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Multiplicities, generalized Jacobi matrices and symmetric operators

by Béla Nagy

Abstract. The global multiplicity of bounded linear operators in Banach spaces has been studied for a
number of classes of operators. We introduce a definition of multiplicity of a general unbounded operator, and
compare it with a known version (essentially reducing it to bounded cases) for certain symmetric operators.
We study the connection of this concept with generalized (regular or irregular, block) Jacobi matrices. We
establish the multiplicities of pure maximal symmetric operators, and show how this reveals the structure
of the elementary symmetric operators and their simplest matrix representations: a problem unsolved in a
classical paper by v.Neumann.
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1. Introduction
The global multiplicity (or, equivalently, multicyclicity) of bounded linear operators in Banach spaces

has been studied by a large number of writers. An excellent introduction to the subject and some of the
basic results are contained in the paper and book by N.K.Nikolski [Ni1],[Ni2] together with a review of
the references until that time. In [Ni2] a method is suggested to connect the (undefined) multiplicity of
some unbounded operators (semigroup generators) to the multiplicity of corresponding bounded operators
(resolvents, Cayley transforms). In this paper we shall introduce a definition of multiplicity of a general
unbounded operator, compare it with the known version above, and show its usefulness in concrete problems:
in connection with generalized Jacobi matrices and with symmetric operators.

It is well known that in the structure problem of maximal symmetric operators in a (separable) Hilbert
space a basic role is played by the elementary symmetric operators, which were introduced by J.v.Neumann
[NAE] in a number of unitarily equivalent forms. The (perhaps) simplest way to do this is to fix an or-
thonormal basis {ek : k ∈ N}, and define the Cayley transform V of the elementary symmetric operator S
by

V ek := ek+1 (k ∈ N).

V is then an (everywhere defined, bounded) isometry with deficiency indices (0,1), which are the same for
its (inverse) Cayley transform S. It is also clear that V has global multiplicity 1 (e1 is a cyclic vector for V ),
but the similar question for S seems to be not so simple. Apparently, J.v.Neumann himself sought a simple
matrix representation in [NAE], [NT], but he did not consider the problem of defining the multiplicity of
S. Though his matrices are constructed ingeniously, even the second one is far from having the simplest
structure (cf. [NAE, pp.126-128]). We shall show how successfully the introduced concept of multiplicity of
an unbounded operator can be used for a solution to this problem.

Infinite Jacobi matrices and their generalized variants have been playing a useful role for a long time
in handling various questions in analysis and operator theory. Our basic references will be the papers by
Hamburger [H], M.G. Krein [KD] and the monographs by Stone [St], Akhieser and Glasman [AG] and by
Akhieser [A]. We shall give an answer to a question posed in the last reference. In addition, we shall clear
the relation between the generalized types J [p] and Jp of Jacobi matrices as well as between regular and
irregular variants.

It is well known that general linear operators, closed linear operators or even closed symmetric linear
operators may have surprising pathological properties. E.g., Berberian gave an example (see, e.g., [Gol,
p.53]) of a linear operator T such that its domain D(T ) is all of the Hilbert space X = l2, and the domain
D(T ∗) of the adjoint operator is the set {0}. A densely defined closed linear operator may have ([Nag,
p.226]) a quotient operator (with respect to an invariant closed subspace) that is not closable. Or: a closed
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densely defined symmetric operator T can have a square such that D(T 2) = {0} [Nai]. On the other hand,
Schmüdgen [Sch] proved that if at least one of the deficiency numbers of a densely defined closed symmetric
operator T is finite, then the linear manifold D(T∞) (see below) is dense in the Hilbert space X.

Similar phenomena may be a warning that we must exercise some care when extending the definition and
basic properties of the global multiplicity (or multicyclicity) function to the case of not necessarily bounded
linear operators in linear normed (Banach, Hilbert) spaces. The basic reference for the properties of linear
operators under such general conditions will be the monograph by S.Goldberg [Gol].

2. Terminology and notation
Let T be a linear operator with domain D(T ) and range rg(T ) in a complex linear space X. For any

subset M ⊂ X let L(M) denote the linear hull of M , and let

TM := {Tm : m ∈M ∩D(T )} ≡ T (M ∩D(T )).

We say that M is T -invariant if TM ⊂ M . If E is a T -invariant subspace of X, we define (as usual, cf.
[Vas]) the quotient space X/E consisting of all cosets x̂ of the form x+E (x ∈ X), and the quotient operator
T/E by

D(T/E) := {x̂ : ∃x ∈ x̂ ∩D(T )}, (T/E)x̂ := Tx+ E.

It is easy to see that these definitions are independent of the choice of x in x̂ ∩D(T ). Let N denote the set
of all positive, N0 the set of all nonnegative integers, and let

D(T∞) := ∩n∈ND(Tn).

If the space X is normed and separable, we shall denote by sp[S] the closed linear hull of the set S ⊂ X. In
the family of all linear subspaces C in D(T∞) we define the family of T -cyclic subspaces by

Cyc(T ) := {C ⊂ D(T∞) : sp[TnC : n ∈ N0] = X}.

The (linear) dimension of a space will be understood to be a nonnegative integer or +∞, and the global
multiplicity (or, equivalently, multicyclicity) of T will be defined by

µ(T ) := min{dimC : C ∈ Cyc(T )} ∈ N ∪ {∞},

if the family Cyc(T ) is nonvoid or, equivalently, the subspace D(T∞) is dense in the space X. In the opposite
case we define

µ(T ) :=∞.

Note that in the case studied by Schmüdgen [Sch] and quoted in the Introduction above, further in the
case of the generator operator T of a strongly continuous semigroup of class (C0), as well as for many other
operators, the subspace D(T∞) is dense in the space X. Further, if T is a linear operator with any linear
extension T̂ , then Cyc(T ) ⊂ Cyc(T̂ ), hence µ(T̂ ) ≤ µ(T ).

For any bounded linear operator W in a Banach space X our definition agrees with the classical one:

µ(W ) := min{dimC : sp[WnC : n ∈ N0] = X}.

We recall now that for certain unbounded operators concepts close to the global multiplicity of T were
studied, e.g., in [Ni2]. We shall show that, in general, the two approaches do not yield the same cardinal
number.

