
On the energy spectrum of Yang–Mills instantons
over asymptotically locally flat spaces
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Abstract

In this paper we prove that over an asymptotically locally flat (ALF) Riemannian four-manifold
the energy of an “admissible” SU(2) Yang–Mills instanton is always integer. This result sharp-
ens the previously known energy identity for such Yang–Mills instantons over ALF geometries.
Furthermore we demonstrate that this statement continues to hold for the larger gauge group U(2).

Finally we make the observation that there might be a natural relationship between 4 dimen-
sional Yang–Mills theory over an ALF space and 2 dimensional conformal field theory. This would
provide a further support for the existence of a similar correspondence investigated by several au-
thors recently.
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1 Introduction
Asymptotically locally flat (ALF) spaces are non-compact complete Riemannian 4-manifolds including
mathematically as well as physically important spaces such as the Riemannian Schwarzschild and Kerr
geometries [15] and interesting hyper-Kähler examples like the flat R3×S1, the Ak ALF (or multi-Taub–
NUT or ALF Gibbons–Hawking) geometries [22], the Atiyah–Hitchin manifold [3] and its cousins the
so-called Dk ALF spaces [13].

Recently there has been some effort to understand Yang–Mills instantons over these spaces from
both mathematical (e.g. [8, 9, 17, 18, 19, 20, 21, 29]) and physical (e.g. [6, 7, 10, 11, 12, 25, 27, 28,
34, 37]) sides. A central question is whether or not their moduli spaces are finite dimensional mani-
folds (with mild isolated singularities). Experienced with the compact case an expected condition is the
discreteness of their energy spectrum. For instance in [20] natural asymptotical analytical conditions
on these solutions have been imposed in this spirit: the energy spectrum of these “admissible” Yang–
Mills instantons is characterized by Chern–Simons invariants of the infinitely distant boundary of the
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ALF space. Hence the energy spectrum is discrete but in principle can contain fractional values corre-
spondig to smooth Yang–Mills instantons with non-trivial holonomy at infinity. Over an Ak ALE (or
multi-Eguchi–Hanson or ALE Gibbons–Hawking) space smooth irreducible SU(2) Yang–Mills instan-
ton solutions forming nice moduli spaces indeed can have fractional energy (cf. [5] or [19, Theorem
4.1]). On the contrary over ALF spaces—although finite energy solutions are relatively easy to find—
no “admissible” Yang–Mills instantons of fractional energy are known to exist (e.g. [17, 19, 21]).
Meanwhile other known finite energy solutions (e.g. [6, 7, 8, 9, 12, 14, 26]) with integer or fractional
energy in principle may fit into larger continuous energy families, as an example in Sect. 4 here shows.

The paper is organized as follows. In Sect. 2 we argue why “admissibility” (cf. Definition 2.1 here
or [21, Definition 2.1]) is a quite weak and good condition to impose on SU(2) Yang–Mills instantons
in the ALF scenario: we shall see shortly that it is a sharp but easily satisfied condition moreover can
be used in all known classes of ALF spaces (both the Kähler and non-Kähler examples) to rule out
SU(2) Yang–Mills instantons with continuous energy. “Admissibility” rests on two important techni-
calities: the Hausel–Hunsicker–Mazzeo [23] compactification of an ALF space and the codimension 2
singularity removal theorem of Sibner–Sibner [31] and Råde [30].

In Sect. 3 we come to our main result and demonstrate that “admissibility” excludes not only
continuous but even fractional energy Yang–Mills instantons i.e., over an ALF space the energy of a
smooth “admissible” SU(2) Yang–Mills instanton is always integer although its associated holonomy
at infinity is not necessarily trivial (cf. Theorem 3.2 here).

A straightforward generalization in Sect. 4 shows that our result remains valid for the larger gauge
group SU(2)×U(1) and—under some topological conditions on the underlying vector bundle—also for
U(2) although when deriving these results some care is needed due to the existence of non-topological
U(1) Yang–Mills instantons (cf. Theorem 4.1 here).

Finally in Sect. 5 we speculate if the existence of the aforementioned compactification of an ALF
space with its pleasant properties in Yang–Mills theory might indicate an intrinsic AGT-like relationship
at the quantum level between 4d YM theory and 2d CFT as it has been suggested recently by several
authors from a different angle, cf. e.g. [1, 2, 4, 33].

2 An overview of Yang–Mills theory over ALF spaces
So let (M,g) be an ALF space as defined in [20, 23]. Topologically, an ALF space (with a single end)
admits a decomposition M = K ∪W where K is a compact interior space and W is an end or neck
homeomorphic to N×R+ where

π : N −→ B+∞ (1)

is a connected, compact, oriented three-manifold fibered over a connected compact surface B+∞ with
circle fibers F ∼= S1. Consider W ∼= N×R+ and denote by r ∈ [0,+∞) the radial coordinate parameter-
izing R+. Regarding the complete Riemannian metric g there exists a diffeomorphism φ : N×R+→W
such that

φ
∗(g|W ) = dr2 + r2(π∗gB+∞

)′+h′F

where gB+∞
is a smooth metric on B+∞, hF is a symmetric 2-tensor on N which restricts to a metric

along the fibers F ∼= S1 and (π∗gB+∞
)′ as well as h′F are smooth non-vanishing O(1) extensions of

π∗gB+∞
and hF over W , respectively. Furthermore, we impose that the curvature Rg of g decays like

|φ∗(Rg|W )| ∼ O(r−3).
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Here Rg is regarded as a map Rg : C∞(Λ2M)→C∞(Λ2M) and its pointwise norm is calculated accord-
ingly in an orthonormal frame. Hence the Pontryagin number of our ALF spaces is finite.

For any real number 0 < R <+∞ let MR ⊂M be the truncated manifold with boundary containing
all the points of K ⊂M as well as those x ∈W ⊂M for which r(x)5 R.

