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P-IDEALS
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ABSTRACT. Given an ideal Z on w let a(Z) (a(Z)) be minimum of the
cardinalities of infinite (uncountable) maximal Z-almost disjoint subsets
of [w]“. We show that a(Zy) > w if Zj, is a summable ideal; but a(Zz) =
w for any tall density ideal Z; including the density zero ideal Z. On the
other hand, you have b < @(Z) for any analytic P-ideal Z, and a(Zz) < a
for each density ideal Z;.

For each ideal Z on w denote bz and 9z the unbounding and domi-
nating numbers of (w”, <7) where f <z giff {n € w: f(n) > g(n)} € Z.
We show that bz = b and 0z = 0 for each analytic P-ideal Z.

Given a Borel ideal Z on w we say that a poset P is Z-bounding iff
Ve e ZNVP Iy e ZNV ¢ Cy. Pis Z-dominating iff Iy € TN VE
VeeZInNV xC"y.

For each analytic P-ideal Z if a poset P has the Sacks property then
P is Z-bounding; moreover if 7 is tall as well then the property Z-
bounding/Z-dominating implies w*-bounding/adding dominating reals,
and the converses of these two implications are false.

Using David Fremlin’s results we prove that if P adds a slalom cap-
turing all ground model reals then P is Z-dominating for each analytic
P-ideal Z, and that a poset P is Z-bounding iff it has the Sacks property.

1. INTRODUCTION

In this paper we investigate some properties of some cardinal invariants
associated with analytic P-ideals. Moreover we analyze related “bounding”
and “dominating” properties of forcing notions.

Let us denote fin the Frechet ideal on w, i.e. fin = [w]<¥. Further we
always assume that if Z is an ideal on w then the ideal is proper, i.e. w ¢ Z,
and fin C Z, so especially Z is non-principal. Write Z+ = P(w)\Z and
¥ ={w\X : X € T}.

An ideal Z on w is analytic if T C P(w) ~ 2“ is an analytic set in the
usual product topology. Z is a P-ideal if for each countable C C 7 there is
an X € Z such that Y C* X for each Y € C, where A C* B iff A\B is finite.
T is tall (or dense) if each infinite subset of w contains an infinite element of
7.
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A function ¢ : P(w) — [0,00] is a submeasure on w iff p(X) < p(Y) for
XCY Cw, p(XUY) <o(X)+ pY) for X, Y Cw, and p({n}) < oo for
n € w. A submeasure ¢ is lower semicontinuous iff o(X) = lim,, o (X Nn)
for each X C w. A submeasure ¢ is finite if p(w) < oco. Note that if ¢ is
a lower semicontinuous submeasure on w then p({J, ¢, An) < > ,c., ¢(An)
holds as well for A, C w. We assign the ezhaustive ideal Exh(p) to a
submeasure ¢ as follows

Exh(¢) = {X Cw: Jim o(X\n) = 0}.

Solecki, [So, Theorem 3.1], proved that an ideal Z C P(w) is an analytic
P-ideal or T = P(w) iff Z = Exh(y) for some lower semicontinuous finite
submeasure. Therefore each analytic P-ideal is F,s (i.e. II3) so a Borel
subset of 2¥. It is straightforward to see that if ¢ is a lower semicontinuous
finite submeasure on w then the ideal Exh(yp) is tall iff lim,, o ¢({n}) = 0.

Let Z be an ideal on w. A family A C Z" is Z-almost-disjoint (Z-AD in
short), if ANB € T for each {A, B} € [A]?>. An Z-AD family A is an Z-MAD
family if for each X € ZT there exists an A € A such that XNA€ZT, ie.
A is C-maximal among the Z-AD families.

Denote a(Z) the minimum of the cardinalities of infinite Z-MAD families.
In Theorem 2.2 we show that a(Zy) > w if Zj is a summable ideal; but
a(Z;) = w for any tall density ideal Zj; including the density zero ideal

Z:{Agw: lim [ANn] :O}.

n—00 n

On the other hand, if you define a(Z) as minimum of the cardinalities of
uncountable Z-MAD families then you have b < @(Z) for any analytic P-
ideal 7, and a(Zj;) < a for each density ideal Z; (see Theorems 2.6 and
2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable Cohen-
indestructible Z-MAD families for each analytic P-ideal Z.

