recall that an in�nite set P ⊆ ω is a pseudo-intersection of a family A ⊆ P(ω)
if P ⊆∗ A (which means that P \A is �nite) for every A ∈ A.

The pseudo-intersection number p is the minimal size of a family A with the
strong �nite intersection property (SFIP in short, i.e.

⋂
A′ is in�nite for every

nonempty �nite A′ ⊆ A) without a pseudo-intersection.
One can consider other ideals than Fin = [ω]<ω in the above de�nitions. It was

done in various ways in many papers. We always assume that each ideal I on ω
contains Fin and ω /∈ I. By I∗ we denote the �lter dual to I, i.e. I∗ = {ω\I : I ∈
I}, and by I+ the family of all sets outside I, i.e. I+ = P(ω)\I. The analogous
notation is used also for �lters. For an ideal I on ω one can de�ne the analogs of
the pseudo-intersection number for I as e.g.

• the minimal cardinality of a family of elements of the dual �lter I∗ which
does not have a pseudo-intersection in I∗ (p(I∗), see [5]; add∗(I), see [8]);

• the minimal cardinality of a family of elements of the dual �lter I∗ which
does not have a pseudo-intersection (χp(I∗), see [5]; cov∗(I), see [8]) ;

• the minimal cardinality of a family A with the I-strong �nite intersection
property (every �nite subfamily has an intersection outside I) without a
set outside I which is almost included (in the sense of I) in every member
of A (pI , see [9]; p(I), see [4]).

The aim of this paper is to present another way of generalizing the pseudo-
intersection number. This generalization is, we believe, quite natural, particularly
in the context of topological motivations.
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In Section 2 we recall some classical de�nitions and theorems about ideals on ω
which will be used later in the paper. We introduce here also the main de�nition of
our paper: a generalization of pseudo-intersection number with respect to di�erent
orders on ideals. So, we de�ne the Kat¥tov-intersection number, pK(I) for any
ideal I: the minimal character of an ideal J with J �K I. We de�ne analogously
pKB(I) for Kat¥tov-Blass order and p1−1(I) for the variant of Kat¥tov-Blass order
in which we consider only one-to-one functions.

The idea of these coe�cients came from considerations which are far away, at
least outwardly, from the combinatorics of ω. This is explained in Section 3 which
is devoted to applications of the de�ned coe�cients in topology and functional
analysis. We show that pK(I) is the smallest weight of a (locally) countable space
which is not I-Fréchet-Urysohn. Furthermore, we show the connection between
pK(Z) and certain sequential properties of �nitely-supported probability measures.

In Section 4 we present a couple of results concerning inequalities between our
coe�cients and the classical ones. We show that pKB(I) ≤ b for each meager ideal
I. Then we discuss the values of these invariants in the Cohen-model. At last in
this section, we present a model of 2ω1 = 2ω in which pKB(I) ≤ ω1 for each ideal
I.

In Section 5 we discuss the existence of MAD families which cannot be permuted
into a �xed ideal under cardinal assumptions and under Martin's Axiom for σ-
centered posets. This section is inspired by the question if the almost-disjointness
number generalized with respect to the one-to-one order is well-de�ned.

2. Preliminaries and basic definitions

We say that an ideal I on ω is analytic (Borel, Fσ, meager, null, etc.) if it is
analytic (Borel, Fσ, meager, null, etc.) as a subset of 2ω. An ideal I is a P-ideal
if for every {An : n ∈ ω} ⊆ I there is A ∈ I such that An ⊆∗ A for every n. An
ideal on ω is tall if its dual �lter does not have a pseudo-intersection, i.e. each
in�nite X ⊆ ω contains an in�nite element of the ideal. The following families are
well-known examples of tall analytic P-ideals: the density zero ideal: Z =

{
A ⊆

ω : limn→∞
|A∩n|
n = 0

}
, and the summable ideal: I 1

n
=
{
A ⊆ ω :

∑
n∈A

1
n+1 <∞

}
.

Sierpi«ski proved that if an ideal is measurable, then it has measure zero; and
if it has the Baire-property, then it is meager. In particular, all analytic ideals are
meager null sets. Furthermore, there is a nice characterization of meager ideals
(and �lters):

Proposition 2.1. ([2, Proposition 9.4]) An ideal I on ω is meager if, and only if
I∗ is feeble which means that there is a partition (Pn) of ω into �nite sets such that
{n ∈ ω : X ∩ Pn = ∅} is �nite for each X ∈ I∗, i.e. {n ∈ ω : Pn ⊆ A} is �nite for
each A ∈ I.

We will use the characterizations of Fσ ideals and analytic P-ideals as ideals
associated to submeasures. A lower semicontinuous (LSC) submeasure on ω is a
function ϕ : P(ω)→ [0,∞] such that

(0) ϕ(∅) = 0;
(1) ϕ(A) ≤ ϕ(A ∪B) ≤ ϕ(A) + ϕ(B) for each A,B ⊆ ω;
(2) ϕ({n}) <∞ for each n ∈ ω;
(3) ϕ(A) = limn→∞ ϕ(A ∩ n) for each A ⊆ ω.
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We will use the notation ‖A‖ϕ = limn→∞ ϕ(A\n) for A ⊆ ω. Clearly, ‖A∪B‖ϕ ≤
‖A‖ϕ + ‖B‖ϕ if A,B ⊆ ω but it does not necessarily hold for in�nitely many sets.
With every LSC submeasure we can associate two ideals de�ned by

Fin(ϕ) = {A ⊆ ω : ϕ(A) <∞},
Exh(ϕ) = {A ⊆ ω : ‖A‖ϕ = 0}.

