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Inverse elementary divisor problems for nonnegative matrices

Abstract. The aim of this paper is to answer three questions formulated by Minc in his two papers
and book on the problem of prescribed elementary divisors for entrywise nonnegative or doubly stochastic
matrices. They study the relation of the problem for a diagonalizable and for a general entrywise nonnegative
matrix, respectively. One answer is in the positive, two are in the negative directions.
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1. Introduction
The problem of prescribed elementary divisors for entrywise nonnegative and, in particular, for row

stochastic and doubly stochastic matrices was in a more detailed way first considered by C.R. Johnson [J]
and H. Minc [IN], [DS], and is generally regarded as more difficult than the inverse spectrum problem for
the same classes. An overview of early results and problems is contained in Minc’s monograph [N], a good
recapitulation of later results together with new ones is in the recent paper by Soto and Ccapa [SC].

The aim of this paper is to answer three open questions formulated by Minc in [IN],[DS] and [N]. They
concern the relation of the problem for a diagonalizable and for a general entrywise nonnegative matrix,
respectively, and will be precisely cited in Sections 2, 3 and 4. Here we present the basic terminology and
notation.

A complex matrix is called (doubly) quasi-stochastic if all its row sums (and column sums) are 1.
Equivalently, an n × n matrix A is (doubly) quasi-stochastic if and only if 1 is an eigenvalue of A and
(1, . . . , 1)t (t will always denote transpose) is a corresponding eigenvector for A (and At). A matrix is called
positive (nonnegative) if all its entries are positive (nonnegative). A nonnegative (doubly) quasi-stochastic
matrix is called (doubly) stochastic (in the latter case also row stochastic).

The inverse elementary divisor problem (in its general formulation) asks for necessary and sufficient
conditions for a given matrix to be similar to an entrywise nonnegative (row stochastic, doubly stochastic)
matrix. The inverse spectrum problem asks for necessary and sufficient conditions for a given list of n
complex numbers to be the list of the eigenvalues (with algebraic multiplicities) of an n×n nonnegative (row
stochastic, doubly stochastic) matrix. In the second group of problems remarkable results were obtained by
Boyle and Handelman [], and by many other researchers, but the first group of problems is apparently even
farer from a general solution.

We apply the usual notation C,R,N, and define N0 := N ∪ {0}. Unless stated explicitly otherwise, a
matrix in this paper is considered over R. The [i, j] entry of the matrix A will be denoted by A[i, j] or aij .
Vector without qualification will denote column vector, and the Hadamard product of n × k matrices A,B
will be denoted by AHB, and defined as usual by AHB[i, j] := A[i, j] ·B[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ k). We use
in Rn the usual inner product, and the corresponding norm will be denoted by | · |. An (upper triangular)
Jordan block with eigenvalue s and order j will be denoted by J(s, j). M −λ will stand for M −λI, where I
is the identity matrix. A matrix having a prescribed list of elementary divisors or eigenvalues will be called
a realization of the given list. For a background on nonnegative matrices we refer to [BP], [HJ] and [N].

2. Doubly stochastic matrices with prescribed elementary divisors
In [DS, Theorem 2] H.Minc proved that for any positive integers e2, e3, . . . , eh with sum N − 1, and

any real number α satisfying −1/(N − 1) < α < 1, there exists a doubly stochastic N × N matrix with
elementary divisors λ − 1, (λ − α)e2 , . . . , (λ − α)eh . In [DS,Theorem 3] he showed that for each N ≥ 2
there is exactly one diagonalizable doubly stochastic N × N matrix with elementary divisors λ − 1 and
λ+ 1/(N − 1) (N − 1 times). It is

D(N) :=
1

N − 1
[NJN − IN ],

where JN denotes the N ×N matrix with all entries = 1/N , and IN is the N ×N identity matrix. Further,
he proved that there is no doubly stochastic 3× 3 matrix with elementary divisors λ− 1 and (λ+ 1

2 )2.
Moreover, he exhibited a doubly stochastic matrix with elementary divisors λ − 1, λ + 1

3 , (λ + 1
3 )2 on

[DS,p.123], and asked what the situation is for the dimensions N ≥ 4 and α := − 1
N−1 (see also [DS,pp.122-

123] and his book [N,pp.190-191]). We formulate the answer in the following
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Theorem. For each N ≥ 4, α := − 1
N−1 and for any positive integers e2, e3, . . . , eh with sum N − 1,

there exists a doubly stochastic N × N matrix with elementary divisors λ − 1, (λ − α)e2 , . . . , (λ − α)eh .
Moreover, if at least one ej > 1, then there exists a family (of the cardinality of the continuum) of doubly
stochastic matrices, each with the prescribed elementary divisors, the entries of which are real affine functions
of a finite number of variables.