A sequence (A @ a < K) C [w]¥ is a tower if it is C*-descending, i.e.
Ag C* A, if o < 8 < K, and it has no pseudointersection, i.e. aset X € [w]”
such that X C* A, for each o < k. In Section 4 we show it is consistent
that the continuum is arbitrarily large and for each tall analytic P-ideal 7
there is towers of height w; whose elements are in Z%.

Given an ideal Z on w if f,g € w* write f <7 g if {n € w: f(n) >
g(n)} € Z. As usual let <*=<§g,. The unbounding and dominating numbers
of the partially ordered set (w*, <7), denoted by bz and 97 are defined in the
natural way, i.e. bz is the minimal size of a <z-unbounded family, and ?7
is the minimal size of a <z-dominating family. By these notations b = bg,
and 0 = 05,. In Section 5 we show that bz = b and 07 = 0 for each analytic
P-ideal Z. We also prove, in Corollary 6.8, that for any analytic P-ideal Z
a poset P is <z-bounding iff it is w“-bounding, and P adds <z-dominating
reals iff it adds dominating reals.
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In Section 6 we introduce the Z-bounding and Z-dominating properties of
forcing notions for Borel ideals: P is Z-bounding iff any element of ZN VT is
contained in some element of ZNV; P is Z-dominating iff there is an element
in Z N VP which mod-finite contains all elements of ZN V.

In Theorem 6.2 we show that for each tall analytic P-ideal Z if a forcing
notion is Z-bounding then it is w*-bounding, and if it is Z-dominating then
it adds dominating reals. Since the random real forcing is not Z-bounding
for each tall summable and tall density ideal Z by Proposition 6.3, the con-
verse of the first implication is false. Since a o-centered forcing can not be
7-dominating for a tall analytic P-ideal Z by Theorem 6.4, the standard dom-
inating real forcing DD witnesses that the converse of the second implication
is also false.

We prove in Theorem 6.5 that the Sacks property implies the Z-bounding
property for each analytic P-ideal Z.

Finally, based on a theorem of Fremlin we show that the Z-bounding
property is equivalent to the Sacks property.

2. AROUND THE ALMOST DISJOINTNESS NUMBER OF IDEALS

For any ideal Z on w denote a(Z) the minimum of the cardinalities of
infinite Z-MAD families.

To start the investigation of this cardinal invariant we recall the defini-
tion of two special classes of analytic P-ideals: the density ideals and the
summable ideals (see [Fal).

Definition 2.1. Let h: w — RT be a function such that >, . h(n) = oco.
The summable ideal corresponding to h is

I = {Agw:Zh(n) <oo}.
neA

Let (P, : n < w) be a decomposition of w into pairwise disjoint nonempty
finite sets and let i = (uy, : n € w) be a sequences of probability measures,
tn 2 P(P,) — [0,1]. The density ideal generated by i is

Z;={ACw: nlgngoun(Aﬂ P,) =0}.

A summable ideal Zj is tall iff lim,, o h(n) = 0; and a density ideal Z;
is tall iff

(1) lim max p,({i}) = 0.

n—oo i€ P,
Clearly the density zero ideal Z is a tall density ideal, and the summable
and the density ideals are proper ideals.

Theorem 2.2. (1) a(Z}) > w for any summable ideal Zj,.
(2) a(Z;) = w for any tall density ideal Z;.

Proof. (1): We show that if {4, : n < w} C I, is Z-AD then there is
BGI,J{ such that BN A, € Z for n € w.
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For each n € w let B, C A, \ U{4,, : m < n} be finite such that
> ien, h(i) > 1, and put
B =U{B, :n € w}.
(2): Write ji = (up, : n € w) and py, concentrates on P,. By (f) we have
lim,, o0 | Py| = 00.
Now for each n we can choose k, € w and a partition {P, j : k < kp} of
P,, such that
(a) lim, o0 ky, = 00,
(b) if k < ky, then py, (P k) > 2,6%
Put Ay, = U{P, 1 : k < k,} for each k € w. We show that {A} : k € w} is a
Z;-MAD family.
If ky, > k then p, (A N Py) = pn(Ppg) > ﬁ Since for an arbitrary k
for all but finitely many n we have k, > k it follows that
1 1
lim sup pn (A, N P,) = limsup i, (P, ;) > limsup = > 0,
n

n—00 n—00 —00 2k+1 T ok+1
thus A € Zg.
Assume that X € Z:{. Pick € > 0 with limsup,,_, . pn(X N P,) > €. For
a large enough k we have zk% < §soif k < k;, then
pin(Pu \ U{(Poi 11 S b)) < 7 < g
So for each large enough n there is 4,, < k such that p,(X N Py;,) > 575755

2(k+1)°

Then i,, = 4 for infinitely many n, so limsup,,_,. pn(X N A4;) > 30y and

so XNA; e Z:{. O
This Theorem gives new proof of the following well-known fact:
Corollary 2.3. The density zero ideal Z is not a summable ideal.

