
Global solvability of the vacuum Einstein equation and
the strong cosmic censorship in four dimensions
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Abstract

Let M be a connected, simply connected, oriented, closed, smooth four-manifold which is spin
(or equivalently having even intersection form) and put M× := M \{point}. In this paper we prove
that if X× is a smooth four-manifold homeomorphic but not necessarily diffeomorphic to M× (more
precisely, it carries a smooth structure à la Gompf) then X× can be equipped with a complete Ricci-
flat Riemannian metric. As a byproduct of the construction it follows that this metric is self-dual
as well consequently X× with this metric is in fact a hyper-Kähler manifold. In particular we find
that the largest member of the Gompf–Taubes radial family of large exotic R4’s admits a complete
Ricci-flat metric (and in fact it is a hyper-Kähler manifold).

These Riemannian solutions are then converted into Ricci-flat Lorentzian ones thereby exhibit-
ing lot of new vacuum solutions which are not accessable by the initial vaule formulation. A natural
physical interpretation of them in the context of the strong cosmic censorship conjecture and topol-
ogy change is discussed.
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1 Introduction and summary
Solving the vacuum Einstein equation globally, or in other words: finding a (pseudo-)Riemannian
Ricci-flat metric along a differentiable manifold i.e., a metric g which satisfies the second order non-
linear partial differential equation

Ricg = 0

over a differentiable manifold M, is a century-old evergreen problem dwelling in the heart of modern
differential geometry [3] and theoretical physics [54]. The problem of solvability naturally splits up
into local and global solvability and also depends on the signature of the metric. Let us first consider
the Riemannian case. Thanks to its non-linearity, solvability of the Ricci-flatness condition is already
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locally problematic; nevertheless exploiting its elliptic character various kinds of local existence results
(e.g. [11, 22]) are known at least for the related but in some sense complementary equation Ricg = Λg
(whose solutions are called Einstein metrics) with Λ 6= 0. As one expects, in these local existence
problems the dimension of M plays no special role. However dimensionality issues characteristically
enter the game when one considers global solvability. Finding global solutions in four dimensions i.e.,
when dimRM = 4 is particularly important from a physical point of view and quite interestingly, from
the mathematical viewpoint, precisely this is the dimension where global solvability is the most subtle.
As it is well-known, if dimRM < 4 the vacuum Einstein equation reduces to a full flatness condition
on the metric hence it admits only a “few” global solutions; on the contrary, if dimRM > 4 there are
no (known) obstructions for global solvability hence apparently there are “too many” global solutions.
A delicate balance is achieved if dimRM = 4: for instance by a classical result [31, 52] we know that
a Riemannian Einstein (hence in particular a Ricci-flat) metric on a compact M can exist only if its
Euler characteristic χ(M) and signature σ(M) obey the inequality χ(M)= 3

2 |σ(M)|. This implies for
example that the connected sum of at least five copies of complex projective spaces cannot be Einstein.
However even in four dimensions if M is non-compact there are no (known) obstruction against the
solvability of the vacuum Einstein equation.

Restricting attention to the four dimensional case from now on, the main result of the paper—
strongly motivated by [8] and considered as a substantially improved and technically revised and greatly
simplified version of our earlier efforts [18, 19]—can be formulated in the Riemannian setting as

Theorem 1.1. Let M be a connected, simply connected, oriented, closed (i.e., compact without bound-
ary), smooth 4-manifold which is spin (or equivalently having even intersection form) and take the
punctured space M× := M \{point}. If X× is a smooth 4-manifold homeomorphic but not necessarily
diffeomorphic to M× such that it carries a smooth structure à la Gompf then X× can be equipped with
a complete Ricci-flat Riemannian metric.

As an extreme but important application of Theorem 1.1 we obtain

Corollary 1.1. Let R4 be the largest member of the Gomp–Taubes radial family of large exotic R4’s.
Then R4 carries a complete Ricci-flat Riemannian metric.