Let {T (t) : t ≥ 0} be a strongly continuous semigroup in the Banach space X with growth bound

α(T ) := lim
t→∞

t−1 log |T (t)|

(here | · | denotes the operator norm), and generator operator A. It is well known that supReσ(A) ≤ α(T )
(here σ denotes the spectrum of the operator). For the following definitions of multiplicities we cite [Ni2,
pp.240-241]:

µ[T (·)] := min{dimC : sp[T (t)C : t ≥ 0] = X}.
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Further, if α(T ) < 1, then the following Cayley transform C−(A) of A is bounded:

C−(A) := (I +A)(I −A)−1 ≡ 2(I −A)−1 − I.

It is shown in [Ni2] that under the stated conditions

µ[T (·)] = µ[C−(A)] = µ[R(z,A)]

for every z > α(T ) [here R(z,A) := (z −A)−1].
Recall that if the basic space X is Hilbert, then similar questions concerning semigroups of contractions,

their generators, co-generators and unitary dilations were studied by Sz.-Nagy and Foias [SzNF1], [SzNF2]
and by Sz.-Nagy [SzN]. It follows from their work, but also in a direct way that if S is the elementary
symmetric operator from the Introduction with deficiency indices (0, 1) (with the isometry V as its Cayley
transform) then, since S is maximal symmetric (cf. also [Dav, Theorem 6.5]), the operator iS is the generator
of a strongly continuous semigroup T of isometries. Hence α(T ) = 0, and we clearly have

µ[T (·)] = µ(V ) = µ[R(z, iS)] = 1.

To the contrary, we shall prove that

µ(iS) = µ(S) = 2 6= µ[R(z, iS)].

It is well known that for a densely defined closed symmetric operator S in a separable Hilbert space
X and for a given orthonormal basis E ⊂ D(S) ⊂ X the infinite (Hermitian symmetric) matrix A of the
operator in the given basis is defined as aik := (Sek, ei) (i, k ∈ N). In the converse direction: given the
pair (A,E), the closure S0 of the elementary linear operator (the latter is defined on the linear hull of the
basis vectors) is a densely defined closed symmetric operator, which may have closed symmetric extensions
S. We shall accept the following

Definition. Under the conditions above we shall call S0 the operator determined by the matrix A, and
call any such S an operator generated by the matrix A.

Let p ∈ N. In order to fix terminology, we shall say (cf. [KD]) that the infinite Hermitian symmetric
matrix (over C) A = (amn) (m,n ∈ N) is a regular J [p] (block or, equivalently, generalized Jacobi)
matrix iff A is partitioned as A = (Aik) (i, k ∈ N), where the Aik blocks are p × p matrices over C such
that Aik = 0 for |i− k| > 1, and all the matrices Ak,k+1 are nonsingular. In particular, we shall say that A
is a regular Jp matrix (cf., e.g., [Ci]) iff, in addition, all the blocks Ak,k+1 are lower triangular (hence Ak+1,k

upper triangular). We do not qualify, or say explicitly that A is irregular, if the regularity conditions above
do not necessarily hold for every k.

For a matrix A as above, we define the value Tf of a linear operator T in l2(N) as the matrix product
Af for any vector f ∈ l2(N) of finite type (i.e. with only a finite number of nonzero components with respect
to the canonical basis in l2(N)). It is well known that T has a (linear, densely defined, symmetric) closure
Tp, which we shall call the operator determined by the Jacobi block matrix A ∈ J [p] (See also [Wei, Theorem
6.20].) The nonnegative integers

d(z) := dim ker(T ∗p − zI)

are identical for z in the open upper (and also in the lower) half-planes: we shall call them, correspondingly,
the deficiency numbers d1 and d2, call the ordered pair (d1, d2) the deficiency index (or sometimes indices)
of the operator Tp, and write def [Tp] = (d1, d2). It is known that if the matrix A ∈ J [p] is regular, then

0 ≤ d1, d2 ≤ p (Krein [KD]), d1 = p⇐⇒ d2 = p (Kogan [Kog]).

In the converse direction: Dyukarev [D] has recently proved that for any pair of deficiency numbers satisfying

0 ≤ d1, d2 ≤ p− 1

there is a regular generalized Jacobi matrix of the class J [p] such that the determined operator has these
deficiency numbers.
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3. Basic properties of the multiplicity function
We shall need the following lemmas, which are ”unbounded extensions” of some basic results in [Ni2,

p.242].
Lemma 1. Let T be a linear operator in the normed linear space X, and let the (not necessarily closed)

subspace E be T -invariant. Then
µ(T/E) ≤ µ(T ).

Proof. It is immediate to check that

D[(T/E)∞] = ∩n∈ND[(T/E)n] ⊇ D(T∞)/E.

Hence if D(T∞) is dense in X, then D[(T/E)∞] is dense in X/E. This proves the stated inequality if one
of these density conditions fails. Otherwise let q : X → X/E denote the canonical quotient mapping. If a
subspace C ⊂ D(T∞) is cyclic for T , then the subspace qC ⊂ D[(T/E)∞] ⊂ X/E is cyclic for T/E, and
dim qC ≤ dimC. This proves the inequality in this case. 4

Lemma 2. Let X be a normed linear space, and the linear operator T be densely defined in X. Then
the dual operator T ∗ exists, and

µ(T ) ≥ sup
λ∈C

dim[ker(T ∗ − λI)].

Proof. We may assume that µ(T ) < ∞. Let E := TX (the bar denotes closure). By the preceding

Lemma, then µ(T/E) ≤ µ(T ) < ∞. For every x̂ in the quotient subspace D̂(T ) ≡ D(T ) + E we have

(T/E)x̂ = 0̂. Hence D̂(T ) ⊂ D[(T/E)∞], and we obtain that the number µ(T/E) is equal to the dimension
of some dense subspace (in D[(T/E)∞]) of X/E, i.e., to dim(X/E). By [Gol, Theorem I.6.4], there is a
linear isometry from (X/TX)∗ onto [TX]⊥, where H⊥ denotes the annihilator (in the dual space) of the set
H. Hence

dim(X/TX) = dim[(X/TX)∗] = dim[(TX)⊥].

