MORE ON CARDINAL INVARIANTS OF ANALYTIC P-IDEALS ## BARNABÁS FARKAS AND LAJOS SOUKUP ABSTRACT. Given an ideal \mathcal{I} on ω let $\mathfrak{a}(\mathcal{I})$ ($\bar{\mathfrak{a}}(\mathcal{I})$) be minimum of the cardinalities of infinite (uncountable) maximal \mathcal{I} -almost disjoint subsets of $[\omega]^{\omega}$. We show that $\mathfrak{a}(\mathcal{I}_h) > \omega$ if \mathcal{I}_h is a summable ideal; but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$ including the density zero ideal \mathcal{Z} . On the other hand, you have $\mathfrak{b} \leq \bar{\mathfrak{a}}(\mathcal{I})$ for any analytic P-ideal \mathcal{I} , and $\bar{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{u}}$. For each ideal $\mathcal I$ on ω denote $\mathfrak b_{\mathcal I}$ and $\mathfrak d_{\mathcal I}$ the unbounding and dominating numbers of $\langle \omega^\omega, \leq_{\mathcal I} \rangle$ where $f \leq_{\mathcal I} g$ iff $\{n \in \omega : f(n) > g(n)\} \in \mathcal I$. We show that $\mathfrak b_{\mathcal I} = \mathfrak b$ and $\mathfrak d_{\mathcal I} = \mathfrak d$ for each analytic P-ideal $\mathcal I$. Given a Borel ideal \mathcal{I} on ω we say that a poset \mathbb{P} is \mathcal{I} -bounding iff $\forall x \in \mathcal{I} \cap V^{\mathbb{P}} \ \exists y \in \mathcal{I} \cap V \ x \subseteq y$. \mathbb{P} is \mathcal{I} -dominating iff $\exists y \in \mathcal{I} \cap V^{\mathbb{P}} \ \forall x \in \mathcal{I} \cap V \ x \subseteq y$. For each analytic P-ideal $\mathcal I$ if a poset $\mathbb P$ has the Sacks property then $\mathbb P$ is $\mathcal I$ -bounding; moreover if $\mathcal I$ is tall as well then the property $\mathcal I$ -bounding/ $\mathcal I$ -dominating implies ω^ω -bounding/adding dominating reals, and the converses of these two implications are false. Using David Fremlin's results we prove that if \mathbb{P} adds a slalom capturing all ground model reals then \mathbb{P} is \mathcal{I} -dominating for each analytic P-ideal \mathcal{I} , and that a poset \mathbb{P} is \mathcal{Z} -bounding iff it has the Sacks property. ## 1. Introduction In this paper we investigate some properties of some cardinal invariants associated with analytic P-ideals. Moreover we analyze related "bounding" and "dominating" properties of forcing notions. Let us denote fin the Frechet ideal on ω , i.e. fin = $[\omega]^{<\omega}$. Further we always assume that if \mathcal{I} is an ideal on ω then the ideal is *proper*, i.e. $\omega \notin \mathcal{I}$, and fin $\subseteq \mathcal{I}$, so especially \mathcal{I} is *non-principal*. Write $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ and $\mathcal{I}^* = \{\omega \setminus X : X \in \mathcal{I}\}$. An ideal \mathcal{I} on ω is analytic if $\mathcal{I} \subseteq \mathcal{P}(\omega) \simeq 2^{\omega}$ is an analytic set in the usual product topology. \mathcal{I} is a P-ideal if for each countable $\mathcal{C} \subseteq \mathcal{I}$ there is an $X \in \mathcal{I}$ such that $Y \subseteq^* X$ for each $Y \in \mathcal{C}$, where $A \subseteq^* B$ iff $A \setminus B$ is finite. \mathcal{I} is tall (or dense) if each infinite subset of ω contains an infinite element of \mathcal{I} . ²⁰⁰⁰ Mathematics Subject Classification. 03E35, 03E17. Key words and phrases. analytic P-ideals, cardinal invariants, forcing. The preparation of this paper was supported by Hungarian National Foundation for Scientific Research grant no 61600 and 63066. A function $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure on ω iff $\varphi(X) \leq \varphi(Y)$ for $X \subseteq Y \subseteq \omega$, $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for $X, Y \subseteq \omega$, and $\varphi(\{n\}) < \infty$ for $n \in \omega$. A submeasure φ is lower semicontinuous iff $\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$. A submeasure φ is finite if $\varphi(\omega) < \infty$. Note that if φ is a lower semicontinuous submeasure on ω then $\varphi(\bigcup_{n \in \omega} A_n) \leq \sum_{n \in \omega} \varphi(A_n)$ holds as well for $A_n \subseteq \omega$. We assign the exhaustive ideal $\operatorname{Exh}(\varphi)$ to a submeasure φ as follows $$\operatorname{Exh}(\varphi) = \big\{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \backslash n) = 0 \big\}.$$ Solecki, [So, Theorem 3.1], proved that an ideal $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an analytic P-ideal or $\mathcal{I} = \mathcal{P}(\omega)$ iff $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure. Therefore each analytic P-ideal is $F_{\sigma\delta}$ (i.e. Π_3^0) so a Borel subset of 2^{ω} . It is straightforward to see that if φ is a lower semicontinuous finite submeasure on ω then the ideal $\operatorname{Exh}(\varphi)$ is tall iff $\lim_{n\to\infty} \varphi(\{n\}) = 0$. Let \mathcal{I} be an ideal on ω . A family $\mathcal{A} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost-disjoint (\mathcal{I} -AD in short), if $A \cap B \in \mathcal{I}$ for each $\{A, B\} \in [\mathcal{A}]^2$. An \mathcal{I} -AD family \mathcal{A} is an \mathcal{I} -MAD family if for each $X \in \mathcal{I}^+$ there exists an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$, i.e. \mathcal{A} is \subseteq -maximal among the \mathcal{I} -AD families. Denote $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite \mathcal{I} -MAD families. In Theorem 2.2 we show that $\mathfrak{a}(\mathcal{I}_h) > \omega$ if \mathcal{I}_h is a summable ideal; but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$ including the *density zero ideal* $$\mathcal{Z} = \Big\{ A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \Big\}.