It is easy to see that Fin(ϕ) is an Fσ (i.e. Σ0
2) ideal and Exh(ϕ) is an Fσδ

(i.e. Π0
3) P-ideal if they are not equal to P(ω), and Exh(ϕ) ⊆ Fin(ϕ). From now

on, if we discuss Fin(ϕ) (resp. Exh(ϕ)), we always assume that Fin(ϕ) 6= P(ω)
(Exh(ϕ) 6= P(ω)). Hence, without loss of generality we can assume that ‖ω‖ϕ = 1.
Note that Exh(ϕ) is tall i� limn→∞ ϕ({n}) = 0.

We will use the following characterization due to Mazur and Solecki:

Theorem 2.2. ([11] and [14]) If I is an ideal on ω, then

• I is an Fσ ideal i� I = Fin(ϕ) for some LSC submeasure ϕ;
• I is an analytic P -ideal i� I = Exh(ϕ) for some LSC submeasure ϕ;
• I is an Fσ P-ideal i� I = Fin(ϕ) = Exh(ϕ) for some LSC submeasure ϕ.

Using the representation of analytic P-ideals of the form Exh(ϕ) and Proposi-
tion 2.1, it is easy to prove that analytic P-ideals are meager sets (without using
Sierpi«ski's result).

If f : X → Y , A ⊆ X, and A ⊆ P(X) then denote f [A] = {f(a) : a ∈ A} ⊆ Y
and f ′′[A] = {f [A] : A ∈ A} ⊆ P(Y ). Similarly, we will use f−1[B] and (f−1)′′[B]
for B ⊆ Y and B ⊆ P(Y ).

Recall the de�nition of the Kat¥tov order on the family of ideals on ω:

I ≤K J i� there is an f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J .

Of course, we can use the Kat¥tov-order (and other orders) for �lters as well:
F ≤K G i� F∗ ≤K G∗.

Several deep results were proved about the Kat¥tov and other classical partial
orders and preorders on ideals, see e.g. [9] and [12]. We will need the following
properties of the Kat¥tov-order:

Proposition 2.3. ([12, Proposition 1.7.2] and A. Blass (private communication))
The Kat¥tov-order is c+-downward and c+-upward directed, that is, every family of
ideals on ω with cardinality at most c has both a ≤K-lower bound and a ≤K-upper
bound.

Proof. Assume {Iα : α < c} is a family of ideals on ω. We will show that it has a
≤K-lower bound I and a ≤K-upper bound J . Let {Aα : α < c} ⊆ [ω]ω be an almost
disjoint family on ω (i.e. |Aα ∩ Aβ | < ω for each α < β < c) and �x bijections
eα : ω → Aα. The ideal I generated by

⋃
{e′′α[Iα] : α < c} is then a Kat¥tov-lower

bound of {Iα : α < c} because eα witnesses I ≤K Iα for each α.
Now, let {fα : α < c} ⊆ ωω be an independent family of functions, that is,

for every α0, . . . , αk−1 < c and n0, . . . , nk−1 ∈ ω there is some x ∈ ω such that
fαi(x) = ni for all i < k (see [6, Theorem 3] for the proof of the existence of such a
family). Let J be the ideal generated by the family

⋃
{(f−1α )′′[Iα] : α < c}. Notice

that no �nite union of elements from the family covers ω, so ω /∈ J . Indeed, if
Ai ∈ Iαi and ni ∈ ω\Ai for i < k ∈ ω, then there is an x ∈ ω such that fαi(x) = ni
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for each i < k so x /∈
⋃
{f−1αi [Ai] : i < k}. Clearly, Iα ≤K J is witnessed by fα for

each α. �

Proposition 2.4. Meager �lters are co�nal in the Kat¥tov-order.

Proof. Let F be an arbitrary �lter on ω. Fix a partition (Pn) of ω into �nite sets
such that |Pn| = n, Pn = {pnk : k < n}. Let G be the �lter generated by the sets

F̃ = {pnk : k ∈ F ∩n} for F ∈ F . The �lter G is meager because F̃ ∩Pn 6= ∅ for each
n > min(F ) and because of Proposition 2.1. Now, the function g : ω → ω de�ned
by g(pnk ) = k witnesses that F ≤K G. �

The character of a �lter F , denoted by χ(F), is the minimal cardinality of a
family generating F . Similarly, the character of an ideal I is the character of its dual
�lter. The following theorem reveals some properties of the characters of nonmeager
�lters. Denote by b the unbounding number, i.e. the minimal cardinality of a set
B ⊆ ωω that is ≤∗-unbounded where f ≤∗ g i� {n ∈ ω : f(n) > g(n)} is �nite.

Theorem 2.5. (R. C. Solomon [15] and P. Simon [unpublished], see [2, Theorem
9.10]) If an ideal (or �lter) has character less than b, then it is meager but there is
a nonmeager ideal (�lter) generated by b sets.

Recall the de�nition of the Kat¥tov-Blass order: I ≤KB J if there is a �nite-
to-one f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J . We will use one more preorder
stronger than the Kat¥tov-Blass:

De�nition 2.6. (One-to-one order) For ideals I and J let I ≤1−1 J if there is a
one-to-one f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J .