By [Gol, Theorem II.3.7], the last annihilator is the kernel of the dual operator T ∗, so the preceding Lemma
implies

µ(T ) ≥ µ(T/E) = dim(X/E) = dim[ker(T ∗)].

For every λ ∈ C we clearly have
µ(T − λI) = µ(T ).

Hence we obtain the statement of the lemma. 4
Lemma 3. Let the Banach space X be the direct sum of the closed subspaces X1 and X2, and the linear

operator T be the direct sum of the corresponding operators T1 and T2. (Equivalently: let Xk reduce T , or:
let PkT ⊂ TPk (k = 1, 2) for the corresponding projections). Then

max[µ(T1), µ(T2)] ≤ µ(T ) ≤ µ(T1) + µ(T2).

Proof. D(T∞) is dense in X if and only if both subspaces D(T∞k ) are dense in Xk (k = 1, 2). This
proves both inequalities if one of the density conditions fails.

Otherwise recall that under the given conditions the quotient T/X1 is similar to the restriction T |X2:
the linear isomorphism of X/X1 onto X2 defined by x + X1 7→ P2x maps D(T/X1) onto X2 ∩ D(T ), and
intertwines the operators. This implies the left-hand side inequality.

Let Cj ∈ Cyc(Tj) be such that dim(Cj) = µ(Tj) (j = 1, 2). Then C := C1 ⊕ C2 is in D(T∞), and
dim(C)=dim(C1)+dim(C2). Further, T kC ⊃ T kj Cj (j = 1, 2; k ∈ N0). Hence sp[T kC : k ∈ N0] ⊃
X1 ⊕X2 = X, and the right-hand side inequality follows. 4

4. Closed symmetric operators and Jacobi matrices
From now on let the basic space X be a separable Hilbert space, and assume that each considered

symmetric operator S is closed and D(S∞) is dense in X.
Remark. It is well known that each closed symmetric operator S is the orthogonal direct sum of a

maximal selfadjoint part Q and of a pure (equivalently, simple or prime or completely non-selfadjoint) closed
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symmetric part R, i.e. of a restriction R having no selfadjoint part (see, e.g., [AG, Sect. 103] or [KrU,
pp.8-9]). The latter source proves also that the direct summand subspace XQ in which the operator Q acts
is

XQ = ∩Imz 6=0[(S − z)D(S)].

We shall call the (uniquely determined) orthogonal direct sum S = Q ⊕ R the canonical decomposition of
the closed symmetric operator S.

The basic idea of the following considerations is contained in [Hal, Problem 167].
Theorem 1. Assume that the multiplicity µ(S) of the closed symmetric operator S is m ∈ N. Then

there is an orthonormal basis sequence E ⊂ D(S∞) with respect to which the matrix A of the operator
S is a generalized Jacobi matrix of class Jm with the property that if in any row r ≥ m + 1 we have
ar1 = ar2 = . . . = aru = 0, then for every j ∈ N we also have

ar+j,1 = ar+j,2 = . . . = ar+j,u+j = 0,

(i.e. the “whole subdiagonals vanish”). Consequently, there is an u(r) ∈ N0 among the column indices for
which

ar1 = . . . = ar,u(r) = 0, ar,u(r)+1 6= 0.

Further, for every r ≥ m+ 1 we have u(r) < r − 1.
Proof. Let M ∈ Cyc(S),dim(M) = m, and let {e1, . . . , em} ⊂ D(S∞) be an orthonormal basis sequence

of M . We shall extend this sequence inductively to an orthonormal basis sequence E ⊂ D(S∞) ⊂ X having
the stated properties. In each inductive step we shall extend the preceding (finite) sequence by either 0 or 1
new vector according to the following rule. Let d(k) denote the cardinality of the finite orthonormal vector
sequence {e1, e2, . . . , ed(k)} ⊂ D(S∞) constructed after step k. By our assumption,

m = d(0) ≤ d(1) ≤ d(2) ≤ . . . ≤ d(k), 0 ≤ d(k)− d(k − 1) ≤ 1 (k ∈ N).

Introduce the notation
M(d(k)) := sp[e1, . . . , ed(k)],

so that M(d(0)) = M ⊂ D(S∞). In the inductive step k ∈ N we distinguish two cases:
Case 1: if Sek ∈ M(d(k − 1)). Then we define d(k) := d(k − 1). Hence we add no new vectors to the

sequence {e1, e2, . . . , ed(k−1)}.
Case 2: if Sek /∈ M(d(k − 1)). Then we define d(k) := d(k − 1) + 1, and define one new vector with

the help of the orthogonal projection PM(d(k−1)) onto the subspace M(d(k − 1)) ⊂ X:

ed(k) := fd(k)/||fd(k)||, where fd(k) := [I − PM(d(k−1))]Sek.

Note that if M(d(k − 1)) ⊂ D(S∞), then the preceding line guarantees that M(d(k)) ⊂ D(S∞). Further,
we always have Sek ∈M(d(k)).

We show now that in each step k the vector ek is already defined, i.e., the inequality

k ≤ d(k − 1) (k ∈ N)

holds. This will be proved by induction. For k = 1 we clearly have k = 1 ≤ m = d(0) = d(k − 1). Assume
now for k > 1 that 1 < k ≤ d(k − 1), which is equivalent to

ek ∈M(d(k − 1)) ≡ sp[e1, e2, . . . , ed(k−1)].

Consider the vector Sek, and assume first that we have Case 2 from above: Sek /∈ M(d(k − 1)), hence
d(k) = d(k−1)+1. It follows that k < d(k), thus k+1 ≤ d(k), and this case is settled. Assume now that we
have Case 1 from above: Sek ∈M(d(k− 1)) = M(d(k)). If the assumed inequality was sharp: k < d(k− 1),
then evidently k + 1 ≤ d(k), and we are done. Assume now the less trivial other case: k = d(k − 1) = d(k).
We clearly have that

1 ≤ j ≤ k implies d(0) ≤ d(1) ≤ d(j) ≤ d(k).

5



Hence
sp[e1, . . . , ej , . . . , ek] = M(d(k)).

