Systems of linear equations, matrix operations Mathematics A2 4th week

1. For which value of k will the following system have no solution? Exactly one solution? Infinitely many solutions?

$$x - y = 3$$
$$2x - 2y = k$$

2. Using Gaussian elimination solve the following systems:

a.)
$$x_1 + x_2 + 2x_3 = 8$$

$$-x_1 - 2x_2 + 3x_3 = 1$$

$$3x_1 - 7x_2 + 4x_3 = 10$$
b.)
$$3x_1 + 2x_2 - x_3 = -15$$

$$5x_1 + 2x_2 + 2x_3 = 0$$

$$3x_1 + x_2 + 3x_3 = 11$$

$$11x_1 + 7x_2 = -29$$

c.)
$$5x_1 + 2x_2 + 6x_3 = 0 \\ -2x_1 + x_2 + 3x_3 = 0$$
 d.)
$$2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 2x_2 = 0 \\ x_2 + x_3 = 0$$

$$2x_{1} - 4x_{2} + x_{3} + x_{4} = 0$$

$$x_{1} - 5x_{2} + 2x_{3} = 0$$
e.)
$$-2x_{2} - 2x_{3} - x_{4} = 0$$

$$x_{1} - 3x_{2} - x_{4} = 0$$

$$x_{1} - 2x_{2} - x_{3} - x_{4} = 0$$

2. For which value of a will the following system have no solution? Exactly one solution? Infinitely many solutions?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2$$

- 3. Find the value of *a* and *b* such that the system have
- a.) one unique solution,
- b.) infinitely many solutions,
- c.) no solution:

$$ax_1 + bx_3 = 2$$

$$ax_1 + ax_2 + 4x_3 = 4$$

$$ax_2 + 2x_3 = b$$

2. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
, compute (if possible)

a.)
$$A^3 =$$

b.)
$$\mathbf{A}^2 - 2\mathbf{A} + \mathbf{I} =$$

c.)
$$\mathbf{A} \cdot \mathbf{A}^T - \mathbf{A}^T \cdot \mathbf{A} =$$

d.)
$$A^{-1} =$$

e.)
$$\left(\mathbf{A}^{T}\right)^{-1} - \left(\mathbf{A}^{-1}\right)^{T} =$$

3. Given the matrices find (if possible):

$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \text{ and } \mathbf{E} = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

a.)
$$\mathbf{D} + \mathbf{E}$$

b.)
$$\mathbf{D} - \mathbf{E}$$

c.)
$$3D + 5E$$

$$f.)$$
 3 $C-D$

i.)
$$\mathbf{B}\mathbf{A}^T - \mathbf{C}^T$$

j.)
$$\mathbf{D}^T \mathbf{E}^T - (\mathbf{E} \mathbf{D})^T$$

4. Find 2x2 matrices **A** and **B** such that

a.)
$$(A + B)^2 = A^2 + 2AB + B$$

a.)
$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$$
 b.) $(\mathbf{A} + \mathbf{B})^2 \neq \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$