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Abstract. M. Elekes proved that any infinite-fold cover of a σ-finite

measure space by a sequence of measurable sets has a subsequence with

the same property such that the set of indices of this subsequence has

density zero. Thanks to this theorem he gave a new proof for the

random-indestructibility of the density zero ideal. He asked about other

variants of this theorem.

We present some negative results and discuss the category case when

the set of indices of the required subsequence should be in a fixed ideal J

on ω. We introduce the notion of the J-covering property of a pair (A, I)

where A is a σ-algebra on X and I ⊆ P(X) is an ideal. We investigate

connections between this property and forcing-indestructibility of ideals.

Also, we study the J-covering property for the pairs (Borel(X×Y ), I⊗K)

where X, Y are Polish spaces, and (P(ω), I) where I is an ideal on ω.

1. Introduction

We will discuss the following result due to Elekes [4].

Theorem 1.1. Let (X,A, µ) be a σ-finite measure space and let (An)n∈ω be

a sequence of sets from A that covers µ-almost every x ∈ X infinitely many

times. Then there exists a set M ⊆ ω of asymptotic density zero such that

(An)n∈M also covers µ-almost every x ∈ X infinitely mamy times.

Using this result Elekes gave a nice new proof for the fact that the density

zero ideal is random-indestructible. He asked about other variants of this

theorem.

For an ideal I ⊆ P(ω), we assume that ω /∈ I and Fin ⊆ I where Fin

stands for the ideal of finite subsets of ω. An ideal I is tall if each infinite

subset of ω contains an infinite element of I. Clearly, an ideal J on ω is tall

iff its dual filter J∗ does not have a pseudointersection, that is a set X ∈ [ω]ω

such that X ⊆∗ Y for each Y ∈ J∗ where X ⊆∗ Y means that X \Y is finite.
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Each ideal on ω can be treated as a subset of the Cantor space 2ω via the

standard bijection between 2ω and P(ω), so we can talk about Borel, Fσ,

analytic, meager. . . ideals.

If I is an ideal on a set X then let I∗ = {X \ A : A ∈ I} its dual

filter and let I+ = P(X) \ I the set of I-positive subsets of X. If Y ⊆ X

and Y ∈ I+, then the restriction of I to Y is the following ideal on Y :

I � Y = {Y ∩A : A ∈ I}.
More informations about ideals on ω can be found in [8].

Elekes discovered that these covering properties have an effect on forcing

indestructibility of ideals. Assume J is a tall ideal on ω and P is a forcing

notion. We say that J is P-indestructible if 
P ∃ A ∈ J |Ẋ ∩ A| = ℵ0 for

each P-name Ẋ for an infinite subset of ω, i.e. in V P the ideal generated by

J is tall. This property has been widely studied for years. Understanding

deeper the connection between these covering properties and forcing inde-

structibility, we recall some important notions and results.

The Katětov-order on ideals: if I and J are ideals on ω then I ≤K J iff

there is a function f : ω → ω such that f−1[A] ∈ J for all A ∈ I.

The Gδ-closure of a set A ⊆ 2<ω (or ω<ω) is

[A] =
{
f ∈ 2ω (or ωω) : ∃∞ n f � n ∈ A

}
.

The trace ideal of a σ-ideal I on 2ω (or on ωω) is

tr(I) =
{
A ⊆ 2<ω (or ω<ω) : [A] ∈ I

}
.

If I is a σ-ideal on a Polish space X, then PI denotes the forcing notion

Borel(X)\ I partially ordered by the reverse inclusion. Properties of forcing

notions of the form PI is a central topic of the theory of forcing methods.

For more details and notions, for instance the property continuous readings

of names (CRN), see [10] or [5].

The following theorem shows the crucial role of the Katětov-order in forc-

ing indestructibility of ideals:

Theorem 1.2. (see [5]) Let I be a σ-ideal on 2ω or on ωω, and let J be a tall

ideal on ω. Assume furthermore that PI is proper and has the CRN. Then

J is PI-indestructible if, and only if J �K tr(I) � X for any X ∈ tr(I)+.

In some classical cases we know a little bit more: we do not need to

investigate J �K tr(I) � X for any X ∈ tr(I)+ only J �K tr(I) because of

homogeneous properties of tr(I) (for more details see [8, Section 2.1.1.]).

For example:

(i) An ideal J on ω is Cohen-indestructible iff J �K tr(M) where M is

the σ-ideal of meager subsets of 2ω (or of ωω or of R).
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(ii) An ideal J is random-indestructible iff J �K tr(N) where N is the

σ-ideal of null subsets of 2ω (or of ωω or of R).

(iii) An ideal J is Sacks-indestructible iff J �K tr([2ω]≤ω).

For other types of general characterization theorems see [3].

We will need the following ideals on ω:

Let ED be the eventually different ideal, that is

ED =
{
A ⊆ ω × ω : lim sup

n→∞
|(A)n| <∞

}
where (A)n = {m ∈ ω : (n,m) ∈ A}. Let ∆ = {(n,m) ∈ ω × ω : m ≤ n}
and EDfin = ED � ∆. These two ideals are tall Fσ non P-ideals.

At last, the Fubini-product of Fin by itself

Fin⊗ Fin =
{
A ⊆ ω × ω : ∀∞ n |(A)n| <∞

}
.

This is a tall Fσδσ non P-ideal.

Furthermore, we will use the Katětov-Blass order on ideals: J0 ≤KB J1 iff

there is a finite-to-one function f : ω → ω such that f−1[A] ∈ J1 for each

A ∈ J0.

