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Abstract. Given an ideal I on ω let a(I) (ā(I)) be minimum of the
cardinalities of in�nite (uncountable) maximal I-almost disjoint subsets
of [ω]ω. We show that a(Ih) > ω if Ih is a summable ideal; but a(Z~µ) =
ω for any tall density ideal Z~µ including the density zero ideal Z. On the
other hand, you have b ≤ ā(I) for any analytic P -ideal I, and ā(Z~µ) ≤ a
for each density ideal Z~µ.

For each ideal I on ω denote bI and dI the unbounding and domi-
nating numbers of 〈ωω,≤I〉 where f ≤I g i� {n ∈ ω : f(n) > g(n)} ∈ I.
We show that bI = b and dI = d for each analytic P-ideal I.

Given a Borel ideal I on ω we say that a poset P is I-bounding i�
∀x ∈ I ∩ V P ∃y ∈ I ∩ V x ⊆ y. P is I-dominating i� ∃y ∈ I ∩ V P

∀x ∈ I ∩ V x ⊆∗ y.
For each analytic P-ideal I if a poset P has the Sacks property then

P is I-bounding; moreover if I is tall as well then the property I-
bounding/I-dominating implies ωω-bounding/adding dominating reals,
and the converses of these two implications are false.

Using David Fremlin's results we prove that if P adds a slalom cap-
turing all ground model reals then P is I-dominating for each analytic
P-ideal I, and that a poset P is Z-bounding i� it has the Sacks property.

1. Introduction

In this paper we investigate some properties of some cardinal invariants
associated with analytic P -ideals. Moreover we analyze related �bounding�
and �dominating� properties of forcing notions.

Let us denote fin the Frechet ideal on ω, i.e. fin = [ω]<ω. Further we
always assume that if I is an ideal on ω then the ideal is proper, i.e. ω /∈ I,
and fin ⊆ I, so especially I is non-principal. Write I+ = P(ω)\I and
I∗ = {ω\X : X ∈ I}.

An ideal I on ω is analytic if I ⊆ P(ω) ' 2ω is an analytic set in the
usual product topology. I is a P-ideal if for each countable C ⊆ I there is
an X ∈ I such that Y ⊆∗ X for each Y ∈ C, where A ⊆∗ B i� A\B is �nite.
I is tall (or dense) if each in�nite subset of ω contains an in�nite element of
I.
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A function ϕ : P(ω) → [0,∞] is a submeasure on ω i� ϕ(X) ≤ ϕ(Y ) for
X ⊆ Y ⊆ ω, ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) for X,Y ⊆ ω, and ϕ({n}) < ∞ for
n ∈ ω. A submeasure ϕ is lower semicontinuous i� ϕ(X) = limn→∞ ϕ(X∩n)
for each X ⊆ ω. A submeasure ϕ is �nite if ϕ(ω) < ∞. Note that if ϕ is
a lower semicontinuous submeasure on ω then ϕ(

⋃
n∈ω An) ≤

∑
n∈ω ϕ(An)

holds as well for An ⊆ ω. We assign the exhaustive ideal Exh(ϕ) to a
submeasure ϕ as follows

Exh(ϕ) =
{
X ⊆ ω : lim

n→∞
ϕ(X\n) = 0

}
.

Solecki, [So, Theorem 3.1], proved that an ideal I ⊆ P(ω) is an analytic
P -ideal or I = P(ω) i� I = Exh(ϕ) for some lower semicontinuous �nite
submeasure. Therefore each analytic P-ideal is Fσδ (i.e. Π0

3) so a Borel
subset of 2ω. It is straightforward to see that if ϕ is a lower semicontinuous
�nite submeasure on ω then the ideal Exh(ϕ) is tall i� limn→∞ ϕ({n}) = 0.

Let I be an ideal on ω. A family A ⊆ I+ is I-almost-disjoint (I-AD in
short), if A∩B ∈ I for each {A,B} ∈ [A]2. An I-AD family A is an I-MAD
family if for each X ∈ I+ there exists an A ∈ A such that X ∩ A ∈ I+, i.e.
A is ⊆-maximal among the I-AD families.

Denote a(I) the minimum of the cardinalities of in�nite I-MAD families.
In Theorem 2.2 we show that a(Ih) > ω if Ih is a summable ideal; but
a(Z~µ) = ω for any tall density ideal Z~µ including the density zero ideal

Z =
{
A ⊆ ω : lim

n→∞

|A ∩ n|
n

= 0
}
.

On the other hand, if you de�ne ā(I) as minimum of the cardinalities of
uncountable I-MAD families then you have b ≤ ā(I) for any analytic P -
ideal I, and ā(Z~µ) ≤ a for each density ideal Z~µ (see Theorems 2.6 and
2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable Cohen-
indestructible I-MAD families for each analytic P-ideal I.

A sequence 〈Aα : α < κ〉 ⊂ [ω]ω is a tower if it is ⊆∗-descending, i.e.
Aβ ⊆∗ Aα if α ≤ β < κ, and it has no pseudointersection, i.e. a set X ∈ [ω]ω

such that X ⊆∗ Aα for each α < κ. In Section 4 we show it is consistent
that the continuum is arbitrarily large and for each tall analytic P -ideal I
there is towers of height ω1 whose elements are in I∗.