$$ On the other hand, if you define $\bar{\mathfrak{a}}(\mathcal{I})$ as minimum of the cardinalities of uncountable \mathcal{I} -MAD families then you have $\mathfrak{b} \leq \bar{\mathfrak{a}}(\mathcal{I})$ for any analytic P-ideal \mathcal{I} , and $\bar{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$ (see Theorems 2.6 and 2.8). In Theorem 3.1 we prove under CH the existence of an uncountable Cohenindestructible \mathcal{I} -MAD families for each analytic P-ideal \mathcal{I} . A sequence $\langle A_{\alpha} : \alpha < \kappa \rangle \subset [\omega]^{\omega}$ is a tower if it is \subseteq^* -descending, i.e. $A_{\beta} \subseteq^* A_{\alpha}$ if $\alpha \leq \beta < \kappa$, and it has no pseudointersection, i.e. a set $X \in [\omega]^{\omega}$ such that $X \subseteq^* A_{\alpha}$ for each $\alpha < \kappa$. In Section 4 we show it is consistent that the continuum is arbitrarily large and for each tall analytic P-ideal \mathcal{I} there is towers of height ω_1 whose elements are in \mathcal{I}^* . Given an ideal \mathcal{I} on ω if $f,g \in \omega^{\omega}$ write $f \leq_{\mathcal{I}} g$ if $\{n \in \omega : f(n) > g(n)\} \in \mathcal{I}$. As usual let $\leq^* = \leq_{\text{fin}}$. The unbounding and dominating numbers of the partially ordered set $\langle \omega^{\omega}, \leq_{\mathcal{I}} \rangle$, denoted by $\mathfrak{b}_{\mathcal{I}}$ and $\mathfrak{d}_{\mathcal{I}}$ are defined in the natural way, i.e. $\mathfrak{b}_{\mathcal{I}}$ is the minimal size of a $\leq_{\mathcal{I}}$ -unbounded family, and $\mathfrak{d}_{\mathcal{I}}$ is the minimal size of a $\leq_{\mathcal{I}}$ -dominating family. By these notations $\mathfrak{b} = \mathfrak{b}_{\text{fin}}$ and $\mathfrak{d} = \mathfrak{d}_{\text{fin}}$. In Section 5 we show that $\mathfrak{b}_{\mathcal{I}} = \mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}} = \mathfrak{d}$ for each analytic P-ideal \mathcal{I} . We also prove, in Corollary 6.8, that for any analytic P-ideal \mathcal{I} a poset \mathbb{P} is $\leq_{\mathcal{I}}$ -bounding iff it is ω^{ω} -bounding, and \mathbb{P} adds $\leq_{\mathcal{I}}$ -dominating reals iff it adds dominating reals. In Section 6 we introduce the \mathcal{I} -bounding and \mathcal{I} -dominating properties of forcing notions for Borel ideals: \mathbb{P} is \mathcal{I} -bounding iff any element of $\mathcal{I} \cap V^{\mathbb{P}}$ is contained in some element of $\mathcal{I} \cap V$; \mathbb{P} is \mathcal{I} -dominating iff there is an element in $\mathcal{I} \cap V^{\mathbb{P}}$ which mod-finite contains all elements of $\mathcal{I} \cap V$. In Theorem 6.2 we show that for each tall analytic P-ideal \mathcal{I} if a forcing notion is \mathcal{I} -bounding then it is ω^{ω} -bounding, and if it is \mathcal{I} -dominating then it adds dominating reals. Since the random real forcing is not \mathcal{I} -bounding for each tall summable and tall density ideal \mathcal{I} by Proposition 6.3, the converse of the first implication is false. Since a σ -centered forcing can not be \mathcal{I} -dominating for a tall analytic P-ideal \mathcal{I} by Theorem 6.4, the standard dominating real forcing \mathbb{D} witnesses that the converse of the second implication is also false. We prove in Theorem 6.5 that the Sacks property implies the \mathcal{I} -bounding property for each analytic P-ideal \mathcal{I} . Finally, based on a theorem of Fremlin we show that the \mathcal{Z} -bounding property is equivalent to the Sacks property. ### 2. Around the almost disjointness number of ideals For any ideal \mathcal{I} on ω denote $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite \mathcal{I} -MAD families. To start the investigation of this cardinal invariant we recall the definition of two special classes of analytic P-ideals: the density ideals and the summable ideals (see [Fa]). **Definition 2.1.** Let $h: \omega \to \mathbb{R}^+$ be a function such that $\sum_{n \in \omega} h(n) = \infty$. The *summable ideal corresponding to h* is $$\mathcal{I}_h = \Big\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \Big\}.$$ Let $\langle P_n : n < \omega \rangle$ be a decomposition of ω into pairwise disjoint nonempty finite sets and let $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ be a sequences of probability measures, $\mu_n : \mathcal{P}(P_n) \to [0, 1]$. The density ideal generated by $\vec{\mu}$ is $$\mathcal{Z}_{\vec{\mu}} = \{ A \subseteq \omega : \lim_{n \to \infty} \mu_n(A \cap P_n) = 0 \}.$$ A summable ideal \mathcal{I}_h is tall iff $\lim_{n\to\infty} h(n) = 0$; and a density ideal $\mathcal{Z}_{\vec{\mu}}$ is tall iff $$\lim_{n \to \infty} \max_{i \in P_n} \mu_n(\{i\}) = 0.$$ Clearly the density zero ideal \mathcal{Z} is a tall density ideal, and the summable and the density ideals are proper ideals. **Theorem 2.2.** (1) $\mathfrak{a}(\mathcal{I}_h) > \omega$ for any summable ideal \mathcal{I}_h . (2) $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$. *Proof.* (1): We show that if $\{A_n : n < \omega\} \subseteq \mathcal{I}_h^+$ is \mathcal{I} -AD then there is $B \in \mathcal{I}_h^+$ such that $B \cap A_n \in \mathcal{I}$ for $n \in \omega$. For each $n \in \omega$ let $B_n \subseteq A_n \setminus \bigcup \{A_m : m < n\}$ be finite such that $\sum_{i \in B_n} h(i) > 1$, and put $$B = \bigcup \{B_n : n \in \omega\}.$$ (2): Write $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ and μ_n concentrates on P_n . By (†) we have $\lim_{n \to \infty} |P_n| = \infty$. Now for each n we can choose $k_n \in \omega$ and a partition $\{P_{n,k} : k < k_n\}$ of P_n such that - (a) $\lim_{n\to\infty} k_n = \infty$, - (b) if $k < k_n$ then $\mu_n(P_{n,k}) \ge \frac{1}{2^{k+1}}$. Put $A_k = \bigcup \{P_{n,k} : k < k_n\}$ for each $k \in \omega$. We show that $\{A_k : k \in \omega\}$ is a $\mathcal{Z}_{\vec{u}}$ -MAD family. If $k_n > k$ then $\mu_n(A_k \cap P_n) = \mu_n(P_{n,k}) \ge \frac{1}{2^{k+1}}$. Since for an arbitrary k for all but finitely many n we have $k_n > k$ it follows that $$\limsup_{n\to\infty} \mu_n(A_k\cap P_n) = \limsup_{n\to\infty} \mu_n(P_{n,k}) \ge \limsup_{n\to\infty} \frac{1}{2^{k+1}} = \frac{1}{2^{k+1}} > 0,$$ thus $A_k \in \mathcal{Z}_{\vec{\mu}}^+$. Assume that $X \in \mathcal{Z}^+_{\vec{\mu}}$. Pick $\varepsilon > 0$ with $\limsup_{n \to \infty} \mu_n(X \cap P_n) > \varepsilon$. For a large enough k we have $\frac{1}{2^{k+1}} < \frac{\varepsilon}{2}$ so if $k < k_n$ then $$\mu_n(P_n \setminus \cup \{P_{n,i} : i \le k\}) \le \frac{1}{2^{k+1}} < \frac{\varepsilon}{2}.