In Section 2 we introduce a general covering property of a pair (A, I)

with respect to an ideal on ω where A is a σ-algebra and I is an ideal on its

underlying set. This property is a natural generalization of the interaction

between the pair (measurable sets, ideal of measure zero sets) and the density

zero ideal proved by Elekes. We give some negative results showing that in

certain cases the respective a.e.-subcovers do not exist on ωω. And at last, we

present the general effect of the covering property on forcing indestructibility

of ideals.

In Section 3 we prove general positive results for the category case which

answers a question from [4], and we present some examples which show that

our implications are not reversible.

In Section 4 we describe a class of ideals I on R for which the J-covering

property for (Borel(R), I) fails in a strong fashion.

In Section 5 we investigate J-covering properties of the pair (Borel(R2),N⊗
M) and a stronger hypothesis (Z-uniform J-covering property) as well.

In Section 6 we investigate J-covering properties of the pair (P(ω), I)

where I is an ideal on ω. It has turned out that J-(ultra)filters play an

important role in this situation.

2. The J-covering property

We can consider the following abstract setting.
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Definition 2.1. Let X be an arbitrary set and I ⊆ P(X) be an ideal of

subsets of X. We say that a sequence (An)n∈ω of subsets of X is an I-a.e.

infinite-fold cover of X if{
x ∈ X : {n ∈ ω : x ∈ An} is finite

}
∈ I , i.e. lim sup

n∈ω
An ∈ I∗.

Of course, the sequence (An) above can be indexed by any countable infinite

set. Assume furthermore that given a σ-algebra A of subsets of X and an

ideal J on ω. We say that the pair (A, I) has the J-covering property if for

every I-a.e. infinite-fold cover (An)n∈ω of X by sets from A, there is a set

S ∈ J such that (An)n∈S is also an I-a.e. infinite-fold cover of X.

Clearly, in the previous definition it is enough to check infinite-fold covers

instead of I-a.e. infinite-fold covers. Observe that, if I1 ⊆ I2 and (A, I1)

possesses the J-covering property, then also (A, I2) possesses it.

In this context, Elekes’ theorem says that if (X,A, µ) is a σ-finite measure

space, then (A,Nµ) has the Z-covering property where

Z =

{
A ⊆ ω : lim

n→∞

|A ∩ n|
n

= 0

}
is the density zero ideal (a tall Fσδ P-ideal) and Nµ = {H ∈ A : µ(H) = 0}
(more precisely, Nµ is the ideal generated by null sets because we assume

that I is an ideal on the underlying set).

Notice that if (A, I) has the J-covering property, then (A[I], I) also has

this property where A[I] is the “I-completion of A”, that is

A[I] =
{
B ⊆ X : ∃ A ∈ A A4B ∈ I

}
.

For instance, if (Borel(R),N) has the J-covering property where N is the

σ-ideal of Lebesgue null sets, then (LM(R),N) also has this property where

LM(R) is the σ-algebra of Lebesgue measurable subsets of R. Similarly in

the category case, it is enough to prove a J-covering property for Borel sets,

then it holds for the σ-algebra of sets with the Baire property as well.

Furthermore, if (A, I) has the J-covering property then for all Y ∈ A \ I
the pair (A � Y, I � Y ) also has this property where of course, A � Y =

{Y ∩A : A ∈ A} is the restricted σ-algebra.

Clearly, if J is not tall, then there is no (A, I) with the J-covering property.

We give another motivation to this notion as well. First we reformulate

the J-covering property:

Fact 2.2. (A, I) has the J-covering property (X =
⋃
A) if and only if, for

every (A,Borel([ω]ω))-measurable function F : X → [ω]ω, there is an S ∈ J

such that {x ∈ X : |F (x) ∩ S| < ω} ∈ I.
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The J-covering property can be seen as “analytic uniformity” in the fol-

lowing sense: If J is a tall ideal on ω then the star-uniformity of J is the

following cardinal:

non∗(J) = min
{
|H| : H ⊆ [ω]ω and @ A ∈ J ∀ H ∈ H |A ∩H| = ω}.

Clearly (P(X), {∅}) has the J-covering property iff |X| < non∗(J).

We present two easy negative results. First we show that, in Elekes’

theorem applied to Lebesgue measure, one cannot use the summable ideal

I1/n = {A ⊆ ω :
∑

n∈A
1

n+1 <∞}(⊆ Z) instead of Z.

Example 2.3. We will show that (Borel(R),N) does not have the I1/n-

covering property in a strong sense. First consider interval (0, 1) and a

fixed infinite-fold cover (An)n∈ω of (0, 1) of the form An = (an, bn), bn −
an = 1

n+1 . Then for each S ∈ I1/n we have
∑

n∈S λ(An) < ∞ where λ

stands for Lebesgue measure on R. Hence by the Borel-Cantelli lemma,

λ(lim supn∈S An) = 0. Fix a homeomorphism h from (0, 1) onto R of class

C1. Then (h[An])n∈ω is an open infinite-fold cover of R. Since h is absolutely

continuous, we have λ(lim supn∈S h[An]) = 0, which gives the desired claim.

This example motivates the following question which will be discussed in

Section 4 (see Example 4.1 and Theorem 4.2 below).

Question 2.4. Assume X is a Polish space and (Borel(X), I) does not

have the J-covering property. Does there exist an infinite-fold Borel cover

(An)n∈ω of X such that lim supn∈S An ∈ I for all S ∈ J?