Given an ideal I on ω if f, g ∈ ωω write f ≤I g if {n ∈ ω : f(n) >
g(n)} ∈ I. As usual let ≤∗=≤fin. The unbounding and dominating numbers
of the partially ordered set 〈ωω,≤I〉, denoted by bI and dI are de�ned in the
natural way, i.e. bI is the minimal size of a ≤I-unbounded family, and dI
is the minimal size of a ≤I-dominating family. By these notations b = bfin

and d = dfin. In Section 5 we show that bI = b and dI = d for each analytic
P-ideal I. We also prove, in Corollary 6.8, that for any analytic P-ideal I
a poset P is ≤I-bounding i� it is ωω-bounding, and P adds ≤I-dominating
reals i� it adds dominating reals.
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In Section 6 we introduce the I-bounding and I-dominating properties of
forcing notions for Borel ideals: P is I-bounding i� any element of I ∩ V P is
contained in some element of I ∩V ; P is I-dominating i� there is an element
in I ∩ V P which mod-�nite contains all elements of I ∩ V .

In Theorem 6.2 we show that for each tall analytic P-ideal I if a forcing
notion is I-bounding then it is ωω-bounding, and if it is I-dominating then
it adds dominating reals. Since the random real forcing is not I-bounding
for each tall summable and tall density ideal I by Proposition 6.3, the con-
verse of the �rst implication is false. Since a σ-centered forcing can not be
I-dominating for a tall analytic P-ideal I by Theorem 6.4, the standard dom-
inating real forcing D witnesses that the converse of the second implication
is also false.

We prove in Theorem 6.5 that the Sacks property implies the I-bounding
property for each analytic P-ideal I.

Finally, based on a theorem of Fremlin we show that the Z-bounding
property is equivalent to the Sacks property.

2. Around the almost disjointness number of ideals

For any ideal I on ω denote a(I) the minimum of the cardinalities of
in�nite I-MAD families.

To start the investigation of this cardinal invariant we recall the de�ni-
tion of two special classes of analytic P -ideals: the density ideals and the
summable ideals (see [Fa]).

De�nition 2.1. Let h : ω → R+ be a function such that
∑

n∈ω h(n) = ∞.
The summable ideal corresponding to h is

Ih =
{
A ⊆ ω :

∑
n∈A

h(n) <∞
}
.

Let 〈Pn : n < ω〉 be a decomposition of ω into pairwise disjoint nonempty
�nite sets and let ~µ = 〈µn : n ∈ ω〉 be a sequences of probability measures,
µn : P(Pn)→ [0, 1]. The density ideal generated by ~µ is

Z~µ =
{
A ⊆ ω : lim

n→∞
µn(A ∩ Pn) = 0

}
.

A summable ideal Ih is tall i� limn→∞ h(n) = 0; and a density ideal Z~µ
is tall i�

(†) lim
n→∞

max
i∈Pn

µn({i}) = 0.

Clearly the density zero ideal Z is a tall density ideal, and the summable
and the density ideals are proper ideals.

Theorem 2.2. (1) a(Ih) > ω for any summable ideal Ih.
(2) a(Z~µ) = ω for any tall density ideal Z~µ.

Proof. (1): We show that if {An : n < ω} ⊆ I+
h is I-AD then there is

B ∈ I+
h such that B ∩An ∈ I for n ∈ ω.
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For each n ∈ ω let Bn ⊆ An \ ∪{Am : m < n} be �nite such that∑
i∈Bn h(i) > 1, and put

B = ∪{Bn : n ∈ ω}.

(2): Write ~µ = 〈µn : n ∈ ω〉 and µn concentrates on Pn. By (†) we have
limn→∞ |Pn| =∞.

Now for each n we can choose kn ∈ ω and a partition {Pn,k : k < kn} of
Pn such that

(a) limn→∞ kn =∞,
(b) if k < kn then µn(Pn,k) ≥ 1

2k+1 .

Put Ak = ∪{Pn,k : k < kn} for each k ∈ ω. We show that {Ak : k ∈ ω} is a
Z~µ-MAD family.

If kn > k then µn(Ak ∩ Pn) = µn(Pn,k) ≥ 1
2k+1 . Since for an arbitrary k

for all but �nitely many n we have kn > k it follows that

lim sup
n→∞

µn(Ak ∩ Pn) = lim sup
n→∞

µn(Pn,k) ≥ lim sup
n→∞

1

2k+1
=

1

2k+1
> 0,

thus Ak ∈ Z+
~µ .

Assume that X ∈ Z+
~µ . Pick ε > 0 with lim supn→∞ µn(X ∩ Pn) > ε. For

a large enough k we have 1
2k+1 <

ε
2 so if k < kn then

µn(Pn \ ∪{Pn,i : i ≤ k}) ≤ 1

2k+1
<
ε

2
.

So for each large enough n there is in ≤ k such that µn(X ∩Pn,in) > ε
2(k+1) .

Then in = i for in�nitely many n, so lim supn→∞ µn(X ∩ Ai) ≥ ε
2(k+1) , and

so X ∩Ai ∈ Z+
~µ . �

This Theorem gives new proof of the following well-known fact:

Corollary 2.3. The density zero ideal Z is not a summable ideal.

