1. Answer if the following statements are true or false. Give reason for your answer.
a.) If $f(x)$ is increasing monotonically in the interval $(\mathbf{a} ; \mathrm{b})$ then $f(x)$ is differentiable in (a;b).
b.) If $\int f(x) d x=F(x)+C$ then $\int \frac{1}{f(x)} d x=\frac{1}{F(x)}+C$.
(2 points)
2. Find the derivative of the functions:
a.) $y=x^{2}\left(1-\frac{3}{\tan x}\right)^{3}$
b.) $y=\ln \sqrt{\frac{x^{3}}{x-1}}$
(4 points)
3. Inscribe a rectangle into the region in the first quadrant bounded by the x -axis, y -axis and the curve $y=4-x^{2}$. Let the sides of the rectangle be parallel to the axis. Find the dimensions of the rectangle with largest area.
(4 points)
4. Given the function $y=\frac{x-10}{(x-4)^{2}}$, find the domain, name any relative extrema, points of inflection, limits at $\pm \infty$ and at $x=4$, describe monotonity, concavity, give the range. Sketch te graph of the function.
(6 points)
5. Give the Taylor's polynomial of order 4 generated by the function $y=x+\frac{1}{e^{\left(x^{2}\right)}}$ at the point $x=0$..
(3 points)
6. Find the equation of the line tangent to the curve $x=t^{2}, y=\sqrt{1+t^{4}}$ at the point $t=1$.
(3 points)
7. a.) $\int\left(x-\frac{1}{\sqrt{x}}\right)^{2} d x+\int \frac{\ln ^{2} x}{x} d x$,
b.) $\int \frac{1}{x^{2}+2 x-8} d x$
(4 points)
8. Find the area of the region enclosed by the curves $y=\ln x, y=-\ln x, x=e . \quad$ (4 points)