The proof of Theorem 1.1 is based on a successive application of basic results by Gompf [25, 26, 27],
Penrose [47], Taubes [50, 51] and Uhlenbeck [53] on exotic smooth structures, twistor theory, self-dual
spaces and singularity removal in Yang–Mills fields, respectively. The idea in the spirit of twistor theory
is to convert the real-analytic problem of solving Ricg = 0 on the real 4-space M× into a complex-
analytic problem on a complex 3-space Z associated to M×. This is in principle simple and works
as follows. Take an arbitrary oriented and closed smooth 4-manifold M. In the first step, following
Taubes, by connected summing sufficiently (but finitely) many complex projective spaces to M, we
construct a space XM ∼= M#CP2# . . .#CP2 which (with respect to its induced orientation) carries a self-
dual metric γ . Then, in the second step following Penrose, we observe that Z, the twistor space of
(XM,γ), is a complex 3-manifold. Let XM ⊂ XM be the open space obtained by deleting carefully
choosen closed subsets, homeomorphic to a projective line, from every CP2 factor of XM and put
γ := γ|XM and Z := Z|XM . Making use of Z we can conformally rescale the incomplete self-dual space
(XM,γ) to a complete Ricci-flat one (XM,g) if M is connected, simply connected and spin. In the
third and last step, by the aid of Uhlenbeck’s singularity removal theorem, we remove (or fill in) the
extra CP2 \CP1 = R4’s along XM to obtain an open smooth space X× which is homeomorphic to the
punctured space M× however is not necessarily diffeomorphic to it by results of Gompf. The result is
a connected, simply connected, open, complete, Ricci-flat Riemannian spin 4-manifold (X×,g).
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By the conformal invariance of self-duality this technical condition in fact survives the whole pro-
cedure. Taking into account that a complete Ricci-flat and self-dual metric on a simply connected
4-manifold always induces a hyper–Kähler structure on it [3, Chapter 13], we can re-formulate the
result of our construction as

Theorem 1.2. The complete Ricci-flat metric of Theorem 1.1 on X× with its fixed orientation is self-
dual as well consequently X× carries a hyper-Kähler structure, too.

In this way we obtain

Corollary 1.2. The space R4 of Corollary 1.1 carries a hyper-Kähler structure.

Next let consider the analogous problem in Lorentzian signature. Surely the most productive—and
both mathematically and physically extraordinary important—presently known method to find global
solutions of the Lorentzian vacuum Einstein equation is based on the initial value formulation [54,
Chapter 10] which exploits the hyperbolic character of the Ricci-flatness condition (far from being
complete, just for recent results cf. eg. [6, 9, 38, 42]) and the references therein). In this approach one
starts with an appropriate initial value data set, subject to the (simpler) vacuum constraint equations,
on a three dimensional manifold Σ and obtains solutions of the original vacuum Einstein equation on
a four dimensional manifold M which is always diffeomorphic to the smooth product Σ×R (with the
unique smooth structures on the factors) [2, 8]. It is worth calling attention that even if the initial value
formulation produces an abundance of solutions from the viewpoint of global analysis and theoretical
physics, it is quite inproductive from the viewpoint of (low dimensional) differential topology. To
illustrate this, suppose we want to find spaces (M,g) satisfying Ricg = 0 over a connected and simply
connected, open four-manifold M. If the initial value formulation is applied, and if in this case we
impose a further condition that the corresponding Cauchy surface Σ be compact, then by the Poincaré–
Hamilton–Perelman theorem Σ must be homeomorphic hence diffeomorphic to the three-sphere S3

consequently M is uniquely fixed to be S3×R up to diffeomorphisms (but of course this unique M still
can carry lot of non-isometric Ricci-flat metrics g).

However in sharp contrast to this differentio-topological rigidity of initial value formulation in the
simply connected setting we obtain

Theorem 1.3. Consider the space X× as in Theorem 1.1 or equivalently, in Theorem 1.2. Then there
exists a smooth Lorentzian metric gL on X× such that (X×,gL) is, a perhaps incomplete, Ricci-flat
Lorentzian 4-manifold.