One can think about one more natural order here, de�ned in the same way as
≤1−1 but with �bijection� instead of �one-to-one function�. However, the following
fact shows that it would not give us anything new.

Proposition 2.7. If J strictly extends Fin then I ≤1−1 J if and only if there is a
permutation g : ω → ω such that A ∈ I ⇒ g−1[A] ∈ J .

Proof. The "if" part is trivial. Conversely, assume f is one-to-one and A ∈ I ⇒
f−1[A] ∈ J . We can modify f on an in�nite element B of J to be a permutation
g such that g � (ω \B) ≡ f � (ω \B) and g[B] = f [B] ∪ (ω \ ran(f)). Then g is as
required. �

Using the above proposition, I ≤1−1 J (6= Fin) means that I can be permuted
into J (by g−1). Clearly, Fin ≤1−1 J for each J , and J is maximal in this order
i� J is a prime ideal. There is no largest element in this order because there are
2c many prime ideals but only c many permutations.

For all unexplained terminology concerning cardinal invariants we refer the reader
to [2].

We will �nish this section with the main de�nitions of the paper. We will start
with a general one.

De�nition 2.8. For a partial order (or simply a relation) v on ideals on ω the
v-intersection number of an ideal I on ω is

pv(I) = min{χ(J ) : J 6v I}
provided there is an ideal J such that J 6v I.

The v-intersection number of a �lter F is pv(F) = pv(F∗).
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We will be interested only in the Kat¥tov-intersection number (which we will
denote for simplicity by pK(I)), Kat¥tov-Blass-intersection number (pKB(I)), and
one-to-one-intersection number (p1−1(I)).

We list some immediate facts.

Proposition 2.9.

(a) p ≤ p1−1(I) ≤ pKB(I) ≤ pK(I);
(b) if I v J , then pv(I) ≤ pv(J ) for any partial order (or preorder) v;
(c) pK(I) = p for any I which is not tall.

The last part of the above proposition explains why pK and other cardinal coef-
�cients de�ned above in a sense generalize the pseudo-intersection number. In fact,
we can indicate also the generalization of the notion of pseudo-intersection itself in
this context. Assume I is an ideal on ω. For an injective sequence x̄ = (xn) ∈ ωω,
the copy of I on x̄ is the ideal

I(x̄) = {A ⊆ ω : {n ∈ ω : xn ∈ A} ∈ I}.
Let F be a family with SFIP (or simply a �lter) and assume that I is an ideal.
We say that an injective sequence x̄ = (xn) ∈ ωω is an I-intersection of F if
ω \F ∈ I(x̄) for each F ∈ F . In other words, a set X = ran(x̄) is an I-intersection
of F if we can reorder the elements of X in such a way that elements of F are in
the copy of I∗ on the rearranged X. Notice that x̄ is a Fin-intersection of F i�
ran(x̄) is a pseudo-intersection of F . Plainly, p1−1(I) is the minimal cardinality of
a family with SFIP without an I-intersection.

3. Analytic background of the problem

Orders on ideals have gained some attention recently, mainly because it turned
out to be a useful tool in investigating properties of forcings of the form P(ω)/I
and Mathias forcings M(I), where I is an ideal (see e.g. [9] or [10]). In this sec-
tion we will show that the Kat¥tov-intersection number has applications in certain
topological and analytical considerations.

All topological spaces in what follows are Hausdor�. The weight of a space X
(denoted by w(X)) is the minimal cardinality of a base of topology of X. Recall
that a topological space is Fréchet-Urysohn (FU) if for every subset A of this space
and every x ∈ A there is a sequence in A converging to x. The de�nition of the
pseudo-intersection number can be reformulated in topological terms: the pseudo-
intersection number is the smallest weight of a (locally) countable (even completely
regular or normal) space which is not FU (it is a special case of Theorem 3.2).

We can generalize the FU property for ideals using the notion of I-convergency.
A sequence (xn) in a space X I-converges to x if

∀ U open
(
x ∈ U ⇒ {n ∈ ω : xn /∈ U} ∈ I

)
.

De�nition 3.1. Let I be an ideal on ω. A space X satis�es the I-Fréchet-Urysohn
(I-FU) condition if for every A ⊆ X and every x ∈ A there is a sequence in A I-
converging to x.

Clearly, if I is not tall, then the I-FU condition is equivalent to the (Fin-)FU
condition.

Theorem 3.2. pK(I) is the smallest weight of a countable space which is not I-FU.



6 PIOTR BORODULIN-NADZIEJA AND BARNABÁS FARKAS

Proof. Let F be a �lter, χ(F) = pK(I), and F �K I∗. Let X = ω ∪ {F} be
equipped with the topology inherited from the Stone space of the Boolean algebra
generated by F , that is

(a) subsets of ω are open;
(b) U ∪ {F} is an open neighborhood of F i� U ∩ ω ∈ F .

Clearly, w(X) = χ(F) and F ∈ ω. We claim that there is no sequence (xn)
in ω which I-converges to F . Assume (xn) is a sequence in ω and let f ∈ ωω,
f(n) = xn. Using the assumption F �K I∗ we deduce that there is a V ∈ F such
that f−1[V ] /∈ I∗. Consider the open neighborhood U = V ∪ {F} of F . Then
{n : xn /∈ U} = ω \ f−1[V ] /∈ I so (xn) does not I-converge to F .