Definition 2.1. Let (M,g) be an ALF four-manifold. Take an arbitrary finite energy SU(2)-connection
∇A on a (necessarily trivial) rank 2 complex SU(2) vector bundle E0 over M. This connection is said
to be admissible if it satisfies two conditions ([20, Definitions 2.1 and 2.2]):

(i) The first is called the weak holonomy condition and says that to ∇A there exist constants 0 < R <
+∞ and 0 < c(g)<+∞, this latter being independent of R, and a smooth flat SU(2)-connection
∇Γ|W on E0|W along the end W ⊂M such that there exists a gauge on M \MR ⊂W satisfying

‖A−Γ‖L2
1,Γ(M\MR) 5 c‖FA‖L2(M\MR);

(ii) The second condition requires ∇A to decay rapidly at infinity i.e.,

lim
R→+∞

√
R‖FA‖L2(M\MR) = 0.

Note that admissibility could have been defined for an arbitrary Lie group G. However for G = SU(2)
this definition is natural and admissible self-dual connections are the “good objects” to consider in the
ALF scenario as we argued in [20] because:

(i) We demonstrated in [20, Theorem 2.3] that if N in (1) is an arbitrary circle bundle over B+∞ 6∼=
S2,RP2 or a trivial circle bundle over B+∞

∼= S2,RP2 then for any finite energy connection the
weak holonomy condition is satisfied. Hence in spite of its analytical shape it is in fact a mild
topological condition only and is essentially always valid (except for instance in the important
case of the multi-Taub–NUT geometries). On the other hand the rapid decay is indeed a non-
trivial analytical condition and is somewhat stronger than assuming simply finite energy;

(ii) The energy of any admissible SU(2) Yang–Mills instanton ∇A belongs to a discrete set character-
ized by Chern–Simons invariants τN(Γ+∞) of the infinitely distant boundary N. More precisely
we know ([20, Theorem 2.2] or Theorem 3.1 here) that

e =
1

8π2‖FA‖2
L2(M) ≡ τN(Γ+∞) mod Z (2)

where ∇Γ|W = d+Γ is a flat connection (associated to ∇A by the weak holonomy condition (i) of
Definition 2.1) in a smooth gauge in which the limit of its restriction Γ+∞ := lim

r→+∞
Γ|N×{r} exists

(such gauge indeed exists, cf. [20, Section 2]);

(iii) The framed moduli spaces M (e,Γ) of irreducible admissible SU(2) Yang–Mills instantons over
a Ricci-flat ALF space are smooth possibly empty manifolds and [20, Theorem 3.2]

dimM (e,Γ) = 8(e+ τN(Θ+∞)− τN(Γ+∞))−3b−(X) (3)
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where ∇Θ|W = d+Θ is the trivial flat connection in a gauge in which both the limit Θ+∞ :=
lim

r→+∞
Θ|N×{r} and Γ+∞ exists moreover X is the Hausel–Hunsicker–Mazzeo compactification

([23], also defined here soon) of (M,g) with its induced orientation.1

Remark. 1. Several explicit examples demonstrate the relevance of both conditions in Definition 2.1.
For instance dropping only the weak holonomy condition (i) of Definition 2.1 there exist rapidly de-
caying smooth reducible SU(2) Yang–Mills anti-instantons over the multi-Taub–NUT spaces with ar-
bitrary positive energy [20, Sections 2 and 4] (these will be reviewed in the Remark of Sect. 4 here).
Likewise, dropping only the rapid decay condition (ii) of Definition 2.1 there exist smooth irreducible
SU(2) Yang–Mills instantons over the Riemannian Schwarzschild space [26] or over R3× S1 with its
flat metric [14, 29] with continuous energy spectrum. All of these solutions are pathological in some
sense: for instance they do not form nice moduli spaces.

2. On the contrary, the simplest unframed moduli space M̂ (1,Θ) over the multi-Taub–NUT space
consisting of all admissible SU(2) Yang–Mills anti-instantons with e = 1 and having trivial holonomy
at infinity i.e., satisfying ∇Γ|W = ∇Θ|W is a usual moduli space: by (3) it is five dimensional and looks
like a singular disk fibration over R3 with usual conical singularities corresponding to the reducible
solutions at the NUTs. It has been constructed explicitly by the aid of the classical conformal rescal-
ing method in [21, Theorem 4.2]. Moreover all higher integer energy moduli spaces M (k,Θ) hence
M̂ (k,Θ) are non-empty [21, Theorem 4.3].

Before proceeding further we take the opportunity and explain why Definition 2.1 is a natural one to
impose in the ALF context. In this way also the two technical tools which make the ALF scenario so
special among the non-compact geometries and will be used throughout the paper can be introduced.

The first tool is the Hausel–Hunsicker–Mazzeo compactification of an ALF space [23]. Take an
ALF space (M,g) as before. Compactify M by simply shrinking all the circle fibers in the fibration
(1). Let us denote this space by X . It is easy to see that X is a connected compact smooth 4-manifold
without boundary and inherits an orientation from (M,g). Topologically

X = M∪B+∞ (4)

and B+∞ represents a smoothly embedded two codimensional surface in X .
The second tool is a codimension 2 singularity removal theorem of Sibner–Sibner [31] and Råde

[30]. Let us fix some notation which is in agreement with that of [20]. Take the truncated manifold
MR ⊂M already used in Definition 2.1 and put V×R := M \MR jW for the remaining open tail of the
original space M. Note that V×R ∼= N × (R,+∞). Consider the fibration (1) of the boundary and let
U ⊂ B+∞ be a coordinate patch of the base space. We obtain a corresponding domain U×R ⊂ V×R what
we call an elementary neighbourhood [20]. It follows that π−1(U)∼= B2×S1 consequently U×R ∼= B2×
S1× (R,+∞)∼= B2× (B2)× i.e., it is a semi-infinite-cylinder-bundle over a disk B2 hence π1(U×R )∼= Z.
Assume now that a smooth flat local SU(2)-connection ∇Γm|U×R is given. There exists a canonical gauge
∇Γm|U×R = d+Γm where

Γm =

(
im 0
0 −im

)
dτ. (5)

1Recall that the framed moduli space M (e,Γ) consists of pairs ([∇A],Γ) where [∇A]’s are the L2
2,Γ gauge equivalence

classes of irreducible admissible SU(2) self-dual connections of energy e = 0 and asymptotics given by ∇Γ|W while Γ is a
fixed smooth gauge at infinity. Forgetting about the fixed framing Γ at infinity we obtain from M (e,Γ) the unframed moduli
space M̂ (e,Γ) consisting of the gauge equivalence classes [∇A] only. We therefore find dimM̂ (e,Γ) = dimM (e,Γ)−
dimSU(2) = dimM (e,Γ)−3.
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Here τ ∈ [0,2π) parameterizes a circle in U×R generating π1(U×R )∼= Z and m ∈ [0,1) is the local holon-
omy of the flat local connection. The restriction of the globally defined trivial connection ∇Θ|W to
U×R corresponds to m = 0 but there may exist further global flat connections on W with this property.
However in general the flat local connection ∇Γm|U×R does not extend to a flat global connection ∇Γ|W
on the neck.