Given two ideals Z and J on w write Z <gg J (see [Ru]) iff there is a
function f : w — w such that

I={ICw:f'reJgy,

and write Z <gp J (see [LaZh]) iff there is a finite-to-one function f : w — w
such that
I={ICw:f'reJgy.
The following Observations imply that there are Z-MAD families of car-
dinality ¢ for each analytic P-ideal Z.

Observation 2.4. Assume that Z and J are ideals on w, T <pg J wiltnessed
by a function f:w — w. If A is an Z-AD family then {f1A: Ac A} is a
J-AD family.

Observation 2.5. fin <gg Z for any analytic P-ideal T.
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Proof. Let T = Exh(yp) for some lower semicontinuous finite submeasure ¢
on w. Since w ¢ Z we have lim,,_,o p(w\n) = ¢ > 0. Hence by the lower
semicontinuous property of ¢ for each n > 0 there is m > n such that
o([n,m)) > £/

So there is a partition {I,, : n < w} of w into finite pieces such that
©(I,) > /2 for each n € w. Define the function f : w — w by the stipulation
"I, = {n}. Then f witnesses fin <gp Z. O

For any analytic P-ideal Z denote a(Z) the minimum of the cardinalities
of uncountable Z-MAD families.

Clearly a(Z) > w implies a(Z) = a(Z), especially a(Z,) = a(Z,) for sum-
mable ideals.

Theorem 2.6. a(Z;) < a for each density ideal Zj.

Proof. Let f : w — w be the finite-to-one function defined by f~'{n} = P,
where i = (u, : n € w) and py, : P(P,) — [0,1]. Specially f witnesses
fin SRB Zﬁ

Let A be an uncountable (fin-)MAD family. We show that f~[A] =
{f'A: Ae A} is a Z;MAD family.

By Observation 2.4, f~![A] is a Zz-AD family.

To show the maximality let X & Z; be arbitrary, limsup,,_, . tn(X N
P,) =¢>0. Thus

J={new: u,(XNPkP,)>e/2}
is infinite. So there is A € A such that AN J is infinite.

Then f~1A € f71Al and X N f714 € Z:{ because there are infinitely
many n such that we have P, C f~'A and u,(X N P,) > ¢/2. O

Problem 2.7. Does a(Z) < a hold for each analytic P-ideal Z7
Theorem 2.8. b < a(Z) provided that T is an analytic P-ideal.

Remark. It X C [w}w is an infinite almost disjoint family then there is a tall
ideal Z such that X is Z-MAD. So the Theorem above does not hold for an
arbitrary tall ideal on w.

Proof. T = Exh(yp) for some lower semicontinuous finite submeasure .

Let A be an uncountable Z-AD family of cardinality smaller than b. We
show that A is not maximal.

There exists an € > 0 such that the set

A-={Aec A: nh_}rgo (A\n) > e}

is uncountable. Let A" = {A,, : n € w} C A. be a set of pairwise distinct
elements of A.. We can assume that these sets are pairwise disjoint. For
each A € A\ A’ choose a function f4 € w® such that

(*4) ©((ANAy)\ fa(n)) <27 for each n € w.
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Using the assumption |A] < b there exists a strictly increasing function
f € w¥ such that fa <* f for each A € A\A'. For each n pick g(n) > f(n)
such that ¢ (A, N [f(n),g(n))) > ¢, and let

X = {J (4un[f(n), g(n))).

new

Clearly X € Z;r because for each n < w there is m such that A4,, N
[F(m), g(m)) € X\n and s0 9(X \ n) > @(An 0 [f(m), g(m))) > &, ie.
limy, 00 (X \n) > €.

We have to show that X N A € Zj; for each A € A. If A= A, for some n
then X NA=XnNA,=A4,N[f(n),g(n)), i.e. the intersection is finite.

Assume now that A € A\ A". Let § > 0. We show that if k is large enough
then p((ANX)\ k) <.