To make a comparison, let us indicate the “size” of the set of non-isometric solutions to the Lorentzian
vacuum Einstein equation provided by Theorem 1.3. By the fundamental classification result of Freed-
man [21], connected and simply connected, oriented, closed topological four-manifolds are topologi-
cally classified by their intersection form QM : H2(M;Z)×H2(M;Z)→H4(M;Z)∼=Z. By assumptions
in our theorems here, M is spin and smooth hence QM must be even hence indefinite taking into account
the other fundamental result in this field by Donaldson [14]. Therefore if σ(M) denotes the signature
and b2(M) the second Betti number of M then its intersection form looks like

QM =
1
8

σ(M)


2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⊕ 1
2
(b2(M)−σ(M))

(
0 1
1 0

)
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hence the simplest examples for M are S4, S2× S2, the K3 surfaces, etc. Consequently, unlike the
initial value formulation in the simply connected case, the set of solutions provided by Theorem 1.3
already contains many topologically different underlying spaces. But even more, most of these compact
M’s themselves carry countable infinitely many different smooth structures, too. Finally, passing to the
non-compact punctured spaces M×, the cardinality of the inequivalent smooth structures X× underlying
the Ricci-flat solutions in Theorem 1.1 already reaches that of the continuum in ZFC set theory by a
theorem of Gompf [27] (recalled as Theorem 2.4 here). Therefore the set of non-isometric Ricci-flat
spaces exhibited in Theorem 1.3 is huge indeed. These solutions are not accessible within the initial
value formulation because they, compared to the time evolution of typical initial data sets, are “too
long” in an appropriate sense (cf. [19, Section 5]). Informally speaking, the vacuum Einstein equation
is more tractable in Riemannian signature because of the elliptic nature of the Ricci-flatness condition
in contrast to its hyperbolic character in Lorentzian signature: meanwhile solutions in Riemannian
signature are protected by elliptic regularity hence “extend well”, the regularity profiles of Lorentzian
initial data sets quickly get destroyed during their hyperbolic time evolution.

The paper is organized as follows. Section 2 contains the collection of the required background
material with rapid discussions of these results from our viewpoint. Sections 3 and 4, respectively,
contain the construction in the simpler non-exoting setting i.e., when X× is not only homeomorphic
but even diffeomorphic to M× ⊂ M and then in the exotic setting with appropriate modifications. In
Section 5 we prove Theorem 1.3 by simply recalling [19, Lemma 4.2]. Finally in Section 6 a physical
interpretation of these Lorentzian Ricci-flat solutions is discussed. This interpretation places these
solutions into the realm of the strong cosmic censorship conjecture and gravitational topology change
processes.

2 Background material
Let us begin with recalling all the powerful results, techniques, tools to be used during the construction
of Riemannian Ricci-flat metrics in this paper.

Construction of self-dual spaces. It is well-known that the Fubini–Study metric on the complex pro-
jective space CP2 with orientation inherited from its complex structure is self-dual (or half-conformally
flat) i.e., the anti-self-dual part W− of its Weyl tensor vanishes; consequently the oppositely oriented
complex projective plane (CP2)op is anti-self-dual. A powerful generalization of this latter classical
fact is Taubes’ construction of an abundance of anti-self-dual 4-manifolds; firstly we exhibit his result
but now in an orientation-reversed form:

Theorem 2.1. (Taubes [51, Theorem 1.1]) Let M be a connected, compact, oriented smooth 4-manifold.
Let CP2 denote the complex projective plane with its usual orientation and let # denote the operation
of taking the connected sum of manifolds. Then there exists a natural number kM = 0 such that for all
k = kM the modified compact manifold

M#CP2# . . .#CP2︸ ︷︷ ︸
k

admits a self-dual Riemannian metric. 3

Let us roughly summarize how Taubes’ construction works ([51, Section 2]). Take an arbitrary con-
nected, oriented, closed Riemannian 4-manifold (M,g) and consider the density of the anti-self-dual
part of the Weyl curvature of g i.e., the pointwise norm |W−g |g along M. If it happens that somewhere
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around a point p ∈M this curvature density is large then take a CP2 with its usual Fubini–Study metric
having zero anti-self-dual Weyl tensor and glue it to a ball B4

ε(p)⊂M of sufficiently small radius about
the point. The result is a Riemannian metric on M#CP2 having a bit smaller anti-self-dual Weyl tensor:
this is because while W−g is unchanged on M \B4