A tubular neighbourhood B+∞ ⊂ VR ⊂ X of B+∞ in X is a B2-bundle over B+∞ and looks like
VR ∼= N × (R,+∞]/ ∼ where ∼ means that N ×{+∞} is pinched into B+∞. Consider a finite open
covering B+∞ =∪αUα of the base space in (1) and take the associated elementary neighbourhoods UR,α
whose collection with UR,α ∼= B2×S1× (R,+∞]/∼ ∼= B2×B2 gives a finite covering for VR. If a finite
energy SU(2)-connection ∇A is given on (M,g) then the rapid decay condition in Definition 2.1 makes
sure that |FA|g′ → 0 a.e. as R→ +∞ i.e., it will be a finite energy connection on (X \B+∞,g′) as well
where g′ is a regularized metric on X which belongs to the conformal class of g on the complement of VR
(the original metric does not extend to X , even conformally). Then the singularity removal theorem we
recall now ensures us that for sufficiently large 0 < R <+∞ there exist constants m∈ [0,1) independent
of α and 0 < c(g′,α) < +∞ as well as a local L2

1,Γm
gauge on U×R,α in which ∇A|U×R,α = d+A|U×R,α and

∇Γm|U×R,α = d+Γm such that

‖A|U×R,α −Γm‖L2
1,Γm(U

×
R,α )

5 c(g′,α)‖FA‖L2(UR,α )
.

We recognize this as the local version of the weak holonomy condition in Definition 2.1. The Sibner–
Sibner–Råde theorem also says that ∇A extends over the singularity B+∞ if and only if m = 0. Assume
now that the flat local connections ∇Γm |U×R,α have a (possibly not unique) extensions over the whole

V×R and patch together into a smooth flat connection ∇Γ|V×R . It easily follows that the only obstruction
against this is the situation if ∇Γm |U×R,α with m 6= 0 is in the kernel of i∗ : π1(U×R,α)→ π1(V×R ) induced by

i : U×R,α ⊂V×R . In [20, Theorem 2.3] this is converted into an easily decidable mild topological condition
on the fibration (1). In other words flat local connections essentially always can be extended over the
whole neck. Then there exists a gauge on E0|V×R in which ∇A|V×R = d+A with A at least in L2

1,Γ and
∇Γ|V×R = d+Γ with Γ being smooth such that one can find smooth gauge transformations independent
of R satisfying γ−1

α Γmγα + γ−1
α dγα = Γ|U×R,α where Γm is the canonical local gauge (5). Then one easily

concludes that the local estimates above patch together and give part (i) of Definition 2.1. We are
convinced now that the admissibility condition is essentially a consequence of finite energy.

3 An improved energy identity for SU(2)

After getting some feeling of the admissibility assumption in the case of G = SU(2) Yang–Mills theory
over an ALF space, in this section we demonstrate that there exist no admissible SU(2) Yang–Mills
instantons of fractional energy over any ALF space i.e., the energy identity (2) is superfluous. For the
sake of completeness first we reproduce [20, Theorem 2.2] here.

Taking into account that the self-duality equations are conformally invariant, we can rescale our
metric without affecting self-duality. Hence rescale the original ALF metric g with a positive function
f : M→ R+ satisfying f |W ∼ O(r−2) and write g̃ := f 2g. In what follows this rescaled metric g̃ will
be used everywhere to calculate various Sobolev norms.

Using the notation of Sect. 2 let MR ⊂M be the truncated manifold-with-boundary with r(x) 5 R
whose boundary is ∂MR ∼= N×{R}. Given an SU(2)-connection ∇A = d+A in some gauge on the
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trivial bundle E0 the Chern–Simons functional evaluated on its restriction to ∂MR is

τ
∂MR

(AR) :=− 1
8π2

∫
∂MR

tr
(

dAR∧AR +
2
3

AR∧AR∧AR

)
in the induced gauge AR := A|

∂MR
on the boundary.

First—motivated by [35]—we prove two continuity results for the Chern–Simons functional in
three dimensions which are interesting on their own right (also cf. [20, Lemma 2.1]). Only the first one
will be used in this paper.

Lemma 3.1. Take two SU(2)-connections ∇AR and ∇BR on the trivial bundle E0|∂MR
. For some fixed

0 < R <+∞ on the compact Riemannian three-manifold (∂MR, g̃|∂MR
) consider Sobolev norms ‖ · ‖Lp

k
with respect to the metric g̃|

∂MR
and the connection ∇BR for instance.

(i) Assume that there exists a gauge in which ∇AR = d+AR and ∇BR = d+BR satisfy AR,BR ∈
L2

1(∂MR ; Λ1(∂MR)⊗ su(2)). Then there exists an estimate∣∣τ
∂MR

(AR)−τ
∂MR

(BR)
∣∣5(‖FAR‖L2(∂MR)

+‖FBR‖L2(∂MR)

)
‖AR−BR‖L2

1(∂MR)
+ c3

1‖AR−BR‖3
L2

1(∂MR)

i.e., the Chern–Simons functional is continuous in the L2
1,BR

-norm in this sense. Here the constant
0 < c1(BR,R)<+∞ is the constant of the Sobolev embedding L2

1 ⊂ L3.
(ii) Assume that there exists a gauge in which ∇AR = d+AR and ∇BR = d+BR satisfy AR,BR ∈

L
3
2
1 (∂MR ; Λ1(∂MR)⊗ su(2)). Then there exists a sharper estimate∣∣τ

∂MR
(AR)− τ

∂MR
(BR)

∣∣5 c2‖AR−BR‖
L

3
2
1 (∂MR)

+ c3‖AR−BR‖3

L
3
2
1 (∂MR)

i.e., the Chern–Simons functional is continuous even in the stronger L
3
2
1,BR

-norm in this sense. Here the
constants are

c2(BR,R) := c4 +(c4 + c3
4)‖BR‖

L
3
2
1 (∂MR)

+ c3
4 ‖BR‖2

L
3
2
1 (∂MR)

c3(BR,R) := c4 + c3
4 + c3

4 ‖BR‖
L

3
2
1 (∂MR)

with 0 < c4(BR,R)<+∞ being the constant of the sharp Sobolev embedding L
3
2
1 ⊂ L3.