$$ So for each large enough n there is $i_n \leq k$ such that $\mu_n(X \cap P_{n,i_n}) > \frac{\varepsilon}{2(k+1)}$. Then $i_n = i$ for infinitely many n, so $\limsup_{n \to \infty} \mu_n(X \cap A_i) \geq \frac{\varepsilon}{2(k+1)}$, and so $X \cap A_i \in \mathcal{Z}^+_{\vec{\mu}}$. This Theorem gives new proof of the following well-known fact: Corollary 2.3. The density zero ideal Z is not a summable ideal. Given two ideals \mathcal{I} and \mathcal{J} on ω write $\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J}$ (see [Ru]) iff there is a function $f: \omega \to \omega$ such that $$\mathcal{I} = \{ I \subseteq \omega : f^{-1}I \in \mathcal{J} \},\$$ and write $\mathcal{I} \leq_{\text{RB}} \mathcal{J}$ (see [LaZh]) iff there is a finite-to-one function $f : \omega \to \omega$ such that $$\mathcal{I} = \{ I \subseteq \omega : f^{-1}I \in \mathcal{J} \}.$$ The following Observations imply that there are \mathcal{I} -MAD families of cardinality \mathfrak{c} for each analytic P-ideal \mathcal{I} . **Observation 2.4.** Assume that \mathcal{I} and \mathcal{J} are ideals on ω , $\mathcal{I} \leq_{RK} \mathcal{J}$ witnessed by a function $f : \omega \to \omega$. If \mathcal{A} is an \mathcal{I} -AD family then $\{f^{-1}A : A \in \mathcal{A}\}$ is a \mathcal{J} -AD family. **Observation 2.5.** fin $\leq_{RB} \mathcal{I}$ for any analytic P-ideal \mathcal{I} . *Proof.* Let $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ on ω . Since $\omega \notin \mathcal{I}$ we have $\lim_{n\to\infty} \varphi(\omega \backslash n) = \varepsilon > 0$. Hence by the lower semicontinuous property of φ for each n > 0 there is m > n such that $\varphi([n,m)) > \varepsilon/2.$ So there is a partition $\{I_n:n<\omega\}$ of ω into finite pieces such that $\varphi(I_n) > \varepsilon/2$ for each $n \in \omega$. Define the function $f : \omega \to \omega$ by the stipulation $f''I_n = \{n\}$. Then f witnesses fin $\leq_{RB} \mathcal{I}$. For any analytic P-ideal \mathcal{I} denote $\bar{\mathfrak{a}}(\mathcal{I})$ the minimum of the cardinalities of uncountable \mathcal{I} -MAD families. Clearly $\mathfrak{a}(\mathcal{I}) > \omega$ implies $\mathfrak{a}(\mathcal{I}) = \bar{\mathfrak{a}}(\mathcal{I})$, especially $\mathfrak{a}(\mathcal{I}_h) = \bar{\mathfrak{a}}(\mathcal{I}_h)$ for sum- **Theorem 2.6.** $\bar{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$. *Proof.* Let $f: \omega \to \omega$ be the finite-to-one function defined by $f^{-1}\{n\} = P_n$ where $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ and $\mu_n : \mathcal{P}(P_n) \to [0,1]$. Specially f witnesses $\mathsf{fin} \leq_{\mathrm{RB}} \mathcal{Z}_{\vec{\mu}}$. Let \mathcal{A} be an uncountable (fin-)MAD family. We show that $f^{-1}[\mathcal{A}] =$ $\{f^{-1}A: A \in \mathcal{A}\}\$ is a $\mathcal{Z}_{\vec{\mu}}$ -MAD family. By Observation 2.4, $f^{-1}[A]$ is a $\mathcal{Z}_{\vec{\mu}}$ -AD family. To show the maximality let $X \in \mathcal{Z}^+_{\vec{\mu}}$ be arbitrary, $\limsup_{n \to \infty} \mu_n(X \cap \mathcal{Z}^+_{\vec{\mu}})$ P_n) = $\varepsilon > 0$. Thus $$J = \{ n \in \omega : \mu_n(X \cap P_n) > \varepsilon/2 \}$$ is infinite. So there is $A \in \mathcal{A}$ such that $A \cap J$ is infinite. Then $f^{-1}A \in f^{-1}[\mathcal{A}]$ and $X \cap f^{-1}A \in \mathcal{Z}^+_{\vec{\mu}}$ because there are infinitely many n such that we have $P_n \subseteq f^{-1}A$ and $\mu_n(X \cap P_n) > \varepsilon/2$. **Problem 2.7.** Does $\bar{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each analytic P-ideal \mathcal{I} ? **Theorem 2.8.** $\mathfrak{b} \leq \bar{\mathfrak{a}}(\mathcal{I})$ provided that \mathcal{I} is an analytic P-ideal. Remark. If $\mathcal{X} \subset [\omega]^{\omega}$ is an infinite almost disjoint family then there is a tall ideal \mathcal{I} such that \mathcal{X} is \mathcal{I} -MAD. So the Theorem above does not hold for an arbitrary tall ideal on ω . *Proof.* $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ . Let \mathcal{A} be an uncountable \mathcal{I} -AD family of cardinality smaller than \mathfrak{b} . We show that \mathcal{A} is not maximal. There exists an $\varepsilon > 0$ such that the set $$\mathcal{A}_{\varepsilon} = \left\{ A \in \mathcal{A} : \lim_{n \to \infty} \varphi(A \backslash n) > \varepsilon \right\}$$ is uncountable. Let $\mathcal{A}' = \{A_n : n \in \omega\} \subseteq \mathcal{A}_{\varepsilon}$ be a set of pairwise distinct elements of $\mathcal{A}_{\varepsilon}$. We can assume that these sets are pairwise disjoint. For each $A \in \mathcal{A} \setminus \mathcal{A}'$ choose a function $f_A \in \omega^{\omega}$ such that $$(*_A) \varphi((A \cap A_n) \setminus f_A(n)) < 2^{-n} \text{ for each } n \in \omega.$$ Using the assumption $|\mathcal{A}| < \mathfrak{b}$ there exists a strictly increasing function $f \in \omega^{\omega}$ such that $f_A \leq^* f$ for each $A \in \mathcal{A} \setminus \mathcal{A}'$. For each n pick g(n) > f(n)such that $\varphi(A_n \cap [f(n), g(n))) > \varepsilon$, and let $$X = \bigcup_{n \in \omega} (A_n \cap [f(n), g(n))).$$ Clearly $X \in \mathcal{Z}^+_{\vec{\mu}}$ because for each $n < \omega$ there is m such that $A_m \cap$ $[f(m),g(m))\subseteq X\setminus n$ and so $\varphi(X\setminus n)\geq \varphi(A_m\cap [f(m),g(m)))>\varepsilon$, i.e. $\lim_{n\to\infty}\varphi(X\backslash n)\geq\varepsilon.$ We have to show that $X \cap A \in \mathcal{Z}_{\vec{\mu}}$ for each $A \in \mathcal{A}$. If $A = A_n$ for some n then $X \cap A = X \cap A_n = A_n \cap [f(n), g(n))$, i.e. the intersection is finite. Assume now that $A \in \mathcal{A} \setminus \mathcal{A}'$. Let $\delta > 0$. We show that if k is large enough then $\varphi((A \cap X) \setminus k) < \delta$. There is $N \in \omega$ such that $2^{-N+1} < \delta$ and $f_A(n) \le f(n)$ for each $n \ge N$. Let k be so large that k contains the finite set $\bigcup_{n < N} [f(n), g(n))$. Now $(X \cap A) \setminus k = \bigcup_{n \in \omega} (A_n \cap A \cap [f(n), g(n))) \setminus k$ and $(A_n \cap A \cap [f(n), g(n))) \setminus k = (A_n \cap A \cap f(n), g(n)) \setminus k$ \emptyset if n < N so $$(X \cap A) \setminus k = \bigcup_{n \ge N} (A_n \cap A \cap [f(n), g(n))) \setminus k \subseteq$$ $$\bigcup_{n \ge N} ((A_n \cap A) \setminus f(n)) \subseteq \bigcup_{n \ge N} ((A_n \cap A) \setminus f_A(n)).