ε(p) it is killed in the bulk of B4
ε(p) except possibly

along an annulus where g and the Fubini–Study metric of CP2 have been glued together. Repeating
this procedure, without doing connected summing on any previously added CP2 factor, probably very
(but surely finitely) many times one comes up with a metric γ

′ on XM := M#CP2# . . .#CP2 (regarding
the specific notation cf. Sections 3 and 4 below) whose W−

γ
′ is already arbitrarily small in e.g. the

original L2-norm. Then, by the aid of the implicit function theorem, one perturbs this metric with a
small symmetric tensor field h on XM into a new one γ := γ

′+h which is already self-dual i.e. having
W−

γ
= 0 along XM. For further rather technical details we refer to [51, Section 2].

Tools from twistor theory. Let us now recall Penrose’ twistor method [47] to solve the Riemannian
vacuum Einstein equation (for a very clear introduction cf. [3, Chapter 13], [32, 33]). Consider the
bundle of unit-length anti-self-dual 2-forms S(∧−XM) over a compact oriented space (XM,γ) which is
self-dual with respect to its orientation. Since in 4 dimensions ∧−XM is a rank 3 real vector bundle over
XM, its unit-sphere bundle S(∧−XM) is the total space of a smooth S2-fibration p : S(∧−XM)→ XM.
The Levi–Civita connection of the metric γ on XM can be used to furnish the real 6-manifold S(∧−XM)
with a canonical almost complex structure; the fundamental observation of twistor theory is that this
almost complex structure is integrable because γ is self-dual [3, Theorem 13.46]. The resulting complex
3-manifold Z ∼= S(∧−XM) is called the twistor space while the smooth fibration p : Z→ XM the twistor
fibration of (XM,γ). The most important property of a twistor space of this kind is that its twistor fibers
p−1(x) ⊂ Z for all x ∈ XM fit into a locally complete complex 4-paremeter family XC

M of projective
lines Y ⊂ Z each with normal bundle H⊕H, with H being the dual of the tautological line bundle over
Y ∼= CP1. Moreover, there exists a real structure τ : Z→ Z defined by taking the antipodal maps along
the twistor fibers Yx := p−1(x)⊂ Z for all x ∈ XM ⊂ XC

M which are therefore called real lines among all
the lines Y in Z. In other words, Z is fibered exactly by the real lines Yx for all x ∈ XM. Hence the real
4 dimensional self-dual geometry has been encoded into a 3 dimensional complex analytic structure in
the sense that one can recover (XM,γ) just from Z up to conformal equivalence.

One can go further and raise the question how to recover precisely (XM,γ) itself from its confor-
mal class, or more interestingly to us: how to get a Ricci-flat Riemannian 4-manifold (XM,g) i.e., a
solution of the (self-dual) Riemannian vacuum Einstein equation. Not surprisingly, to get the latter
stronger structure, one has to specify further data on the twistor space. A fundamental result of twistor
theory [47] is that a solution of the 4 dimensional (self-dual) Riemannian vacuum Einstein equation is
equivalent to the following set of data (cf. [32, 33]):

∗ A complex 3-manifold Z, the total space of a holomorphic fibration π : Z→ CP1;

∗ A complex 4-paremeter family of holomorphically embedded complex projective lines Y ⊂ Z,
each with normal bundle NY ∼= H ⊕H (here H is the dual of the tautological bundle i.e., the
unique holomorphic line bundle on Y ∼= CP1 with 〈c1(H), [Y ]〉= 1);

∗ A non-vanishing holomorphic section s of KZ⊗π∗H4 (here KZ is the canonical bundle of Z);

∗ A real structure τ : Z→ Z such that it coincides with the antipodal map u 7→ −u−1 of CP1 upon
restricting to the τ-invariant elements Y ⊂ Z (called real lines) from the family; moreover these
real lines are both sections of π and comprise a fibration of Z.
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These data allow one to construct a Ricci-flat and self-dual (i.e., the Ricci and the anti-self-dual
Weyl part of the curvature tensor vanishes) solution (XM,g) of the Riemannian Einstein’s vacuum
equation with vanishing cosmological constant as follows. The holomorphic lines Y ⊂ Z form a
locally complete family and fit together into a complex 4-manifold XC