Let us denote Kσ be the σ-ideal on ωω generated by compact sets. We

will use the fact that an H ⊆ ωω is in Kσ iff there is an h ∈ ωω such that

H ⊆ {x ∈ ωω : x ≤∗ h} where x ≤∗ h means that the set {n ∈ ω : x(n) >

h(n)} is finite.

Example 2.5. Consider the following infinite-fold cover (An)n∈ω of ωω by

Fσ sets: Let B = {x ∈ ωω : ∀∞ n x(n) = 0} and An = {y ∈ ωω : y(n) 6=
0} ∪B for n ∈ ω. It is easy to see that if X ∈ [ω]ω with ω \X ∈ [ω]ω, then

ωω \ lim supn∈X An is dense, uncountable, and does not belong to Kσ.

In particular, there is no ideal J on ω such that (Borel(ωω), I) has the

J-covering property if I = [ωω]≤ω, NWD (the ideal of nowhere dense sets),

or Kσ. Consequently (by the Borel isomorphism theorem), given an un-

countable Polish space X, (Borel(X), [X]≤ω) does not have the J-covering

property for any ideal J on ω.

How could we conclude a J1-covering property from a J0-covering prop-

erty? In special cases we can do it by the following easy observation:
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Fact 2.6. Assume J0 ≤KB J1 and that (A, I) has the J0-covering property.

Then (A, I) has the J1-covering property as well.

The next observation shows a connection between trace ideals and cover-

ing properties.

Proposition 2.7. Assume I is a σ-ideal on 2ω (or on ωω) and (Borel(2ω), I)

has the J-covering property. Then J �K tr(I) � X for any X ∈ tr(I)+.

Proof. Assume on the contrary that J ≤K tr(I) � X for some X ∈ tr(I)+.

Let (An)n∈ω be the following infinite-fold cover of [X]:

An =
{
x ∈ [X] : ∃ k ∈ ω (x � k ∈ X and f(x � k) = n)

}
.

If S ∈ J then lim supn∈S An = [f−1[S]] ∈ tr(I), a contradiction. �

Using Theorem 1.2 we obtain the following:

Corollary 2.8. Let I is a σ-ideal on 2ω (or on ωω), and J is a tall ideal on

ω. Assume furthermore that PI is proper and has the CRN. If (Borel(2ω), I)

has the J-covering property, then J is PI-indestructible.

We do not need to use Theorem 1.2, the trace ideal or the CRN property

in this result. The following theorem is a natural generalization of Elekes’

result about random-indestructibility of Z.

Theorem 2.9. Let X be a Polish space, I be a σ-ideal on X, and assume

that PI is proper. If (Borel(X), I) has the J-covering property, then J is

PI-indestructible.

Proof. Assume on the contrary that Ẏ is a PI -name for an infinite subset

of ω, i.e. 
PI Ẏ ∈ [ω]ω and B 
PI ∀ A ∈ J |Ẏ ∩ A| < ω for some B ∈ PI .
Then there are a C ∈ PI , C ⊆ B, and a Borel function f : C → [ω]ω (coded

in the ground model) such that C 
PI f(ṙgen) = Ẏ where ṙgen is a name for

the generic real (see [10, Prop. 2.3.1]). For each n ∈ ω let

Yn = f−1[{S ∈ [ω]ω : n ∈ S}] ∈ Borel(X).

Then (Yn)n∈ω is an infinite-fold cover of C (by Borel sets) because x ∈
Yn ⇐⇒ n ∈ f(x) and |f(x)| = ω. Using the J-covering property of

(Borel(X) � C, I � C) we can choose an A ∈ J such that (Yn)n∈A is an

I-a.e. infinite-fold cover of C, that is |f(x) ∩ A| = ω for I-a.e. x ∈ C, i.e.

{x ∈ C : |f(x)∩A| < ω} ∈ I, so C 
PI |f(ṙgen)∩A| = ω, and consequently,

C 
PI |Ẏ ∩A| = ω, a contradiction. �
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3. Around the category case

If X is a Polish space, then let M(X) be the σ-ideal of meager subsets of

X.

Theorem 3.1. (Borel(X),M(X)) has the EDfin-covering property for each

Polish space X.

Proof. Let (A(n,m))(n,m)∈∆ be an infinite-fold cover of X by sets with the

Baire property. Without loss of generality, we can assume that all A(n,m)’s

are open and nonempty.

Enumerate {Uk : k ∈ ω} a base of X. We will define by recursion a

sequence (nk,mk)k∈ω of elements of ∆. First, pick (n0,m0) ∈ ∆ such that

A(n0,m0) ∩ U0 6= ∅. Assume (ni,mi) are done for i < k. Then we can choose

an (nk,mk) ∈ ∆ such that nk 6= ni for i < k and A(nk,mk) ∩ Uk 6= ∅. We

obtain the desired set S = {(nk,mk) : k ∈ ω} ∈ EDfin.

For every k ∈ ω, the set
⋃
i≥k A(ni,mi) is dense and open. Consequently,

lim sup
(n,m)∈S

A(n,m) =
⋂
k∈ω

⋃
i≥k

A(ni,mi)

is a dense Gδ set. Hence it is residual. �

Using the Fact 2.6 and Theorem 2.9 we obtain the following:

Corollary 3.2. If EDfin ≤KB J, then (Borel(X),M(X)) has the J-covering

property for each Polish space X, and hence J is Cohen-indestructible.

Note that EDfin ≤KB J holds for a quite big class of ideals, namely for

analytic P-ideals. An ideal I on ω is called a P-ideal whenever for every

sequence of sets En ∈ I, n ∈ ω, there is a set E ∈ I such that En ⊆∗ E.