Given two ideals I and J on ω write I ≤RK J (see [Ru]) i� there is a
function f : ω → ω such that

I = {I ⊆ ω : f−1I ∈ J },

and write I ≤RB J (see [LaZh]) i� there is a �nite-to-one function f : ω → ω
such that

I = {I ⊆ ω : f−1I ∈ J }.
The following Observations imply that there are I-MAD families of car-

dinality c for each analytic P-ideal I.

Observation 2.4. Assume that I and J are ideals on ω, I ≤RK J witnessed
by a function f : ω → ω. If A is an I-AD family then {f−1A : A ∈ A} is a
J -AD family.

Observation 2.5. fin ≤RB I for any analytic P -ideal I.
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Proof. Let I = Exh(ϕ) for some lower semicontinuous �nite submeasure ϕ
on ω. Since ω /∈ I we have limn→∞ ϕ(ω\n) = ε > 0. Hence by the lower
semicontinuous property of ϕ for each n > 0 there is m > n such that
ϕ([n,m)) > ε/2.

So there is a partition {In : n < ω} of ω into �nite pieces such that
ϕ(In) > ε/2 for each n ∈ ω. De�ne the function f : ω → ω by the stipulation
f ′′In = {n}. Then f witnesses fin ≤RB I. �

For any analytic P-ideal I denote ā(I) the minimum of the cardinalities
of uncountable I-MAD families.

Clearly a(I) > ω implies a(I) = ā(I), especially a(Ih) = ā(Ih) for sum-
mable ideals.

Theorem 2.6. ā(Z~µ) ≤ a for each density ideal Z~µ.

Proof. Let f : ω → ω be the �nite-to-one function de�ned by f−1{n} = Pn
where ~µ = 〈µn : n ∈ ω〉 and µn : P(Pn) → [0, 1]. Specially f witnesses
fin ≤RB Z~µ.

Let A be an uncountable (fin-)MAD family. We show that f−1[A] =
{f−1A : A ∈ A} is a Z~µ-MAD family.

By Observation 2.4, f−1[A] is a Z~µ-AD family.

To show the maximality let X ∈ Z+
~µ be arbitrary, lim supn→∞ µn(X ∩

Pn) = ε > 0. Thus

J = {n ∈ ω : µn(X ∩ Pn) > ε/2}

is in�nite. So there is A ∈ A such that A ∩ J is in�nite.
Then f−1A ∈ f−1[A] and X ∩ f−1A ∈ Z+

~µ because there are in�nitely

many n such that we have Pn ⊆ f−1A and µn(X ∩ Pn) > ε/2. �

Problem 2.7. Does ā(I) ≤ a hold for each analytic P-ideal I?

Theorem 2.8. b ≤ ā(I) provided that I is an analytic P -ideal.

Remark. If X ⊂
[
ω
]ω

is an in�nite almost disjoint family then there is a tall
ideal I such that X is I-MAD. So the Theorem above does not hold for an
arbitrary tall ideal on ω.

Proof. I = Exh(ϕ) for some lower semicontinuous �nite submeasure ϕ.
Let A be an uncountable I-AD family of cardinality smaller than b. We

show that A is not maximal.
There exists an ε > 0 such that the set

Aε =
{
A ∈ A : lim

n→∞
ϕ(A\n) > ε

}
is uncountable. Let A′ = {An : n ∈ ω} ⊆ Aε be a set of pairwise distinct
elements of Aε. We can assume that these sets are pairwise disjoint. For
each A ∈ A\A′ choose a function fA ∈ ωω such that

(∗A) ϕ
(
(A ∩An) \ fA(n)

)
< 2−n for each n ∈ ω.
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Using the assumption |A| < b there exists a strictly increasing function
f ∈ ωω such that fA ≤∗ f for each A ∈ A\A′. For each n pick g(n) > f(n)
such that ϕ

(
An ∩ [f(n), g(n))

)
> ε, and let

X =
⋃
n∈ω

(
An ∩ [f(n), g(n))

)
.

Clearly X ∈ Z+
~µ because for each n < ω there is m such that Am ∩

[f(m), g(m)) ⊆ X\n and so ϕ(X \ n) ≥ ϕ
(
Am ∩ [f(m), g(m))

)
> ε, i.e.

limn→∞ ϕ(X\n) ≥ ε.
We have to show that X ∩A ∈ Z~µ for each A ∈ A. If A = An for some n

then X ∩A = X ∩An = An ∩ [f(n), g(n)), i.e. the intersection is �nite.
Assume now that A ∈ A\A′. Let δ > 0. We show that if k is large enough

then ϕ((A ∩X) \ k) < δ.
There is N ∈ ω such that 2−N+1 < δ and fA(n) ≤ f(n) for each n ≥ N .
Let k be so large that k contains the �nite set

⋃
n<N [f(n), g(n)).

Now (X∩A)\k =
⋃
n∈ω

(
An∩A∩[f(n), g(n))

)
\k and

(
An∩A∩[f(n), g(n))

)
\k =

∅ if n < N so

(X ∩A)\k =
⋃
n≥N

(
An ∩A ∩ [f(n), g(n))

)
\k ⊆

⋃
n≥N

((An ∩A)\f(n)) ⊆
⋃
n≥N

((An ∩A)\fA(n)).

Thus by (∗A) we have

ϕ((X ∩A) \ k) ≤
∑
n≥N

ϕ(An ∩A \ fA(n)) ≤
∑
n≥N

1

2n
= 2−N+1 < δ.