Proof. Both inequalities rest on the identity

τ
∂MR

(AR)− τ
∂MR

(BR) =

− 1
8π2

∫
∂MR

tr
(
(FAR +FBR)∧ (AR−BR)−

1
3
(AR−BR)∧ (AR−BR)∧ (AR−BR)

)
. (6)

(i) By the aid of Hölder’s inequalities with 1 = 1
2 +

1
2 and 1 = 1

3 +
1
3 +

1
3 and the Sobolev embedding

L2
1 ⊂ L3 (valid in three dimensions) with 0 < c1(BR,R) < +∞ it easily follows that the absolute value

of the quadratic term can be estimated from above simply by(
‖FAR‖L2(∂MR)

+‖FBR‖L2(∂MR)

)
‖AR−BR‖L2(∂MR)

5
(
‖FAR‖L2(∂MR)

+‖FBR‖L2(∂MR)

)
‖AR−BR‖L2

1(∂MR)
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while the absolute value of the cubic term has an estimate from above like

‖AR−BR‖3
L3(∂MR)

5 c3
1‖AR−BR‖3

L2
1(∂MR)

which proves the first part.
(ii) Inserting FAR = dAR+AR∧AR and FBR = dBR+BR∧BR into (6) we write τ

∂MR
(AR)−τ

∂MR
(BR)

as the sum of the following three terms:

− 1
8π2

∫
∂MR

tr(d(AR−BR)∧ (AR−BR))

and
− 1

8π2 ·
2
3

∫
∂MR

tr((AR−BR)∧ (AR−BR)∧ (AR−BR))

and
− 1

8π2

∫
∂MR

tr((2 dBR +AR∧BR +BR∧AR)∧ (AR−BR)) .

Making use of Hölder’s inequalities with 1 = 2
3 +

1
3 and 1 = 1

3 +
1
3 +

1
3 , the sharp Sobolev embedding

L
3
2
1 ⊂ L3 (sharply valid in three dimensions) with a constant 0 < c4(BR,R) < +∞ and the elementary

inequality x2 5 x+x3 we proceed as follows. The absolute value of the first term can be estimated from
above by

‖d(AR−BR)‖
L

3
2 (∂MR)

‖AR−BR‖L3(∂MR)
5 c4‖AR−BR‖

L
3
2
1 (∂MR)

‖AR−BR‖
L

3
2
1 (∂MR)

5 c4

(
‖AR−BR‖

L
3
2
1 (∂MR)

+‖AR−BR‖3

L
3
2
1 (∂MR)

)
.

The absolute value of the second term can be estimated from above by

‖AR−BR‖3
L3(∂MR)

5 c3
4‖AR−BR‖3

L
3
2
1 (∂MR)

.

Finally we adjust the third term via Stokes’ theorem and some algebra into the shape

− 1
8π2 ·2

∫
∂MR

tr(BR∧d(AR−BR)+BR∧ (AR−BR)∧ (AR−BR)+BR∧BR∧ (AR−BR)) .

Then we can estimate the absolute value of the third term from above by

‖BR‖L3(∂MR)
‖d(AR−BR)‖

L
3
2 (∂MR)

+‖BR‖L3(∂MR)
‖AR−BR‖2

L3(∂MR)

+‖BR‖2
L3(∂MR)

‖AR−BR‖L3(∂MR)

5

(
(c4 + c3

4)‖BR‖
L

3
2
1 (∂MR)

+ c3
4‖BR‖2

L
3
2
1 (∂MR)

)
‖(AR−BR)‖

L
3
2
1 (∂MR)

+c3
4‖BR‖

L
3
2
1 (∂MR)

‖(AR−BR)‖3

L
3
2
1 (∂MR)

.

Putting together these estimates we obtain the inequality of the second part of the lemma. 3
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Remark. We also record here that in the case of flat connections (6) shows that the inequalities of the
lemma cut down to∣∣τ

∂MR
(Γ′R)− τ

∂MR
(Γ′′R)

∣∣5 ‖Γ′R−Γ
′′
R‖3

L3(∂MR)
5 c3

1‖Γ′R−Γ
′′
R‖3

L2
1(∂MR)

and a similar one for the L
3
2
1 -norm.

Now we are in a position to reprove [20, Theorem 2.2] following the steps of [20, Section 2]. Take
an admissible SU(2)-connection ∇A on E0 and the corresponding flat connection ∇Γ|V×R to which it
converges. Suppose that we are in the gauge on E0|V×R in which ∇A|V×R = d+A and ∇Γ|V×R = d+Γ and
the corresponding connection 1-forms satisfy the inequality in part (i) of Definition 2.1. Let AR and ΓR
be their restrictions to ∂MR.

Theorem 3.1. (cf. [20, Theorem 2.2]) Let (M,g) be an ALF space with an end W ∼= N×R+. Let E0
be an SU(2) vector bundle over M, necessarily trivial, with an admissible SU(2) Yang–Mills instanton
∇A on it: a smooth, finite energy self-dual connection satisfying Definition 2.1. Then

1
8π2‖FA‖2

L2(M) ≡ τN(Γ+∞) modZ

that is, its energy is congruent to a Chern–Simons invariant of the boundary given by the flat connection
∇Γ|W in part (i) of Definition 2.1.