Analytic P-ideals can be characterized by using submeasures on ω. A

function ϕ : P(ω)→ [0,∞] is a submeasure on ω iff ϕ(∅) = 0, ϕ(A) ≤ ϕ(B)

for A ⊆ B ⊆ ω, ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B) for A,B ⊆ ω, and ϕ({n}) < ∞
for n ∈ ω. A submeasure ϕ is lower semicontinuous (lsc in short) iff ϕ(A) =

limn→∞ ϕ(A ∩ n) for each A ⊆ ω. Note that if ϕ is an lsc submeasure on ω

then it is σ-subadditive, i.e. ϕ(
⋃
n∈ω An) ≤

∑
n∈ω ϕ(An) holds for An ⊆ ω.

We assign an ideal to an lsc submeasure ϕ as follows

Exh(ϕ) =
{
A ⊆ ω : lim

n→∞
ϕ(A \ n) = 0

}
.

Exh(ϕ) is an Fσδ P-ideal or equal to P(ω). It is straightforward to see that

Exh(ϕ) is tall iff limn→∞ ϕ({n}) = 0.

Theorem 3.3. ([9, Thm. 3.1.]) If J is an analytic P -ideal then J = Exh(ϕ)

for some lsc submeasure ϕ.



8 MAREK BALCERZAK, BARNABÁS FARKAS, AND SZYMON G LA̧B

Therefore each analytic P-ideal is Fσδ so it is a Borel subset of 2ω.

Proposition 3.4. EDfin ≤KB J holds for each tall analytic P-ideal J.

Proof. Let J = Exh(ϕ) for some lsc submeasure ϕ. For k ∈ ω let d(k) =

min{`0 ∈ ω : ∀ ` ≥ `0 ϕ({`}) < 2−k}. We can choose a strictly increasing

sequence (nk)k∈ω ∈ ωω such that d(k+1)−d(k) ≤ nk. Let f : ω → ω be any

one-to-one function with the property f [d(k+1)\d(k)] ⊆ {(nk,m) : m ≤ nk}.
Then f shows that EDfin ≤KB J. �

Now, by Corollary 3.2 and Proposition 3.4 we obtain

Corollary 3.5. (Borel(X),M(X)) has the J-covering property for each Pol-

ish space X and for each tall analytic P-ideal J.

One can ask if the implications in Corollary 3.2 could be equivalences.

The answer is no by the following examples.

Example 3.6. Fin ⊗ Fin is Cohen-indestructible but (Borel(ωω),M) does

not have the Fin⊗ Fin-covering property.

Cohen-indestructibility of Fin⊗ Fin: Is easy to see that a forcing notion

P destroys Fin⊗ Fin iff P adds dominating reals.

(Borel(ωω),M) does not have the Fin⊗Fin-covering property: Enumerate

{snm : m ∈ ω} the elements of ω<ω with first element n. Consider the follow-

ing infinite-fold cover of ωω: A(n,m) = {x ∈ ωω : snm ⊆ x} for (n,m) ∈ ω×ω.

It is trivial to see that there is no S ∈ Fin ⊗ Fin such that (A(n,m))(n,m)∈S

is an M-a.e. infinite-fold cover of ωω.

Example 3.7. ED is also Cohen-indestructible: Let C = (2<ω,⊇) be the

Cohen forcing and assume that Ẋ is a C-name for an infinite subset of

ω × ω such that 
C ∃∞ n (Ẋ)n 6= ∅ (because else Ẋ cannot destroy ED).

Enumerate C = {pn : n ∈ ω}. By recursion on n ∈ ω we will define

A = {(mn, kn) : n ∈ ω} ⊆ ω × ω (in the ground model). Assume (m`, k`) is

done for ` < n. Then we can choose a qn ≤ pn, an mn > mn−1, and a kn

such that qn 
 kn ∈ (Ẋ)mn . Clearly A ∈ ED.

We show that 
C |A∩Ẋ| = ω. Assume on the contrary that p 
 ∀ n ≥ N
(A)n ∩ (Ẋ)n = ∅ for some p ∈ C and N ∈ ω. Then p = pn for some n and

we can assume that n ≥ N . Then mn ≥ n and qn 
 kn ∈ (A)mn ∩ (Ẋ)mn , a

contradiction.

Of course, (Borel(ωω),M) does not have the ED-covering property be-

cause ED ⊆ Fin⊗ Fin (and we can use Example 3.6).

It would be nice to know a characterization of forcing notions which de-

stroy ED (similar to the characterization in the case of Fin⊗ Fin):
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Question 3.8. Is it true that a forcing notion P destroys ED iff P adds an

eventually different real, i.e. a real r ∈ ωω ∩ V P such that |f ∩ r| < ω for

each f ∈ ωω ∩ V ? (The “if” part trivially holds.)

In the case of the first implication of Corollary 3.2 we have only consistent

counterexamples. Recall that a sequence T = (Tα)α<γ in [ω]ω is a tower if

it is ⊆∗-descending (i.e. Tβ ⊆∗ Tα if α < β < γ), and it has no pseudoint-

ersection. The tower number t is the smallest cardinality of a tower, and c

stands for the continuum.

Theorem 3.9. Assume t = c and |A| ≤ c then there is no smallest element

of {J : (A, I) has the J-covering property} in the Katětov-Blass order.

Proof. If {J : (A, I) has the J-covering property} = ∅ then we are done.

If (A, I) has the J0-covering property then we will construct a J such that

J0 �KB J but (A, I) has the J-covering property.