Since we have Sej ∈M(d(j)) ⊂M(d(k)), we obtain SM(d(k)) ⊂M(d(k)). For every n ∈ N0 we have then

SnM = SnM(d(0)) ⊂ SnM(d(k)) ⊂M(d(k)),

which contradicts the assumption M ∈ Cyc(S). Hence this case cannot occur, and the induction proof is
complete.

Now let r ≥ m+ 1, and consider the step k ≡ k(r) in which the vector er has been constructed. Then
we have d(k − 1) = r − 1 and d(k) = r. For the matrix A (in the constructed basis) it means

ar1 = ar2 = . . . = ar,k−1 = 0 and ark 6= 0.

The construction clearly shows that for any pair (k, r) satisfying k ≥ 1, r ≥ m+1 the relation d(k−1) ≤ r−1
is equivalent to

ar1 = ar2 = . . . = ar,k−1 = 0.

For any j ≥ 1 we have d(r + j − 1)− d(r − 1) ≤ j. It follows that

ar1 = ar2 = . . . = aru = 0 =⇒ ar+j,1 = ar+j,2 = . . . = ar+j,u+j = 0.

This is exactly the stated ”vanishing of the whole subdiagonal”. Further, since M ∈ Cyc(S), the process
produces an orthonormal basis in D(S∞) for X.

The possibility u(r) = 0 means that ar1 6= 0. If for some r ≥ m+ 1 the number u(r) ∈ N did not exist,
it would mean that the rth row of the matrix A, hence, by symmetry, the rth column would contain only
entries 0. The formally less strict statement u(r) ≥ r would lead (in view of the vanishing subdiagonals) to
the same conclusion. In both cases we would be in contradiction to the assumption M ∈ Cyc(S).

If for some r ≥ m + 1 we have u(r) = r − 1, then A is the direct sum of the matrices of a selfadjoint
operator in the (r− 1)-dimensional space generated by the basis vectors e1, e2, . . . , er−1 plus of a symmetric
operator in the subspace generated by the basis vectors er, er+1, . . ., having a diagonal matrix (a direct
summand in A). Further, we would have SkM ⊂ sp[e1, . . . , er−1] for every k ∈ N0, which contradicts the
assumption M ∈ Cyc(S).

In any case, the infinite matrix A of the operator S in the orthonormal basis E constructed according
to the indicated process is such as stated in the Theorem. 4

Remark. The closed symmetric operator S0 determined by the matrix A and the orthonormal basis E
in the sense of v.Neumann [NAE], [NT] (see also [AG]), is not necessarily equal to S. Rather we have S0 ⊂ S,
the latter is a finite dimensional extension of S0, and S is generated by the pair (A,E) in the terminology of
the Definition in Section 2.

Definition. A generalized Jacobi matrix Jm of the type above will be called an (in general: irregular)
Jacobi matrix with canonical diagonals.

Corollary. Assume the situation and notation described in the preceding Theorem. In the special case,
if the sequence of vectors

{e1, . . . , em, Se1, . . . , Sem, S2e1, . . . , S
2em, . . .} ⊂ D(S∞)

is linearly independent, then the generalized Jacobi matrix Jm with canonical diagonals constructed in the
proof of the Theorem will be regular , i.e. every entry am+j,j (j ∈ N) will be nonzero.

Proof. It follows from the construction process. 4
Theorem 2. Under the conditions and with the notation of Theorem 1 there is a positive integer d ≤ m

such that the dth diagonal of the matrix A (of the operator S) below the main diagonal has from a certain
row on only nonzero entries, and no integer greater than d has this property. It follows that the matrix A
is the sum of a regular generalized Jacobi matrix A(d) ∈ Jd plus of a direct sum of a Hermitian symmetric
matrix M in a finite dimensional space and of an infinite zero matrix 0:

A = A(d) + [M ⊕ 0].
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Hence the deficiency indices of the corresponding determined symmetric operators:

S0 = S0(d) + [S(M)⊕ 0]

satisfy def(S0) = def [S0(d)], and both deficiency numbers are not greater than d. The (original) closed
symmetric operator S is an extension of S0, hence its deficiency numbers are not greater than d.

Proof. The sequence {u(r) : r ≥ m+ 1} ⊂ N0 from Theorem 1 clearly has the following properties: it
is strictly increasing, u(m+ 1) ≥ 0, u(r) < r−1 for each r ≥ m+ 1. Hence the sequence can have ”jumps”
greater than 1 at most a finite number of times. Assume that the last such jump occurs for r = r0 + 1, so
that r = u(r) + d+ 1 for each r > r0. Then

ar,r−d ≡ ar,u(r)+1 6= 0 if r > r0,

i.e. the dth diagonal below the main one in A contains only nonzero entries below row r0. Define now the
matrix A(d) to have the same entries as A in the main and in the by-diagonals 1, 2, . . . , d below and above
the main diagonal, except the new definitions:

ar,r−d = ar−d,r := 1 if d < r ≤ r0,

and to have entries 0 everywhere else. Note that A(d) is then a regular Jd matrix. Define further

B := A−A(d).

Then B has nonzero entries at most in rows and columns 1, 2, . . . , r0, and is clearly Hermitian symmetric.
Defining M to be the leading principal minor of order r0 of B, we obtain the stated decomposition of the
matrix A. The symmetric operator determined by M ⊕ 0 is defined on the whole space, hence is selfadjoint.
This implies the stated decomposition of the determined symmetric operator S0. Since S(M)⊕0 is a bounded
selfadjoint operator, [AG, 100◦] shows that def(S0) = def [S0(d)]. Since S0(d) is determined by a regular Jd
matrix, the penultimate statement follows from [KD]. The last sentence is then evident. 4

Now we want to clarify the relationship between the operators determined by certain block Jacobi
matrices of the type J [p] and Jp. Introduce the following

Notation: Let E,F be basis sequences in the finite dimensional subspaces sp[E], sp[F ] in the Hilbert
space X, and let T : sp[E] → sp[F ] be a bounded linear operator. We shall denote the matrix of T with
respect to the bases E,F by [T ;E,F ]. Entrywise we have then

[T ;E,F ]ik := (Tek, fi).

