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Abstract

In this essay we shall look at the old problem of the strong cosmic censorship from a
new angle allowing us to make a contact with an apparently very different discipline of
science namely computability theory and the Church–Turing thesis. This leads on the one
hand to a simple proof of a variant of the strong cosmic censor conjecture attributed to
Geroch–Horowitz and Penrose but first formulated by Wald as well as on the other hand
to a natural but sofar hidden conceptual equivalence of the strong cosmic censor conjecture
and the physical Church–Turing thesis.
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Without doubt the deepest open question of classical general relativity theory is the so-
called cosmic censor conjecture first formulated by R. Penrose four decades ago [29]. Roughly
speaking the conjecture claims that predictability, one of the most fundamental concepts of
classical physics, remains valid in the realm of classical general relativity i.e., all “physically
relevant” space-times admit well-posed initial value formulation akin to other field theories.
Meanwhile there has been a remarkable progress which culminated in a general satisfactory
solution of the problem of existence and behaviour of short-time solutions to the Einstein’s
constraint equations [27] the cosmic censor conjecture deals with the existence and properties of
long-time solutions [9] and is still “very much open” as Penrose says in [32]. One may then wonder
what is the reason of this? Is the cosmic censor conjecture merely a technically more difficult
question or is rather a conceptually deeper problem? On the contrary of its expected unified
solution the cosmic censor conjecture has rather split up into a bunch of rigorous or less rigorous
formulations, versions during the course of time. Therefore we can say that nowadays there are
several “front lines” where “battles” for settling or violating the cosmic censor conjecture are
going on.
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Far from being complete we can mention the following results on the subjectmatter. The
so-called weak cosmic censor conjecture in simple terms postulates:

WCCC In a generic (i.e., stable), physically relevant (i.e., obeying some energy condition),
asymptotically flat space-time singularities are hidden behind event horizons of black holes.

The weak version can be formulated rigorously as a Cauchy problem for general relativity and the
aim is to prove or disprove that for “generic” or “stable” (in some functional analytic sense) initial
values at least, event horizons do form around singularities in an asymptotically flat space-time
(where the notion of a black hole exists).

The first arguments in favour to this weak form came from studying the stability of the
Schwarzschild event horizon under simple, linear perturbations of the metric. An early attempt
to violate the weak version was the following. As it is well-known, a static, electrically charged
black hole has only two parameters, namly its mass and charge. However if its charge is too
high compared with its mass, event horizon do not occur hence the singularity could be visible
by a distant observer. Consequently we may try to overcharge a static black hole in order to
destroy its event horizon (we may argue in the same fashion in case of rotating black holes).
However this is impossible as it was pointed out by Wald [36] in 1974. Another, more general
but still indirect, argument for the validity of weak cosmic censorship is the so-called Riemannian
Penrose inequality [30] proved by Bray [3] and Huisken–Ilmanen [24] in 1997. As an important
step, the validity of the weak version in case of spherical collapse of a scalar field was established
by Christodoulou [6, 7] in 1999.

The strong cosmic censor conjecture proposes more generally that all events have cause that
is, there exist events chronologically preceding them and these events form a spacelike initial
surface in any reasonable space-time. This also implies that singularities, except a possible
initial “big bang” singularity, are invisible for observers:

SCCC A generic (i.e., stable), physically relevant (i.e., obeying some energy condition) space-
time is globally hyperbolic.

Therefore this strong version also can be formulated in terms of a Cauchy problem but in this case
we want to prove the inextendibility of maximal Cauchy developments of “generic” or “stable”
(again in some functional analytic sense) initial data. Apparently this problem requires different
techniques compared with the weak version.

Concerning the strong censorship we have partial important results, too. On the one hand
its validity was proved by Chruściel–Isenberg–Moncrief [10] and Ringström for certain Gowdy
space-times (for a recent survey cf. [34]) while by Chruściel–Rendall [11] in 1995 in the case of
spatially compact and locally homogeneous space-times such as the Taub–NUT geometry. On
the other hand one may also seek counterexamples to understand the meaning of “generic” in
both the weak and strong versions. Many authors (e.g. [4, 6, 19, 23]) found hints in several
physically relevant situations for the violation of the weak or strong versions. A thin class of
Gowdy space-times [10, 34] also lacks global hyperbolicity.