Conversely, let X be a countable space with w(X) < pK(I), let A ⊆ X, and
x ∈ A \ A. Then the family {A ∩ U : U is an open neighborhood of x} forms a
�lter-base on A. Let F be the generated �lter. Since χ(F) ≤ w(X) we know that
F ≤K I∗ is witnessed by a function f ∈ ωω.

We claim that the sequence de�ned by xn = f(n) I-converges to x. Let U be
an open neighborhood of x. Then {n : xn /∈ U} = ω \ f−1[A ∩ U ] ∈ I and we are
done. �

We can give another characterization of pK(I) in the special case when I = Z.
Recall that a completely regular space X can be seen as a closed subspace of the
space of Borel probability measures P (X) on X with the weak∗ topology.

The subbase of this topology is given by the following sets:

Uf,ε(µ) =

{
ν ∈ P (X) :

∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ < ε

}
where µ ∈ P (X), f ∈ Cb(X) = {bounded continuous real-valued functions on X},
and ε > 0. Recall that in this topology (µn) converges to µ if and only if∫

X

fdµn →
∫
X

fdµ

for every f ∈ Cb(X).
The embedding X → P (X) is given by x 7→ δx where δx is the Dirac-measure

concentrated on x. We will use the notation Aδ = {δy : y ∈ A} for A ⊆ X.
Denote by conv (A) the convex hull of A for A ⊆ P (X). We will be interested

in conv (Xδ), i.e. in the probability measures with �nite support.

De�nition 3.3. We say that X satis�es the convex Fréchet-Urysohn condition if
for every A ⊆ X, if x ∈ A then there is a sequence in conv (Aδ) which converges to
δx.

In [13, Theorem 1] the following result was proved:

Theorem 3.4. Assume X is compact. A measure µ ∈ P (X) is a weak∗ limit of
measures of �nite support if and only if µ has a uniformly distributed sequence (xk)
in X, that is

µ = lim
n→∞

1

n

∑
k<n

δxk .

Remark 3.5.
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(1) In [13] this theorem was formulated only for compact spaces, but the proof
presented there does not use the assumption of compactness and the asser-
tion is true for every (completely regular) topological space.

(2) It is clear from the proof of this theorem that if µn ∈ conv (Xδ) and µn → µ,
then the sequence (xk) can be chosen from

⋃
n<ω supp(µn).

(3) Using this theorem, a space X is convex FU i� if for every A ⊆ X, if x ∈ A
then there is a sequence (xk) in A such that δx = limn→∞

1
n

∑
k<n δxk .

Theorem 3.6. Assume X is completely regular. Then X satis�es the convex FU
condition if and only if X satis�es the Z-FU condition.

Proof. Assume X satis�es the convex FU condition and let A ⊆ X, x ∈ A \ A.
Then, according to Remark 3.5 there is a sequence (xk) in A such that δx =
limn→∞

1
n

∑
k<n δxk .

We claim that (xk) Z-converges to x. Assume on the contrary that there is
an open neighborhood U of x such that H = {n : xn /∈ U} /∈ Z. Using complete
regularity of X, there is a continuous f : X → [0, 1] such that f(x) = 0 but f �
{xn : n ∈ H} ≡ 1. Then by the assumption on (xk) we have∫

X

fd

(
1

n

∑
k<n

δxk

)
=

1

n

∑
k<n

f(xk)→ f(x) = 0

but 1
n

∑
k<n f(xk) ≥ |H∩n|n for each n, a contradiction because H /∈ Z.

Conversely, assume that X is Z-FU and let A ⊆ X, x ∈ A \ A. Then there is a
sequence (xk) in A which Z-converges to x.

We claim that δx = limn→∞
1
n

∑
k<n δxk . Let f ∈ Cb(X), |f | ≤ c, ε > 0 and

x ∈ U be an open set such that |f(x)− f(y)| < ε for each y ∈ U . If H = {k : xk ∈
U} ∈ Z∗, then∣∣∣∣∣f(x)− 1

n

∑
k<n

f(xk)

∣∣∣∣∣ =
1

n

∣∣∣∣∣∣
∑

k∈n∩H

(
f(x)− f(xk)

)
+
∑

k∈n\H

(
f(x)− f(xk)

)∣∣∣∣∣∣ ≤
≤ 1

n

(
|H ∩ n| · ε+ |n \H| · 2c

)
→ ε if n→∞.

Because ε was arbitrary, we are done. �

So, in a sense we can call pK(Z) the convex pseudo-intersection number.
The idea of the cardinal invariant pK(I) came from certain analytic considera-

tions contained in [3], where authors were exploring a problem if there is a Mazur
space without the Gelfand-Phillips property. The Gelfand-Phillips condition is
widely used in functional analysis. The Mazur property is a certain condition
weaker than re�exivity used in the theory of Pettis integrability (for the detailed
discussion about these properties, confront [3]). It is known that there is a Gelfand-
Phillips space without the Mazur property. It is still open if every Mazur space is
Gelfand-Phillips.

In [3] the following question connected to the above considerations was raised.

Problem 3.7. Is there a minimally generated Boolean algebra A ⊆ P(ω) such that
no ultra�lter on A has a pseudo-intersection but for every ultra�lter F on A we
have F ≤K Z∗?
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In [3] it was shown that if there is such a Boolean algebra and this Boolean
algebra is dense in P(ω), then there is a space which is Mazur but not Gelfand-
Phillips 1. Brie�y speaking, the minimal generation implies that every measure on
A is in the sequential closure of measures of �nite support. Since F ≤K Z∗ for every
ultra�lter F on A, every measure of �nite support is a limit of measures �nitely
supported on ω (cf. Remark 3.5 and Theorem 3.6 above) and so every measure is in
the sequential closure of measures �nitely supported on ω. This property simpli�es
the form of functionals on the space of measures on A and in this way it can be
used to achieve Mazur property. In [3] it was also proved that if pK(Z) > h, then
there is a Boolean algebra as described above.