There is N € w such that 27¥*! < § and fa(n) < f(n) for each n > N.

Let k be so large that k contains the finite set | J,,_y[f(n),g(n)).

Now (XOAN = Upew (AaNAN[F(n), g(n))) Vs and (A,NAN[f (), g(n)))\ e =
0 if n <N so

(X NANE= | (4N An[f(n),g(n)\k C

n>N

U ((Ann A\f(n) € [ ((An N A\ fa(n)).

n>N n>N

Thus by (*4) we have

A(XNANK) € Y oA N A\ fatm) < 3 o =27V <5

n>N n>N

3. COHEN-INDESTRUCTIBLE Z-MAD FAMILIES

If p is a lower semicontinuous finite submeasure on w then clearly ¢ is
determined by ¢ | [w]<“. Using this observation one can define forcing inde-
structibility of Z-MAD families for an analytic P-ideal Z. The following The-
orem is a modification of Kunen’s proof for existence of Cohen-indestructible
MAD family from CH (see [Ku| Ch. VIII Th. 2.3.).

Theorem 3.1. Assume CH. For each analytic P-ideal T then there is an
uncountable Cohen-indestructible ZT-MAD family.

Proof. We will define the uncountable Cohen-indestructible Z-MAD family
{A¢ : € <wi} CTIT by recursion on £ € wy. The family {A¢ : § < wi} will
be fin-AD as well. Our main concern is that we do have a(Z) > w so it is
not automatic that {4, : 7 < £} is not maximal for £ < w;.

Denote C the Cohen forcing. Let Z = Exh(y) be an analytic P-ideal. Let
{(pe, Xe,0¢) : w < € < wi} be an enumeration of all triples (p, X, ) such
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that p € C, X is a nice name for a subset of w, and § is a positive rational
number.

Write € = limy,,—y00 (w \ ) > 0. Partition w into infinite sets {A4,, : m <
w} such that lim, o (A, \ n) = € for each m < w.

Assume £ > w and we have A, € ZT for n < £ such that {4, : n < &} is
a fin-AD so especially an Z-AD family.

Claim: There is X € Z7 such that [X N A¢| < w for ¢ <&.

Proof of the Claim. Write & = {(; : i < w}. Recursion on j € w we can
choose z; € [Agj] <“ for some ¢; € w such that

(i) w(z;) > /2,

(i) z; N (UigjAg,) = 0.
Assume that {z; : i < j} is chosen. Pick ¢; € w\{(; : i < j}. Let m € wsuch
that Ag, NU{A, : i < j} C m. Since p(Ag, \m) > e thereis z; € [A,\m] <
with p(x;) > /2.

Let X = U{z; : j <w}. Then |A:NX| < wfor { < & and lim,, (X \n) >
£/2. O

If pe does not force (a) and (b) below then let A¢ be X from the Claim.
(a) hmn—w? @(Xﬁ\vn) > 55’
(b) V<& XenA, el

Assume p¢ IF(a)A(b). Let {B,E tkewt={A4,:n<¢} and {pi ko€
w} ={p’ € C:p' < p¢} be enumerations. Clearly for each k € w we have

€ e (X TR <
pi I lim G((X\U{B; :1 < k})\n) > b,

so we can choose a qi < pi and a finite ai C w such that gp(ai) > 0¢ and

g; Ik a5 C (X \U{BS 1 1 < E})\k. Let A = U{d} : k € w}. Clearly A € Tt
and {4, : n < ¢} is a fin-AD family.

Thus A= {A¢ : £ <wi} CZ" is a fin-AD family.

We show that A is a Cohen-indestructible Z-MAD. Assume otherwise
there is a & such that pe IF limy, 00 P(Xe\n) > 0 AV <wi XeNA, €T,
specially pe IF(a)A(b). There is a pi < p¢ and an N such that pi - o((Xen
A¢)\N) < d¢. We can assume k > N, so pi - @((Xe N Ag)\E) < 0¢. By the
choice of qi and ai we have qi I+ di C (XeNAe)\E, so qi I p((XeNAg)\k) >
55, contradiction. O

4. TOWERS IN 7%

Let Z be an ideal on w. A C*-decreasing sequence (A, : a < k) is a tower
in T* if (a) it is a tower (i.e. there isno X € [w]* with X C* A4, for a < k),
and (b) Ay € I* for @ < k. Under CH it is straightforward to construct
towers in Z* for each tall analytic P-ideal Z. The existence of such towers is
consistent with 2% > wy as well by the Theorem 4.2 below. Denote C, the
standard forcing adding « Cohen reals by finite conditions.
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Lemma 4.1. Let Z = Exh(y) be a tall analytic P-ideal in the ground model
V. Then there is a set X € V' NI such that |X N S| = w for each
S e [w}w nv.