M . This space carries a nat-
ural complex conformal structure by declaring two nearby points y1,y2 ∈ XC

M to be null-separated
if the corresponding lines intersect i.e., Y1 ∩Y2 6= /0 in Z. Infinitesimally this intersection condi-
tion means that on every tangent space TyXC

M
∼= C4 a null cone is specified: using the identification

TyXC
M
∼= H0(Yy;O(NYy))∼= H0(CP1;O(H⊕H)) given by (a,b,c,d) 7→ (au+b,cu+d), a tangent vec-

tor at y is null if and only if its corresponding holomorphic sections have a common zero i.e. ad−bc= 0
which is an equation of a cone. Restricting the complex conformal structure to the real lines singled
out by τ and parameterized by an embedded real 4-manifold XM ⊂ XC

M we obtain the real conformal
class [g] of a Riemannian metric on XM. The isomorphism s : π∗H−4 ∼= KZ is essentially uniquely fixed
by its compatibility with τ and gives rise to a volume form on XM this way fixing the metric g in the
conformal class. Given the conformal class, it is already meaningful to talk about the unit-sphere bun-
dle of anti-self-dual 2-forms S(∧−XM) over XM with its induced orientation from the twistor space and
Z can be identified with the total space of S(∧−XM). This way we obtain a smooth twistor fibration
p : Z→ XM whose fibers are CP1’s hence π : Z→ CP1 can be regarded as a parallel translation along
this bundle over XM with respect to a flat connection which is nothing but the induced connection of g
on ∧−XM, cf. [39]. Knowing the decomposition of the Riemannian curvature into irreducible compo-
nents over an oriented Riemannian 4-manifold [49], this partial flatness of S(∧−XM) implies that g is
Ricci-flat and self-dual. Finally note that, compared with the bare twistor space Z of a self-dual mani-
fold (XM,γ) above, the essential new requirement for constructing a self-dual Ricci-flat space (XM,g)
is the existence of a holomorphic map π from the twistor space Z into CP1 which is compatible with
the real structure in the above sense. We conclude our summary of the non-linear graviton construction
by referring to [32, 33, 36, 39, 56] or [3, Chapter 13] for further details.

Removable singularities in Yang–Mills fields. Next let us refresh Uhlenbeck’s by-now classical
singularity removal theorem:

Theorem 2.2. (Uhlenbeck [53, Theorem 4.1] or [20, Appendix D])
∗ Local version: Let ∇× be a solution of the SU(2) Yang–Mills equations in the open punctured

4-ball B4 \ {0} with ‖F∇×‖2
L2(B4)

=
∫

B4 |F∇×|2 < +∞ i.e., having finite energy and ∇× = d+A× such

that A× ∈ L2
1(B

4 \ {0}). Then ∇× is L2
2 gauge equivalent to a connection ∇ which extends smoothly

across the singularity to a smooth connection.
∗ Global version: Let (M,g) be a connected, closed, oriented Riemannian 4-manifold and let ∇×

be an SU(2) connection on a vector bundle E× over M× :=M\{point} which is a solution of the SU(2)
Yang–Mills equations and satisfies ‖F∇×‖L2(M) < +∞ and there is an L2

1,loc gauge for ∇× around the
puncturing of M. Then ∇× is L2

2,loc gauge equivalent to a connection ∇ on a vector bundle E over M
i.e., to a connection which extends across the pointlike singularity of the original connection. 3

Locally finite energy i.e., F∇× ∈ L2
loc does not guarantee the continuity of the gauge transformation

hence the topology of E× can change i.e., E× and E can be different; however if F∇× ∈ L2+ε

loc holds then
we can assume continuity. Nevertheless the isomorphism class of E is fully determined by the smooth
connection ∇ via the numerical value of the integral −∞ < 1

8π2

∫
M tr(F∇∧F∇)<+∞, the second Chern

number of the bundle E.
Exotic stuff. Finally we evoke some results which provide us with a sort of summary of what is so

special in four dimensions (i.e., absent in any other ones). First we recall a special class of large exotic
(or fake) R4’s whose properties we will need here are summarized as follows:
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Theorem 2.3. (Gompf–Taubes, cf. [28, Lemma 9.4.2, Addendum 9.4.4 and Theorem 9.4.10]) There
exists a pair (R4,K) consisting of a differentiable 4-manifold R4 homeomorphic but not diffeomorphic
to the standard R4 and a compact oriented smooth 4-manifold K ⊂ R4 such that