In the proof we shall need the following
Lemma. 1. Let s ∈ R, and G := J(s, j1) ⊕ . . . ⊕ J(s, jg) be the direct sum of Jordan blocks of the

indicated orders. Let K be any modification of the matrix G by changing the entries G[r, r + 1] equaling 1
into K[r, r+ 1] := kr, where kr are arbitrary nonzero real numbers. Let M be any modification of the matrix
G by changing the entries G[1, r + 1] into M [1, r + 1] := mr, where mr are arbitrary nonzero real numbers,
for some of those values r for which G[r, r+ 1] = 1 (all the other entries of G remain unchanged). Then the
matrices G,K,M are similar.

2. Let the 2q × 2q matrix L have nonzero entries outside the main diagonal at most in the submatrix
S based on rows 1, . . . , q and columns q + 1, . . . , 2q. Let S have rank q, and let L[i, i] = s (i = 1, 2, . . . , 2q).
Then L is similar to the direct sum of q copies of J(s, 2).

Proof of the Lemma. 1. It is easy to check that any Jordan block J(s, j) and its any modification allowed
above (for K) have the same elementary divisors. The elementary divisors of a direct sum of matrices are
the collection of the elementary divisors of the matrices. Hence G is similar to K.

Assume now that M is a fixed modification allowed above. Apply the notation x := s − λ, and add
the penultimate row of M − λ multiplied by −(M − λ)[1, j1 + . . .+ jg] to the first row of M − λ. We have
changed then (M − λ)[1, j1 + . . .+ jg] into 0, and (M − λ)[1, j1 + . . .+ jg − 1] into (M − λ)[1, j1 + . . .+ jg −
1]− (M − λ)[1, j1 + . . .+ jg]x.

Observe that continuing in this way with the last but two row multiplied by −(M−λ)[1, j1+ . . .+jg−1]
, etc. upwards, the definitions of G and M imply that G−λ is similar to (≡ has the same elementary divisors
as) its modification having the first row

(x v1 + v2x v3x . . . vj1+...+jg−1x 0 ) (vr ∈ R)

(all the other rows of G − λ [which are also rows of M − λ] remaining unchanged). Adding appropriate
multiples of the first column (x 0 0 . . . 0 )

t
of G−λ, we can change the first row to (x v1 0 . . . 0 ),

where the real number v1 is nonzero exactly when G[1, 2] = 1. By the preceding paragraph, G is similar to
M .

2. By assumption, L−s =

(
0 S
0 0

)
, where 0 denotes zero matrix of order q. It follows that rank(L−s) =

rank(S) = q and rank(L−s)2 = 0. Hence the order of the largest Jordan block of L is 2. The rank condition
shows that there are at least (hence exactly) q blocks of order 2. 4

Proof of the Theorem. Let n := N − 1, and let

s1 :=
1√
N

( 1 . . . 1 )
t
,

a normalized eigenvector corresponding to 1 of (any) doubly stochastic matrix of order N . Let S =
( s1 . . . sN ) be its arbitrary complementation (by the column vectors s2, . . . , sN ) to a real orthogonal

matrix of order N . Since
∑N

k=1 sks
t
k is the spectral decomposition of the identity IN , we have

s1s
t
1 −

1

n
[s2s

t
2 + . . .+ sNs

t
N ] =

N

n
s1s

t
1 −

1

n
IN =

N

n
JN −

1

n
IN .

By Minc’s cited result [DS, Theorem 3, pp. 128-129], this matrix is the unique diagonalizable nonnegative
N ×N matrix D(N) with the elementary divisors λ−1 and λ+1/n (n times) (independently of the choice
of S).