Proof. Since 7 is tall we have lim,,_, ¢({n}) = 0. Fix a partition (I, : n € w)
of w into finite intervals such that ¢({z}) < 5 for & € I,,11 (We can not say
anything about ¢({z}) for € Iy). Then X’ € T whenever | X' N I,| <1 for
each n.

Let {i} : k < ky} be the increasing enumeration of I,,. Our forcing C adds
a Cohen real c € w” over V. Let

Xo ={i : ¢(n) =kmod k,} € VENT.
A trivial density argument shows that | X,NS| = w foreach S € VNw]¥. O

Theorem 4.2. I-¢,, "There exists a tower in Z* for each tall analytic P-ideal
"

Proof. Let V' be a countable transitive model and G be a C,,-generic filter
over V. Let Z = Exh(p) be a tall analytic P-ideal in V|G| with some lower
semicontinuous finite submeasure ¢ on w. There is a § < w; such that
¢ | [w]=¥ € V[Gs] where G5 = G N Cg, so we can assume ¢ | [w]<¥ € V.

Work in V[G] recursion on w; we construct the tower A = (A, : a < wy)
in Z* such that A | o € V[Gy)].

Because Z contains infinite elements we can construct in V' a sequence
(Ap 1 n € w) in Z* which is strictly C*-descending, i.e. |A,\Ap11| = w for
n € w. Assume (A¢ : £ < a) are done.

Since Z is a P-ideal there is A], € Z* with A}, C* Ag for < a.

By lemma 4.1 there is a set X, € V[Ga41] NZ such that X, NS # ( for
each S € [w]“ NV[Ga].

Let Ay = Al\Xqo € V[Gat1)NT* s0 S €* A, for any S € V[Go] N [w]“.
Hence V[G] E"(Aqn : o < wy) Is a tower in Z*". O

Problem 4.3. Do there exist towers in Z* for some tall analytic P-ideal Z
in ZFC?

5. UNBOUNDING AND DOMINATING NUMBERS OF IDEALS

A supported relation (see [Vo]) is a triple R = (A4, R, B) where R C Ax B,
dom(R) = A, ran(R) = B, and we always assume that for each b € B there
is an a € A such that (a,b) ¢ R.

The unbounding and dominating numbers of R:

b(R) =min{|A'| : A/ CAAVbeE B A ¢ RHb}},

3(R) =min{|B'|: B C BANA=R'B}.
For example bz = b(w", <z,w”) and 9z = d(w*, <z,w"). Note that b(R)
and 0(R) are defined for each R, but in general b(R) < d(R) does not hold.
We recall the definition of Galois-Tukey connection of relations.
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Definition 5.1. ([VO]) Let Rl = (Al,Rl,Bl) and RQ = (AQ,RQ,BQ) be
supported relations. A pair of functions ¢ : A1 — As, ¥ : Bs — By is a
Galois-Tukey connection from R1 to Re, in notation (¢,v) : R1 = Re if
a1 R11(b2) whenever ¢(ai)Rabs. In a diagram:

W(bs) € By Y~ By>by
R1 <= RQ

a; € Ay SN Ay > ¢(ay)

We write R1 < R if there is a Galois-Tukey connection from R; to Ro. If
R1 2 Ro and Ro =< Ry also hold then we say R1 and Rg are Galois-Tukey
equivalent, in notation R = Ro.

Fact 5.2. If Ry <X Ry then b(R1) > b(R2) and 9(R1) < 0(Rz2).
Theorem 5.3. If Z <gp J then (w*,<7,w") = (W, <7,w").

Proof. Fix a finite-to-one function f :w — w witnessing Z <gp J.
Define ¢, : w* — w* as follows:

We prove two claims.
Claim 5.3.1. (¢,?) : (w¥, <7,w") < (W, <7,w").