Proof. We estimate the difference
∣∣τ

∂MR
(AR)− τ

∂MR
(ΓR)

∣∣ 2
3 along V×R ∼= N× (R,+∞) as follows. As a

first step by the aid of the mean value theorem we find an R0 ∈ (R,2R) such that for all 2R 5 S <+∞

1
2R

∣∣∣τ∂MR0
(AR0)− τ

∂MR0
(ΓR0)

∣∣∣ 2
3
5

S∫
R

∣∣τ
∂Mr

(Ar)− τ
∂Mr

(Γr)
∣∣ 2

3 r−2dr

holds; then we go on via the inequality of part (i) of Lemma 3.1 with FΓr = 0 and the elementary
inequality (x+ y)

2
3 5 2(x

2
3 + y

2
3 ) to get

5

S∫
R

(
‖FAr‖L2(∂Mr)

‖Ar−Γr‖L2
1,Γr (∂Mr)

+ c3
1‖Ar−Γr‖3

L2
1,Γr (∂Mr)

) 2
3

r−2dr

5 2
S∫

R

(
‖FAr‖

2
3
L2(∂Mr)

‖Ar−Γr‖
2
3
L2

1,Γr (∂Mr)
+ c2

1‖Ar−Γr‖2
L2

1,Γr (∂Mr)

)
r−2dr ;

and then make further steps by applying on the first term two Hölder’s inequalities along ((R,S),r−2dr)
with 1 = 2

3 +
1
3 and then with 1 = 1

2 +
1
2 to obtain

5 2c
1
3
5 ‖FA‖

4
3
L2(V×R \V

×
S )

 S∫
R

‖Ar−Γr‖2
L2

1,Γr (∂Mr)
r−2dr

 1
3

+2
S∫

R

c2
1‖Ar−Γr‖2

L2
1,Γr (∂Mr)

r−2dr

5 2c5‖FA‖
4
3
L2(V×R \V

×
S )
‖A−Γ‖

2
3
L2

1,Γ(V
×
R \V

×
S )

+2c6‖A−Γ‖2
L2

1,Γ(V
×
R \V

×
S )

5 2c5‖FA‖
4
3
L2(V×R )

‖A−Γ‖
2
3
L2

1,Γ(V
×
R )

+2c6‖A−Γ‖2
L2

1,Γ(V
×
R )
.
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Here the constant 0 < c5(g̃) < +∞, independent of R takes into account the discrepancy between the
original measure on V×R and its restriction to ∂Mr multiplied by r−2dr (cf. the asymptotical shape of
an ALF metric in Sect. 2). Moreoever c6 := c5 supr∈[R,+∞] c

2
1(r)<+∞.

Putting these steps together and then referring to part (i) of Definition 2.1 we therefore come up
with the estimate∣∣∣τ∂MR0

(AR0)− τ
∂MR0

(ΓR0)
∣∣∣5 (8c7)

3
2

(
R‖FA‖2

L2(V×R )

) 3
2
= (8c7)

3
2

(√
R‖FA‖L2(V×R )

)3

with some R0 ∈ (R,2R). Checking the shape of the constants in part (i) of Definition 2.1 and part (i) of
Lemma 3.1 we can assume that the overall constant 0 < c7(g̃,Γ) < +∞ is bounded. Hence we obtain
from this last inequality by the aid of the rapid decay condition i.e., part (ii) of Definition 2.1 that

lim
R→+∞

|τ
∂MR

(AR)− τ
∂MR

(ΓR)|= 0

or writing Γ+∞ = lim
R→+∞

ΓR and regarding this as a flat connection on the infinitely distant boundary N

of (1) we conclude that
lim

R→+∞
τ

∂MR
(AR) = τN(Γ+∞)

which gives the result when applied to a self-dual admissible SU(2) connection ∇A over the ALF space
(M,g) as claimed. 3

It follows from [24, Theorem 4.3] already at this point that the energy spectrum consists of rational
numbers. Now we show that in fact only those flat connections appear on which the Chern–Simons
functional takes integer values i.e., τN(Γ+∞) ∈ Z in the previous theorem.

Theorem 3.2. Let (M,g) be an ALF space with an end W ∼= N×R+. Let E0 be an SU(2) vector bundle
over M, necessarily trivial, with an admissible SU(2) Yang–Mills instanton ∇A on it i.e., a smooth,
finite energy self-dual connection satisfying Definition 2.1. Then

1
8π2‖FA‖2

L2(M) ∈ N

that is, in addition to Theorem 3.1 its energy is always integer.
Regarding the asymptotical shape of ∇A if M is in addition simply connected then the associated

flat connection ∇Γ|W of part (i) in Definition 2.1 has trivial local holonomy at infinity i.e., m = 0 in (5)
(in this case if ∇Γ|W 6= ∇Θ|W then π1(B+∞) 6= 1 in (1) and (4)).

Proof. We continue to estimate τN(Γ+∞) in Theorem 3.1 by exploiting the consequences of the rapid
decay condition i.e., part (ii) of Definition 2.1 more systematically. The key idea is to work over the
Hausel–Hunsicker–Mazzeo compactification (4).

A tubular neighbourhood B+∞ ⊂ VR ⊂ X of the infinite distant surface then looks like VR = V×R ∪
B+∞. We know by regularity of Yang–Mills fields that for sufficiently large R we can suppose that the
gauge we use is smooth. Applying the mean value theorem as in the proof of Theorem 3.1 we get for
some R0 ∈ (R,2R) that

‖A−Γ‖L2
1,Γ(∂MR0)

5
√

2c5R c‖FA‖L2(V×R ), ‖FA‖L2(∂MR0)
5
√

2c5R‖FA‖L2(V×R ).

Therefore by part (ii) of Definition 2.1 we find that (A−Γ)|B+∞
= 0 and ∇Γ(A−Γ)|B+∞

= 0 as well
as FA|B+∞

= 0 hold pointwise. Consequently putting ω := tr(dA∧A+ 2
3A∧A∧A) and referring to
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the identity dω = tr(FA ∧ FA) we conclude that ω ∈ L2
1,Γ(V R ; Λ3V R) where V R is the closure with

∂V R = (∂MR)
∗ (reversed orientation). Moreover ω is smooth near ∂V R. Hence by (the generalized)

Stokes’ theorem there exists an integer n(R) ∈ Z such that

∣∣n(R)− τ
∂MR

(AR)
∣∣= 1

8π2

∣∣∣∣∣∣
∫
VR

tr(FA∧FA)

∣∣∣∣∣∣5 ‖FA‖2
L2(V×R )

.