Theorem 3. Let p ∈ N. Assume that the closed symmetric operator S is determined by the infinite block
Jacobi matrix K ∈ J [p] with respect to the orthonormal basis {e1, e2, . . .}. Then there is an orthonormal basis
{f1, f2, . . .} such that S is determined by a generalized infinite Jacobi matrix J ∈ Jp with respect to this new
basis. It means that J has nonzero entries at most in the main diagonal and in the by-diagonals 1, 2, . . . , p
above and below the main diagonal. If every by-diagonal block in the matrix K has nonzero determinant,
then we can achieve that both pth by-diagonals in J contain only nonzero complex entries.

Proof. Let f1 := e1, f2 := e2, . . . , fp := ep, and consider the block B ≡ B21 (the block entry (2,1) in the
matrix K). Consider the following orthonormal sequences in the Hilbert space X:

E1 := {e1, . . . , ep}, E2 := {ep+1, . . . , e2p}, G := {g1, . . . , gp},

where the sequence G is an orthonormal basis in the subspace spanned by E2, and let Pk denote the
orthogonal projection of X onto the subspace spanned by Ek. We shall determine G so that the matrix
[S21;E1, G] of the operator S21 := P2(S|P1X) (mapping the subspace generated by E1 to the subspace
generated by G) be upper triangular (with respect to the indicated orthonormal basis sequences). It is clear
that, with the notation introduced above,

[S21;E1, G] = [I;E2, G][S21;E1, E2] = [I;E2, G]B,
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where I denotes the identity operator in the subspace generated by E2 (or, equivalently, by G).
By [Gant, IX.7], there is a p × p unitary matrix V such that the matrix C := V B is upper triangular.

V (and then C) are determined up to a multiplying diagonal matrix with diagonal entries of moduli 1 if
det(B) 6= 0, and then |det(C)| = |det(B)| 6= 0, hence the diagonal entries of C are nonzero. In any case, fix
such a V , (hence the corresponding C), and determine G so that [I;E2, G] = V . Equivalently, we require
that

V ∗ = V −1 = [I;G,E2] = [g1, g2, . . . , gp],

where the last p × p matrix consists of the components of the column vectors g1, g2, . . . , gp of the basis G
(with respect to the basis E2). With this basis G the matrix

[S21;E1, G] = [I;E2, G]B = [g1, g2, . . . , gp]
∗B

is then upper triangular, and if det(B) 6= 0, then the diagonal entries of the left-hand side matrix are nonzero.
Define now

fp+k := gk (k = 1, 2, . . . , p).

In the next step of the process we consider the matrix of the operator

S32 : {sp[F2] ≡ sp[G] ≡ sp[E2]} → sp[E3], S32 := P3(S|P2X)

where the orthonormal sequences F2 and E3 are defined by

F2 := {fp+1, . . . , f2p}, E3 := {e2p+1, . . . , e3p},

and proceed exactly as before to achieve that the matrix [S32;F2, G2] be upper triangular with respect to
a suitable orthonormal basis G2. Continuing the process inductively, we obtain a sequence of orthonormal
bases (for the subspaces)

F := {F1, F2, . . .} = {f1, . . . , fp, fp+1, . . . , f2p, . . .}.

We take the sequence F as the new basis in the statement of the theorem. It is easy to check that both
orthonormal bases: F and the original {e1, . . . , ep, ep+1, . . . , e2p, . . .} are bases of the matrix representation
for the same closed operator S in the sense of [AG, 53◦]: the vectors of both bases are in D(S∞), and S is
the closure of the linear operator defined on finite linear combinations of the basis vectors (whichever basis
we may take). The proof is complete. 4

Corollary. Let p ∈ N. If the regular block infinite Jacobi matrix of class J [p] (with respect to some
orthonormal basis E) determines the closed symmetric operator S, then there is a regular generalized Jacobi
matrix of class Jp (with respect to another orthonormal basis F ) determining S, and we have

µ(S) ≤ p.

Proof. The subspace C := sp[f1, . . . , fp] is clearly in Cyc(S). 4
Question. Can µ(S) < p happen? Let S := S1 ⊕ S2 be the direct sum of the selfadjoint operators Sj

of multiplication by the variable t ∈ [j− 1, j] in the Hilbert spaces Hj := L2([j− 1, j]), (j = 1, 2). There are
orthonormal basis sequences e1, e2 in the spaces such that Sj is determined by a regular Jacobi matrix (with
respect to the basis ej , cf. [St, Theorem 7.13]). Then S is determined by a regular generalized Jacobi matrix
of class J2 with respect to the amalgamated basis {e11, e21, e12, e22, . . .} ⊂ H1 ⊕H2 (cf. [AG, 86◦]). However,
the multiplicity of S is clearly 1.

Remark. Let p ∈ N. The question naturally arises, whether each irregular generalized Jacobi matrix
of class Jp [or, equivalently, whether each irregular block Jacobi matrix of class J [p]] has the property that
the multiplicity of the determined symmetric operator S is finite (possibly µ(S) ≤ p). The answer is, as the
following simple argument shows, no.

For every C ∈ Cyc(S) in the Hilbert space X we have

X = sp[SnC : n ∈ N0] ⊂ sp[C ∪ rg(S)].
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Consider a generalized Jacobi matrix of class Jp that has an infinity of zero columns (and, by symmetry, an
infinity of the corresponding zero rows). The corresponding elementary linear operator T (defined on vectors
of finite type) has its range in the orthogonal complement of the subspace generated by the basis vectors
corresponding to zero columns (or, equivalently, rows). S is the closure of T , hence the range of S is in the
closure of rg(T ), consequently in the orthogonal complement above. It follows that no finite dimensional
subspace C can satisfy the necessary condition above of belonging to the family Cyc(S). 4

5. On a question of Hamburger and Akhieser
We start from an infinite Hermitian symmetric Jacobi matrix J of the class J1 defined by

J :=


a1 b1 0 0 0 . . .
b1 a2 b2 0 0 . . .
0 b2 a3 b3 0 . . .
. . . . . .

 ,

where aj is real, bj > 0 (j = 1, 2, . . .), and denote the corresponding orthonormal basis in the Hilbert space
H by {ej : j = 1, 2, . . .}, cf., e.g., [A, p. 10].