$$ Thus by $(*_A)$ we have $$\varphi((X \cap A) \setminus k) \le \sum_{n \ge N} \varphi(A_n \cap A \setminus f_A(n)) \le \sum_{n \ge N} \frac{1}{2^n} = 2^{-N+1} < \delta.$$ ## 3. Cohen-indestructible \mathcal{I} -mad families If φ is a lower semicontinuous finite submeasure on ω then clearly φ is determined by $\varphi \upharpoonright [\omega]^{<\omega}$. Using this observation one can define forcing indestructibility of \mathcal{I} -MAD families for an analytic P-ideal \mathcal{I} . The following Theorem is a modification of Kunen's proof for existence of Cohen-indestructible MAD family from CH (see [Ku] Ch. VIII Th. 2.3.). **Theorem 3.1.** Assume CH. For each analytic P-ideal \mathcal{I} then there is an $uncountable\ Cohen$ -indestructible \mathcal{I} -MAD family. *Proof.* We will define the uncountable Cohen-indestructible \mathcal{I} -MAD family $\{A_{\xi}: \xi < \omega_1\} \subseteq \mathcal{I}^+$ by recursion on $\xi \in \omega_1$. The family $\{A_{\xi}: \xi < \omega_1\}$ will be fin-AD as well. Our main concern is that we do have $\mathfrak{a}(\mathcal{I}) > \omega$ so it is not automatic that $\{A_{\eta} : \eta < \xi\}$ is not maximal for $\xi < \omega_1$. Denote \mathbb{C} the Cohen forcing. Let $\mathcal{I} = \operatorname{Exh}(\varphi)$ be an analytic P-ideal. Let $\{\langle p_{\xi}, \dot{X}_{\xi}, \delta_{\xi} \rangle : \omega \leq \xi < \omega_1 \}$ be an enumeration of all triples $\langle p, \dot{X}, \delta \rangle$ such that $p \in \mathbb{C}$, \dot{X} is a nice name for a subset of ω , and δ is a positive rational number. Write $\varepsilon = \lim_{n \to \infty} \varphi(\omega \setminus n) > 0$. Partition ω into infinite sets $\{A_m : m < \omega\}$ such that $\lim_{n \to \infty} \varphi(A_m \setminus n) = \varepsilon$ for each $m < \omega$. Assume $\xi \geq \omega$ and we have $A_{\eta} \in \mathcal{I}^+$ for $\eta < \xi$ such that $\{A_{\eta} : \eta < \xi\}$ is a fin-AD so especially an \mathcal{I} -AD family. Claim: There is $X \in \mathcal{I}^+$ such that $|X \cap A_{\zeta}| < \omega$ for $\zeta < \xi$. Proof of the Claim. Write $\xi = \{\zeta_i : i < \omega\}$. Recursion on $j \in \omega$ we can choose $x_j \in [A_{\ell_j}]^{<\omega}$ for some $\ell_j \in \omega$ such that - (i) $\varphi(x_i) \geq \varepsilon/2$, - (ii) $x_i \cap (\bigcup_{i < j} A_{\zeta_i}) = \emptyset$. Assume that $\{x_i : i < j\}$ is chosen. Pick $\ell_j \in \omega \setminus \{\zeta_i : i < j\}$. Let $m \in \omega$ such that $A_{\ell_j} \cap \cup \{A_{\zeta_i} : i \le j\} \subseteq m$. Since $\varphi(A_{\ell_j} \setminus m) \ge \varepsilon$ there is $x_j \in [A_{\ell_j} \setminus m]^{<\omega}$ with $\varphi(x_j) \ge \varepsilon/2$. Let $$X = \bigcup \{x_j : j < \omega\}$$. Then $|A_{\zeta} \cap X| < \omega$ for $\zeta < \xi$ and $\lim_{n \to \infty} (X \setminus n) \ge \varepsilon/2$. If p_{ξ} does not force (a) and (b) below then let A_{ξ} be X from the Claim. - (a) $\lim_{n\to\infty} \check{\varphi}(\dot{X}_{\xi} \backslash n) > \check{\delta}_{\xi}$, - (b) $\forall \eta < \check{\xi} \ \dot{X}_{\xi} \cap \check{A}_{\eta} \in \mathcal{I}$ Assume $p_{\xi} \Vdash (\mathbf{a}) \land (\mathbf{b})$. Let $\{B_k^{\xi} : k \in \omega\} = \{A_{\eta} : \eta < \xi\}$ and $\{p_k^{\xi} : k \in \omega\} = \{p' \in \mathbb{C} : p' \leq p_{\xi}\}$ be enumerations. Clearly for each $k \in \omega$ we have $$p_k^\xi \Vdash \lim_{n \to \infty} \check{\varphi} \big((\dot{X}_\xi \backslash \cup \{ \check{B}_l^\xi : l \leq \check{k} \}) \backslash n \big) > \check{\delta}_\xi,$$ so we can choose a $q_k^{\xi} \leq p_k^{\xi}$ and a finite $a_k^{\xi} \subseteq \omega$ such that $\varphi(a_k^{\xi}) > \delta_{\xi}$ and $q_k^{\xi} \Vdash \check{a}_k^{\xi} \subseteq (\dot{X}_{\xi} \setminus \bigcup \{ \check{B}_l^{\xi} : l \leq \check{k} \}) \setminus \check{k}$. Let $A_{\xi} = \bigcup \{ a_k^{\xi} : k \in \omega \}$. Clearly $A_{\xi} \in \mathcal{I}^+$ and $\{ A_{\eta} : \eta \leq \xi \}$ is a fin-AD family. Thus $\mathcal{A} = \{A_{\xi} : \xi < \omega_1\} \subseteq \mathcal{I}^+$ is a fin-AD family. We show that \mathcal{A} is a Cohen-indestructible \mathcal{I} -MAD. Assume otherwise there is a ξ such that $p_{\xi} \Vdash \lim_{n \to \infty} \check{\varphi}(\dot{X}_{\xi} \backslash n) > \check{\delta}_{\xi} \land \forall \ \eta < \omega_1 \ \dot{X}_{\xi} \cap \check{A}_{\eta} \in \mathcal{I}$, specially $p_{\xi} \Vdash (a) \land (b)$. There is a $p_k^{\xi} \leq p_{\xi}$ and an N such that $p_k^{\xi} \Vdash \check{\varphi}((\dot{X}_{\xi} \cap \check{A}_{\xi}) \backslash \check{N}) < \check{\delta}_{\xi}$. We can assume $k \geq N$, so $p_k^{\xi} \Vdash \check{\varphi}((\dot{X}_{\xi} \cap \check{A}_{\xi}) \backslash \check{k}) < \check{\delta}_{\xi}$. By the choice of q_k^{ξ} and a_k^{ξ} we have $q_k^{\xi} \Vdash \check{a}_k^{\xi} \subseteq (\dot{X}_{\xi} \cap \check{A}_{\xi}) \backslash \check{k}$, so $q_k^{\xi} \Vdash \check{\varphi}((\dot{X}_{\xi} \cap \check{A}_{\xi}) \backslash \check{k}) > \check{\delta}_{\xi}$, contradiction. \square #### 4. Towers in \mathcal{I}^* Let \mathcal{I} be an ideal on ω . A \subseteq *-decreasing sequence $\langle A_{\alpha} : \alpha < \kappa \rangle$ is a tower in \mathcal{I}^* if (a) it is a tower (i.e. there is no $X \in [\omega]^{\omega}$ with $X \subseteq^* A_{\alpha}$ for $\alpha < \kappa$), and (b) $A_{\alpha} \in \mathcal{I}^*$ for $\alpha < \kappa$. Under CH it is straightforward to construct towers in \mathcal{I}^* for each tall analytic P-ideal \mathcal{I} . The existence of such towers is consistent with $2^{\omega} > \omega_1$ as well by the Theorem 4.2 below. Denote \mathbb{C}_{α} the standard forcing adding α Cohen reals by finite conditions. **Lemma 4.1.