By Theorem 3.1 we know that τ
∂MR

(AR)→ τN(Γ+∞) as R→ +∞ and the right hand side of this last
equation can be kept as small as we please as R→ +∞ since ∇A has finite energy. We conclude that
τN(Γ+∞) ∈ Z in Theorem 3.1.

Consider an elementary neighbourhood U×R ⊂ V×R . If M is in addition supposed to be simply con-
nected then any loop representing a generator of π1(U×R ) ∼= Z is contractible in M. In other words
if `0 : S1 → U×R ⊂ M is a non-trivial loop then it shrinks to the trivial one `1(S1) = x0 ∈ M. Take a
smooth non-self-intersecting curve γ : [R

2 ,+∞)→ M ⊂ X connecting γ(R
2 ) = x0 with the limit point

γ(+∞) ∈ B+∞. If r ∈ [R
2 ,+∞) denotes the coordinate along this curve then we can suppose that it

coincides with the radial coordinate we use along U×R ∼= B2×S1× (R,+∞). In an open tubular neigh-
bourhood O of γ in X we can suppose that we are in a radial gauge i.e., ∇A|O = d+A|O satisfies Ar = 0.
Therefore in this gauge ∂Aτ

∂ r = Frτ and we also have Aτ(γ(
R
2 )) = Aτ |x0 = 0 because ∇A is smooth in

x0 ∈M. Consequently integrating Aτ along [R
2 ,+∞) we obtain an estimate

√
2 m = |Γm|g′ = |Γτ(γ(+∞))|g′ = |Aτ(γ(+∞))|g′ 5

1
R

sup
ρ

|Frτ(ρ)|g′ <+∞

since Frτ is bounded. But R is arbitrary hence m = 0 in (5) implying ∇Γ|V×R is a flat connection with
trivial local holonomy at infinity.

We conclude that the admissible self-dual connection ∇A has integer energy. 3

Remark. 1. If ∇Γ|V×R has trivial local holonomy at infinity then it is the pullback of a flat connection
via π × Id(R,+∞) : V×R ∼= N× (R,+∞)→ B+∞× (R,+∞). Consequently the restriction Γ+∞ of Γ|V×R to
the infinitely distant boundary N in (1) is also a pullback connection 1-form via π : N → B+∞. It is
known that such a flat connection has vanishing Chern–Simons invariant (cf. [24, pp. 547-548 and
Theorem 4.3]) i.e., we find independently of our considerations above that in the special case of simply
connected M the expression τN(Γ+∞) is an integer.

2. We cannot achieve in general that the local holonomy at infinity vanishes. For example there
exists a family of smooth flat hence self-dual admissible connections on R3×S1 parameterized by their
holonomy m ∈ [0,1). Hence m is also their holonomy at the infinite N ∼= S2×S1.

4 The case of U(2)

In this section we demonstrate that Theorem 3.2 continues to hold for the slightly larger gauge groups
SU(2)×U(1) and U(2) but in the latter case with a topological condition on the underlying vector
bundle.

However before doing this we make an important comment here. As we already mentioned, admis-
sibility as it stands in Definition 2.1 can be formulated for an arbitrary (compact) Lie group G. Hence
repeating the proof of the previous section we could obtain an analogue of Theorem 3.2 for arbitrary
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G. The reason we do not do this is that for Yang–Mills instantons with a general Lie group the ad-
missibility would indeed be a very strong assumption hence the analogue of Theorem 3.2 would be a
rather weak statement. This is because for general G the analogue of the powerful singularity removal
theorem of Sibner–Sibner [31] and Råde [30] is not known consequently the weak holonomy condition
might in principle be a very strong requirement, cf. our discussion in Sect. 2 above.

Rather we restrict ourselves to those Lie groups which can be somehow “traced back” to SU(2) in
order to keep our results strong.

Lemma 4.1. Let (M,g) be an ALF space and Ẽ be a rank 2 complex SU(2)×U(1) vector bundle on
M.

(i) Then Ẽ ∼= E0⊗L where E0 is a (necessarily trivial) rank 2 complex SU(2) vector bundle and L
is a U(1) line bundle over M;

(ii) Every SU(2)×U(1)-connection on Ẽ ∼= E0⊗L is of the form

∇A⊗ IdL + IdE0⊗∇B

where ∇A is an SU(2)-connection on E0 and ∇B is an U(1)-connection on L;
(iii) The curvature of this product connection looks like

FA +(FB⊕FB)

hence an SU(2)×U(1)-connection on Ẽ is self-dual if and only if both its SU(2) and U(1) parts are
self-dual;

(iv) If an SU(2)×U(1)-connection on Ẽ has finite energy e then it admits a decomposition

e =
1

8π2‖FA‖2
L2(M)+

1
8π2‖FB⊕FB‖2

L2(M) =
1

8π2‖FA‖2
L2(M)+

1
4π2‖FB‖2

L2(M).

Proof. (i) Standard obstruction theory says that over a non-compact oriented four-manifold M principal
bundles with a connected, compact structure group G are classified by H2(M;π1(G)). Hence on the
one hand all principal SU(2)-bundles are trivial over M since π1(SU(2)) ∼= 1. Let us denote the asso-
ciated complex rank 2 trivial bundle by E0. On the other hand principal U(1)-bundles are classified by
H2(M;Z) since π1(U(1))∼= Z. Referring to the canonical isomorphism π1(U(1))∼= π1(SU(2)×U(1))
we obtain that a rank 2 complex SU(2)×U(1) vector bundle Ẽ can be uniquely written in the form
E0⊗L where L is a U(1) line bundle.

(ii) Let ∇A be an SU(2)-connection on E0 and ∇B be an U(1)-connection on L. Taking the embed-

dings su(2)⊂ su(2)×u(1)∼= u(2) as usual and u(1)⊂ su(2)×u(1)∼= u(2) given by B 7→
(

B 0
0 B

)
=

B⊕B we can identify a product connection on E0⊗L with an SU(2)×U(1)-connection ∇A+(B⊕B) on
the corresponding vector bundle Ẽ and vice versa.