The operator T ≡ T (J) is defined on the basis vectors by

Tek := bk−1ek−1 + akek + bkek+1 (k = 1, 2, . . . ; b0 := 0).

If g =
∑
xkek is a finite linear combination, then extend the definition of T by linearity. We obtain for any

pair of vectors f, g of such a finite type
(Tf, g) = (f, Tg).

Since the set F of such vectors is dense in H, the operator T with domain D(T ) := F is symmetric. Hence
T is closable, and we denote its closure T by S. It is known that any vector h =

∑∞
k=1 xkek is in the domain

of the adjoint operator S∗ = T
∗

if and only if

∞∑
k=1

|xk|2 <∞,
∞∑
k=1

|bk−1xk−1 + akxk + bkxk+1|2 <∞,

and then

S∗h =

∞∑
k=1

[bk−1xk−1 + akxk + bkxk+1]ek.

Further, the deficiency index def(S) of the (closed symmetric) operator S is either (0,0) or (1,1). The former
is the case exactly when the matrix J has the type D (the limit point case), the latter is exactly when J has
the type C (the limit circle case, see, e.g., [A, Ch.I,3]). Clearly, S is the operator determined by the infinite
Jacobi matrix J and the orthonormal basis {en}.

The vector e1 is in D(S∞), and the linear hull L(Ske1 : k = 0, 1, 2, . . .) is equal to L(ek : k = 1, 2, . . .),
hence is dense in H. It follows that µ(S) = 1. For the case def(S) = (0, 0) M.H.Stone [St, Theorem 7.13]
proved the following converse:

Theorem (Stone). If an (in general, unbounded) selfadjoint operator S in a separable Hilbert space
H has simple spectrum, then it is determined by some infinite Jacobi matrix J (with respect to some
orthonormal basis) of type D.

A proof can also be found in [A, Ch.IV,2]. Recall that a selfadjoint operator S has simple spectrum if
and only if µ(S) = 1, i.e., there is a vector v ∈ H such that v is in D(S∞), and sp[Skv : k = 0, 1, 2, . . .] = H.
In this case it is customary to say that the operator S is cyclic with cyclic vector v.

H.L.Hamburger in [H] raised and answered the following question: when is a closed symmetric prime (or,
equivalently, pure) operator of deficiency index (1,1) determined by an infinite Jacobi matrix J (necessarily
of type C)? [Note that [A, Theorem 4.2.4] shows that if a closed symmetric operator S is determined by
a Jacobi matrix of class J1 of type C, then S is pure.] Hamburger’s answer in [H] contains another known
necessary condition, and is in (duly complicated) analytic terms. It may be interesting that an answer in
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general Hilbert space terms can be given (without explicitly assuming primeness), and can be formulated in
a similar way to Stone’s above result.

Theorem 4. If a closed symmetric operator S (in a separable Hilbert space H) has def(S) = (1, 1) and
µ(S) = 1, then it is determined by some regular Jacobi matrix J (with respect to some orthonormal basis)
of type C and such that aj is real, bj > 0 (j = 1, 2, . . .).

Proof. Let v be a cyclic vector for S, i.e. L(Skv : k = 0, 1, 2, . . .) be dense in H. Apply the
orthonormalizing process to the sequence {Skv : k = 0, 1, 2, . . .}, obtaining the sequence {e1 := v/|v|, ek :
k = 2, 3, . . .}. Since v is a cyclic vector, this latter sequence is an orthonormal basis for H, and is contained
in D(S∞). Consider the subspaces

EN := L(e1, e2, . . . , eN ) = L(Skv : k = 0, 1, 2, . . . , N − 1), (N ∈ N).

We have SEN ⊆ EN+1, but SNv /∈ L(Skv : k = 0, 1, 2, . . . , N − 1) = EN for every N = 1, 2, . . . (otherwise
the Hilbert space H would be finite dimensional). Hence we have the strict inclusions

SEN ⊂ EN+1 (N = 1, 2, . . .). (∗)

Since S is symmetric, this implies for j > k + 1

akj = (Sej , ek) = (ej , Sek) = 0.

Using (∗) again, for j < k − 1 we obtain

akj = (Sej , ek) = 0.

Hence for every k = 1, 2, . . .

Sek = ak−1,kek−1 + ak,kek + ak,k+1ek+1 (e0 := 0).

Further, we have

ak−1,k = (Sek, ek−1) = (ek, Sek−1) = (Sek−1, ek) = ak,k−1 6= 0, ak,k = (Sek, ek) ∈ R.

Introducing the shortened (usual) notation

ak := ak,k, bk := ak,k+1 (k = 1, 2, . . .),

we obtain the entries of an infinite Jacobi matrix A. Through the method outlined by Hamburger [H, p.502],
we can slightly change the orthonormal basis, and obtain (with respect to this) the entries of the infinite
Jacobi matrix J , where each bj is positive.

Consider now the symmetric linear operator T ≡ T (J) defined at the beginning of this Section with
domain D(T ) = F , the linear manifold of all finite linear combinations of the basis vectors ek. Since

Tek = bk−1ek−1 + akek + bkek+1 = Sek (k = 1, 2, . . . ; b0 := 0),

T is equal to S restricted to F , hence the closure T has the closed symmetric extension S. Since T is the
closed symmetric operator determined by the matrix J , it has the deficiency index either def(T ) = (0, 0)
or else def(T ) = (1, 1), according as the matrix J is of type D or else of type C (cf. [A, Ch. IV,1-2]). In
the first case T is selfadjoint having the closed symmetric extension S of deficiency index (1, 1), which is
impossible. In the second case T has the deficiency index (1, 1), and has the closed symmetric extension S
of deficiency index (1, 1). Hence S = T is the closed symmetric operator determined by the infinite Jacobi
matrix J , which is in this case necessarily of type C. 4

6. The multiplicities of pure maximal symmetric operators
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In this section we shall denote by S(m,n) a densely defined closed symmetric operator with deficiency
index (m,n) ∈ N×N.

Theorem 5. If the deficiency index of the closed symmetric operator S ≡ S(m,n) is (m,n), then
µ(S) ≥ max(m,n). There exists a closed symmetric operator S(m,n) such that

µ[S(m,n)] ≤ max(m,n) + 1.