We may however find a kind of “compromise” between two extremal approaches: seeking a
general proof or hunting for particular counterexamples. This is the following. As it is well-
known, the strong version is false in its simplest intuitive form. That is, there are several
physically relevant space-times what is more: basic solutions to the Einstein’s equation which
lack global hyperbolicity i.e., the maximal Cauchy development of the corresponding initial data
set is extendible. The Taub–NUT space-time is extendible and in this case global hyperbolicity
fails in such a way that strong causality breaks down on the future Cauchy horizon in any
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extension. The Reissner–Nordström, Kerr, (universal covering of) anti-de Sitter space-times are
also extendible but in these cases global hyperbolicity is lost differently: from the future Cauchy
horizons of their extensions a non-compact, infinite portion of their initial surfaces is observable.
Therefore we have to allow a collection of counterexamples consisting of apparently “non-generic”
i.e., “unstable” space-times. Indeed, there are indirect hints that these extendible solutions are
exceptional and atypical in some sense: small generic perturbations of them turn their Cauchy
horizons into real curvature singularity thereby destroying extendibilty and saving strong cosmic
censorship [12, 13, 22, 28, 33].

Since nowadays we do not know any other type of violation we may roughly formulate the
strong version as follows due to Geroch–Horowitz [18] and Penrose [31] from 1979 but explicitly
formulated by Wald [37, 305p.]:

SCCC-GHP If a physically relevant (i.e., obeying some energy condition) space-time is not
globally hyperbolic then its Cauchy horizon looks like either that of the Taub–NUT or that of the
Kerr space-time.

Observe that compared to SCCC in this formulation the highly complex question of “genericity”
or “stability” has been suppressed and incorporated into that of Taub–NUT-like [22] and Kerr-like
space-times [1]. Since this version focuses only on the causal character of extendible space-times
instead of their non-genericity, we may expect a proof of SCCC-GHP using causal set theoretic
methods only (instead of heavy functional analytic ones). It is quite surprising that this version
indeed can be proved [15, Theorem 2.1 and 2.2] using ideas motivated by recent advances in an
interdisciplinary field connecting computability and general relativity theory.

2

Recently there has been a remarkable interest in the physical foundations of computability
theory and the Church–Turing thesis. It turned out that algorithm theory, previously considered
as a very mathematical field, has a deep link with basic concepts of physics.

On the one hand we realized that our apparently pure mathematical notion of a Turing
machine involves indirect preconceptions on space, time, motion, state and measurement. Hence
it is reasonable to ask whether different choices of physical theories put for modeling these things
have some effect on our notions of computability or not. At the recent stage of affairs it seems
there are striking changes on the whole structure of complexity and even computability theory
if we pass from classical physics to quantum or relativistic theories. Even certain variants of the
Church–Turing thesis cease to be valid in some cases.

For instance taking quantum mechanics as our background theory the famous Chaitin’s omega
number, a typical non-computable real number, becomes enumerable via an advanced quantum
computer [5]. An adiabatic quantum algorithm also exists to attack Hilbert’s tenth problem
[25, 26]. Chern–Simons topological quantum field theory can be used to calculate the Jones
polynomial of knots known to belong to a higher class of computational complexity [17]. In
the same fashion if we use general relativity theory, powerful “gravitational computers” can be
constructed, also capable of breaking Turing’s barrier [38]: Hogarth proposed a class of space-
times in 1994, now called as Malament–Hogarth space-times allowing non-Turing computations
[20, 21]. Hogarth’ construction uses anti-de Sitter space-time which is also in the focal point of
recent investigations in high energy physics. In the same vein, in 2001 the author and Németi
constructed another example by exploiting properties of the Kerr geometry [16]. This space-time
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is also relevant as being the only candidate in general relativity for the final state of a collapsed,
massive, slowly rotating star. A general introduction to the topic is Chapter 4 of Earman’s book
[14].