** Let $\mathcal{I} = \text{Exh}(\varphi)$ be a tall analytic P-ideal in the ground model V. Then there is a set $X \in V^{\mathbb{C}_1} \cap \mathcal{I}$ such that $|X \cap S| = \omega$ for each $S \in [\omega]^{\omega} \cap V$. *Proof.* Since \mathcal{I} is tall we have $\lim_{n\to\infty}\varphi(\{n\})=0$. Fix a partition $\langle I_n:n\in\omega\rangle$ of ω into finite intervals such that $\varphi(\lbrace x\rbrace) < \frac{1}{2^n}$ for $x \in I_{n+1}$ (we can not say anything about $\varphi(\lbrace x\rbrace)$ for $x \in I_0$). Then $X' \in \mathcal{I}$ whenever $|X' \cap I_n| \leq 1$ for each n. Let $\{i_k^n : k < k_n\}$ be the increasing enumeration of I_n . Our forcing \mathbb{C} adds a Cohen real $c \in \omega^{\omega}$ over V. Let $$X_{\alpha} = \{i_k^n : c(n) \equiv k \bmod k_n\} \in V^{\mathbb{C}} \cap \mathcal{I}.$$ A trivial density argument shows that $|X_{\alpha} \cap S| = \omega$ for each $S \in V \cap [\omega]^{\omega}$. \square **Theorem 4.2.** $\Vdash_{\mathbb{C}_{\omega_1}}$ "There exists a tower in \mathcal{I}^* for each tall analytic P-ideal *Proof.* Let V be a countable transitive model and G be a \mathbb{C}_{ω_1} -generic filter over V. Let $\mathcal{I} = \operatorname{Exh}(\varphi)$ be a tall analytic P-ideal in V[G] with some lower semicontinuous finite submeasure φ on ω . There is a $\delta < \omega_1$ such that $\varphi \upharpoonright [\omega]^{<\omega} \in V[G_{\delta}]$ where $G_{\delta} = G \cap \mathbb{C}_{\delta}$, so we can assume $\underline{\varphi} \upharpoonright [\omega]^{<\omega} \in V$. Work in V[G] recursion on ω_1 we construct the tower $\bar{A} = \langle A_\alpha : \alpha < \omega_1 \rangle$ in \mathcal{I}^* such that $\bar{A} \upharpoonright \alpha \in V[G_{\alpha}]$. Because \mathcal{I} contains infinite elements we can construct in V a sequence $\langle A_n : n \in \omega \rangle$ in \mathcal{I}^* which is strictly \subseteq^* -descending, i.e. $|A_n \setminus A_{n+1}| = \omega$ for $n \in \omega$. Assume $\langle A_{\xi} : \xi < \alpha \rangle$ are done. Since \mathcal{I} is a P-ideal there is $A'_{\alpha} \in \mathcal{I}^*$ with $A'_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$. By lemma 4.1 there is a set $X_{\alpha} \in V[G_{\alpha+1}] \cap \mathcal{I}$ such that $X_{\alpha} \cap S \neq \emptyset$ for each $S \in [\omega]^{\omega} \cap V[G_{\alpha}]$. Let $A_{\alpha} = A'_{\alpha} \backslash X_{\alpha} \in V[G_{\alpha+1}] \cap \mathcal{I}^*$ so $S \nsubseteq^* A_{\alpha}$ for any $S \in V[G_{\alpha}] \cap [\omega]^{\omega}$. Hence $V[G] \models "\langle A_{\alpha} : \alpha < \omega_1 \rangle$ is a tower in \mathcal{I}^* ". **Problem 4.3.** Do there exist towers in \mathcal{I}^* for some tall analytic P-ideal \mathcal{I} in ZFC? #### 5. Unbounding and dominating numbers of ideals A supported relation (see [Vo]) is a triple $\mathcal{R} = (A, R, B)$ where $R \subseteq A \times B$, dom(R) = A, ran(R) = B, and we always assume that for each $b \in B$ there is an $a \in A$ such that $\langle a, b \rangle \notin R$. The unbounding and dominating numbers of \mathcal{R} : $$\mathfrak{b}(\mathcal{R}) = \min\{|A'| : A' \subseteq A \land \forall \ b \in B \ A' \not\subseteq R^{-1}\{b\}\},\$$ $$\mathfrak{d}(\mathcal{R}) = \min\{|B'| : B' \subseteq B \land A = R^{-1}B'\}.$$ For example $\mathfrak{b}_{\mathcal{I}} = \mathfrak{b}(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega})$ and $\mathfrak{d}_{\mathcal{I}} = \mathfrak{d}(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega})$. Note that $\mathfrak{b}(\mathcal{R})$ and $\mathfrak{d}(\mathcal{R})$ are defined for each \mathcal{R} , but in general $\mathfrak{b}(\mathcal{R}) \leq \mathfrak{d}(\mathcal{R})$ does not hold. We recall the definition of Galois-Tukey connection of relations. **Definition 5.1.** ([Vo]) Let $\mathcal{R}_1 = (A_1, R_1, B_1)$ and $\mathcal{R}_2 = (A_2, R_2, B_2)$ be supported relations. A pair of functions $\phi : A_1 \to A_2$, $\psi : B_2 \to B_1$ is a Galois-Tukey connection from \mathcal{R}_1 to \mathcal{R}_2 , in notation $(\phi, \psi) : \mathcal{R}_1 \preceq \mathcal{R}_2$ if $a_1 R_1 \psi(b_2)$ whenever $\phi(a_1) R_2 b_2$. In a diagram: $$\psi(b_2) \in B_1 \xleftarrow{\psi} B_2 \ni b_2$$ $$R_1 \iff R_2$$ $$a_1 \in A_1 \xrightarrow{\phi} A_2 \ni \phi(a_1)$$ We write $\mathcal{R}_1 \leq \mathcal{R}_2$ if there is a Galois-Tukey connection from \mathcal{R}_1 to \mathcal{R}_2 . If $\mathcal{R}_1 \leq \mathcal{R}_2$ and $\mathcal{R}_2 \leq \mathcal{R}_1$ also hold then we say \mathcal{R}_1 and \mathcal{R}_2 are Galois-Tukey equivalent, in notation $\mathcal{R}_1 \equiv \mathcal{R}_2$. Fact 5.2. If $\mathcal{R}_1 \leq \mathcal{R}_2$ then $\mathfrak{b}(\mathcal{R}_1) \geq \mathfrak{b}(\mathcal{R}_2)$ and $\mathfrak{d}(\mathcal{R}_1) \leq \mathfrak{d}(\mathcal{R}_2)$. **Theorem 5.3.** If $\mathcal{I} \leq_{RB} \mathcal{J}$ then $(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}) \equiv (\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega})$. *Proof.* Fix a finite-to-one function $f: \omega \to \omega$ witnessing $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$. Define $\phi, \psi: \omega^{\omega} \to \omega^{\omega}$ as follows: $$\phi(x)(i) = \max(x''f^{-1}\{i\}), \psi(y)(j) = y(f(j)).$$ We prove two claims. Claim 5.3.1. $(\phi, \psi) : (\omega^{\omega}, \leq_{\mathcal{J}}, \omega^{\omega}) \preceq (\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}).$ Proof of the claim. We show that if $\phi(x) \leq_{\mathcal{I}} y$ then $x \leq_{\mathcal{J}} \psi(y)$. Indeed, $I = \{i : \phi(x)(i) > y(i)\} \in \mathcal{I}$. Assume that $f(j) = i \notin I$. Then $\phi(x)(i) = \max(x''f^{-1}\{i\}) \leq y(i)$. Since $y(i) = \psi(y)(j)$, so $$x(j) \le \max(x''f^{-1}\{f(j)\}) \le y(f(j)) = \psi(y)(j)$$ Since $f^{-1}I \in \mathcal{J}$ this yields $x \leq_{\mathcal{I}} \psi(y)$. Claim 5.3.2. $(\psi, \phi) : (\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}) \leq (\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega})$. Proof of the claim. We show that if $\psi(y) \leq_{\mathcal{J}} x$ then $y \leq_{\mathcal{I}} \phi(x)$. Assume on the contrary that $y \not\leq_{\mathcal{I}} \phi(x)$. Then $A = \{i \in \omega : y(i) > \phi(x)(i)\} \in \mathcal{I}^+$. By definition of ϕ , we have $A = \{i : y(i) > \max(x''f^{-1}\{i\})\}$. Let $B = f^{-1}A \in \mathcal{J}^+$. For $j \in B$ we have $f(j) \in A$ and so $$\psi(y)(j) = y(f(j)) > \phi(x)(f(j)) = \max(x''f^{-1}\{f(j)\}) \ge x(j).