Combinatorics of analytic P-ideals and related forcing problems Barnabás Farkas barnabasfarkas@gmail.com Budapest University of Technology and Economics, Hungary

Introduction

The study of ideals on natural numbers (ω) and on the reals (ω^{ω} or 2^{ω}) has become a central topic of infinite combinatorics and forcing theory in the past few years. My research is focused on a nice but large enough class of ideals on ω .

An ideal \mathcal{I} on ω containing the ideal of finite sets fin = $[\omega]^{<\omega}$ is analytic if $\mathcal{I} \subseteq \mathcal{P}(\omega) \simeq 2^{\omega}$ is an analytic set in the usual product topology of the Cantor-set. \mathcal{I} is a *P*-*ideal* if for each countable $\mathcal{C} \subseteq \mathcal{I}$ there is an $A \in \mathcal{I}$ such that $I \subseteq^* A$ for each $I \in \mathcal{C}$, where $A \subseteq^* B$ iff $A \setminus B$ is finite. \mathcal{I} is *tall* (or *dense*) if each infinite subset of ω contains an infinite element of \mathcal{I} .

The *density zero ideal* and the *summable ideal*:

$$\mathcal{Z} = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\},\$$
$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

are classical tall analytic *P*-ideals.

A function $\varphi : \mathcal{P}(\omega) \to [0, \infty]$ is a *lower semicontinuous (lsc) submeasure on* ω if

- (i) $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for each n
- (ii) $\varphi(A) \leq \varphi(B)$ for $A \subseteq B \subseteq \omega$
- (iii) $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$ for $A, B \subseteq \omega$
- (iv) $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$ for each A

Note that an lsc submeasure on ω is σ -subadditive as well (i.e. $\varphi(\bigcup_{n\in\omega}A_n) \leq \sum_{n\in\omega}\varphi(A_n)$). We assign two ideals to an lsc submeasure φ as follows

 $\operatorname{Exh}(\varphi) = \left\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0 \right\},\$

 $\operatorname{Fin}(\varphi) = \{ A \subseteq \omega : \varphi(A) < \infty \}.$

 $\operatorname{Exh}(\varphi)$ is an $F_{\sigma\delta}$ P-ideal, and $\operatorname{Fin}(\varphi)$ is an F_{σ} ideal

Theorem. ([6],[7]) Let \mathcal{I} be an ideal on ω .

- \mathcal{I} is an F_{σ} ideal iff $\mathcal{I} = Fin(\varphi)$ for some lsc submeasure φ .
- \mathcal{I} is an analytic *P*-ideal iff $\mathcal{I} = \text{Exh}(\varphi)$ for some *lsc submeasure* φ *.*
- \mathcal{I} is an F_{σ} *P*-ideal iff $\mathcal{I} = \operatorname{Exh}(\varphi) = \operatorname{Fin}(\varphi)$ for some lsc submeasure φ .

The almost-disjointness number

We say that $A, B \in \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ are \mathcal{I} -almost*disjoint* if $A \cap B \in \mathcal{I}$. The *almost-disjointness number* of an ideal \mathcal{I} , $\mathfrak{a}(\mathcal{I})$ ($\overline{\mathfrak{a}}(\mathcal{I})$) is the minimum of cardinalities of infinite (uncountable) maximal \mathcal{I} -almost disjoint subsets of \mathcal{I}^+ . For example $\mathfrak{a} = \mathfrak{a}(fin)(=$ $\bar{\mathfrak{a}}(fin)), \omega = \mathfrak{a}(\mathcal{Z}), \text{ and } \omega < \mathfrak{a}(\mathcal{I}_{1/n}).$ In general, $\omega < \mathfrak{a}(\mathcal{I})$ holds for each F_{σ} P-ideal \mathcal{I} .

Theorem. ([3]) $\mathfrak{b} \leq \bar{\mathfrak{a}}(\mathcal{I})$ for any analytic *P*-ideal \mathcal{I} , and $\bar{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$.

Problem. Does $\bar{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each analytic Pideal \mathcal{I} ?