�

3. Cohen-indestructible I-mad families

If ϕ is a lower semicontinuous �nite submeasure on ω then clearly ϕ is
determined by ϕ � [ω]<ω. Using this observation one can de�ne forcing inde-
structibility of I-MAD families for an analytic P-ideal I. The following The-
orem is a modi�cation of Kunen's proof for existence of Cohen-indestructible
MAD family from CH (see [Ku] Ch. VIII Th. 2.3.).

Theorem 3.1. Assume CH. For each analytic P-ideal I then there is an
uncountable Cohen-indestructible I-MAD family.

Proof. We will de�ne the uncountable Cohen-indestructible I-MAD family
{Aξ : ξ < ω1} ⊆ I+ by recursion on ξ ∈ ω1. The family {Aξ : ξ < ω1} will
be fin-AD as well. Our main concern is that we do have a(I) > ω so it is
not automatic that {Aη : η < ξ} is not maximal for ξ < ω1.

Denote C the Cohen forcing. Let I = Exh(ϕ) be an analytic P-ideal. Let

{〈pξ, Ẋξ, δξ〉 : ω ≤ ξ < ω1} be an enumeration of all triples 〈p, Ẋ, δ〉 such
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that p ∈ C, Ẋ is a nice name for a subset of ω, and δ is a positive rational
number.

Write ε = limn→∞ ϕ(ω \ n) > 0. Partition ω into in�nite sets {Am : m <
ω} such that limn→∞ ϕ(Am \ n) = ε for each m < ω.

Assume ξ ≥ ω and we have Aη ∈ I+ for η < ξ such that {Aη : η < ξ} is
a fin-AD so especially an I-AD family.

Claim: There is X ∈ I+ such that |X ∩Aζ | < ω for ζ < ξ.

Proof of the Claim. Write ξ = {ζi : i < ω}. Recursion on j ∈ ω we can

choose xj ∈
[
A`j
]<ω

for some `j ∈ ω such that

(i) ϕ(xj) ≥ ε/2,
(ii) xj ∩ (∪i≤jAζi) = ∅.
Assume that {xi : i < j} is chosen. Pick `j ∈ ω\{ζi : i < j}. Letm ∈ ω such

that A`j ∩∪{Aζi : i ≤ j} ⊆ m. Since ϕ(A`j \m) ≥ ε there is xj ∈
[
A`j\m

]<ω
with ϕ(xj) ≥ ε/2.

LetX = ∪{xj : j < ω}. Then |Aζ∩X| < ω for ζ < ξ and limn→∞(X\n) ≥
ε/2. �

If pξ does not force (a) and (b) below then let Aξ be X from the Claim.

(a) limn→∞ ϕ̌(Ẋξ\n) > δ̌ξ,

(b) ∀ η < ξ̌ Ẋξ ∩ Ǎη ∈ I.
Assume pξ 
(a)∧(b). Let {Bξ

k : k ∈ ω} = {Aη : η < ξ} and {pξk : k ∈
ω} = {p′ ∈ C : p′ ≤ pξ} be enumerations. Clearly for each k ∈ ω we have

pξk 
 lim
n→∞

ϕ̌
(
(Ẋξ\ ∪ {B̌ξ

l : l ≤ ǩ})\n
)
> δ̌ξ,

so we can choose a qξk ≤ pξk and a �nite aξk ⊆ ω such that ϕ(aξk) > δξ and

qξk 
 ǎξk ⊆ (Ẋξ\∪{B̌ξ
l : l ≤ ǩ})\ǩ. Let Aξ = ∪{aξk : k ∈ ω}. Clearly Aξ ∈ I+

and {Aη : η ≤ ξ} is a fin-AD family.
Thus A = {Aξ : ξ < ω1} ⊆ I+ is a fin-AD family.
We show that A is a Cohen-indestructible I-MAD. Assume otherwise

there is a ξ such that pξ 
 limn→∞ ϕ̌(Ẋξ\n) > δ̌ξ ∧ ∀ η < ω1 Ẋξ ∩ Ǎη ∈ I,
specially pξ 
(a)∧(b). There is a pξk ≤ pξ and an N such that pξk 
 ϕ̌((Ẋξ ∩
Ǎξ)\Ň) < δ̌ξ. We can assume k ≥ N , so pξk 
 ϕ̌((Ẋξ ∩ Ǎξ)\ǩ) < δ̌ξ. By the

choice of qξk and a
ξ
k we have q

ξ
k 
 ǎξk ⊆ (Ẋξ∩Ǎξ)\ǩ, so qξk 
 ϕ̌((Ẋξ∩Ǎξ)\ǩ) >

δ̌ξ, contradiction. �

4. Towers in I∗

Let I be an ideal on ω. A ⊆∗-decreasing sequence 〈Aα : α < κ〉 is a tower
in I∗ if (a) it is a tower (i.e. there is no X ∈

[
ω
]ω

with X ⊆∗ Aα for α < κ),
and (b) Aα ∈ I∗ for α < κ. Under CH it is straightforward to construct
towers in I∗ for each tall analytic P-ideal I. The existence of such towers is
consistent with 2ω > ω1 as well by the Theorem 4.2 below. Denote Cα the
standard forcing adding α Cohen reals by �nite conditions.
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Lemma 4.1. Let I = Exh(ϕ) be a tall analytic P-ideal in the ground model
V . Then there is a set X ∈ V C1 ∩ I such that |X ∩ S| = ω for each
S ∈

[
ω
]ω ∩ V .