Enumerate (fα)α<c all finite-to-one functions from ω to ω, and enumerate

((Aαn)n∈ω : α < c) the infinite-fold covers of X =
⋃

A by sets from A. By

recursion on c we will define a ⊆∗-increasing sequence (Sξ)α<c of infinite and

co-infinite subsets of ω and the ideal J generated by this sequence will be as

required.

Assume (Sξ)ξ<α is done for some α < c. Because of our assumption on

t we can choose an infinite and co-infinite S′α such that Sξ ⊆∗ S′α for each

ξ < α. The set fα[ω \ S′α] contains an infinite element E of J0. We want to

guarantee that f−1
α [E] /∈ J because then fα can not witness J0 ≤KB J. Let

H = f−1
α [E] \ S′α ∈ [ω]ω.

Consider the αth cover (Aαn)n∈ω. If (An)n∈ω\H is an I-a.e. infinite-fold

cover of X, then let Sα = S′α ∪ (ω \H).

If not, then

C =
{
x ∈ X : {n ∈ ω \H : x ∈ Aαn} is finite

}
/∈ I.

By using our assumption (A[I] � C, I � C) and (Aαn ∩C)n∈H (with a copy of

J0 on H) we can choose an infinite H ′ ⊆ H such that H \H ′ is also infinite

and (Aαn ∩ C)n∈H′ is an I � C-a.e. infinite-fold cover of C.

Finally, let Sα = S′α∪ (ω \H)∪H ′. It is easy to see from the construction

that J is as required. �

Corollary 3.10. If t = c then there are ideals J0 and J1 such that Z �KB

J0 and EDfin �KB J1 but (Borel(2ω),N) has the J0-covering property and

(Borel(2ω),M) has the J1-covering property.

Without t = c we can use a simple forcing construction.
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Theorem 3.11. After adding ω1 Cohen-reals by finite support iteration

there is an ideal J such that EDfin �KB J (in particular, Z �KB J) but

(Borel(2ω),N) and (Borel(2ω),M) have the J-covering property.

Proof. Let (cα)α<ω1 be the sequence of generic Cohen-reals in 2ω, Cα =

c−1
α [{1}] ⊆ ω, and let J be the ideal generated by these sets. J is a proper

ideal because it is well-known that {Cα : α < ω1} is an independent system

of subsets of ω.

To show that (Borel(2ω),N) has the J-covering property in the extension,

it is enough to see that if (An)n∈ω is an infinite-fold cover of 2ω by Borel

sets in a ground model V , then (An)n∈C is an N-a.e. infinite-fold cover of

2ω in V [C] where C ⊆ ω is a Cohen-real over V .

Clearly, it is enough to prove that V [C] |= λ
(⋃

n∈C\k An
)

= 1 for each

k ∈ ω (because then V [C] |= λ
(

lim supn∈C An
)

= 1). Let p ∈ C = (2<ω,⊇),

k ∈ ω, and ε < 1. We can assume that |p| ≥ k. Then there is an m ≥ |p| such

that λ
(⋃

n∈m\|p|An
)
> ε so if q : m → 2, q � |p| = p, and q � (m \ |p|) ≡ 1,

then q ≤ p and q 
 λ
(⋃

n∈Ċ\k An
)
> ε.

To show that (Borel(2ω),M) has the J-covering property in the extension,

it is enough to prove that if (An)n∈ω is an infinite-fold cover of 2ω by open

sets in V , then (An)n∈C is an M-a.e. infinite-fold cover of 2ω in V [C]. By a

simple density argument V [C] |=“
⋃
n∈C\k An is dense open” for each k ∈ ω,

so V [C] |=“lim supn∈C An is residual.”

To show that EDfin �KB J, it is enough to see that if f ∈ ∆ω ∩V [(cξ)ξ<α]

is a finite-to-one function for some α < ω1, then there is an A ∈ EDfin ∩
V [(cξ)ξ≤α] such that f−1[A] cannot be covered by finitely many of Cξ’s

(ξ < ω1). Simply let A be a Cohen function in
∏
n∈ω(n + 1), i.e. the

graph of a Cohen-function in ∆, for example if c′α ∈ ωω is a Cohen-real

over V [(cξ)ξ<α] then A =
{

(n, k) ∈ ∆ : c′α(n) ≡ k mod (n+ 1)
}

is suitable.

Using the presentation of this iteration by finite partial functions from ω1×ω
to 2, we are done by a simple density argument. �

Question 3.12. Does there exists an (analytic) (P-)ideal J in ZFC such that

Z �KB J but (Borel(2ω),N) has the J-covering property? (Remark: Recently

Sz. G la̧b found a Borel non P-ideal with these properties, manuscript in

preparation.)

Does there exist Katětov-Blass-smallest ideal in the family of all analytic

(or Borel) ideals J such that (Borel(2ω),N) has the J-covering property?

Similarly, one can ask the analogous question for the meager ideal with

EDfin instead of Z; and about the existence of Katětov-Blass-smallest ideal

in the corresponding family as well.
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4. When the J-covering property “strongly” fails

In this section we give a positive answer for Question 2.4 in a special case.

First of all, we present a counterexample:

Example 4.1. Consider X = (−1, 1) and let an ideal I on X consist of sets

A ⊆ X such that A∩ (−1, 0] is meager and A∩ (0, 1) is of Lebesgue measure

zero. Using Example 2.3 and Corollary 3.5 observe that (Borel(X), I) yields

the negative answer to Question 2.4 with J = I1/n. However, this question

remains interesting if we restrict it to pairs (Borel(R), I) where I is a trans-

lation invariant ideal on R. In this case, we describe a class of ideas I which

yields a positive answer to Question 2.4 provided J is a P-ideal.