$$ Hence $\psi(y) \not\leq_{\mathcal{I}} x$, contradiction. These claims prove the statement of the Theorem, so we are done. \Box By Fact 5.2 we have: Corollary 5.4. If $\mathcal{I} \leq_{RB} \mathcal{J}$ holds then $\mathfrak{b}_{\mathcal{I}} = \mathfrak{b}_{\mathcal{I}}$ and $\mathfrak{d}_{\mathcal{I}} = \mathfrak{d}_{\mathcal{I}}$. By Observation 2.5 this yields: Corollary 5.5. If \mathcal{I} is an analytic P-ideal then $(\omega^{\omega}, \leq^*, \omega^{\omega}) \equiv (\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega})$, and $\mathfrak{b}_{\mathcal{I}} = \mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}} = \mathfrak{d}$. 6. \mathcal{I} -bounding and \mathcal{I} -dominating forcing notions **Definition 6.1.** Let \mathcal{I} be a Borel ideal on ω . A forcing notion \mathbb{P} is \mathcal{I} -bounding if $$\Vdash_{\mathbb{P}} \forall \ A \in \mathcal{I} \ \exists \ B \in \mathcal{I} \cap V \ A \subseteq B;$$ \mathbb{P} is \mathcal{I} -dominating if $$\Vdash_{\mathbb{P}} \exists B \in \mathcal{I} \ \forall A \in \mathcal{I} \cap V \ A \subseteq^* B.$$ **Theorem 6.2.** Let \mathcal{I} be a tall analytic P-ideal. If \mathbb{P} is \mathcal{I} -bounding then \mathbb{P} is ω^{ω} -bounding as well; if \mathbb{P} is \mathcal{I} -dominating then \mathbb{P} adds dominating reals. *Proof.* Assume that $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ . For $A \in \mathcal{I}$ let $$d_A(n) = \min\{k \in \omega : \varphi(A \setminus k) < 2^{-n}\}.$$ Clearly if $A \subseteq B \in \mathcal{I}$ then $d_A \leq d_B$. It is enough to show that $\{d_A : A \in \mathcal{I}\}$ is cofinal in $\langle \omega^{\omega}, \leq^* \rangle$. Let $f \in \omega^{\omega}$. Since \mathcal{I} is a tall ideal we have $\lim_{k \to \infty} \varphi(\{k\}) = 0$ but $\lim_{m \to \infty} (\omega \setminus m) = \varepsilon > 0$. Thus for all but finite $n \in \omega$ we can choose a finite set $A_n \subseteq \omega \setminus f(n)$ such that $2^{-n} \leq \varphi(A_n) < 2^{-n+1}$ so $A = \cup \{A_n : n \in \omega\} \in \mathcal{I}$ and $f \leq^* d_A$. Why? We can assume if $k \geq f(n)$ then $\varphi(\{k\}) < 2^{-n}$. Let n be so large such that $2^{-n} < \varepsilon$. Now if there is no a suitable A_n then $\varphi(\omega \setminus f(n)) \leq 2^{-n} < \varepsilon$, contradiction. The converse of the first implication of Theorem 6.2 is not true by the following Proposition. **Proposition 6.3.** The random forcing is not \mathcal{I} -bounding for any tall summable and tall density ideal \mathcal{I} . *Proof.* Denote $\mathbb B$ the random forcing and λ the Lebesgue-measure. If $\mathcal{I} = \mathcal{I}_h$ is a tall summable ideal then we can chose pairwise disjoint sets $H(n) \in [\omega]^{\omega}$ such that $\sum_{l \in H(n)} h(l) = 1$ and $\max\{h(l) : l \in H(n)\} < 2^{-n}$ for each $n \in \omega$. Let $H(n) = \{l_k^n : k \in \omega\}$. For each n fix a partition $\{[B_k^n] : k \in \omega\}$ of \mathbb{B} such that $\lambda(B_k^n) = h(l_k^n)$ for each $k \in \omega$. Let \dot{X} be a \mathbb{B} -name such that $\Vdash_{\mathbb{B}} \dot{X} = \{\check{l}_k^n : [B_k^n] \in \dot{G}\}$. Clearly $\Vdash_{\mathbb{B}} \dot{X} \in \mathcal{I}_h$. \dot{X} shows that \mathbb{B} is not \mathcal{I}_h -bounding. Assume on the contrary that there is a $[B] \in \mathbb{B}$ and an $A \in \mathcal{I}_h$ such that $[B] \Vdash \dot{X} \subseteq \check{A}$. There is an $n \in \omega$ such that $$\sum_{l_k^n \in A} \lambda(B_k^n) = \sum_{l_k^n \in A} h(l_k^n) < \lambda(B).$$ Choose a k such that $l_k^n \notin A$ and $[B_k^n] \wedge [B] \neq [\emptyset]$. We have $[B_k^n] \wedge [B] \Vdash \check{l}_k^n \in \dot{X} \setminus \check{A}$, contradiction. If $\mathcal{I} = \mathcal{Z}_{\vec{\mu}}$ is a tall density ideal then for each n fix a partition $\{[B_k^n] : k \in P_n\}$ of \mathbb{B} such that $\lambda(B_k^n) = \mu_n(\{k\})$ for each k. Let \dot{X} be a \mathbb{B} -name such that $\Vdash_{\mathbb{B}} \dot{X} = \{\check{k} : [\check{B}_k^n] \in \dot{G}\}$. Clearly $\Vdash_{\mathbb{B}} \dot{X} \in \mathcal{Z}_{\vec{\mu}}$. \dot{X} shows that \mathbb{B} is not $\mathcal{Z}_{\vec{\mu}}$ -bounding. Assume on the contrary that there is a $[B] \in \mathbb{B}$ and an $A \in \mathcal{Z}_{\vec{\mu}}$ such that $[B] \Vdash \dot{X} \subseteq \check{A}$. There is an $n \in \omega$ such that $$\sum_{k \in A \cap P_n} \lambda(B_k^n) = \mu_n(A \cap P_n) < \lambda(B).$$ Choose a $k \in P_n \backslash A$ such that $[B_k^n] \wedge [B] \neq [\emptyset]$. We have $[B_k^n] \wedge [B] \Vdash \check{k} \in \dot{X} \backslash \check{A}$, contradiction. The converse of the second implication of Theorem 6.2 is not true as well: the Hechler forcing is a counterexample according to the following Theorem. **Theorem 6.4.** If \mathbb{P} is σ -centered then \mathbb{P} is not \mathcal{I} -dominating for any tall analytic P-ideal \mathcal{I} . *Proof.* Assume that $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ . Let $\varepsilon = \lim_{n \to \infty} \varphi(\omega \setminus n) > 0$. Let $\mathbb{P} = \bigcup \{C_n : n \in \omega\}$ where C_n is centered for each n. Assume on the contrary that $\Vdash_{\mathbb{P}} \dot{X} \in \mathcal{I} \land \forall A \in \mathcal{I} \cap V A \subseteq^* \dot{X}$ for some \mathbb{P} -name \dot{X} . For each $A \in \mathcal{I}$ choose a $p_A \in \mathbb{P}$ and a $k_A \in \omega$ such that $$(\circ) p_A \Vdash \check{A} \backslash \check{k}_A \subseteq \dot{X} \wedge \varphi(\dot{X} \setminus \check{k}_A) < \varepsilon/2.