Proof. Since I is tall we have limn→∞ ϕ({n}) = 0. Fix a partition 〈In : n ∈ ω〉
of ω into �nite intervals such that ϕ({x}) < 1

2n for x ∈ In+1 (we can not say
anything about ϕ({x}) for x ∈ I0). Then X

′ ∈ I whenever |X ′ ∩ In| ≤ 1 for
each n.

Let {ink : k < kn} be the increasing enumeration of In. Our forcing C adds
a Cohen real c ∈ ωω over V . Let

Xα = {ink : c(n) ≡ k mod kn} ∈ V C ∩ I.

A trivial density argument shows that |Xα∩S| = ω for each S ∈ V ∩[ω]ω. �

Theorem 4.2. 
Cω1"There exists a tower in I∗ for each tall analytic P-ideal
I."

Proof. Let V be a countable transitive model and G be a Cω1-generic �lter
over V . Let I = Exh(ϕ) be a tall analytic P-ideal in V [G] with some lower
semicontinuous �nite submeasure ϕ on ω. There is a δ < ω1 such that
ϕ � [ω]<ω ∈ V [Gδ] where Gδ = G ∩ Cδ, so we can assume ϕ � [ω]<ω ∈ V .

Work in V [G] recursion on ω1 we construct the tower Ā = 〈Aα : α < ω1〉
in I∗ such that Ā � α ∈ V [Gα].

Because I contains in�nite elements we can construct in V a sequence
〈An : n ∈ ω〉 in I∗ which is strictly ⊆∗-descending, i.e. |An\An+1| = ω for
n ∈ ω. Assume 〈Aξ : ξ < α〉 are done.

Since I is a P -ideal there is A′α ∈ I∗ with A′α ⊆∗ Aβ for β < α.
By lemma 4.1 there is a set Xα ∈ V [Gα+1] ∩ I such that Xα ∩ S 6= ∅ for

each S ∈
[
ω
]ω ∩ V [Gα].

Let Aα = A′α\Xα ∈ V [Gα+1] ∩ I∗ so S *∗ Aα for any S ∈ V [Gα] ∩ [ω]ω.
Hence V [G] |="〈Aα : α < ω1〉 is a tower in I∗". �

Problem 4.3. Do there exist towers in I∗ for some tall analytic P-ideal I
in ZFC?

5. Unbounding and dominating numbers of ideals

A supported relation (see [Vo]) is a triple R = (A,R,B) where R ⊆ A×B,
dom(R) = A, ran(R) = B, and we always assume that for each b ∈ B there
is an a ∈ A such that 〈a, b〉 /∈ R.

The unbounding and dominating numbers of R:

b(R) = min{|A′| : A′ ⊆ A ∧ ∀ b ∈ B A′ * R−1{b}},

d(R) = min{|B′| : B′ ⊆ B ∧A = R−1B′}.
For example bI = b(ωω,≤I , ωω) and dI = d(ωω,≤I , ωω). Note that b(R)
and d(R) are de�ned for each R, but in general b(R) ≤ d(R) does not hold.

We recall the de�nition of Galois-Tukey connection of relations.
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De�nition 5.1. ([Vo]) Let R1 = (A1, R1, B1) and R2 = (A2, R2, B2) be
supported relations. A pair of functions φ : A1 → A2, ψ : B2 → B1 is a
Galois-Tukey connection from R1 to R2, in notation (φ, ψ) : R1 � R2 if
a1R1ψ(b2) whenever φ(a1)R2b2. In a diagram:

ψ(b2) ∈ B1
ψ←−−−− B2 3 b2

R1 ⇐= R2

a1 ∈ A1
φ−−−−→ A2 3 φ(a1)

We write R1 � R2 if there is a Galois-Tukey connection from R1 to R2. If
R1 � R2 and R2 � R1 also hold then we say R1 and R2 are Galois-Tukey
equivalent, in notation R1 ≡ R2.

Fact 5.2. If R1 � R2 then b(R1) ≥ b(R2) and d(R1) ≤ d(R2).

Theorem 5.3. If I ≤RB J then (ωω,≤I , ωω) ≡ (ωω,≤J , ωω).

Proof. Fix a �nite-to-one function f : ω → ω witnessing I ≤RB J .
De�ne φ, ψ : ωω → ωω as follows:

φ(x)(i) = max(x′′f−1{i}),
ψ(y)(j) = y(f(j)).

We prove two claims.

Claim 5.3.1. (φ, ψ) : (ωω,≤J , ωω) � (ωω,≤I , ωω).

Proof of the claim. We show that if φ(x) ≤I y then x ≤J ψ(y). Indeed,
I = {i : φ(x)(i) > y(i)} ∈ I. Assume that f(j) = i /∈ I. Then φ(x)(i) =
max(x′′f−1{i}) ≤ y(i). Since y(i) = ψ(y)(j), so

x(j) ≤ max(x′′f−1{f(j)}) ≤ y(f(j)) = ψ(y)(j)

Since f−1I ∈ J this yields x ≤J ψ(y). �

Claim 5.3.2. (ψ, φ) : (ωω,≤I , ωω) � (ωω,≤J , ωω).