In the next section we will show that consistently there is an ideal (unfortunately,
not Z) with the above property (see Theorem 4.7).

Problem 3.8. Do there exist reasonable topological characterizations of pKB(I)
and p1−1(I)?

4. Consistency results

The cardinal sup{pK(I) : I is an ideal on ω} ≤ c is the smallest cardinal κ such
that there is no ≤K-upper bound of all ideals generated by at most κmany elements.
First we show that this supremum is determined by cardinal exponentiation.

Proposition 4.1. pK(I) ≤ κ for each ideal I if and only if 2κ > 2ω.

Proof. First, we prove the �if� part. Let {(A0
α, A

1
α) : α < κ} ⊆

(
[ω]ω

)2
be an

independent system, that is A1
α = ω\A0

α for each α, and if D ∈ [κ]<ω and f : D → 2

then |
⋂
{Af(α)α : α ∈ D}| = ω (see [2, Proposition 8.9]).

For an F ∈ 2κ let IF be the ideal generated by {AF (α)
α : α < κ}. Observe

that χ(IF ) = κ for every F . Suppose for a contradiction that there is an ideal
I such that IF ≤K I for each F witnessed by gF ∈ ωω. Since 2κ > c there are
distinct F0, F1 ∈ 2κ such that gF0

= gF1
. Let α be such that F0(α) 6= F1(α). Then

A
F0(α)
α ∪AF1(α)

α = ω. Consequently

g−1F0
[AF0(α)
α ] ∪ g−1F1

[AF1(α)
α ] = g−1F0

[AF0(α)
α ] ∪ g−1F0

[AF1(α)
α ] = g−1F0

[AF0(α)
α ∪AF1(α)

α ] = ω

so ω ∈ I, a contradiction.
Now, we prove the converse implication. Assume that 2κ = 2ω. Then the family

of ideals generated by at most κ elements has cardinality c. Using Proposition 2.3,
this family has a ≤K-upper bound I and so pK(I) > κ, a contradiction. �

We have an easy upper bound for pKB(I) if I is meager:

Proposition 4.2. If I is meager, then pKB(I) ≤ b.

Proof. It is enough to show that if I is meager and J ≤KB I, then J is also meager
because then we can use Theorem 2.5 (there is a nonmeager ideal of character b).

Assume the partition (Pn) witnesses that I is meager (see Proposition 2.1),
and assume f : ω → ω is �nite-to-one and witnesses J ≤KB I. We can de�ne
a partition (P ′n) of ran(f) into �nite sets by recursion on n such that ∀ n ∈ ω
∃ k ∈ ω Pk ⊆ f−1[P ′n]. Then (P ′n) witnesses that J � ran(f) is meager and

1In fact, in [3] it was shown for the case of one-to-one order but it can be immediately
generalized.
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it clearly implies that J is meager too because of the natural homeomorphism
P(ω)→ P(ran(f))× P(ω \ ran(f)). �

The assumption on meagerness of the ideal and the use of �nite-to-one functions
are necessary because of part (a) and part (b) of the following theorem. Denote by
Cα the standard Cohen forcing which adds α many Cohen reals and let C = C1. It
is well-known that if κ > ω, then V Cκ |= b = ω1.

Theorem 4.3. Assume GCH. Then in V Cω2 the following hold:

(a) there is a �lter F with p1−1(F) = ω2;
(b) there is a meager �lter G with pK(G) = ω2;
(c) pK(I) = ω1 for all Fσ ideals and analytic P-ideals.

Proof. (a): We interpret Cω2
as the ω2 stage �nite support iteration of C where now

let C be the set of �nite injective sequences from ω ordered by reverse inclusion. A
trivial density argument shows that if ċ is the generic (Cohen-)real, then 
C� ċ is a
permutation on ω.�

Notice that for every subfamily of [ω]ω in V Cω2 of size ω1, a nice name of it
appears already in some V Cα for α < ω2. Additionally, there are ωω1

2 = ω2 such

families in V Cω2 so we can �x an enumeration {Ḟα : α < ω2} of all names of bases

of �lters of cardinality ω1 in V Cω2 in such a way that Ḟα ∈ V Cα for each α.
If ċα ∈ V Cα+1 is the α's Cohen-real, then |ċα[X] ∩ Y | = ω for each X,Y ∈

[ω]ω ∩ V Cα : if X = {xn : n ∈ ω}, then Dk = {p ∈ C : ∃ n ≥ k p(xn) ∈ Y } is dense
in C for each k ∈ ω.

We show that

V Cω2 |= �
⋃{

ċ′′α[Ḟα] : α < ω2

}
forms a base of a �lter.�

Indeed, consider α < β < ω2 and F ∈ Ḟα, G ∈ Ḟβ . Since ċα[F ] ∈ V Cα+1 ⊆ V Cβ

is in�nite, the set ċβ [G] ∩ ċα[F ] is also in�nite. By induction we can show that
every �nite subfamily of this family has in�nite intersection.