If a closed symmetric operator is pure, then we denote it by Sp, and we have

µ[Sp(0, n)] = n+ 1, µ[Sp(m, 0)] = m+ 1, hence µ[Sp(m, 0)⊕ Sp(0, n)] ≤ m+ n+ 2.

Proof. Assume that the deficiency index of the symmetric operator S is (m,n), and let M ≡M(m,n) :=
max(m,n). By Lemma 2, we have then

µ(S) ≥ sup
λ∈C

dim[ker(S∗ − λI)] = M(m,n).

By Dyukarev’s result ([D, Theorem 1]), there exists an infinite regular Hermitian symmetric block Jacobi
matrix of class J [M+1] such that the determined (closed symmetric linear) operator TM+1 has the deficiency
index (m,n). By Lemma 2 and by Corollary to Theorem 3, we have then

M(m,n) ≤ µ(TM+1) ≤M(m,n) + 1,

which proves the second sentence in the Theorem. Note that the symmetric operator TM+1 is not necessarily
pure.

Consider now the case when m = 0, n ≥ 1, and the pure symmetric operator Sp ≡ Sp(0, n) has the
indicated deficiency index. Then a corresponding closed symmetric operator (via Dyukarev’s cited result
again) Tn+1 has the same deficiency index (0, n), and has the canonical decomposition

Tn+1 = Q⊕Rp(0, n),

where Q is selfadjoint, and Rp(0, n) is a pure closed symmetric operator with the given deficiency index.
Hence we obtain

n ≤ µ[Rp(0, n)] ≤ µ[Tn+1] ≤ n+ 1.

Consider the possibility µ[Rp(0, n)] = n. Then, by Theorem 1, there is an orthonormal basis with respect
to which the matrix A of the operator Rp(0, n) is a generalized Jacobi matrix of type Jn. By Theorem 2
(applying also the notation there), there is a positive integer d ≤ n such that the matrix A is the sum of a
regular generalized Jacobi matrix A(d) ∈ Jd plus of a direct sum:

A = A(d) + [M ⊕ 0].

The deficiency numbers of the symmetric operator S0(d) determined by A(d) are, by [KD], not greater than
d. The deficiency numbers of the symmetric operator S0 determined by A itself satisfy def [S0] = def [S0(d)],
hence they are not greater than d. The operator Rp(0, n) is generated by A, hence is an extension of the
operator S0 (which is determined by A). It follows that both deficiency numbers of Rp(0, n) are not greater
than d. This implies n ≤ d, hence d = n.

We have then the following inequalities for the deficiency indices (understood componentwise):

(0, n) = def [Rp(0, n)] ≤ def [S0] = def [S0(d)] ≤ (d, d) = (n, n).

The operator S0(d) ≡ S0(n) is determined by the regular generalized Jacobi matrix A(n) ∈ Jn. By the
already cited result of Kogan [Kog], one of its deficiency numbers can be equal to n if and only if both are.
Hence

def [S0] = def [S0(n)] = (n, n).
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However, the symmetric operator Rp(0, n) is an extension of the symmetric operator S0, hence for their
deficiency indices we should have

(0, n) = (n− k, n− k) for some k ∈ N0,

a contradiction. By a result of v.Neumann, Sp(0, n) and Rp(0, n) are unitarily equivalent (see, e.g., [AG,
104◦]). Hence we have obtained

µ[Sp(0, n)] = µ[Rp(0, n)] = n+ 1.

In a completely similar way we obtain that the multiplicity of the pure symmetric operator with deficiency
index (m, 0), where m ≥ 1, is m+ 1. Hence, if the symmetric operator S ≡ S(m,n) is the orthogonal sum

S(m,n) = Sp(m, 0)⊕ Sp(0, n),

then we have
µ[S(m,n)] ≤ m+ n+ 2.

4
Corollary. Each closed symmetric operator S satisfying def(S) = (1, 1) and µ(S) = 1 is not the direct

sum of elementary symmetric operators:

S 6= Sp(1, 0)⊕ Sp(0, 1).

Further, the n-fold orthogonal sum S(n) := S ⊕ . . .⊕ S satisfies

µ[S(n)] = n.

Hence, for every n ∈ N there is S(n, n) such that µ[S(n, n)] = n.
Proof. Assuming that S is the (negated) direct sum above, we should have

1 = µ(S) ≥ µ[Sp(1, 0)] = 2,

a contradiction. Further, the deficiency index of S(n) is clearly (n, n). Hence, by Lemma 3,

n = max(n, n) ≤ µ[S(n)] ≤ nµ(S) = n.

4
Now we shall determine the matrix of the simplest structure of the elementary symmetric operator

S ≡ Sp(0, 1) (which is necessarily pure, cf. [AG, 104◦, Theorem 1]) defined by v.Neumann in [NAE]. We
shall cite his representations in the form of the

Lemma (v.Neumann [NAE, p. 130]). The closed symmetric operator S is unitarily equivalent to each
one of the following operators T :
1◦ D(T ) := {x ≡ {xk} ∈ l2(N) : |x1|2 + |x1 + x2|2 + |x1 + x2 + x3|2 + . . . <∞},

Tx := i{x1, 2x1 + x2, 2x1 + 2x2 + x3, . . .}.

(Interestingly, for any x ∈ D(T ) we have
∑∞
k=1 xk = 0.)

2◦ Let k ∈ Z. In L2(0, 1) let X ≡ Hk denote one of the closed linear subspaces generated by all the
functions {xn(t) := e2nπit : n ∈ Z, n ≥ k}. Let

D(T ) := {f ∈ X : −cot(πt)f(t) ∈ X}, (Tf)(t) := −cot(πt)f(t).

3◦ D(T ) := {f ∈ H2(D) : i z+1
z−1f(z) ∈ H2(D)}, (Tf)(z) := i z+1

z−1f(z).

Here H2(D) denotes the indicated Hardy space of the disc.

4◦ D(T ) := {f ∈ L2(0,∞) : f is locally absolutely continuous, f ′ ∈ L2(0,∞), f(0) = 0}, T f := if ′.