$$ For each $n, k \in \omega$ let $C_{n,k} = \{A \in \mathcal{I} : p_A \in C_n \wedge k_A = k\}$, and let $B_{n,k} = \bigcup C_{n,k}$. We show that for each n and k $$\varphi(B_{n,k} \setminus k) \leq \varepsilon/2.$$ Assume indirectly $\varphi(B_{n,k}\backslash k) > \varepsilon/2$ for some n and k. There is a k' such that $\varphi(B_{n,k}\cap [k,k')) > \varepsilon/2$ and there is a finite $\mathcal{D}\subseteq \mathcal{C}_{n,k}$ such that $B_{n,k}\cap [k,k')=(\cup \mathcal{D})\cap [k,k')$. Choose a common extension q of $\{p_A:A\in \mathcal{D}\}$. Now we have $q\Vdash \cup \{A\backslash \check{k}:A\in \check{\mathcal{D}}\}\subseteq \dot{X}$ and so $$q \Vdash \varepsilon/2 < \varphi(\check{B}_{n,k} \cap [\check{k}, \check{k}')) = \varphi((\cup \check{\mathcal{D}}) \cap [\check{k}, \check{k}')) \le \varphi(\dot{X} \cap [\check{k}, \check{k}')) \le \varphi(\dot{X} \setminus \check{k}),$$ which contradicts (o). So for each n and k the set $\omega \setminus B_{n,k}$ is infinite, so $\omega \setminus B_{n,k}$ contains an infinite $D_{n,k} \in \mathcal{I}$. Let $D \in \mathcal{I}$ such that $D_{n,k} \subseteq^* D$ for each $n, k \in \omega$. Then there is no n, k such that $D \subseteq^* B_{n,k}$. Contradiction. By this Theorem an by Lemma 4.1 the Cohen forcing is neither \mathcal{I} -dominating nor \mathcal{I} -bounding for any tall analytic P-ideal \mathcal{I} . Finally in the rest of the paper we compare the Sacks property and the \mathcal{I} -bounding property. **Theorem 6.5.** If \mathbb{P} has the Sacks property then \mathbb{P} is \mathcal{I} -bounding for each analytic P-ideal \mathcal{I} . *Proof.* Let $\mathcal{I} = \operatorname{Exh}(\varphi)$. Assume $\Vdash_{\mathbb{P}} \dot{X} \in \mathcal{I}$. Let $d_{\dot{X}}$ be a \mathbb{P} -name for an element of ω^{ω} such that $\Vdash_{\mathbb{P}} d_{\dot{X}}(\check{n}) = \min\{k \in \omega : \varphi(\dot{X} \setminus k) < 2^{-\check{n}}\}$. We know that \mathbb{P} is ω^{ω} -bounding. If $p \Vdash d_{\dot{X}} \leq \check{f}$ for some strictly increasing $f \in \omega^{\omega}$ then by the Sacks property there is a $q \leq p$ and a slalom $S : \omega \to \left[[\omega]^{<\omega} \right]^{<\omega}$, $|S(n)| \leq n$ such that $$q \Vdash \forall^{\infty} n \ \dot{X} \cap [f(n), f(n+1)) \in S(n).$$ Now let $$A = \bigcup_{n \in \omega} \{ D \in S(n) : \varphi(D) < 2^{-n} \}.$$ $$A \in \mathcal{I}$$ because $\varphi(A \setminus f(n)) \leq \sum_{k \geq n} \varphi(A \cap [f(k), f(k+1))) \leq \sum_{k \geq n} \frac{k}{2^k}$. Clearly $q \Vdash \dot{X} \subseteq^* \check{A}$. A supported relation $\mathcal{R}=(A,R,B)$ is called *Borel-relation* iff there is a Polish space X such that $A,B\subseteq X$ and $R\subseteq X^2$ are Borel sets. Similarly a Galois-Tukey connection $(\phi,\psi):\mathcal{R}_1\preceq\mathcal{R}_2$ between Borel-relations is called *Borel GT-connection* iff ϕ and ψ are Borel functions. To be Borel-relation and Borel GT-connection is absolute for transitive models containing all relevant codes. Some important Borel-relation: - (A): $(\mathcal{I}, \subseteq, \mathcal{I})$ and $(\mathcal{I}, \subseteq^*, \mathcal{I})$ for a Borel ideal \mathcal{I} . - (B): Denote Slm the set of slaloms on ω , i.e. $S \in \text{Slm iff } S : \omega \to [\omega]^{<\omega}$ and $|S(n)| = 2^n$ for each n. Let \sqsubseteq and \sqsubseteq^* be the following relations on $\omega^{\omega} \times \text{Slm}$: $$f \sqsubseteq^{(*)} S \iff \forall^{(\infty)} n \in \omega f(n) \in S(n).$$ The supported relations $(\omega^{\omega}, \sqsubseteq, \operatorname{Slm})$ and $(\omega^{\omega}, \sqsubseteq^*, \operatorname{Slm})$ are Borel-relations. (C): Denote ℓ_1^+ the set of positive summable series. Let \leq be the coordinatewise and \leq^* the almost everywhere coordinate-wise ordering on ℓ_1^+ . (ℓ_1^+, \leq , ℓ_1^+) and ($\ell_1^+, \leq^*, \ell_1^+$) are Borel-relations. **Definition 6.6.** Let $\mathcal{R} = (A, R, B)$ be a Borel-relation. A forcing notion \mathbb{P} is \mathcal{R} -bounding if $$\Vdash_{\mathbb{P}} \forall a \in A \exists b \in B \cap V \ aRb$$; \mathcal{R} -dominating if $$\Vdash_{\mathbb{P}} \exists b \in B \, \forall \, a \in A \cap V \, aRb.$$ For example the property \mathcal{I} -bounding/dominating is the same as $(\mathcal{I}, \subseteq^*, \mathcal{I})$ -bounding/dominating. We can reformulate some classical properties of forcing notions: $$\omega^{\omega}\text{-bounding} \equiv (\omega^{\omega}, \leq^{(*)}, \omega^{\omega})\text{-bounding}$$ adding dominating reals $\equiv (\omega^{\omega}, \leq^*, \omega^{\omega})$ -dominating $$\text{Sacks property} \equiv (\omega^{\omega}, \sqsubseteq^{(*)}, \text{Slm})\text{-bounding}$$ adding a slalom capturing $\equiv (\omega^{\omega}, \sqsubseteq^*, \text{Slm})$ -dominating all ground model reals If $\mathcal{R} = (A, R, B)$ is a supported relation then let $\mathcal{R}^{\perp} = (B, \neg R^{-1}, A)$ where $b(\neg R^{-1})a$ iff not aRb. Clearly $(\mathcal{R}^{\perp})^{\perp} = \mathcal{R}$ and $\mathfrak{b}(\mathcal{R}) = \mathfrak{d}(\mathcal{R}^{\perp})$. Now if \mathcal{R} is a Borel-relation then \mathcal{R}^{\perp} is a Borel-relation too, and a forcing notion is \mathcal{R} -bounding iff it is not \mathcal{R}^{\perp} -dominating. **Fact 6.7.** Assume $\mathcal{R}_1 \leq \mathcal{R}_2$ are Borel-relations with Borel GT-connection and \mathbb{P} is a forcing notion. If \mathbb{P} is \mathcal{R}_2 -bounding/dominating then \mathbb{P} is \mathcal{R}_1 -bounding/dominating. By Corollary 5.5 this yields Corollary 6.8. For each analytic P-ideal \mathcal{I} (1) a poset \mathbb{P} is $\leq_{\mathcal{I}}$ -bounding iff it is ω^{ω} -bounding, (2) forcing with a poset \mathbb{P} adds $\leq_{\mathcal{I}}$ -dominating reals iff this forcing adds dominating reals. Fremlin's two results have interesting corollaries for us. **Lemma 6.9.** ([Fr] 524C) Let (P, \leq) be a partially ordered set such that $\sup\{p,q\}$ is defined for all $p,q \in P$. Suppose d is a metric on P such that (P,d) is a polish space and $\sup\{\cdot,\cdot\}: P^2 \to P$ is uniformly continuous. Then $(P, \leq, P) \preceq (\ell_1^+, \leq, \ell_1^+)$ with a Borel GT-connection. **Corollary 6.10.