Clearly, the �lter F generated by this family satis�es p1−1(F) = ω2.
(b) follows from part (a), Proposition 2.9 and Proposition 2.4.
(c): Now let Cω2

be the set of �nite functions from ω2 × ω to 2 ordered by
reverse inclusion. Let J be the ideal generated by the �rst ω1 Cohen-reals, i.e.
by {c−1α [{1}] : α < ω1} where cα : ω → 2 is the α's Cohen-real. We show that J
witnesses part (c), i.e. for each I as in the theorem J �K I.

Case 1: Let I = Fin(ϕ) be an Fσ ideal. Assume G is a (V,Cω2
)-generic �lter

and f ∈ ωω in V [G]. Then there is a countable H ⊆ ω2 such that both ϕ � Fin and
f are in V [G∩CH ] where CH is the Cohen-forcing which adds Cohen-reals indexed
by elements of H. If α ∈ ω1 \H then cα is Cohen over V [G ∩ CH ] so it is enough
to show that

Dn =
{
p ∈ C : ϕ

(
f−1[p−1[{1}]]

)
> n

}
is dense in C for each n ∈ ω because then f cannot witness J ≤K I in the extension.
Assume q ∈ C is de�ned on an initial segment. If ϕ(f−1[|q|]) = ∞, then we are
done, because f cannot show any Kat¥tov-reduction (so we do not have to deal
with Dn). If not, then f−1[|q|] ∈ Fin(ϕ) so we can choose a large enough ` > |q|
such that ϕ(f−1[` \ |q|]) > n. De�ne p ∈ C by p � |q| = q and p � [|q|, `) ≡ 1. Then
p ≤ q and p ∈ Dn.
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Case 2: Assume I = Exh(ϕ) is an analytic P-ideal, ‖ω‖ϕ = 1. Similarly to the
previous case it is enough to show that

Dn =
{
p ∈ C : ϕ

(
f−1[p−1[{1}]] \ n

)
> 0.5

}
is dense in C for each n. Assume q ∈ C is de�ned on an initial segment. If
‖f−1[|q|]‖ϕ > 0 then there is nothing to worry about. If not, then we can choose a
large enough ` > |q| such that ϕ(f−1[` \ |q|] \ n) > 0.5. Let p be chosen as in Case
1. �

We list here some related questions:

Problem 4.4.

• Is pK(I) ≤ b for each analytic (P-)ideal I?
• Is p1−1(I) = pKB(I) for each ideal I?
• Is p < p1−1(I) (or at least p < pKB(I)) consistent for some meager (or even
analytic (P-)) ideal I? Also, for the purposes described in Section 3, the
consistency of h < pK(Z) is particularly interesting.

• Is pKB(I) < b (or at least p1−1(I) < b) consistent for some tall ideal I?

In Proposition 4.1 we showed that 2κ > 2ω implies that pK(I) ≤ κ and thus
pKB(I) ≤ κ for each ideal I, and that for the Kat¥tov-order the converse implication
also holds. Now, we show that ∀ I pKB(I) ≤ ω1 does not imply 2ω1 > 2ω. We
present a model of 2ω1 = 2ω in which pKB(F) ≤ ω1 for each �lter F .

Moreover, in this model ≤KB (so ≤1−1 too) will not be upward directed on �lters
generated by ω1 sets (it clearly implies that pKB(F) ≤ ω1 for each �lter F).

Theorem 4.5. It is consistent with ZFC that 2ω1 = 2ω is arbitrary large and
the Kat¥tov-Blass-order is not upward directed on �lters generated by ω1 sets. In
particular, pKB(F) ≤ ω1 for each �lter F .

Proof. Let 2ω = 2ω1 be arbitrary. We will construct two �lters F and G generated
by ⊆∗-descending sequences {Ẋα : α < ω1} and {Ẏα : α < ω1} inductively in a
model obtained by an ω1 stage �nite-support iteration of σ-centered forcing notions
(Pα, Q̇β)α≤ω1,β<ω1 .

It is well-known that a ≤ c-step �nite-support iteration of σ-centered forcing
notions is σ-centered, in particular ccc, so it does not collapse cardinals. It will be

trivial that |Pω1
| = c so cV

Pω1 = cV and (2ω1)V
Pω1 = (2ω1)V .

At the α's stage (in V Pα) we have initial segments {Xξ : ξ < α} and {Yξ : ξ < α}.
Let X ′α and Y ′α be pseudo-intersections of these sequences. We want to add Ẋα ∈
[X ′α]ω and Ẏα ∈ [Y ′α]ω such that |f−1[Ẋα]∩g−1[Ẏα]| < ω for each pairs (f, g) ∈ V Pα

of �nite-to-one functions from ω to ω. Then in the �nal extension F and G cannot
have a common upper bound in ≤KB.

Let X = X ′α and Y = Y ′α, and let Q = Q̇α be the following forcing notion:
(s, t, %) ∈ Q if s ∈ [X]<ω, t ∈ [Y ]<ω, and % is a �nite partial function from FO×FO
to ω such that |f−1[s] ∩ g−1[t]| ≤ %(f, g) for every (f, g) ∈ dom(%) (where FO
denotes the set of all �nite-to-one functions from ω to ω). De�ne the order in
the following way: (s, t, %) ≤ (s′, t′, %′) if s ⊇ s′, t ⊇ t′, dom(%) ⊇ dom(%′), and
%(f, g) ≤ %′(f, g) for each (f, g) ∈ dom(%′).