Towers in the dual filters

A sequence $\{A_{\alpha} : \alpha < \kappa\} \subseteq [\omega]^{\omega}$ is a *tower* if it is \subseteq^* -descending, i.e. $A_{\beta} \subseteq^* A_{\alpha}$ if $\alpha \leq \beta < \kappa$, and it has no *pseudointersection*, i.e. a set $X \in [\omega]^{\omega}$ such that $X \subseteq^* A_\alpha$ for each $\alpha < \kappa$.

Let \mathcal{F} be a filter on ω . A tower $\{A_{\alpha} : \alpha < \kappa\}$ is a *tower in* \mathcal{F} if $A_{\alpha} \in \mathcal{F}$ for each $\alpha < \kappa$. Denote $\mathcal{I}^* = \{\omega \setminus A : A \in \mathcal{I}\}$ the dual filter of \mathcal{I} .

Theorem. ([3]) After adding ω_1 Cohen-reals (to any model) there is a tower in \mathcal{I}^* with height ω_1 for each tall analytic *P*-ideal *I*.

Theorem. (Brendle and Farkas) It is consistent with **ZFC** that there is no tower in \mathcal{I}^* for each tall analytic *P-ideal I*.

Versions of Hechler's theorem

Theorem. (Hechler's original theorem [5]) Let (Q, \leq) be a partial ordered set such that each countable subset of Q has a strict upper bound in Q. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of $(\omega^{\omega}, \leq^*)$ is order isomorphic to (Q, \leq) .

Let \mathcal{N} be the ideal of measure zero subsets of the reals and \mathcal{M} be the ideal of meager subsets of the reals.

Theorem. ([1], [2]) Let (Q, \leq) be as above. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of (\mathcal{M}, \subseteq) (resp. (\mathcal{N}, \subseteq)) is order isomorphic to (Q, \leq) .

Theorem. (Farkas) Let (Q, \leq) be as above. Then there is a ccc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$ a cofinal subset of $(\mathcal{I}, \subseteq^*)$ is order isomorphic to (Q, \leq) for each tall analytic P-ideal \mathcal{I} from V.

\mathcal{I} -bounding and \mathcal{I} -dominating

A supported relation (or simply relation) is a triple $\mathcal{R} = (A, R, B)$ where $R \subseteq A \times B$, dom(R) = A, ran(R) = B, and we always assume that for each $b \in B$ there is an $a \in A$ such that $\langle a, b \rangle \notin R$. \mathcal{R} is Borel if $A, B \subseteq \omega^{\omega}$ and $R \subseteq (\omega^{\omega})^2$ are Borel sets.

Let $\mathcal{R}_1 = (A_1, R_1, B_1)$ and $\mathcal{R}_2 = (A_2, R_2, B_2)$ be (Borel) supported relations. A pair of (Borel) functions $\phi : A_1 \to A_2, \psi : B_2 \to B_1$ is a (Borel) Galois-Tukey connection from \mathcal{R}_1 to \mathcal{R}_2 , $(\phi, \psi) : \mathcal{R}_1 \preceq_{GT}^{(B)} \mathcal{R}_2$, if $\langle a_1, \psi(b_2) \rangle \in R_1$ whenever $\langle \phi(a_1), b_2 \rangle \in R_2$.

Let A force

 \mathbb{P} is \mathcal{R}

The following observation shows that we can translate questions about implications between properties of forcing notions to combinatorial ones: Assume $\mathcal{R}_1 \preceq^{\mathrm{B}}_{\mathrm{GT}} \mathcal{R}_2$. If \mathbb{P} is \mathcal{R}_2 -bounding / dominating then it is \mathcal{R}_1 -bounding / dominating as well. Using the above mentioned Borel GT connections we obtain for example that the Sacks property (resp. adding a slalom capturing all ground model reals) implies the \mathcal{I} -bounding (resp. -dominating) property which implies the ω^{ω} -bounding property (resp. adding dominating real) for each tall analytic P-ideal \mathcal{I} . The converse of the second implication is false (see the Random and resp. the Hechler forcing). The converse of the first implication is a more difficult question.

Theorem. ([3] using [4]) \mathbb{P} is \mathbb{Z} -bounding iff \mathbb{P} has the Sacks property.