(iii) Regarding the curvature we calculate

FA+(B⊕B) = FA +(FB⊕FB)+A∧ (B⊕B)+(B⊕B)∧A = FA +(FB⊕FB)

since A∧ (B⊕B)+(B⊕B)∧A = 0 because B⊕B is in the centre of u(2). Consequently

∗FA+(B⊕B) = ∗(FA +(FB⊕FB)) = ∗FA +(∗FB⊕∗FB) = FA +(FB⊕FB) = FA+(B⊕B)
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demonstrating that our product connection continues to be self-dual if and only if its components are
self-dual.

(iv) Finally the energy can be decomposed as claimed. 3

Consider an SU(2)×U(1) Yang–Mills instanton over some ALF space (M,g). Then it follows from
part (iv) of Lemma 4.1 that it is admissible2 if and only if both its SU(2) component ∇A and U(1)
component ∇B are admissible. We already know from Theorem 3.2 that if ∇A is admissible then it has
not only finite but even integer energy:

1
8π2‖FA‖2

L2(M) = k.

Regarding the Abelian part we can take the embedding U(1) ⊂ SU(2) and identify ∇B on the line
bundle L with the reducible SU(2) Yang–Mills instanton ∇B 7→ ∇B⊕∇−B on the split bundle L⊕L−1.
This is an admissible solution hence we can apply either Theorem 3.1 to conclude that its energy must
be congruent to an U(1) Chern–Simons invariant of the boundary (1) hence must be integer or we can
simply refer to Theorem 3.2 again to obtain that it has integer energy 1

8π2‖FB⊕F−B‖2
L2(M)

= l. Hence

1
8π2‖FB⊕FB‖2

L2(M) =
1

8π2‖FB⊕F−B‖2
L2(M) = l.

Therefore an admissible SU(2)×U(1) instanton ∇A+(B⊕B) has integer energy by part (iv) of Lemma
4.1.

Finally note that if E is an U(2) vector bundle with w2(ER) = 0 ∈ H2(M;Z2) then it uniquely lifts
to an SU(2)×U(1) vector bundle Ẽ. Consequently any connection on E can be uniquely lifted to a
connection on Ẽ. Taking into account the canonical isomorphism u(2)∼= su(2)×u(1) we find that the
energies of the original and the lifted connections are equal. Consequently our considerations continue
to hold for admissible U(2) Yang–Mills instantons on bundles with vanishing second Stiefel–Whitney
class.

Summing up we obtain

Theorem 4.1. Let (M,g) be an ALF space with an end W ∼= N×R+. Let E be a U(2) vector bundle
with w2(ER) = 0 ∈ H2(M;Z2) carrying an admissible U(2) Yang–Mills instanton ∇A i.e., a smooth
self-dual connection satisfying Definition 2.1. Then

1
8π2‖FA‖2

L2(M) ∈ N

that is, its energy is always integer.
Regarding the asymptotical shape of ∇A if M is in addition simply connected then the associated

flat connection ∇Γ|W of part (i) in Definition 2.1 has trivial local holonomy at infinity i.e., m = 0 in (5)
(in this case if ∇Γ|W 6= ∇Θ|W then π1(B+∞) 6= 1 in (1) and (4)). 3

Remark. We would like to point out the relevance of admissibility in the case of Abelian instantons.
In this case it is easy to see in the framework of L2-cohomology that without imposing admissibility a
continuous energy spectrum would destroy everything.

So let ∇B be an Abelian instanton over an ALF space (M,g). By definition its energy is finite but in
general [ 1

2πiFB]∈H2
L2(M,g) i.e., the curvature lives only in the second (reduced) L2-cohomology group

2To be precise for this we generalize Definition 2.1 i.e., the definition of SU(2)-admissibility to arbitrary G-admissibility
in a straightforward way.
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of the non-compact but complete Riemannian 4-manifold (M,g) with ALF asymptotics. It turns out
[23] that for such geometries this subtle cohomology reduces to ordinary cohomology of the Hausel–
Hunsicker–Mazzeo compactification (4). Therefore H2

L2(M,g) ∼= H2(X ;R) and using (1) and (4) the
Mayer–Vietoris sequence gives

· · · → H1(N;R)→ H2
L2(M,g)→ H2

c (M;R)⊕H2(B+∞;R)→ H2(N;R)→ . . .

Consequently these cohomology classes can be divided into two parts as follows: we say that an L2-
cohomology class on a complete Riemannian manifold (M,g) is topological if its image lies in the
ordinary compactly supported de Rham cohomology H2

c (M;R) under the homomorphism above. Oth-
erwise it is called non-topological i.e., if its image is in H2(B+∞;R). Note that representatives of
non-topological L2-cohomology classes are necessarily exact 2-forms on M. Roughly speaking [32]
non-topological L2-cohomology classes are not predictable by topological means.

We make two assumptions. The first is that H j(N;R) = 0 ( j = 1,2). In this case unambigously

1
2πi

FB =
b2

c(M)

∑
i=1

kiωi +ω0

where {ωi} are harmonic representatives of the basis of the compactly supported integer cohomology
H2

c (M;R)∩H2(M;Z) and ki ∈Z and ω0 = dβ represents the exact non-topological part. Obviously ∇B
lives on a line bundle L with Chern class c1(L) = [∑kiωi] ∈ H2

c (M;R)∩H2(M;Z). The finite energy
of this Abelian instanton looks like

1
8π2‖FB‖2

L2(M) =
1
2

∫
M

(
1

2πi
FB

)
∧∗
(

1
2πi

FB

)
=

1
2 ∑

i, j
kik j

∫
M

ωi∧∗ω j +∑
i

ki

∫
M

ω0∧∗ωi +
1
2

∫
M

ω0∧∗ω0.

The second assumption is that all ki = 0. In this case the curvatue is an exact self-dual non-compactly
supported 2-form on (M,g) still having finite energy. The corresponding Abelian instanton ∇B0 with
FB0 = 2πiω0 lives on the trivial bundle L0 ∼= M×C. Taking into account the triviality of L0 as well
as the Abelian nature of ∇B0 if it is self-dual on L0 with 1

8π2‖FB0‖2
L2(M)

= 1
2 then for any c ∈ R the

rescaled connection ∇cB0 remains smooth and self-dual on L0 with energy 1
8π2‖FcB0‖2

L2(M)
= c2

2 . This
unexpected continuous energy phenomenon occurs for example in the important case of the multi-
Taub–NUT spaces [20, Sections 2 and 4]: the connection 1-form B0 arises as the metric dual of the
Killing field associated to the U(1) isometry of the metric.