On the other hand it is conjectured that these generalized computational methods are not
only significant from a computational viewpoint but, in case of quantum computers at least, they
are also in connection with our most fundamental physical concepts such as the standard model
and string theory [2, 35].

The natural question therefore arises if the same is true for “gravitational computers” i.e., is
there any pure physical characterization of Malament–Hogarth space-times? The aforementioned
proof [15, Theorem 2.1 and 2.2] of SCCC-GHP uses standard causal set theory only with the
simple but key observation that if a space-time admits a non-globally hyperbolic extension then
in the causal pasts of events on its future Cauchy horizon future-inextendible, non-spacelike
curves appear. These curves also play a crucial role in the theory of “gravitational computers”:
Malament–Hogarth space-times are exactly those for which such curves exist, are timelike and
complete.

Let us recall here what a Malament–Hogarth space time is (cf. [14, 15, 16, 20, 21, 38]):

Definition. (M, g) is called a Malament–Hogarth space-time if there is a future-directed timelike
half-curve γC : R+ → M such that ‖γC‖ = +∞ and a point q ∈ M satisfying γC(R+) ⊂ J−(q).
The event q ∈M is called a Malament–Hogarth event.

If (M, g) is a Malament–Hogarth space-time then there exists a future-directed timelike curve
γO : [a, b] → M joining p ∈ J−(q) with q satisfying ‖γO‖ < +∞. The point p ∈ M can be
chosen to lie in the causal future of the past endpoint of γC . Moreover (cf. [15, Lemma 3.1]) a
Malament–Hogarth space-time cannot be globally hyperbolic; if q ∈ M is a Malament–Hogarth
event and S ⊂M is a connected spacelike hypersurface such that γC(R+) ⊂ J+(S) then q is on
or beyond the future Cauchy horizon H+(S) of S.

The motivation is the following (for details we refer to [16]). Consider a Turing machine
realized by a physical computer C moving along the curve γC of infinite proper time. Hence the
physical computer (identified with γC) can perform arbitrarily long calculations in the ordinary
sense. In addition there exists an observer O following the curve γO (hence denoted by γO) of
finite length such that he hits the Malament–Hogarth event q ∈ M in finite proper time. But
by definition γC(R+) ⊂ J−(q) therefore in q he can receive the answer for a yes or no question
as the result of an arbitrarily long calculation carried out by the physical computer γC . This is
because γC can send a light beam at arbitrarily late proper time to γO. Clearly the pair (γC , γO)
in (M, g) with a Malament–Hogarth event q is an artificial computing system i.e., a generalized
computer in the sense of [16].

Imagine the following exciting situation as an example. γC is asked to check all theorems
of our usual set theory (ZFC) in order to check consistency of mathematics. This task can be
carried out by γC since its world line has infinite proper time. If γC finds a contradiction, it can
send a message (for example an appropriately coded light beam) to γO. Hence if γO receives a
signal from γC before the Malament–Hogarth event q ∈M he can be sure that ZFC set theory is
not consistent. On the other hand, if γO does not receive any signal before q then, after q, γO can
conclude that ZFC set theory is consistent. Note that γO having finite proper time between the
events γO(a) = p (departure for the experiment) and γO(b) = q (hitting the Malament–Hogarth
event), he can be sure about the consistency of ZFC set theory within finite (possibly very short)
time. This shows that certain very general formulations of the Church–Turing thesis (for instance
[16, Thesis 2,2’ and 3]) cannot be valid in the framework of classical general relativity.
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After getting some feeling of Malament–Hogarth space-times we indicate their relationship
with the strong cosmic censorship. First one can raise the question if Malament–Hogarth space-
times are relevant or not from a physical viewpoint. Checking case-by-case several physically rel-
evant maximally extended examples lacking global hyperbolicity like Kerr, Reissner–Nordström,
(universal cover of) anti-de Sitter we find that these space-times indeed possess the Malament–
Hogarth property. On the contrary the Taub–NUT and certain extendible polarized Gowdy
space-times with toroidal spatial topology lack this: future inextendible curves in the past of
events on the future Cauchy horizon exist but are incomplete.