Clearly, it is a partial order. It is also σ-centered: �x s ∈ [X]<ω, t ∈ [Y ]<ω,
and consider conditions (s, t, %i) ∈ Q for i < n ∈ ω. Let % be the following partial
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function: dom(%) =
⋃
{dom(%i) : i < n} and %(f, g) = min{%i(f, g) : i < n, (f, g) ∈

dom(%i)}. Then (s, t, %) ≤ (s, t, %i) for every i < n.

Let Ȧ and Ḃ be Q-names for the union of the �rst and respectively second
coordinates of the conditions in the generic �lter. We claim that these sets can
serve as Ẋα and Ẏα.


Q�Ȧ is in�nite�: The set Dn = {p ∈ Q : |sp| > n} is dense in Q for each n
(where p = (sp, tp, %p)) because if p ∈ Q is arbitrary, then sp can be extended by
any element of the in�nite set ω \

⋃
{f ′′[g−1[t]] : (f, g) ∈ dom(%)}.

Similarly, 
Q�Ḃ is in�nite.�
At last, we have to show that E(f,g) = {p ∈ Q : (f, g) ∈ dom(%p)} is dense in Q.

Any p ∈ Q can be extended by adding (f, g) to dom(%p) and choosing %(f, g) to be
large enough. �

Problem 4.6. Is it consistent with ZFC that 2ω1 = 2ω and pKB(I) ≤ ω1 (or
p1−1(I) ≤ ω1) for each ideal I but ≤KB (respectively ≤1−1) is upward directed on
ideals generated by ω1 elements?

Note that if it is possible for ≤1−1, then in such a model c ≥ ω3: It is easy
to see that if ≤1−1 is upward directed on ideals generated by ω1 sets, then any
ω2 ideals with character ω1 have an upper bound in ≤1−1. If there would be only
2ω = 2ω1 = ω2 many ideals with character ω1, then they would form a≤1−1-bounded
set, i.e. there would be an ideal I with p1−1(I) > ω1.

Remark 4.7. In [3, Theorem 7.4] the authors proved that consistently there is a
Boolean algebra A ⊆ P(ω) such that all ultra�lters on A are meager but none of
them has a pseudo-intersection. Using Theorem 4.3(a) and the fact that h = ω1 in
the Cohen model, we can mimic this proof to show a similar result. Namely, we can
prove that, consistently, there is an ideal I and a Boolean algebra A ⊆ P(ω) such
that for each ultra�ler F on A there is no pseudo-intersection of F but F ≤K I∗.

5. Permuting MAD families into ideals

The pseudo-intersection number is not the only cardinal coe�cient which can be
generalized in the way presented in the paper. E.g. we can easily de�ne the analog
of the tower number. Recall that a tower is a family with SFIP whose elements can
well-ordered by ⊆∗. De�ne e.g.

t1−1(I) = min{χ(fr(T )) : T is a tower and fr(T ) �1−1 I∗},

where I is an ideal and fr(T ) is the �lter generated by T . As in the case of p1−1,
we have t1−1(Fin) = t. However, in general this coe�cient may be not well de�ned,
i.e. maybe the family of all (�lters generated by) towers are ≤1−1-bounded. E.g.
consider the �lter F from Theorem 4.3(a). Since in the Cohen-model there are no
towers of character ω2 [Kunen, unpublished] and every �lter generated by ω1 sets is
one-to-one-below F , every tower is one-to-one�below F , and t1−1(F∗) in unde�ned.

Similarly, we can de�ne the cardinal coe�cient a1−1(I) analogous to the almost-
disjointness number a. An in�nite family A = {Aα : α < λ} ⊆ [ω]ω is almost
disjoint (AD) if Aα ∩ Aβ is �nite for every α 6= β. A is maximal almost disjoint
(MAD) family if for everyX ∈ [ω]ω there is α < λ such that Aα∩X is in�nite, i.e. A
is ⊆-maximal among AD families. For an almost disjoint family A denote by id(A)
the ideal generated by A. Equivalently, an almost disjoint family is maximal if the
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�lter dual to id(A) does not have a pseudo-intersection. The almost disjointness
number a is the minimal cardinality of a MAD family.

De�nition 5.1. Let I be an ideal on ω. An almost disjoint family A is I-maximal
if id(A) �1−1 I.

Using Proposition 2.7, if I 6= Fin then an AD family is I-maximal i� it cannot
be permuted into I.

Clearly, an AD family is Fin-maximal i� it is a MAD family. Furthermore,
if I ≤1−1 J and an AD family is J -maximal, then it is I-maximal as well. In
particular, each I-maximal AD family is a MAD family. From now on we will use
the phrase �I-maximal MAD family.� It is trivial that if I is not tall, then each
MAD family is I-maximal.

As before, let

a1−1(I) = min{χ(id(A)) : A is I −maximal}.

This section is devoted to study when the above cardinal coe�cient is well-de�ned,
i.e. when there is an I-maximal MAD family.

Note that it is easy to see that id(A) is meager for each AD family A.
Recall that add∗(I) is one of the generalizations of p mentioned in Introduction.

Proposition 5.2. add∗(I) = c implies that there is an I-maximal MAD family.

Proof. Fix an enumeration {fα : ω ≤ α < c} of injective sequences of natural num-
bers. We will construct the desired MAD family inductively. Start with a disjoint
partition (An) of ω into in�nite sets and assume we have constructed all Aξ's for
ξ < α < c.