Proof of the claim. We show that if ¢(x) <7 y then x <7 9(y). Indeed,
I={i:¢(x)(i) > y(i)} € Z. Assume that f(j) =i ¢ I. Then ¢(x)(i) =
max(a" f~1{i}) < y(i). Since y(i) = ¥(y)(j), so

2(5) < max(2"fTH{F(G)}) < w(f(7) = v(») ()
Since f~1I € J this yields # <7 ¥(y). O

Claim 5.3.2. (¢, 9¢) : (w¥, <7,w") < (¥, <7,w").

Proof of the claim. We show that if ¢(y) <7 z then y <7 ¢(z). Assume on
the contrary that y €7 ¢(z). Then A = {i € w: y(i) > ¢(x)(i)} € ZT. By
definition of ¢, we have A = {i : y(i) > max(z” f~1{i})}.

Let B=f"1Ac J*. For j € B we have f(j) € A and so

D)) = y(f(5)) > ¢(@)(f(4)) = max(@" fHf(G)}) > 2()).
Hence 9(y) £7 x, contradiction. O

These claims prove the statement of the Theorem, so we are done. O
By Fact 5.2 we have:

Corollary 5.4. If T <gp J holds then bz = by and 97 =07.
By Observation 2.5 this yields:
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Corollary 5.5. IfZ is an analytic P-ideal then (w*, <*,w*) = (¥, <7,w"),
and by = b and 07 = 0.

6. Z-BOUNDING AND Z-DOMINATING FORCING NOTIONS

Definition 6.1. Let Z be a Borel ideal on w. A forcing notion P is Z-
bounding if

FpVAeZdBeZINV AC B;
P is Z-dominating if

Fp3B€eZIVAcINV AC*B.

Theorem 6.2. Let T be a tall analytic P-ideal. If P is Z-bounding then P
18 w¥-bounding as well; if P is T-dominating then P adds dominating reals.

Proof. Assume that Z = Exh(y) for some lower semicontinuous finite sub-
measure ¢. For A € 7 let

da(n) =min{k cw: p(A\ k) <27"}.
Clearly if AC B € 7 then dg < dp.

It is enough to show that {d4 : A € T} is cofinal in (w*, <*). Let f € w®.
Since Z is a tall ideal we have limy_ o, @({k}) = 0 but lim,, oo(w \ m) =
e > 0. Thus for all but finite n € w we can choose a finite set A, C w\ f(n)
such that 27" < p(A4,) <27l so A=U{4,:n€w} €T and f <* da.

Why? We can assume if k£ > f(n) then p({k}) < 27". Let n be so large
such that 27" < e. Now if there is no a suitable A,, then p(w\f(n)) < 27" <
€, contradiction. O

The converse of the first implication of Theorem 6.2 is not true by the
following Proposition.

Proposition 6.3. The random forcing is not Z-bounding for any tall sum-
mable and tall density ideal T.

Proof. Denote B the random forcing and A the Lebesgue-measure.

If 7 = 7 is a tall summable ideal then we can chose pairwise disjoint sets
H(n) € [w]” such that 37y, h(l) =1 and max{h(l) : I € H(n)} < 27"
for each n € w. Let H(n) = {I} : k € w}. For each n fix a partition
{[BP] : k € w} of B such that A\(B}) = h(I}) for each k € w. Let X be a
B-name such that Iy X = {I [BZ}] € G}. Clearly IFg X € Zj,. X shows
that B is not Zy-bounding.

Assume on the contrary that there is a [B] € B and an A € Zj, such that
[B] IF X C A. There is an n € w such that

> OABE) = Y h(l) < M(B).
IeA IneA

Choose a k such that 12 ¢ A and [BP] A[B] # [0]. We have [BR]A[B] IF I €
X\ A, contradiction.
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If 7 = Zj is a tall density ideal then for each n fix a partition {[BY] : ke
P,} of B such that /\(Bk) = pn({k}) for each k. Let X be a B-name such
that IFg X = {k [B”] € G}. Clearly IFg X € Z;. X shows that B is not
Z;-bounding.

Assume on the contrary that there is a [B] € B and an A € Z; such that
[B] IF X C A. There is an n € w such that

Z )‘(Bl?) = pn(AN Pn) < A(B).
kEANP,
Choose a k € P,\ A such that [B]A[B] # [0]. We have [BR]A[B] IF k € X\ A4,
contradiction. ]

The converse of the second implication of Theorem 6.2 is not true as well:
the Hechler forcing is a counterexample according to the following Theorem.

Theorem 6.4. If P is o-centered then P is not Z-dominating for any tall
analytic P-ideal T.