Proof of the claim. We show that if ψ(y) ≤J x then y ≤I φ(x). Assume on
the contrary that y 6≤I φ(x). Then A = {i ∈ ω : y(i) > φ(x)(i)} ∈ I+. By
de�nition of φ, we have A = {i : y(i) > max(x′′f−1{i})}.

Let B = f−1A ∈ J +. For j ∈ B we have f(j) ∈ A and so

ψ(y)(j) = y(f(j)) > φ(x)(f(j)) = max(x′′f−1{f(j)}) ≥ x(j).

Hence ψ(y) 6≤I x, contradiction. �

These claims prove the statement of the Theorem, so we are done. �

By Fact 5.2 we have:

Corollary 5.4. If I ≤RB J holds then bI = bJ and dI = dJ .

By Observation 2.5 this yields:
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Corollary 5.5. If I is an analytic P -ideal then (ωω,≤∗, ωω) ≡ (ωω,≤J , ωω),
and bI = b and dI = d.

6. I-bounding and I-dominating forcing notions

De�nition 6.1. Let I be a Borel ideal on ω. A forcing notion P is I-
bounding if


P ∀ A ∈ I ∃ B ∈ I ∩ V A ⊆ B;

P is I-dominating if


P ∃ B ∈ I ∀ A ∈ I ∩ V A ⊆∗ B.
Theorem 6.2. Let I be a tall analytic P -ideal. If P is I-bounding then P
is ωω-bounding as well; if P is I-dominating then P adds dominating reals.

Proof. Assume that I = Exh(ϕ) for some lower semicontinuous �nite sub-
measure ϕ. For A ∈ I let

dA(n) = min
{
k ∈ ω : ϕ(A \ k) < 2−n

}
.

Clearly if A ⊆ B ∈ I then dA ≤ dB.
It is enough to show that {dA : A ∈ I} is co�nal in 〈ωω,≤∗〉. Let f ∈ ωω.

Since I is a tall ideal we have limk→∞ ϕ({k}) = 0 but limm→∞(ω \ m) =
ε > 0. Thus for all but �nite n ∈ ω we can choose a �nite set An ⊆ ω\f(n)
such that 2−n ≤ ϕ(An) < 2−n+1 so A = ∪{An : n ∈ ω} ∈ I and f ≤∗ dA.

Why? We can assume if k ≥ f(n) then ϕ({k}) < 2−n. Let n be so large
such that 2−n < ε. Now if there is no a suitable An then ϕ(ω\f(n)) ≤ 2−n <
ε, contradiction. �

The converse of the �rst implication of Theorem 6.2 is not true by the
following Proposition.

Proposition 6.3. The random forcing is not I-bounding for any tall sum-
mable and tall density ideal I.
Proof. Denote B the random forcing and λ the Lebesgue-measure.

If I = Ih is a tall summable ideal then we can chose pairwise disjoint sets
H(n) ∈ [ω]ω such that

∑
l∈H(n) h(l) = 1 and max{h(l) : l ∈ H(n)} < 2−n

for each n ∈ ω. Let H(n) = {lnk : k ∈ ω}. For each n �x a partition

{[Bn
k ] : k ∈ ω} of B such that λ(Bn

k ) = h(lnk ) for each k ∈ ω. Let Ẋ be a

B-name such that 
B Ẋ = {ľnk : ˇ[Bn
k ] ∈ Ġ}. Clearly 
B Ẋ ∈ Ih. Ẋ shows

that B is not Ih-bounding.
Assume on the contrary that there is a [B] ∈ B and an A ∈ Ih such that

[B] 
 Ẋ ⊆ Ǎ. There is an n ∈ ω such that∑
lnk∈A

λ(Bn
k ) =

∑
lnk∈A

h(lnk ) < λ(B).

Choose a k such that lnk /∈ A and [Bn
k ]∧ [B] 6= [∅]. We have [Bn

k ]∧ [B] 
 ľnk ∈
Ẋ\Ǎ, contradiction.
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If I = Z~µ is a tall density ideal then for each n �x a partition {[Bn
k ] : k ∈

Pn} of B such that λ(Bn
k ) = µn({k}) for each k. Let Ẋ be a B-name such

that 
B Ẋ = {ǩ : ˇ[Bn
k ] ∈ Ġ}. Clearly 
B Ẋ ∈ Z~µ. Ẋ shows that B is not

Z~µ-bounding.
Assume on the contrary that there is a [B] ∈ B and an A ∈ Z~µ such that

[B] 
 Ẋ ⊆ Ǎ. There is an n ∈ ω such that∑
k∈A∩Pn

λ(Bn
k ) = µn(A ∩ Pn) < λ(B).

Choose a k ∈ Pn\A such that [Bn
k ]∧[B] 6= [∅]. We have [Bn

k ]∧[B] 
 ǩ ∈ Ẋ\Ǎ,
contradiction. �

The converse of the second implication of Theorem 6.2 is not true as well:
the Hechler forcing is a counterexample according to the following Theorem.

Theorem 6.4. If P is σ-centered then P is not I-dominating for any tall
analytic P -ideal I.

Proof. Assume that I = Exh(ϕ) for some lower semicontinuous �nite sub-
measure ϕ. Let ε = limn→∞ ϕ(ω \ n) > 0.

