Sample Final Exam
 Mathematics A1a

1. Given the equation of the line $e: \frac{x-4}{2}=\frac{2-y}{2}=z+1$ and the point $P(8,4 ; 2)$, find
a.) the equation of the line through P and parallel to e,
b.) the equation of the plane through P and perpendicular to e,
c.) the equation of the plane made by the line e and the point P.
2. Find in algebraic form: \sqrt{i}.
3. a.) When do we say that the function $f(x)$ is continuous at the point $x=x_{0}$? Put down the definition.
b.) Which value of a (if any) makes the following function continuous at $x=0$?

$$
f(x)= \begin{cases}\frac{\sinh ^{2} x}{x^{3}-x^{2}}, & \text { if } x \neq 0 \\ a, & \text { if } x=0\end{cases}
$$

3. Based on the definition of the derivative show that $(\sin x)^{\prime}=-\cos x$.
(6 points)
4. a.) Give the Taylor-polynomial of degree 2 generated by the function $f(x)=\sin ^{2} x$ at the point $x=0$.
b.) Use this polinomial to approximate the value of $\sin ^{2}(0.1)$.
c.) Estimate the error of this approximation.
5. True or false? Give reason for your answer:
a.) If the sequence $\left\{a_{n}\right\}$ tends to plus infinity then it is monotonically increasing.
b.) If the sequence $\left\{a_{n}\right\}$ is monotonically increasing then it tends to plus infinity.
c.) The function $f(x)=x \sin 2 x$ is odd.
d.) If \square, when \square and when \square then the function $f(x)$ has a point of inflection at (8 points)
6. Sketch te graph of the function $y=\frac{1}{1-x^{2}}$. (Find the domain, name any relative extrema, points of inflection, limits at $\pm \infty$, describe monotonity, concavity, give the range.)
(14 points)
7. a.) $\int \frac{\sqrt[3]{x-1}}{\sqrt[3]{(x-1)^{2}}+3} d x=$? (Hint: $u=\sqrt[3]{x-1}$.)
b.) $\int \frac{1}{x^{2}+3 x-4} d x=$?
c.) $\int_{2}^{\infty} \frac{1}{x^{2}+3 x-4} d x=$?
d.) $\int_{-\pi / 2}^{\pi / 2} x \cdot \cos ^{2} x d x=$?
e.) $\int_{0}^{4} \frac{1}{\sqrt{4 x+9}} d x=$
(20 points)
8. Find the area of the region enclosed by the curves $y=\frac{3}{2+x^{2}}, y=x^{2}$.
(10 points)

Passing limit:
Total score: $\quad 90$ points

- at least 12 points on problem 7 and 8 ,
- at least 36 points total