Let Q stand for the set of rational numbers. For A,B ⊆ R and x ∈ R we

write A + x = {a + x : a ∈ A} and A + B = {a + b : A ∈ A and b ∈ B}.
We say that an ideal I on a Polish space X is a ccc ideal if every disjoint

subfamily of Borel(X) \ I is countable.

Theorem 4.2. Assume that I is a translation invariant ccc σ-ideal on R
fulfilling the condition

(1) Q+A ∈ I∗ for each A ∈ Borel(R) \ I.

Fix a P-ideal J on ω. If (Borel(R), I) does not have the J-covering property,

then there exists an infinite-fold Borel cover (A′n)n∈ω of R with lim supn∈S A
′
n ∈

I for all S ∈ J.

Proof. Fix an infinite-fold Borel cover (An)n∈ω of R such that lim supn∈S An /∈
I∗ for all S ∈ J. We will show that there is a Borel set B ⊆ R with B /∈ I
and (lim supn∈S An) ∩ B ∈ I for all S ∈ J. Suppose it is not the case. So,

in particular (when B = R), we find S0 ∈ J with X0 := lim supn∈S0
An /∈ I.

Then by transfinite recursion we define sequences (Sα)α<γ and (Xα)α<γ

with Sα ∈ J and Xα := (lim supn∈Sα An) \
⋃
β<αXβ /∈ I (when B =

R \
⋃
β<αXβ /∈ I). Since I is ccc, this construction stops at a stage γ < ω1

with
⋃
α<γ lim supn∈Sα An =

⋃
α<γ Xα ∈ I∗. Since I is a P-ideal, there is

S ∈ J which almost contains each Sα for α < γ. Then lim supn∈S An ∈ I∗

which contradics our supposition.

So, fix a Borel set B /∈ I such that (lim supn∈S An) ∩B ∈ I for all S ∈ J.

Let Q = {qk : k ∈ ω}. Define B0 := B and Bk := (qk + B) \
⋃
i<k Bi for

k ∈ ω. Then put A′n :=
⋃
k∈ω((qk + An) ∩ Bk) for n ∈ ω. Since (An)n∈ω is

an infinite-fold cover of R, we have lim supn∈ω((qk +An) ∩Bk) = Bk for all
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k ∈ ω. Note that (A′n)n∈ω is an I-a.e. infinite-fold cover of R since

lim sup
n∈ω

A′n ⊇
⋃
k∈ω

lim sup
n∈ω

((qk +An) ∩Bk) = Q+B

and Q + B ∈ I∗ by (1). Finally, let S ∈ J. Since I is translation invariant

and (lim supn∈S An)∩B ∈ I, we have lim supn∈S((qk +An)∩Bk) ∈ I for all

k ∈ ω. Since I is a σ-ideal and Bk’s are pairwise disjoint, it follows that

lim sup
n∈S

A′n =
⋃
k∈ω

lim sup
n∈S

((qk +An) ∩Bk) ∈ I.

Of course, we can modify (A′n) to be an infinite-fold cover of R. �

Theorem 4.2 can be generalized to any Polish group G with Q replaced

by a countable dense subset of G. Condition (1) is related to the Steinhaus

property, for details see [2]. Note that M, N, M⊗N and N⊗M satisfy (1)

with Q replaced by any dense subset of R (resp. R2).

5. Consequences for intersections and Fubini products

Having positive results on the J-covering property for measure and cat-

egory (Elekes’ theorem and Theorem 3.1) one can ask, for which ideals J

on ω, the pair (Borel(R),M ∩ N) has the J-covering property. A similar

question concerns the pairs (Borel(R2),N⊗M) and (Borel(R2),M⊗N). For

information on N ⊗M and M⊗N, see e.g. [1].

Recall that for an ideal J on ω its star-additivity is given by

add∗(J) = min
{
|H| : H ⊆ J and ∀ A ∈ J ∃ H ∈ H H *∗ A}.

As to intersections of ideals, we have the following general fact whose

proof is strightforward.

Fact 5.1. Let J be an ideal on ω and let A ⊆ P(X) be a σ-algebra. If

κ < add∗(J) and {Iα : α < κ} is a family of ideals such that (A, Iα) has

the J-covering property for all α < κ, then (A,
⋂
α<κ Iα) has the J-covering

property.

In particular, by Elekes’ theorem and Corollary 3.2 we obtain

Corollary 5.2. If Z ≤KB J then (Borel(R),M ∩ N) has the J-covering

property.

Now, let us start to study the behaviour of Fubini products of ideals in

the aspect of the J-covering property. For an ideal I on a Polish space X,

we assume that X /∈ I, and either I = {∅} or I contains all finite subsets

of X. Assume that I and K are ideals on uncountable Polish spaces X and
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Y , respectively. For A ⊆ X × Y and x ∈ X let (A)x = {y ∈ Y : (x, y) ∈ A}.
Recall that the Fubini product of I and K is defined as follows

I ⊗K = {A ⊆ X × Y : {x ∈ X : (A)x ∈ K} ∈ I∗}.

Let Z ⊆ X and let J be an ideal on ω. We say (cf. Definition 2.1) that

(Borel(Y ),K) has the Z-uniform J-covering property whenever for every

infinite-fold Borel cover (An)n∈ω of Z × Y there exists an S ∈ J such that

for all x ∈ Z, ((An)x)n∈S is a K-a.e. infinite-fold cover of Y .