Let the matrix B be the direct sum of the 1× 1 matrix 1 plus an upper triangular n×n matrix F with
exclusively the numbers − 1

n in the main diagonal and with the prescribed (nonunit) elementary divisors. If
A ≡ A(S) := SBSt, then the matrix A will have the prescribed elementary divisors. Further,

A = SBSt = ( s1 . . . sN ) [1⊕ F ]

 st1
...
stN

 = s1s
t
1 −

1

n
[s2s

t
2 + . . .+ sNs

t
N ] +

∑
2≤j<k≤N

bjksjs
t
k =

2



= D(N) +
∑

2≤j<k≤N

bjksjs
t
k ≡ D(N) +

∑
2≤j<k≤N

fjksjs
t
k.

It follows that the matrix A is nonnegative if and only if the right-hand side matrix above is a nonnegative
matrix. In our case we have trace(A) = 0, which is (if A ≥ 0) equivalent to A[r, r] = 0 (r = 1, . . . , N).
Since [D(N)][r, r] = 0 (r = 1, . . . , N), this means

{
∑

2≤j<k≤N

bjksjs
t
k}[r, r] = 0 (r = 1, . . . , N).

This condition is equivalent to ∑
2≤j<k≤N

fjksjHsk = 0, (∗)

where the right-hand side is the N × 1 zero matrix (column vector).
Consider now a fixed prescribed list of elementary divisors as in the statement of the Theorem, and one

corresponding (upper triangular) Jordan matrix M = {mik : 2 ≤ i, k ≤ N} of order n of the form

M := J(α, e2)⊕ J(α, e3)⊕ . . .⊕ J(α, eh).

Let J := {j2, . . . , jr} be the finite sequence of all subscripts satisfying

2 ≤ j2 < j3 < . . . < jr ≤ N − 1

and M [jk, jk + 1] = 1 (k = 2, 3, . . . , r). We shall modify some entries of the matrix M to obtain an upper
triangular matrix F = {fik : 2 ≤ i, k ≤ N} of order n, with the same elementary divisors and satisfying (∗),
according to the cases distinguished below.

Consider the N ×N matrix

V :=



1 −n 0 0 0 . . . 0
1 1 1− n 0 0 . . . 0
1 1 1 2− n 0 . . . 0
1 1 1 1 3− n . . . 0
. . .
1 1 1 1 1 . . . −1
1 1 1 1 1 . . . 1


,

denote its column vectors by v1, v2, . . . , vN , and their normalized variants by wj :=
vj
|vj | (j = 1, . . . N). The

vectors vk are pairwise orthogonal, and their Hadamard products satisfy

vkHvj = vmax[k,j] (1 ≤ k, j ≤ N).

The vectors wk form an orthonormal basis of RN , and their Hadamard products satisfy

wkHwj =
1

|vk||vj |
vmax[k,j] =

1

|vmin[k,j]|
wmax[k,j] (1 ≤ k, j ≤ N).

It is convenient to introduce the notation zj := 1
|vj | . Then 0 < zj < 1, and we have

wkHwj = zjwk (j < k).

With the help of the matrix V above form the vectors wk, and define an orthogonal matrix S (corre-
sponding to M) with columns sj , in the first two of the following 3 possible cases (depending on M):

3



Case 1: If there is at least one ej = 1 (i.e., at least one Jordan block of order 1), then we may and shall
assume that e2 = 1. Then m23 = 0, and we define

sj := wj (j = 1, 2, 3, . . . , N).

Case 2: If there is no Jordan block of order 1, but there is at least one Jordan block of order greater
than 2, then we may and shall assume that precisely e2 > 2, hence m23 = m34 = 1. In Case 2 we define

s1 := w1, s2 := w2, s3 := w4, s4 := w3, sj := wj (j = 5, 6, . . . , N).

(The effect of this is simply changing the order of w3 and w4, and its usefulness will become clear in what
follows.)

Case 3: The single remaining case is when each ek is equal to 2, i.e., M is the direct sum of blocks of
order 2. Hence the order of M is even, say n = 2q, and we have mk,k+1 = 0 for k odd, and mk,k+1 = 1 for
k even.

In Case 3 we shall define the orthogonal matrix S below.
Consider the linear homogeneous system (∗) of equations for the entries fjk of the matrix F . We state

that in each of the 3 cases above we can find (an S and) a solution matrix F which has exactly the prescribed
elementary divisors.