Problem. Does the \mathcal{I} -bounding property imply the Sacks property for each tall analytic P-ideal \mathcal{I} ? Does the \mathcal{Z} -dominating (or \mathcal{I} -dominating) property imply adding slalom capturing all ground model reals?

Theorem. ([3], [4], [7]) $(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}) \equiv^{\mathrm{B}}_{\mathrm{GT}} (\omega^{\omega}, \leq^*, \omega^{\omega}) \preceq^{\mathrm{B}}_{\mathrm{GT}} (\mathcal{I}, \subseteq^*, \mathcal{I}) \preceq^{\mathrm{B}}_{\mathrm{GT}} (\omega^{\omega}, \equiv^*, \mathcal{S}) \equiv^{\mathrm{B}}_{\mathrm{GT}} (\mathcal{N}, \subseteq, \mathcal{N})$ where $f \leq_{\mathcal{I}} g$ if $\{n : f(n) > g(n)\} \in \mathcal{I}$; as usual \leq^* stands for \leq_{fin} ; \mathcal{I} is a tall analytic P-ideal (tallness is used in the second connection); $S = X_{n \in \omega}[\omega]^{\leq n}$ is the set of slaloms; and if $f \in \omega^{\omega}$ and $S \in S$ then $f \sqsubseteq^* S$ iff $\forall^{\infty} n$ $f(n) \in S(n).$

t $\mathcal{R} = (A, R, B)$ be a Borel relation.	Almost all
cing notion \mathbb{P} is \mathcal{R} -bounding if	properties o
$\Vdash_{\mathbb{P}} \forall a \in A \cap V[\dot{G}] \exists b \in B \cap V \langle a, b \rangle \in R,$	form. Exam (resp. adds
<i>R-dominating</i> if	bounding (r
$\Vdash_{\mathbb{P}} \exists b \in B \cap V[\dot{G}] \forall a \in A \cap V \langle a, b \rangle \in R.$	erty iff \mathbb{P} is (
	has measure

References

[1] Tomek Bartoszynski and Masaru Kada: *Hechler's theorem for the meager ideal*, Topology Appl. **146-147** (2005), pages 429-435. [2] Maxim R. Burke and Masaru Kada: *Hechler's theorem for the null ideal*, Arch. Math. Logic **43** (2004), pages 703-722. [3] Barnabás Farkas and Lajos Soukup: *More on cardinal invariants of analytic P-ideals,* to appear in Comment. Math. Univ. Carolin. [4] David H. Fremlin: Measure Theory. Set-theoretic Measure Theory. Torres Fremlin, Colchester, England, 2004. Available at http://www.essex.ac.uk/maths/staff/fremlin/mt.html.

[5] Stephen H. Hechler: On the existence of certain cofinal subsets of $\omega \omega$, Axiomatic set theory, editor: Thomas Jech, Amer. Math. Soc. (1974), pages 155-173.

[6] Krzysztof Mazur: F_{σ} -ideals and $\omega_1 \omega_1^*$ -gaps in the Boolean algebras $\mathcal{P}(\omega)/I$, Fund. Math. **138** (1991), no. 2, pages 103-111. [7] Słamowir Solecki: Analytic P-ideals and their applications, Ann. Pure Appl. Logic **99** (1999), pages 51-72.

Acknowledgements

The research was supported by Hungarian National Foundation for Scientific Research grant no 68262 and Dept. of Algebra, BME.

 $\psi(b_2) \in B_1 \xleftarrow{\psi} B_2 \ni b_2$

 R_2 R_1 \longleftarrow

 $a_1 \in A_1 \xrightarrow{\phi} A_2 \ni \phi(a_1)$

classical bounding or dominating-like of forcing notions can be written in this nples: A forcing notion \mathbb{P} is ω^{ω} -bounding Is dominating real) iff \mathbb{P} is $(\omega^{\omega}, \leq^*, \omega^{\omega})$ -(resp. -dominating); \mathbb{P} has the Sacks prop- $(\omega^{\omega}, \sqsubseteq^*, \mathcal{S})$ -bounding; and $\Vdash_{\mathbb{P}} "\bigcup (\mathcal{N} \cap V)$ has measure zero" iff \mathbb{P} is $(\mathcal{N}, \subseteq, \mathcal{N})$ -dominating etc.