If for some ξ < α we have f−1α [Aξ] /∈ I, then take Aα = Aξ.
If not, then consider the family {f−1α [Aξ] : ξ < α} ⊆ I. Using the assumption

add∗(I) = c we can �nd a set B ∈ I such that f−1α [Aξ] ⊆∗ B for every ξ < α. Let
Aα = f ′′α [ω \B]. Then {Aξ : ξ ≤ α} is an AD family, and f−1α [Aα] ∈ I∗.

In this way we will construct an AD family A = {Aα : α < c} such that
id(A) 6≤1−1 I. �

In generalizing Proposition 5.2 we have to be careful. It is easy to construct an
almost disjoint family which can be extended only by a set from a given ideal I.
Indeed, consider ω = A∪B, where A ∈ I and de�ne a MAD family B = {Bα : α < c}
on B and a non-maximal almost disjoint family A = {Aα : α < c} on A. The family
de�ned by {Aα ∪Bα : α < c} can be extended only by sets from I.

We will show that under Martin's Axiom for σ-centered posets (i.e. p = c,
see [1]) there are I-maximal MAD families for each Fσ ideal and analytic P-ideal
I. Recall that this axiom does not imply that add(N ) = c (see [7, 522S]) and
add∗(I) = add(N ) for a lot of tall analytic P-ideals (e.g. for tall summable and
tall density ideals, see [8, Theorem 2.2]).

Theorem 5.3. Let I be a tall Fσ ideal or a tall analytic P-ideal. Then MA(σ-
centered) implies that there is an I-maximal MAD family.

Proof. Let I be a tall analytic P-ideal and �x an enumeration {fα : ω ≤ α < c}
of injective sequences of natural numbers. As in the proof of Proposition 5.2, we
construct the desired MAD family inductively. Start with a disjoint partition (An)
of ω into in�nite sets and assume we have constructed all Aξ's for ξ < α < c.
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As before, if for some ξ < α we have f−1α [Aξ] /∈ I, then let Aα = Aξ. If not,
consider the almost disjoint family A of sets f−1α [Aξ] ∈ I for ξ < α.

We claim that MA(σ-centered) implies that A can be extended to an AD family
by a set C from I+. It would be enough because then we can let Aα = f ′′α [C] and
proceed as in the proof of Proposition 5.2.

Let I be a tall Fσ ideal or a tall analytic P-ideal and assume that A ⊆ I is an
AD family. Then we have to �nd a σ-centered forcing notion P(A) such that in
V P(A) the family A can be extended by an I-positive set.

Let P(A) be the natural forcing notion that extends A with a new element.
Namely, let p = (np, sp,Bp) ∈ P(A) i� np ∈ ω, sp ⊆ n, and Bp ∈ [A]<ω. We say
that p ≤ q i� np ≥ nq, sp ∩ nq = sq, and (sp \ sq) ∩

⋃
Bq = ∅.

It is easy to see that P(A) is σ-centered and that the sets Dk = {p ∈ P(A) : |sp| >
k} and DA = {p ∈ P(A) : A ∈ Bp} are dense in P(A) for each k ∈ ω and A ∈ A.
Consequently, if Ṡ is a P(A)-name such that 
P(A) Ṡ =

⋃
{sp : p ∈ Ġ} (where Ġ is

the canonical name of the generic �lter), then 
P(A) Ṡ ∈ [ω]ω and 
P(A) |Ṡ∩A| < ω
for each A ∈ A.

We have to show that 
P(A) Ṡ ∈ I+. We have two cases:

Case I: I = Fin(ϕ) is a tall Fσ ideal. We will show that 
P(A) ϕ(Ṡ) = ∞. It is
enough to prove that Ek = {p ∈ P(A) : ϕ(sp) > k} is dense in P(A) for each k ∈ ω.
Fix a p ∈ P(A). Since A ⊆ I and ϕ is subadditive we have

ϕ
(
ω \

(
np ∪

⋃
Bp
))

=∞

so by the LSC property of ϕ we can �nd a �nite F ⊆ ω \
(
np ∪

⋃
Bp
)
such that

ϕ(F ) > k. If q = (max(F ) + 1, sp ∪ F,Bp), then q ∈ Ek and q ≤ p. We are done.
Case II: I = Exh(ϕ) is a tall analytic P-ideal, ‖ω‖ϕ = 1. We will show that


P(A) ‖Ṡ‖ϕ = 1. It is enough to prove that Hε
k = {p ∈ P(A) : ϕ(sp \ k) > ε} is

dense in P(A) for each ε < 1 and k ∈ ω. To see this, �x a condition p ∈ P(A).
Since A ⊆ I and ‖ · ‖ϕ is subadditive we conclude that

ϕ
(
ω \

(
np ∪ k ∪

⋃
Bp
))
≥
∥∥∥ω \ (np ∪ k ∪⋃Bp)∥∥∥

ϕ
= 1

so by the LSC property of ϕ we can �nd a �nite F ⊆ ω \
(
np ∪ k ∪

⋃
Bp
)
such that

ϕ(F ) > ε. If q = (max(F ) + 1, sp ∪ F,Bp), then q ∈ Hε
k and q ≤ p. The proof is

complete. �

We �nish with some related questions:

Problem 5.4.

• Does there exist an I-maximal MAD family for a tall (analytic) ideal I in
ZFC?
• Is it consistent with ZFC that there is no I-maximal MAD family for some
(nice) I?
• Is it consistent with ZFC + ¬CH that there are I-maximal MAD families
for each ideal?
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