Proof. Assume that Z = Exh(p) for some lower semicontinuous finite sub-
measure . Let ¢ = lim,,_,o p(w \ n) > 0.

Let P = U{C,, : n € w} where C,, is centered for each n. Assume on the
contrary that IFp X e IAV A€ ZNV A C* X for some P-name X.

For each A € T choose a py € P and a k4 € w such that

(o) pa lF A\/%AQX/\QO(X\/%A)<6/2.

For each n,k € wlet C,p, = {A € T : ps € Cy Nka = k}, and let
By = UCp k- We show that for each n and &

(B \ k) <e/2.

Assume indirectly ¢(B,,\k) > ¢/2 for some n and k. There is a ¥
such that ¢(B,, N[k, k")) > /2 and there is a finite D C C, ; such that
By, N[k, k") = (UD)N[k, k’). Choose a common extension g of {ps : A € D}.
Now we have ¢ IF U{A\k : A € D} C X and so

¢k e/2 < o(Bap N[k, K)) = o(UD) N[k, K)) < o(X 0 [k, E)) < o(X\E),

which contradicts (o).

So for each n and k the set w \ B, is infinite, so w \ B, ) contains an
infinite D), ;, € Z. Let D € T such that D,, ;, C* D for each n,k € w.

Then there is no n, k such that D C* B, ;.. Contradiction. O

By this Theorem an by Lemma 4.1 the Cohen forcing is neither Z-dominating
nor Z-bounding for any tall analytic P-ideal Z.

Finally in the rest of the paper we compare the Sacks property and the
Z-bounding property.

Theorem 6.5. If P has the Sacks property then P is T-bounding for each
analytic P-ideal L.
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Proof. Let T = Exh(yp). Assume IFp X € Z. Let dy be a P-name for an
element of w* such that IFp dy (7) = min{k € w : p(X\k) < 277}. We know
that P is w“-bounding. If p IF dy < f for some strictly increasing f € w®
then by the Sacks property there is a ¢ < p and a slalom S : w — [[w]<w] <w,
|S(n)| < n such that

qgIFY°n X N[f(n), f(n+1)) € S(n).

Now let
A= J{DeSn): (D) <27"}.
new
A € Tbecause p(A\f(n)) < 3 ks, p(AN[f(K), fF(k+1)) <> isn 2% Clearly
glI- X C* A. O

A supported relation R = (A, R, B) is called Borel-relation iff there is a
Polish space X such that A, B C X and R C X? are Borel sets. Similarly a
Galois-Tukey connection (¢,1) : R1 = Ro between Borel-relations is called
Borel GT-connection iff ¢ and ¢ are Borel functions. To be Borel-relation
and Borel GT-connection is absolute for transitive models containing all
relevant codes.

Some important Borel-relation:

(A): (Z,C,7) and (Z,C*,7) for a Borel ideal 7.

(B): Denote Slm the set of slaloms on w, i.e. S € Slm iff S : w — [w]<¥
and |S(n)| = 2" for each n. Let T and C* be the following relations on
w® X Slm:

FEM S = V®) pecwf(n) e S(n).
The supported relations (w*, C, Slm) and (w*, C*, Slm) are Borel-relations.

(C): Denote ;" the set of positive summable series. Let < be the coordinate-
wise and <* the almost everywhere coordinate-wise ordering on ET. (Ef, <
A7) and (€], <*,£) are Borel-relations.

Definition 6.6. Let R = (A, R, B) be a Borel-relation. A forcing notion P
is R-bounding if
IFp Va € AJbe BNV aRb;
R-dominating if
IFp 3b € BYa € ANV aRb.
For example the property Z-bounding/dominating is the same as (Z, C*
, Z)-bounding/dominating.
We can reformulate some classical properties of forcing notions:

w“-bounding = (w?, <™, w*)-bounding

adding dominating reals = (w¥, <*, w*)-dominating
Sacks property = (w?, c™), Slm)-bounding

adding a slalom capturing = (w?, ¥, Slm)-dominating

all ground model reals
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If R = (A,R,B) is a supported relation then let R+ = (B,-R~!, A)
where b(=R™1)a iff not aRb. Clearly (R+)t = R and b(R) = 2(R*). Now
if R is a Borel-relation then R+ is a Borel-relation too, and a forcing notion
is R-bounding iff it is not R+-dominating.