In Case 1 : if mk,k+1 = 1 for some k, then we define fk,k+1 and f2,k+1 to be arbitrary nonzero real
numbers (note that for k > 2 we clearly have m2,k+1 = 0), and for all other entries we let fik := mik.
The Lemma shows that the elementary divisors of F so defined coincide with the elementary divisors of M .
Further, (∗) is then equivalent to ∑

j∈J
[fj,j+1zj + f2,j+1z2]wj+1 = 0.

Hence, e.g.,

fj,j+1 := z2, f2,j+1 := −zj (j ∈ J), and all the remaining fjk := 0 (j 6= k)

is a solution of the required type.
In Case 2 proceed similarly as in Case 1, but leave f24 := m24 = 0. Making use of the slight modification

in the definition of the sequence {sj}, (∗) is then equivalent to

[f23z2 + f34z3]w4 +
∑

j∈J,j>3

[fj,j+1zj + f2,j+1z2]wj+1 = 0,

and one (of many) possible definition of a matrix F of the wished type is clear.
In Case 3 consider the following matrix U of order N = 2q + 1:

U :=



1 1 0 0 . . . 0 1 1 1 1 . . . 1
1 −1 0 0 . . . 0 1 1 1 1 . . . 1
1 0 1 0 . . . 0 −1 1 1 1 . . . 1
1 0 −1 0 . . . 0 −1 1 1 1 . . . 1
1 0 0 1 . . . 0 0 −2 1 1 . . . 1
1 0 0 −1 . . . 0 0 −2 1 1 . . . 1
1 0 0 0 . . . 0 0 0 −3 1 . . . 1
1 0 0 0 . . . 0 0 0 −3 1 . . . 1
. . .
1 0 0 0 . . . −1 0 0 0 0 . . . 1
1 0 0 0 . . . 0 0 0 0 0 . . . −2q


,

and denote its columns by uk (k = 1, 2, . . . , 2q + 1). They are pairwise orthogonal. Normalize them by
letting sk := uk

|uk| , and define the orthogonal matrix S by its columns as

S := ( s1 s2 . . . sN ) .
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If j ∈ {2, 3, . . . , q + 1}, k ∈ {q + 2, q + 3, . . . , 2q + 1}, then |uj | =
√

2, |uk| = 2
√
k − q − 1, and we have

sjHsk =
ujHuk
|uj ||uk|

= gjkuj .

It is easily seen that gjk = 1
|uj ||uk|γjk, where γjk = 1 for j ≤ k−q, γjk = 0 for j ≥ k−q+2, and γjk = −j+2

for j = k− q+ 1. Hence the matrix γ := (γjk : j ∈ {2, 3, . . . , q+ 1}, k ∈ {q+ 2, q+ 3, . . . , 2q+ 1}) of order q
may be represented as

γ ≡ γ(q) =


1 1 1 1 . . . 1 1
−1 1 1 1 . . . 1 1
0 −2 1 1 . . . 1 1
0 0 −3 1 . . . 1 1
. . .
0 0 0 0 . . . 1− q 1

 .

By the Lemma, if F = {fjk : j, k ∈ {2, . . . , 2q+ 1}} is an upper triangular real matrix of order 2q with main
diagonal consisting of 2q copies of α and such that fjk 6= 0, j < k together imply that j ∈ {2, 3, . . . , q +
1}, k ∈ {q + 2, q + 3, . . . , 2q + 1}, and the corresponding submatrix F0 := {fjk : j ∈ {2, 3, . . . , q + 1}, k ∈
{q+ 2, q+ 3, . . . , 2q+ 1}} of order q has rank q, then the Jordan form of F has exactly q blocks of order 2. If
the orthogonal matrix S is defined as above, and F has these properties, then the system (∗) has the form∑

j∈{2,3,...,q+1}, k∈{q+2,q+3,...,2q+1}

fjkgjkuj = 0.

Since the vectors {uj} are pairwise orthogonal, this is equivalent to the system

∑
q+2≤k≤2q+1

fjk
1

|uj ||uk|
γjk =

∑
q+2≤k≤2q+1

fjkgjk = 0 (2 ≤ j ≤ q + 1).