Let P = ∪{Cn : n ∈ ω} where Cn is centered for each n. Assume on the

contrary that 
P Ẋ ∈ I ∧ ∀ A ∈ I ∩ V A ⊆∗ Ẋ for some P-name Ẋ.
For each A ∈ I choose a pA ∈ P and a kA ∈ ω such that

(◦) pA 
 Ǎ\ǩA ⊆ Ẋ ∧ ϕ(Ẋ \ ǩA) < ε/2.

For each n, k ∈ ω let Cn,k = {A ∈ I : pA ∈ Cn ∧ kA = k}, and let
Bn,k =

⋃
Cn,k. We show that for each n and k

ϕ(Bn,k \ k) ≤ ε/2.
Assume indirectly ϕ(Bn,k\k) > ε/2 for some n and k. There is a k′

such that ϕ(Bn,k ∩ [k, k′)) > ε/2 and there is a �nite D ⊆ Cn,k such that
Bn,k∩[k, k′) = (∪D)∩[k, k′). Choose a common extension q of {pA : A ∈ D}.
Now we have q 
 ∪{A\ǩ : A ∈ Ď} ⊆ Ẋ and so

q 
 ε/2 < ϕ(B̌n,k ∩ [ǩ, ǩ′)) = ϕ((∪Ď) ∩ [ǩ, ǩ′)) ≤ ϕ(Ẋ ∩ [ǩ, ǩ′)) ≤ ϕ(Ẋ\ǩ),

which contradicts (◦).
So for each n and k the set ω \ Bn,k is in�nite, so ω \ Bn,k contains an

in�nite Dn,k ∈ I. Let D ∈ I such that Dn,k ⊆∗ D for each n, k ∈ ω.
Then there is no n, k such that D ⊆∗ Bn,k. Contradiction. �

By this Theorem an by Lemma 4.1 the Cohen forcing is neither I-dominating
nor I-bounding for any tall analytic P-ideal I.

Finally in the rest of the paper we compare the Sacks property and the
I-bounding property.

Theorem 6.5. If P has the Sacks property then P is I-bounding for each
analytic P-ideal I.
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Proof. Let I = Exh(ϕ). Assume 
P Ẋ ∈ I. Let dẊ be a P-name for an

element of ωω such that 
P dẊ(ň) = min{k ∈ ω : ϕ(Ẋ\k) < 2−ň}. We know

that P is ωω-bounding. If p 
 dẊ ≤ f̌ for some strictly increasing f ∈ ωω

then by the Sacks property there is a q ≤ p and a slalom S : ω →
[
[ω]<ω

]<ω
,

|S(n)| ≤ n such that

q 
 ∀∞ n Ẋ ∩ [f(n), f(n+ 1)) ∈ S(n).

Now let
A =

⋃
n∈ω
{D ∈ S(n) : ϕ(D) < 2−n}.

A ∈ I because ϕ(A\f(n)) ≤
∑

k≥n ϕ(A∩[f(k), f(k+1)) ≤
∑

k≥n
k
2k
. Clearly

q 
 Ẋ ⊆∗ Ǎ. �

A supported relation R = (A,R,B) is called Borel-relation i� there is a
Polish space X such that A,B ⊆ X and R ⊆ X2 are Borel sets. Similarly a
Galois-Tukey connection (φ, ψ) : R1 � R2 between Borel-relations is called
Borel GT-connection i� φ and ψ are Borel functions. To be Borel-relation
and Borel GT-connection is absolute for transitive models containing all
relevant codes.

Some important Borel-relation:
(A): (I,⊆, I) and (I,⊆∗, I) for a Borel ideal I.
(B): Denote Slm the set of slaloms on ω, i.e. S ∈ Slm i� S : ω → [ω]<ω

and |S(n)| = 2n for each n. Let v and v∗ be the following relations on
ωω × Slm:

f v(∗) S ⇐⇒ ∀(∞) n ∈ ω f(n) ∈ S(n).

The supported relations (ωω,v,Slm) and (ωω,v∗, Slm) are Borel-relations.
(C): Denote `+1 the set of positive summable series. Let≤ be the coordinate-

wise and ≤∗ the almost everywhere coordinate-wise ordering on `+1 . (`+1 ,≤
, `+1 ) and (`+1 ,≤∗, `

+
1 ) are Borel-relations.

De�nition 6.6. Let R = (A,R,B) be a Borel-relation. A forcing notion P
is R-bounding if


P ∀ a ∈ A∃ b ∈ B ∩ V aRb;
R-dominating if


P ∃ b ∈ B ∀ a ∈ A ∩ V aRb.
For example the property I-bounding/dominating is the same as (I,⊆∗

, I)-bounding/dominating.
We can reformulate some classical properties of forcing notions:

ωω-bounding ≡ (ωω,≤(∗), ωω)-bounding

adding dominating reals ≡ (ωω,≤∗, ωω)-dominating

Sacks property ≡ (ωω,v(∗), Slm)-bounding

adding a slalom capturing ≡ (ωω,v∗,Slm)-dominating

all ground model reals
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If R = (A,R,B) is a supported relation then let R⊥ = (B,¬R−1, A)
where b(¬R−1)a i� not aRb. Clearly (R⊥)⊥ = R and b(R) = d(R⊥). Now
if R is a Borel-relation then R⊥ is a Borel-relation too, and a forcing notion
is R-bounding i� it is not R⊥-dominating.