Fact 6.7. Assume R1 = Ro are Borel-relations with Borel GT-connection
and P is a forcing notion. If P is Ra-bounding/dominating then P is R;-
bounding/dominating.

By Corollary 5.5 this yields

Corollary 6.8. For each analytic P-ideal T (1) a poset P is <z-bounding
iff it is w¥-bounding, (2) forcing with a poset P adds <z-dominating reals iff
this forcing adds dominating reals.

Fremlin’s two results have interesting corollaries for us.

Lemma 6.9. (|Fr| 524C) Let (P,<) be a partially ordered set such that
sup{p, q} is defined for all p,q € P. Suppose d is a metric on P such that
(P, d) is a polish space and sup{-, -} : P2 — P is uniformly continuous. Then
(P,<,P) = ({1, <,¢) with a Borel GT-connection.

Corollary 6.10. There is a Borel G T-connection (Z,C,T) = (01, <, 4) for
each analytic P-ideal Z.

Proof. Let Z = Exh(p) where ¢ is a finite lower semicontinuous submeasure
on w with ¢(A) = 0 iff A = 0. One can show that (Z,C) with d(A, B) =
©(AAB) satisfy the requirements of Lemma 6.9. O

Note that there is no any Galois-Tukey connection from (¢, <,¢{) to
(Z,C, Z) so they are not GT-equivalent (see [LoVe|) Th. 7.).

Theorem 6.11. ([Fr| 5241) There is a Borel GT-connection (£ ,<* () =
(w*,C*, Slm).

Corollary 6.12. If P adds a slalom capturing all ground model reals then P
is Z-dominating for each analytic P-ideal T.

Proof. By Fact 6.7 and Theorem 6.11 adding slalom is the same as (Ef, <*
.07 )-dominating. Let & be a P-name such that Ibp & € ¢ AV y € 4 NV
y <* . Moreover let X be a P-name such that IFp X = {z € £] : [2\%| < w,
vV n (z(n) # @(n) = z(n) € w)}. Let (¢,%) : (Z,C,T) =< (¢7,<,4]) be a
Borel GT-connection. Now if A is a P-name such that IFp ¥V z € X 1(2) C* A
then A shows that P is Z-dominating. (]

Denote D the dominating forcing and LOC the Localization forcing. Be-
cause of the complicated GT-connections it seems hard to construct an Z-
dominating set in VOC, Despite LOC it is much more simple to show
directly that the two-step iteration D * LOC is Z-dominating.

Observation 6.13. If Z is an arbitrary analytic P-ideal then two step iter-
ation D x LOC is Z-dominating.
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Indeed, let Z € V € M C N be transitive models, d € M N w* be
strictly increasing and dominating over V, and S € N, S : w — [[w]<‘“]<w,
|S(n)| < mn aslalom which captures all reals from M. Now if

X, =U{A e Sn)NP(dn),dn+1)):p(A) <27}
then it is easy to see that Y C* U{X,:new} € ZNN foreach Y € VNT.
Problem 6.14. Does Z-dominating (or Z-dominating) imply adding slaloms?
We will use the following deep result of Fremlin to prove Theorem 6.16.

Theorem 6.15. ([Fr| 526G) There is a family { Py : f € w“} of Borel subsets
of Ef such that the following hold:
() 6 = ULy f ew),
(i) if f < g then Py C Py,
(iii) (Py, <.¢7) = (Z,<, Z) with a Borel GT-connection for each f.

Theorem 6.16. P is Z-bounding iff P has the Sacks property.

Proof. Let {Py: f € w*} be a family satisfying (i), (ii), and (iii) in Theorem
6.15, and fix Borel GT-connections (¢f,%¢) : (Pr, <,01) < (Z,C, Z) for
each f € w*. Assume P is Z-bounding and IFp & € ¢. P is w*-bounding
by Theorem 6.2 so using (i) we have IFp ¢ = U{P; : f € w* N V}. We
can choose a P-name f for an element of w* NV such that IFp @ € Pf-. By

Z-bounding property of P there is a P-name A for an element of Z NV
such that Ibp ¢ (&) € A, so lkp & < 9;(A) € ¢ N'V. So we have P is
(¢F, <™ ¢F)-bounding. By Theorem 6.11 and Fact 6.7 P has the Sacks

property.
The converse implication was proved in Theorem 6.5.
(|

Problem 6.17. Does the Z-bounding property imply the Sacks property for
each tall analytic P-ideal Z7
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