Consequently in this case admissibility (more precisely part (i) of Definition 2.1) is indeed to be
imposed which gives c = k hence the energy of the U(1) Yang–Mills instanton ∇kB0 is a half-integer.
Hence the energy of the reducible SU(2) Yang–Mills instanton ∇kB0⊕(−kB0) or the U(2) one ∇kB0⊕kB0

will be integer in agreement with Theorems 3.2 or 4.1.

5 Conclusion and outlook toward quantum theory
In this paper we proved that the energy spectrum of a natural class of SU(2) or U(2) Yang–Mills in-
stantons (called admissible instantons) over a generic (i.e., not necessarily hyper-Kähler) ALF space
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consists of non-negative integers only. This sharpens the previously known result that the energy must
be congruent to a Chern–Simons invariant of the infinitely distant boundary N hence to a rational num-
ber. In this context the stronger result is surprising because N as defined in (1) has many non-integer
Chern–Simons invariants, cf. [24, Theorem 4.3]. We have seen that the reason behind this integral-
ity phenomenon is the existence of a smooth compactification of the original space and a powerful
codimension 2 singularity removal result.

In this closing section we would like to push one step further the role played by this Hausel–
Hunsicker–Mazzeo compactification and this Sibner–Sibner–Råde singularity removal theorem in the
ALF scenario. Namely, we ask ourselves whether the emergence of the infinitely distant surface B+∞ in
(1) and (4) is a topological hint that the thing “lurks” behind the concept of a four dimensional Yang–
Mills theory over an ALF space is in fact a 2 dimensional conformal field theory. If this is the case—as
we will informally argue below—then it would help one to construct the underlying (twisted N = 2
supersymmetric) quantum gauge theory.

We want to calculate the partition function of our quantum gauge theory over the ALF space (M,g).
Put

A (E0) := {∇A |∇A is admissible on E0 in the sense of Definition 2.1}

and let B(E0) := A (E0)/G (E0) be the quotient space of L2
2,Γ gauge equivalence classes. Taking the

complex coupling constant τ := θ

2π
+ 4π

e2 i ∈C+ and suppressing the supersymmetric terms the partition
function is a complex number given by the formal integral

Z(M,g,τ,SU(2)) =
∫

B(E0)

e
1

2e2 ‖FA‖2
L2(M)

− iθ
16π2 (FA,∗FA)L2(M)D[∇A].

For simplicity we suppose that (i) the integral above localizes to classical solutions; (ii) all finite energy
classical solutions are self-dual; (iii) all self-dual solutions are admissibile in the sense of Definition
2.1; (iv) M is simply connected and the surface B+∞ is orientable. Let ∇A0 be a finite energy classical
solution to the Yang–Mills equations. Then by Theorem 3.2 there exists an integer k ∈ N and a flat
connection ∇Γ|W with m = 0 i.e., which is a pullback of a flat connection ∇Γ+∞

on B+∞, such that
([∇A0 ],Γ) ∈M (k,Γ). Then the previous integral cuts down to

Z(M,g,τ,SU(2)) = ZQuant ∑
k∈N

∫
M (B+∞)

∫
M̂ (k,Γ)

e
1

2e2 ‖FA0‖
2
L2(M)

− iθ
16π2 (FA0 ,∗FA0)L2(M)D[∇A0 ]D[∇Γ+∞

]

where M (B+∞) is the modulis space of flat connections over B+∞. We may try to calculate this integral
within the framework of (topological) quantum field theory. Since elements of B(E0) extend as finite
energy objects over X and in particular elements of M̂ (k,Γ) remain smooth on it it is plausible to
replace M by its compactification X as in (4) and suppose that Z(M,g,τ,SU(2)) = Z(X ,τ,SU(2))
where Z(X ,τ,SU(2)) : H−∞( /0)→H+∞( /0) is a linear map and H±∞( /0) ∼= C are the Hilbert spaces
attached to the past and future boundaries of the closed space X now considered as a cobordism between
two emptysets. Assume that for a fixed 0 < R < +∞ the space X is cut up along ∂MR = N×{R} as
follows:

X = (M \VR)∪N×{R}VR

and let HR(N) denote the Hilbert space associated to ∂MR ∼= N. By the standard axioms we expect
that there exist vectors vR ∈HR(N) and wR ∈HR(N)∗ such that Z(X ,τ,SU(2)) = (vR,wR) and the left
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hand side is independent of the particular value of R. Therefore taking the limit R→+∞ we formally
obtain

Z(M,g,τ,SU(2)) = Z(X ,τ,SU(2)) = (v+∞,w+∞) (7)

where v+∞ ∈H+∞(N) ∼= H (B+∞) and similarly w+∞ ∈H (B+∞)
∗ since in the limit R→ +∞ the

fibration (1) cuts down to B+∞ ⊂ X as in (4).
What sort of space is H (B+∞) here? We can follow the original ideas of Witten [36]. Theorem

3.2 says that if M is simply connected then all admissible SU(2) Yang–Mills instantons approach a flat
connection ∇Γ|VR which in the limit R→ +∞ smoothly reduces to a flat SU(2) connection ∇Γ+∞

on
B+∞. Therefore by the principles of geometric quantization we would expect that

H (B+∞) =
⊕
k∈N

H0
(
M (B+∞);O(Lk)

)
where L is the usual quantizing line bundle over M (B+∞). To regard H0 as the space of holomorphic
sections we need a complex structure on M (B+∞) which is inherited from one on B+∞. However
the whole procedure and hence the space H (B+∞) is expected to be independent of any particular
complex structure which leads to the usual conclusion that H0 (M (B+∞);O(Lk)

)
should be the space

of conformal blocks of some conformal field theory (probably the SU(2) Wess–Zumino–Witten model
over B+∞ at level k).

Therefore H (B+∞) would carry a representation of the symmetry algebra of some conformal field
theory and in particular of the mapping class group of B+∞; these might lead to the understanding of
the modular properties of the original partition function Z(M,g,τ,SU(2)) if written in the form (7).
In this way apparently a very geometric link between 4d YM theory over an ALF space and 2d CFT
emerges which supports some recent investigations [1, 2, 4, 33].
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