12



Theorem 6. The multiplicity of the closed symmetric operator S is µ(S) = 2. In the representation 4◦

the functions f, g ∈ D(T∞) defined by

f(t) := e−t−
1
t , g(t) := tf(t) = te−t−

1
t

satisfy
sp[{T kf : k ∈ N0} ∪ {T kg : k ∈ N0}] = X = L2(0,∞).

Proof. We have obtained above µ(S) = µ[Sp(0, 1)] = 2.
Consider now for S the representation 4◦, and the functions f, g defined above. For their successive

derivatives it can be proved by induction that

f (k)(t) =
P2k(t)f(t)

t2k
, g(k)(t) =

Q2k(t)f(t)

t2k−1
(k ∈ N),

where P, Q are polynomials of the indicated degree and such that

P2k(0) = Q2k(0) = 1,

i.e. their lowest degree terms are 1. It follows that f, g ∈ D(T∞).
Assume now that there is h ∈ L2(0,∞) such that for every n = 0, 1, 2, . . . we have∫ ∞

0

f (n)(t)h(t)dt = 0 =

∫ ∞
0

g(n)(t)h(t)dt.

With the shortening

[f, n] :=

∫ ∞
0

f (n)(t)h(t)dt

we shall write the equation above as

[f, n] = 0 = [g, n] (n = 0, 1, 2, . . .).

We state that this implies∫ ∞
0

tjf(t)h(t)dt = 0 (j = 1, 0,−1,−2,−3, . . .). (∗)

Indeed, [g, 0] = 0 is (*) for j = 1, and [f, 0] = 0 is (*) for j = 0. Knowing these, [g, 1] = 0 implies (*) for
j = −1, and then [f, 1] = 0 implies (*) for j = −2. Continuing in this way, we obtain successively (*) for
j = −3,−4,−5, . . ..

Applying now the substitution t = x−1, (*) implies∫ ∞
0

xke−x−
1
xh(

1

x
)dx = 0 (k = −3,−2,−1, 0, 1, 2, . . .). (∗∗)

For any b satisfying 0 < b < 1 we have∫ ∞
0

ebxf(x)|h(
1

x
)|dx =

∫ ∞
0

|h(t)|e(b−1) 1
t e−tt−2dt <∞,

since the integrand on the right-hand side is the product of two functions from L2(0,∞). This fact together
with (**) implies ∫ ∞

0

xky(x)dx = 0 (k = −3,−2,−1, 0, 1, 2, . . .),
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where the function

y(x) := f(x)h(
1

x
)

has been seen to have the property that for 0 < b < 1 the function x 7→ ebxy(x) ∈ L1(0,∞). A more or
less standard reasoning concerning Fourier transforms in the complex domain (i.e. the Paley-Wiener circle
of ideas) shows that then (cf., e.g., [KF, 8.4.2, 8.4.3]) y = 0 a.e. Hence h = 0 ∈ L2(0,∞), which proves our
claim. 4

We prove now the following
Theorem 7. Apply the notation of the preceding proof, and consider the functions f, g ∈ X := L2(0,∞)

from there. Then the following sequence of functions:

{g, f, Tg, Tf, T 2g, T 2f, . . .} (+)

forms a linearly independent set. Hence the orthonormalized sequence of the above sequence is a basis with
respect to which the matrix of the operator T is a regular J2 matrix: it has nonzero entries only in the main
and in the two neighboring diagonals in both directions, and the two indicated extreme diagonals contain
exclusively nonzero entries.

Proof. In this proof we shall call an expression of the type

N∑
k=−N

akt
k (N ∈ N, ak ∈ C)

a two-sided polynomial or simply a polynomial in t over C. We define the positive degree of a polynomial as
the largest k ≥ 0 such that ak 6= 0, and the negative degree as the smallest −j ≤ 0 such that a−j 6= 0.

We have seen in the preceding proof that each derivative of g, f is a product of f and of a (two-sided)
polynomial of t. It is immediate that a set of such functions is linearly independent in X if and only if
the corresponding set of polynomials (after division by f) is linearly independent in C(0,∞). Denote the
corresponding sequence of polynomials (in the order of (+)) by {p1, p2, p3, . . .}. We obtain that

p1(t) = t, p2(t) = 1, p3(t) = −t+ 1 + t−1, p4(t) = −1 + t−2.

In general, the negative degree of p2k+1 is −2k + 1 for k ∈ N, and its positive degree is always 1. The
negative degree of p2k is −2k+ 2 for k ∈ N, and its positive degree is always 0. It follows that any ”starting
section” {p1, p2, . . . , pn} of the sequence of these polynomials is a linearly independent set, which proves that
the whole set (+) is.

Further, it is clear that

T ({p1, p2, . . . , pn}) ⊂ sp[p1, p2, . . . , pn+2] (n ∈ N).

Since the orthonormalization process does not change the linear span of the starting sections, an application
of the Corollary to Theorem 1 proves now the last sentence of the Theorem. 4

7. The completely indeterminate case revisited
It is a more or less generally accepted expression that for a (possibly block, Hermitian symmetric

infinite) Jacobi matrix A ∈ J [p] or, equivalently, for the determined minimal closed operator S in the Hilbert
space l2p (sequences of vectors from Cp with square-summable sequences of norms) we have the completely
indeterminate case iff the deficiency index of the operator S is (p, p). Kostyuchenko and Mirzoev claimed in
[KM1], [KM2] that this is the case if and only if all solution vectors u of the equation A · u = 0 belong to
the space l2p. The following simple example shows that this claim is false.

Example.Let p = 1 and consider the regular Jacobi matrix A ∈ J1 with zero main diagonal, and two
identical by-diagonals with the entries (1, 2, 2, 3, 3, 4, 4, . . .) (in this order). Each solution vector u of the
equation A · u = 0 is a multiple of the vector

u = (1, 0,−1/2, 0, 1/3, 0,−1/4, 0, 1/5, 0, . . .) ∈ l2 ≡ l2p.
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On the other hand, the reciprocals of the entries in both by-diagonals form a clearly divergent series. It is
well known that this property of any Jacobi matrix with real main and positive by-diagonals implies that the
determined (minimal closed) operator S in l2 is self-adjoint (see, e.g., [A,Chap.1]). Hence def(S) = (0, 0) 6=
(p, p), i.e. we do not have the completely indeterminate case. 4
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