** There is a Borel GT-connection $(\mathcal{I}, \subseteq, \mathcal{I}) \preceq (\ell_1^+, \leq, \ell_1^+)$ for each analytic P-ideal \mathcal{I} . *Proof.* Let $\mathcal{I} = \operatorname{Exh}(\varphi)$ where φ is a finite lower semicontinuous submeasure on ω with $\varphi(A) = 0$ iff $A = \emptyset$. One can show that (\mathcal{I}, \subseteq) with $d(A, B) = \varphi(A \triangle B)$ satisfy the requirements of Lemma 6.9. Note that there is no any Galois-Tukey connection from $(\ell_1^+, \leq, \ell_1^+)$ to $(\mathcal{Z}, \subseteq, \mathcal{Z})$ so they are not GT-equivalent (see [LoVe]) Th. 7.). **Theorem 6.11.** ([Fr] 524I) There is a Borel GT-connection $(\ell_1^+, \leq^*, \ell_1^+) \equiv (\omega^{\omega}, \sqsubseteq^*, \text{Slm}).$ **Corollary 6.12.** If \mathbb{P} adds a slalom capturing all ground model reals then \mathbb{P} is \mathcal{I} -dominating for each analytic P-ideal \mathcal{I} . *Proof.* By Fact 6.7 and Theorem 6.11 adding slalom is the same as $(\ell_1^+, \leq^*, \ell_1^+)$ -dominating. Let \dot{x} be a \mathbb{P} -name such that $\Vdash_{\mathbb{P}} \dot{x} \in \ell_1^+ \land \forall \ y \in \ell_1^+ \cap V$ $y \leq^* \dot{x}$. Moreover let \dot{X} be a \mathbb{P} -name such that $\Vdash_{\mathbb{P}} \dot{X} = \{z \in \ell_1^+ : |z \setminus \dot{x}| < \omega, \forall \ n \ (z(n) \neq \dot{x}(n) \Rightarrow z(n) \in \omega)\}$. Let $(\phi, \psi) : (\mathcal{I}, \subseteq, \mathcal{I}) \preceq (\ell_1^+, \le, \ell_1^+)$ be a Borel GT-connection. Now if \dot{A} is a \mathbb{P} -name such that $\Vdash_{\mathbb{P}} \forall \ z \in \dot{X} \ \psi(z) \subseteq^* \dot{A}$ then \dot{A} shows that \mathbb{P} is \mathcal{I} -dominating. Denote \mathbb{D} the dominating forcing and \mathbb{LQC} the Localization forcing. Because of the complicated GT-connections it seems hard to construct an \mathcal{I} -dominating set in $V^{\mathbb{LQC}}$. Despite \mathbb{LQC} it is much more simple to show directly that the two-step iteration $\mathbb{D} * \mathbb{LQC}$ is \mathcal{I} -dominating. **Observation 6.13.** If \mathcal{I} is an arbitrary analytic P-ideal then two step iteration $\mathbb{D} * \mathbb{LOC}$ is \mathcal{I} -dominating. Indeed, let $\mathcal{I} \in V \subseteq M \subseteq N$ be transitive models, $d \in M \cap \omega^{\omega}$ be strictly increasing and dominating over V, and $S \in N$, $S : \omega \to [[\omega]^{<\omega}]^{<\omega}$, $|S(n)| \leq n$ a slalom which captures all reals from M. Now if $$X_n = \bigcup \{ A \in S(n) \cap \mathcal{P}([d(n), d(n+1)) : \varphi(A) < 2^{-n} \}$$ then it is easy to see that $Y \subseteq^* \cup \{X_n : n \in \omega\} \in \mathcal{I} \cap N$ for each $Y \in V \cap \mathcal{I}$. **Problem 6.14.** Does \mathcal{Z} -dominating (or \mathcal{I} -dominating) imply adding slaloms? We will use the following deep result of Fremlin to prove Theorem 6.16. **Theorem 6.15.** ([Fr] 526G) There is a family $\{P_f : f \in \omega^{\omega}\}$ of Borel subsets of ℓ_1^+ such that the following hold: - $\begin{array}{l} \text{(i)} \ \ell_1^+ = \cup \{P_f: f \in \omega^\omega\}, \\ \text{(ii)} \ \textit{if} \ f \leq g \ \textit{then} \ P_f \subseteq P_g, \end{array}$ - (iii) $(P_f, \leq, \ell_1^+) \leq (\mathcal{Z}, \subseteq, \mathcal{Z})$ with a Borel GT-connection for each f. **Theorem 6.16.** \mathbb{P} is \mathbb{Z} -bounding iff \mathbb{P} has the Sacks property. *Proof.* Let $\{P_f: f \in \omega^{\omega}\}$ be a family satisfying (i), (ii), and (iii) in Theorem 6.15, and fix Borel GT-connections $(\phi_f, \psi_f): (P_f, \leq, \ell_1^+) \leq (\mathcal{Z}, \subseteq, \mathcal{Z})$ for each $f \in \omega^{\omega}$. Assume \mathbb{P} is \mathcal{Z} -bounding and $\Vdash_{\mathbb{P}} \dot{x} \in \ell_1^+$. \mathbb{P} is ω^{ω} -bounding by Theorem 6.2 so using (ii) we have $\Vdash_{\mathbb{P}} \ell_1^+ = \bigcup \{P_f : f \in \omega^\omega \cap V\}$. We can choose a \mathbb{P} -name \dot{f} for an element of $\omega^{\omega} \cap V$ such that $\Vdash_{\mathbb{P}} \dot{x} \in P_{\dot{f}}$. By \mathcal{Z} -bounding property of \mathbb{P} there is a \mathbb{P} -name \dot{A} for an element of $\mathcal{Z} \cap V$ such that $\Vdash_{\mathbb{P}} \phi_{\dot{f}}(\dot{x}) \subseteq \dot{A}$, so $\Vdash_{\mathbb{P}} \dot{x} \leq \psi_{\dot{f}}(\dot{A}) \in \ell_1^+ \cap V$. So we have \mathbb{P} is $(\ell_1^+, \leq^{(*)}, \ell_1^+)$ -bounding. By Theorem 6.11 and Fact 6.7 $\mathbb P$ has the Sacks property. The converse implication was proved in Theorem 6.5. **Problem 6.17.** Does the \mathcal{I} -bounding property imply the Sacks property for each tall analytic P-ideal \mathcal{I} ? ## References - [Fa] Farah, Ilijas: Analytic quotients: theory of liftings for quotientsover analytic ideals on the integers, Memoirs of the American Mathematical Society 148 (2000), no 702, 177 pp. - Fremlin, [Fr] Theory. $Set ext{-}theoretic$ David H.: MeasureMeasureFremlin, Colchester, 2004.Torres England, Available http://www.essex.ac.uk/maths/staff/fremlin/mt.html - [Ku] Kunen, Kenneth: Set Theory, An Introduction to Independence Proofs, North Holland, Amsterdam, New York, Oxford 1980 - Laflamme, Claude and Zhu, Jian-Ping: The Rudin-Blass ordering of ultrafilters, [LaZh] J. Symbolic Logic 63 (1998), no. 2, pages 584-592 - [LoVe] Louveau, A. and Veličković, B.: Analytic ideals and cofinal types, Ann. Pure Appl. Logic 99 (1999), pages 171-195 - [Ru] Rudin, M. E.: Partial orders on the types of $\beta\omega$, Trans. Amer. Math. Soc. 155 (1971), pages 353-362 - [So] Solecki, Słamowir: Analytic P-ideals and their applications, Ann. Pure Appl. Logic **99** (1999), pages 51-72 - [Vo] Vojtáš, Peter: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set theory of the reals (Ramat Gan, 1991), pages 619-643, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS (BME) $E ext{-}mail\ address: barnabasfarkas@gmail.com}$ Alfréd Rényi Institute of Mathematics $E ext{-}mail\ address: soukup@renyi.hu}$