Note that for any fixed x ∈ X, the {x}-uniform J-covering property coin-

cides with the J-covering property. Next observe that, if |Z| < add∗(J) then

the J-covering property of (Borel(Y ),K) implies its Z-uniform J-covering

property. Indeed, let (An)n∈ω be an infinite-fold Borel cover of Z × Y . For

each x ∈ Z pick an Sx ∈ J such that ((An)x))n∈Sx is a K-a.e. infinite-fold

cover of Y . Since |Z| < add∗(J) we can find an S ∈ J such that Sx ⊆∗ S for

all x ∈ Z. Then for all x ∈ Z, ((An)x)n∈S is a K-a.e. infinite-fold cover of

Y .

Below, we will keep all assumptions about J, K and I.

Proposition 5.3. Let (Borel(X × Y ), I ⊗K) have the J-covering property.

Then

(i) (Borel(X), I) has the J-covering property,

(ii) (Borel(Y ),K) has the Z-uniform J-covering property for some Z ∈
I∗.

Proof. (i) Let (Bn)n∈ω be an infinite-fold Borel cover of X. Then (Bn ×
Y )n∈ω is an infinite-fold Borel cover of X × Y . Pick S ∈ J such that (Bn ×
Y )n∈S is an I ⊗ K-a.e. infinite-fold cover of X × Y . Then (Bn)n∈S is an

I-a.e. infinite-fold cover of X.

(ii) If (An)n∈ω is an infinite-fold Borel cover of X × Y then by the as-

sumption there is an S ∈ J such that (An)n∈S is an I ⊗K-a.e. infinite-fold

cover of X ×Y . Then there is a set Z ∈ I∗ such that ((An)x)n∈S is a K-a.e.

infinite-fold cover of Z × Y . �

By Proposition 5.3(i) and Example 2.5 we obtain

Corollary 5.4. Assume I = [ωω]≤ω, NWD, or Kσ. Then (Borel(ωω ×
Y ), I ⊗K) does not have the J-covering property for any ideal J on ω and

any ideal K on Y .

Corollary 5.5.
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(a) If EDfin ≤KB J then (Borel(Y ),M(Y )) has the C-uniform J-covering

property for some C ∈ (M(X))∗ (where X and Y are arbitrary Polish

spaces).

(b) If Z ≤KB J then (Borel(R),N) has the C-uniform J-covering property

for some C ∈ N∗.

Proof. (a): By Fact 2.6 we may assume that J = EDfin. From Theorem 3.1

it follows that (Borel(X×Y ),M(X×Y )) has the J-covering property. Since

the ideals M(X × Y ) and M(X)⊗M(Y ) intersected with Borel(X × Y ) are

the same, the asssertion is a consequence of Proposition 5.3(ii). The proof

of (b) is analogous. �

Theorem 5.6. The pair (Borel(R2),N ⊗ M) has the J-covering property

for each ideal J on ω with Z ≤KB J. Consequently, (Borel(R),M) has the

C-uniform J-covering property for some C ∈ N∗.

Proof. By Fact 2.6 we may assume that J = Z. Let (An)n∈ω be an N ⊗M-

a.e. infinite-fold Borel cover of R2. By [1, Prop. 4], for each Borel set G

in R2 there is a Borel set H with open sections such that G4H ∈ N ⊗M.

So, we may assume that all sections (An)x for n ∈ ω and x ∈ R are open.

There exists a Borel set B ∈ N∗ such that lim supn∈ω(An)x is residual for

all x ∈ B. Fix a base {Uk : k ∈ ω} of open sets in R. For all n, k ∈ ω define

Dnk := {x ∈ R : (An)x ∩ Uk 6= ∅}.

Since (An)x ∩ Uk 6= ∅ iff (An)x ∩ Uk /∈ M, the sets Dnk are Borel (see [7,

22.22]). Observe that for all k ∈ ω we have B ⊆ lim supn∈ωDnk since for

each x ∈ B there are infinitely many An’s such that ({x}×Uk)∩An 6= ∅. By

the Elekes theorem, for each k ∈ ω, pick an Sk ∈ Z and a Borel set Bk ∈ N∗

such that Bk ⊆ lim supn∈Sk Dnk. Since Z is a P-ideal, we can pick an S ∈ Z

such that Sk ⊆∗ S for all k ∈ ω. Put C :=
⋂
k∈ω Bk. Then C ∈ N∗ and

C ⊆
⋂
k∈ω lim supn∈S Dnk. Fix an x ∈ C. Then for all k ∈ ω and infinitely

many indices n ∈ S, we have (An)x∩Uk 6= ∅. It follows that lim supn∈S(An)x

is a residual Gδ set for all x ∈ C. Hence (An)n∈S is an N ⊗M-a.e. infinite-

fold cover of R2. This yields the first part of the assertion. The rest is clear

(cf. Proposition 5.3 (ii)). �

Question 5.7. Is the analogous result true for M⊗N?

6. J-covering properties of (P(ω), I)

Let I, J be ideals on ω where J is tall. We will say that I has the J-covering

property whenever (P(ω), I) has the J-covering property.
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It is trivial that non∗(J) > ω iff J is ω-hitting, that is, for every sequence

(Xn)n∈ω in [ω]ω, there is an A ∈ J such that |Xn ∩ A| = ω for each n ∈ ω.

We will use a weaker version of this property: An ideal J on ω is weakly

ω-hitting if for each sequence (Xn)n∈ω in [ω]ω there is an A ∈ J such that

{n ∈ ω : |Xn ∩A| = ω} is infinite.

This property is really weaker than non∗(J) > ω by Lemma 6.2(4). More-

over, it is easy to see the following characterization:

Proposition 6.1. J is weakly ω-hitting if, and only if J �KB Fin⊗ Fin.