The form of the matrix γ shows that this system has an infinity of real solutions {fjk} satisfying all the
requirements formulated above (in particular, det(F0) 6= 0), if q > 1. It is instructive to see how this
argument breaks down for q = 1 (hence N = 3), which is exactly the case of Minc’s counterexample cited in
the first paragraph of this Section.

Indeed, if q = 1, then we should have f23
1

|u2||u3| = 0 and f23 = det(F0) 6= 0, a contradiction. If q = 2,

then the corresponding system of equations is

f24
1

|u2||u4|
+ f25

1

|u2||u5|
= 0, −f34

1

|u3||u4|
+ f35

1

|u3||u5|
= 0.

This implies det(F0) = f24f35 − f34f25 = 2f24f34|u5|/|u4| 6= 0, whenever we pick f24 6= 0, f34 6= 0.
For any q ∈ N \ {1} we can construct a solution in the following way. Define

φjk := fjk
1

|uj ||uk|
(j ∈ {2, 3, . . . , q + 1}, k ∈ {q + 2, q + 3, . . . , 2q + 1}).

Then (∗) is equivalent to the system∑
q+2≤k≤2q+1

φjkγjk = 0 (2 ≤ j ≤ q + 1).

It follows that, e.g., the choice

φ2,q+2 := 1, φ2,q+3 := −1, φj,j+q−1 := 1, φj,j+q := j − 2 (j = 3, 4, . . . , q + 1),
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and every other φjk := 0 satisfies the system. Hence the definition

f2,q+2 := |u2||uq+2|, f2,q+3 := −|u2||uq+3|, fj,j+q−1 := |uj ||uj+q−1|,

fj,j+q := (j − 2)|uj ||uj+q| (j = 3, 4, . . . , q + 1),

and every other fjk := 0 yields a solution matrix F . Indeed, we have

det(F0) = 2(q − 1)!|u2||u3| . . . |u2q||u2q+1| > 0.

Assume now that that (in any one of the 3 possible cases) we have determined one pair of matrices
(S, F ) as above, satisfying (∗). Since this system of equations is homogeneous, we have for every ρ ∈ R∑

2≤j<k≤N

ρfjksjHsk = 0.

Let F (ρ) denote the modification of the matrix F obtained by multiplying all the nondiagonal entries of F by
the number ρ > 0. The elementary divisors of F (ρ) are identical with those of F . In Cases 1 or 2 this is seen
by applying the Lemma, whereas in Case 3 we see that (with evident notation) det[F (ρ)0] = ρq det[F0] 6= 0.
By choosing ρ sufficiently small, all the nondiagonal entries of F (ρ) will have moduli less than any prescribed
ε > 0. By choosing ε sufficiently small, and defining the matrix B(ρ) := 1⊕F (ρ) of order N , we obtain that
each matrix

A(ρ) := SB(ρ)St = D(N) +
∑

2≤j<k≤N

ρfjksjs
t
k

is nonnegative, and has the prescribed elementary divisors. Finally, we show that for any real number ρ
the matrix A = A(ρ) is doubly quasistochastic, i.e. 1 is an eigenvalue of A and e1 := ( 1 1 . . . 1 )

t
is a

corresponding eigenvector for A and At. We know that the matrix D(N) is doubly stochastic, hence

Ae1 = D(N)e1 +
∑

2≤j<k≤N

ρfjksjs
t
ke1 = e1 +

∑
2≤j<k≤N

ρfjksjs
t
ke1.

For each k ≥ 2 the scalar product stke1 of orthogonal vectors is 0, thus Ae1 = e1. Since every occurring
number is real, we obtain similarly that Ate1 = e1. Hence A(ρ) is doubly quasistochastic for each ρ. The
forms of D(N) and A yield the last statement of the theorem. 4

Example. Let N = 5, and the prescribed elementary divisors be λ− 1, (λ+ 1
4 )2, (λ+ 1

4 )2. We are then
in Case 3 from above, and q = 2. The matrix U is given by

U :=


1 1 0 1 1
1 −1 0 1 1
1 0 1 −1 1
1 0 −1 −1 1
1 0 0 0 −4

 .

Normalizing the columns uj by sj := uj/|uj |, taking the Hadamard products sjHsk, and introducing the
notation

b := f24, c := f25, d := f34, e := f35,

we see that (∗) is in this case equivalent to the equalities

c = −
√

5b, e =
√

5d.