Fact 6.7. Assume R1 � R2 are Borel-relations with Borel GT-connection
and P is a forcing notion. If P is R2-bounding/dominating then P is R1-
bounding/dominating.

By Corollary 5.5 this yields

Corollary 6.8. For each analytic P -ideal I (1) a poset P is ≤I-bounding
i� it is ωω-bounding, (2) forcing with a poset P adds ≤I-dominating reals i�
this forcing adds dominating reals.

Fremlin's two results have interesting corollaries for us.

Lemma 6.9. ([Fr] 524C) Let (P,≤) be a partially ordered set such that
sup{p, q} is de�ned for all p, q ∈ P . Suppose d is a metric on P such that
(P, d) is a polish space and sup{·, ·} : P 2 → P is uniformly continuous. Then
(P,≤, P ) � (`+1 ,≤, `

+
1 ) with a Borel GT-connection.

Corollary 6.10. There is a Borel GT-connection (I,⊆, I) � (`+1 ,≤, `
+
1 ) for

each analytic P-ideal I.
Proof. Let I = Exh(ϕ) where ϕ is a �nite lower semicontinuous submeasure
on ω with ϕ(A) = 0 i� A = ∅. One can show that (I,⊆) with d(A,B) =
ϕ(A4B) satisfy the requirements of Lemma 6.9. �

Note that there is no any Galois-Tukey connection from (`+1 ,≤, `
+
1 ) to

(Z,⊆,Z) so they are not GT-equivalent (see [LoVe]) Th. 7.).

Theorem 6.11. ([Fr] 524I) There is a Borel GT-connection (`+1 ,≤∗, `
+
1 ) ≡

(ωω,v∗,Slm).

Corollary 6.12. If P adds a slalom capturing all ground model reals then P
is I-dominating for each analytic P-ideal I.
Proof. By Fact 6.7 and Theorem 6.11 adding slalom is the same as (`+1 ,≤∗
, `+1 )-dominating. Let ẋ be a P-name such that 
P ẋ ∈ `+1 ∧ ∀ y ∈ `

+
1 ∩ V

y ≤∗ ẋ. Moreover let Ẋ be a P-name such that 
P Ẋ = {z ∈ `+1 : |z\ẋ| < ω,
∀ n (z(n) 6= ẋ(n) ⇒ z(n) ∈ ω)}. Let (φ, ψ) : (I,⊆, I) � (`+1 ,≤, `

+
1 ) be a

Borel GT-connection. Now if Ȧ is a P-name such that 
P ∀ z ∈ Ẋ ψ(z) ⊆∗ Ȧ
then Ȧ shows that P is I-dominating. �

Denote D the dominating forcing and LOC the Localization forcing. Be-
cause of the complicated GT-connections it seems hard to construct an I-
dominating set in V LOC. Despite LOC it is much more simple to show
directly that the two-step iteration D ∗ LOC is I-dominating.

Observation 6.13. If I is an arbitrary analytic P-ideal then two step iter-
ation D ∗ LOC is I-dominating.
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Indeed, let I ∈ V ⊆ M ⊆ N be transitive models, d ∈ M ∩ ωω be

strictly increasing and dominating over V , and S ∈ N , S : ω →
[
[ω]<ω

]<ω
,

|S(n)| ≤ n a slalom which captures all reals from M . Now if

Xn = ∪{A ∈ S(n) ∩ P([d(n), d(n+ 1)) : ϕ(A) < 2−n}
then it is easy to see that Y ⊆∗ ∪{Xn : n ∈ ω} ∈ I ∩N for each Y ∈ V ∩ I.

Problem 6.14. Does Z-dominating (or I-dominating) imply adding slaloms?

We will use the following deep result of Fremlin to prove Theorem 6.16.

Theorem 6.15. ([Fr] 526G) There is a family {Pf : f ∈ ωω} of Borel subsets
of `+1 such that the following hold:

(i) `+1 = ∪{Pf : f ∈ ωω},
(ii) if f ≤ g then Pf ⊆ Pg,
(iii) (Pf ,≤, `+1 ) � (Z,⊆,Z) with a Borel GT-connection for each f .

Theorem 6.16. P is Z-bounding i� P has the Sacks property.

Proof. Let {Pf : f ∈ ωω} be a family satisfying (i), (ii), and (iii) in Theorem

6.15, and �x Borel GT-connections (φf , ψf ) : (Pf ,≤, `+1 ) � (Z,⊆,Z) for

each f ∈ ωω. Assume P is Z-bounding and 
P ẋ ∈ `+1 . P is ωω-bounding
by Theorem 6.2 so using (ii) we have 
P `

+
1 = ∪{Pf : f ∈ ωω ∩ V }. We

can choose a P-name ḟ for an element of ωω ∩ V such that 
P ẋ ∈ Pḟ . By

Z-bounding property of P there is a P-name Ȧ for an element of Z ∩ V
such that 
P φḟ (ẋ) ⊆ Ȧ, so 
P ẋ ≤ ψḟ (Ȧ) ∈ `+1 ∩ V . So we have P is

(`+1 ,≤(∗), `+1 )-bounding. By Theorem 6.11 and Fact 6.7 P has the Sacks
property.

The converse implication was proved in Theorem 6.5.
�

Problem 6.17. Does the I-bounding property imply the Sacks property for
each tall analytic P-ideal I?
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