This motivates us to sharpen the easily provable SCCC-GHP version of the strong cosmic
censor conjecture like this (cf. [15, Conjecture 3.1 and 3.2]):

SCCC-MH If a physically relevant (i.e., obeying some energy condition), asymptotically flat or
asymptotically hyperbolic (i.e., anti-de Sitter) space-time is not globally hyperbolic then it is a
Malament–Hogarth space-time.

Note that this formulation—like SCCC-GHP—continues to avoid the question of “genericity”
or “stability”. We cannot prove or disprove this version but a promising attack on it is to study
the so-called “radiation problem” [8].

Instead we call attention that SCCC-MH sheds some light onto a possible deep link be-
tween cosmic censorship and computability theory as follows. Consider the following physical
reformulation of the Church–Turing thesis:1

Ph-ChT An artificial computing system based on a generic (i.e., stable), relevant (i.e., obeying
some energy condition) classical physical system realizes Turing-computable functions.

This formulation—in contrast to versions like [16, Thesis 2 and 2’]—is quite democratic because
it does not a priori excludes the existence of too powerful computational devices; it just says that
they must in one or another way be unstable (which is apparently true for the various devices in
[5, 25, 26, 16, 20, 21]).

In general—keeping in mind the definition of a Malament–Hogarth space-time—a quintuple
(M, g, q, γC , γO) is called a gravitational computer if (M, g) is a space-time, γC , γO are timelike
curves and q ∈M is an event such that the images of these curves lie within J−(q). This concept
is broad enough to serve as an abstract model for all kind of artificial computing systems based on
classical physics so that an artificial computing system can perform non-Turing computations if
and only if the corresponding gravitational computer is defined in an ambient space-time (M, g)
possessing the Malament–Hogarth property [15].

Accepting that all artificial computing systems based on classical physics can be modeled by
gravitational computers as well as accepting SCCC-MH we can see that SCCC and Ph-ChT
are roughly equivalent hence involve the same depth. This might serve as an explanation for the
permanent difficulty present in all approaches to the strong cosmic censor conjecture. Indeed,
in light of our considerations sofar SCCC-MH can be read such a way that a non-globally
hyperbolic asymptotically flat or anti-de Sitter space-time contains a gravitational computer
capable of breaking the Turing barrier.

Therefore the problem of the existence of non-globally hyperbolic space-times is apparently
the same as that of artificial computing systems capable of performing non-Turing computations;
both expected to be non-generic, unstable phenomena in Nature.

1For the concept of an “artificial computing system” and of a “Turing computable function” in particular and
for further details in general, we refer to [16, Chapter 2] and references therein.
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Szabados for the stimulating discussions. The work was partially supprted by OTKA grant No.
NK81203 (Hungary).

References

[1] Alexakis, S., Ionescu, A.D., Klainerman, S.: Uniqueness of smooth stationary black holes
in vacuum: small perturbations of the Kerr spaces, preprint, arXiv: 0904.0982 [gr-qc],
39pp. (2009);

[2] Blaha, S.: A quantum computer foundation for the standard model and superstring theories,
preprint, arXiv: hep-th/0201092, 78pp. (2002);

[3] Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem,
Journ. Diff. Geom. 59, 177-268 (2001);

[4] Brill, D.R., Horowitz, G.T.: Testing cosmic censorship with black hole collisions, Phys. Rev.
D49, 840-852 (1994);

[5] Calude, C.S., Pavlov, B.: Coins, quantum measurements and Turing’s barrier, Quantum
Information Processing 1, 107–127 (2002);

[6] Christodoulou, D.: Examples of naked singularity formation in gravitational collapse of a
scalar field, Ann. Math. 104, 607-665 (1994);

[7] Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a
scalar field, Ann. Math. 149, 183-217 (1999);

[8] Christodoulou, D., O’Murchadha, N.: The boost problem in general relativity, Comm. Math.
Phys. 80, 271-300 (1981);
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