Note that (with the notation of the proof of the theorem)

det(F0) = be− cd = 2
√

5bd 6= 0 iff bd 6= 0,
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which we assume from now on. Forming the orthogonal matrix S as in the proof of the theorem, and applying
the notation σ := 4c/

√
10, τ := 4e/

√
10, we see that each matrix of the form

A ≡ A(σ, τ) :=
1

4


0 1 1 + σ 1 + σ 1− 2σ
1 0 1− σ 1− σ 1 + 2σ

1 + τ 1 + τ 0 1 1− 2τ
1− τ 1− τ 1 0 1 + 2τ

1 1 1 1 0

 , (στ 6= 0)

is doubly quasistochastic and has the prescribed elementary divisors. If 0 < |σ|, |τ | are sufficiently small,
then A(σ, τ) is also nonnegative, hence doubly stochastic. In particular, the choice σ = τ = 2/5 yields the
doubly stochastic matrix

A(2/5, 2/5) =
1

20


0 5 7 7 1
5 0 3 3 9
7 7 0 5 1
3 3 5 0 9
5 5 5 5 0


with the prescribed elementary divisors.

3. No nonnegative matrix with the given elementary divisors
In [IN, Theorem 1] H. Minc proved that for every positive diagonalizable matrix there is a positive

matrix with the same spectrum [≡ spectral list, allowing for algebraic multiplicities] but with arbitrarily
prescribed elementary divisors, subject to the condition that elementary divisors corresponding to nonreal
eigenvalues occur in conjugate pairs.

In his paper [IN, p.665] and book [N, p.188] Minc posed the similar question on the nonnegative inverse
elementary divisor problem: ”whether for every nonnegative diagonalizable matrix there exists a nonnegative
matrix with the same spectral list but with arbitrarily prescribed elementary divisors, subject to the condition
that elementary divisors corresponding to nonreal eigenvalues occur in conjugate pairs. In the case of the
doubly stochastic matrices, the answer to this problem is in the negative” [in the sense that there may not
exist any doubly stochastic matrix with the prescribed elementary divisors as he showed by his Example 3.1
in [N, pp.188-189]]. We show that the answer to Minc’s problem is in the negative in the following precise
sense:

Theorem. There exist a diagonalizable doubly stochastic matrix M and a prescribed list of elementary
divisors (subject to the condition above) with the same spectral list as that of M such that there is no
nonnegative matrix with the prescribed list of elementary divisors.

Proof. Consider the following doubly stochastic matrix

M :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

It is clearly diagonalizable, and has the spectral list L = (1, 1,−1,−1) (with linear elementary divisors). Any
nonnegative matrix with the given spectral list cannot be irreducible, and is cogredient (≡ permutationally
similar) to its reducible normal form. The trace condition evidently shows that it is a nonnegative matrix
N of the block structure

N =

(
A 0
B C

)
.

Here every block is a 2×2 submatrix, and A and C are irreducible, each with the spectral list (1,−1), hence
with the elementary divisors λ − 1 and λ + 1. If B = 0, then the matrix N has the 4 linear elementary
divisors. If B 6= 0, we can apply a result of Rothblum [R] (cf. also [BP, Chapter 2, (3.28), p.45]) implying
that the elementary divisors of N then necessarily include (λ−1)2. Whichever the case for B, it follows that
the list

λ− 1, λ− 1, (λ+ 1)2
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cannot be the list of the elementary divisors of any matrix N , which proves the theorem. 4
Remark. If we want to avoid invoking Rothblum’s result, it can be shown that the (nonnegative)

entries of any N are as follows:

N ≡ N(b, f, x, y, w, z) =


0 b 0 0
b−1 0 0 0
x y 0 f
w z f−1 0

 , bf > 0.

Thus it is possible to determine directly the cases of the distinct elementary divisor lists. It will turn out
that each list distinct from that given above can be the list of a suitable nonnegative matrix N .