By the following easy result, in the characterization of “I has the J-

covering property” the interesting case is when J is weakly ω-hitting but

not ω-hitting.

Lemma 6.2. Assume J is a tall ideal on ω. Then

(1) J is ω-hitting iff all ideals have the J-covering property.

(2) If J is not weakly ω-hitting, then there is no ideal with the J-covering

property.

(3) If J is weakly hitting and all tall ideals have the J-covering property,

then J is ω-hitting.

(4) If J is weakly ω-hitting but not ω-hitting, then there is a tall ideal J0

such that (up to isomorphism) J is contained in J0 ⊗ Fin. And all

ideals of this form are weakly ω-hitting but not ω-hitting.

Proof. (1): It is trivial by Fact 2.2 that if J is ω-hitting, then all ideals have

the J-covering property. Conversely, clearly Fin has the J-covering property

iff J is ω-hitting.

(2): Let (Xn)n∈ω witness that J is not weakly ω-hitting and let F (n) =

Xn. Then {n ∈ ω : |F (n) ∩ A| = ω} is finite for each A ∈ J, so by Fact

2.2, F shows that I does not have the J-covering property for all I (because

finite sets cannot be in I∗).

(3): Assume on the contrary that J is not ω-hitting witnessed by the

sequence (Xn)n∈ω. For each A ∈ J let EA = {n ∈ ω : |Xn ∩ A| = ω}.
Clearly, EA is co-infinite and EA∪B = EA ∪ EB for A,B ∈ J, so these sets

generate an ideal I on ω. Moreover, it is trivial to see that I = {EA : A ∈ J}.
I is tall because of the weak ω-hitting property of J. If F (n) = Xn then

{n ∈ ω : |F (n) ∩ A| = ω} ∈ I for each A ∈ J, so I does not have the

J-covering property, a contradiction.

(4): Let J0 = I from the proof of (3). (Of course, we can assume that

Xn’s are pairwise disjoint and
⋃
n∈ωXn = ω.)
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Assume J0 is a tall ideal. The columns in ω×ω show that J0⊗Fin is not ω-

hitting. To prove the weak ω-hitting property, fix a sequence Xn ∈ [ω×ω]ω

(n ∈ ω). We can assume the followings:

(i) if there is a k such that |Xn ∩ ({k} × ω)| = ω, then Xn ⊆ {k} × ω;

(ii) if n 6= m and Xn ∩ ({k} × ω) and Xm ∩ ({k} × ω) are finite for all

k ∈ ω then {k ∈ ω : (Xn)k 6= ∅} ∩ {k ∈ ω : (Xm)k 6= ∅} = ∅.
IfB = {n ∈ ω : ∃ k ∈ ω Xn ⊆ {k}×ω} is finite, then let A =

⋃
n∈ω\BXn ∈

J0⊗Fin. If |B| = ω then let B′ ⊆ B, |B′| = ω, B′ ∈ J0, and let A = B′×ω ∈
J0 ⊗ Fin. Clearly, the set {n ∈ ω : |Xn ∩A| = ω} is infinite. �

In particular, if J is weakly ω-hitting but not ω-hitting, then there is a

tall ideal I which does not have the J-covering property, so it is natural to

ask the following: Does there exist an ideal I with the J-covering property

in this case?

In the next theorem we characterize ideals with the J0 ⊗ Fin-covering

property. First we recall an important notion: Assume J is an ideal on ω.

Then a filter F is a J-(ultra)filter if for each function f : ω → ω there is

an X ∈ F such that f [X] ∈ J (or equivalently, there is an A ∈ J such that

f−1[A] ∈ F). For combinatorial properties of J-filters and investigation of

their existence see for example [6] and J. Flašková’s other publications.

Theorem 6.3. Let J0 be a tall ideal. Then an ideal I has the J0 ⊗ Fin-

covering property iff I∗ is a J0-filter.

Proof. Assume that I has the J0 ⊗ Fin-covering property and let f : ω → ω

be arbitrary. Let F (n) = {f(n)} × ω. Then there is an A ∈ J0 ⊗ Fin such

that X = {n ∈ ω : |F (n) ∩ A| = ω} ∈ I∗. We can assume that A is of the

form A0 × ω for some A0 ∈ J0. Clearly f−1[A0] = X ∈ I∗, so f [X] ∈ J0.

Conversely, assume that I∗ is a J0-filter and let F : ω → [ω × ω]ω be

arbitrary. We can assume the followings:

(i) if there is a k such that |F (n)∩({k}×ω)| = ω, then F (n) = {k}×ω;

(ii) if n 6= m and F (n) ∩ ({k} × ω) and F (m) ∩ ({k} × ω) are finite for

all k ∈ ω then {k ∈ ω : (F (n))k 6= ∅} ∩ {k ∈ ω : (F (m))k 6= ∅} = ∅.
Let X = {n ∈ ω : ∃ kn ∈ ω F (n) = {kn} × ω}. If X ∈ I then we do not

have to deal with it. If X ∈ I+ then let f : X → ω, f(n) = kn. Clearly

(I � X)∗ is also a J0-filter, so there is an A0 ∈ J0 such that X \ f−1[A0] ∈ I.

It is easy to see that

A =
(
A0 × ω

)
∪

⋃
n∈ω\X

F (n) ∈ J0 ⊗ Fin

and {n ∈ ω : |F (n) ∩A| = ω} ∈ I∗. �
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Question 6.4. Is there any similarly easy and reasonable characterization

of ideals with the J-covering property for an arbitrary (weakly ω-hitting but

not ω-hitting) J?
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