4. No nonnegative diagonalizable matrix with the given spectrum
Recall that in his book [N, p.188] H.Minc posed the following question on a variant of the nonnegative

inverse elementary divisor problem: whether for every nonnegative (or even positive) matrix there exists a
diagonalizable nonnegative (positive) matrix with the same spectrum. Before we answer this question, it
may be interesting to note that an ingenious result of Johnson, Laffey and Loewy [JLL] and its proof on
nonnegative realizations of nonzero lists can be slightly modified to yield the following result for the positive
case.

Theorem. If A is a positive matrix of order m and of rank r, then there is a positive integer q ≤ r2 and
a positive matrix A1 of order q having the same nonzero spectrum (i.e. list of nonzero eigenvalues counting
algebraic multiplicities) as A (in signs: A1 ∼ A), and having rank not greater than r.

Proof. We can clearly assume r2 < m. Since A has rank r, there are r ×m real matrices B,C with
columns as follows:

B = ( b1 . . . bm ) , C = ( c1 . . . cm )

satisfying A = BtC. We have then A ∼ CBt =
∑m

i=1 cib
t
i, and the dyads cib

t
i are in the r2-dimensional

vector space of r× r real matrices. Applying a classical result of Caratheodory’s (see also [JLL] ), there are
nonnegative numbers d1, . . . , dq, . . . , dr2 such that

CBt =

r2∑
j=1

djcij b
t
ij .

We may and shall assume that exactly the first q ≤ r2 numbers dj are positive, hence the upper boundary
of the summation can and will be q. Let now

B1 := ( bi1 bi2 . . . biq ) , C1 := ( ci1 ci2 . . . ciq ) , D := diag(d1, . . . , dq).

Then
CBt = C1DB

t
1 ∼ Bt

1C1D =: A1.

The matrix A1 is of order q, and its entry (j, k) is dkb
t
ij
cik . Since dk > 0, and the product of the last two

factors is the entry (ij , ik) of the positive matrix A, the matrix A1 is positive, and we clearly have A1 ∼ A.
The last assertion follows simply from the size of, say, C1. 4

Corollary. Assume that the list L ∈ Cn is the nonzero spectrum of a nonnegative (or positive) matrix.
Then there is a nonnegative (or positive, respectively) matrix A with nonzero spectrum L and with α copies
of zeros in the spectrum, where the number α satisfies

α ≤ n(n− 1) + d(d+ 2n).

Here d denotes the dimension of the quotient G/K, where G,K denote the subspaces of all generalized and
proper eigenvectors of A corresponding to the eigenvalue 0, respectively. Equivalently, d = α− γ, where γ is
the geometric (and α is the algebraic) multiplicity of 0 in the spectrum of A.

Proof. Consider the family of nonnegative (positive) matrices with nonzero spectrum L. It contains a
matrix A of the least order m. Let r denote the rank of A. [JLL] or the Theorem above shows that then
m ≤ r2.
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Considering the Jordan form of A, we see that r = n+ α− γ. Hence

α+ n = m ≤ r2 = (n+ α− γ)2 = (n+ d)2.

Reordering we obtain
α ≤ n2 − n+ 2dn+ d2,

i.e. the stated inequality. 4
The following result (with the help and with the notation of the Corollary above) answers Minc’s problem

at the beginning of this Section in the negative.
Theorem. Let D ∈ N0. There is a positive matrix (with diagonalizable Jordan direct summand

corresponding to the nonzero eigenvalues) such that there is no nonnegative matrix with the same nonzero
spectrum and having the dimension

d := dim[G/K] ≤ D.

Proof. Let 0 < ε <
√

2, and consider the list L(ε) := {
√

2, i,−i, ε}. From results by Johnson [J,
Theorem 4] and by Loewy and London [LL] (cf. also [BH, pp.310-314]), it follows that for every such ε there
is a positive matrix P (ε) whose nonzero spectrum is the list L(ε), and also that the minimal size s(ε) among
such nonnegative matrices satisfies the inequality

s(ε) >
2

ε2
.

Note that for each P (ε) (with the notation of the above Corollary) we have n = 4. Any nonnegative matrix
with the same nonzero spectrum and satisfying d ≤ D has at most rank r = n+D. By the Corollary, there
is such a nonnegative matrix of size ≤ (4 +D)2. However, if

2

ε2
> (4 +D)2,

there cannot exist such a nonnegative matrix. The case D = 0 yields the negative answer to Minc’s question
above. 4
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