∗ R4 cannot be smoothly embedded into the standard R4 i.e., R4 6j R4 but it can be smoothly
embedded as a proper open subset into the complex projective plane i.e., R4 $CP2;

∗ Take a homeomorphism f :R4→R4, let 0∈B4
t ⊂R4 be the standard open 4-ball of radius t ∈R+

centered at the origin and put R4
t := f (B4

t ) and R4
+∞ := R4. Then{

R4
t
∣∣ r 5 t 5+∞ such that 0 < r <+∞ satisfies K ⊂ R4

r
}

is an uncountable family of nondiffeomorphic exotic R4’s none of them admitting a smooth em-
bedding into R4 i.e., R4

t 6j R4 for all r 5 t 5+∞. 3

The fact that any member R4
t in this family is not diffeomorphic to R4 implies the counterintuitive

phenomenon that R4
t 6∼=W ×R i.e., R4

t does not admit any smooth splitting into a 3-manifold W and R
(with their unique smooth structures) in spite of the fact that such continuous splittings obviously exist.
Indeed, from the contractibility of R4

t we can see that W must be a contractible open 3-manifold (a
so-called Whitehead continuum [57]) however, by an early result of McMillen [43] spaces of this kind
always satisfy W ×R ∼= R4 i.e., their product with a line is always diffeomorphic to the standard R4.
We will call this property of (any) exotic R4 occasionally below as “creased”.

From Theorem 2.3 we deduce that for all r < t <+∞ there is a sequence of smooth proper embed-
dings

R4
r $ R4

t $ R4
+∞ = R4 $CP2

which are very wild in the following sense. The complement CP2 \R4 of the largest member R4 of this
family is homeomorphic to S2 regarded as an only “continuously embedded projective line” in CP2;
therefore we shall denote this complement as S2 := CP2 \R4 ⊂ CP2 in order to distinguish it from the
ordinary projective lines CP1 = CP2 \R4 ⊂ CP2. If CP2 = R4∪CP1 = C2∪CP1 is any holomorphic
decomposition then R4∩CP1 6= /0 (because otherwise R4 j R4 would hold, a contradiction) as well as
S2∩CP1 6= /0 (because otherwise H2(R4;Z) ∼= Z would hold since CP1 ⊂ CP2 represents a generator
of H2(CP2;Z)∼=Z, a contradiction again). Hence an ordinary projective line CP1 is always intersected
by both R4 and S2 such that S2∩CP1 in the worst situation is a Cantor set. These demonstrate that the
members of the large radial family “live somewhere between” R4 and its complex projective closure
CP2. However a more precise identification or location of them is a difficult task because these large
exotic R4’s—although being honest differentiable 4-manifolds—are very transcendental objects, cf.
[28, p. 366]: They require infinitely many 3-handles in any handle decomposition (like any other
known large exotic R4) and there is presently1 no clue as how one might draw explicit handle diagrams
of them (even after removing their 3-handles).

We note that the structure of small exotic R4’s i.e., which admit smooth embeddings into R4, is
better understood and is quite different, cf. [28, Chapter 9]. For instance, unlike the large case, in their
corresponding radial family certain (but surely not more than countably many) members are diffeo-
morphic such that the non-diffeomorphic small exotic R4’s are parameterized not by an interval but a
Cantor set only, cf. [28, Theorem 9.4.12 and its proof].

Our last ingredient is the following ménagerie result of Gompf.

1More precisely in the year 1999, cf. [28].
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Theorem 2.4. (Gompf [27, Theorem 2.1]) Let X be a connected (possibly non-compact, possibly with
boundary) topological 4-manifold and let X× := X \ {point} be the punctured manifold with a single
point removed. Then the non-compact space X× admits noncountably many (with the cardinality of the
continuum in ZFC set theory) pairwise non-diffeomorphic smooth structures. 3

If for instance M is a connected compact smooth 4-manifold then Gompf’s construction simply goes as
follows: Take R4 from Theorem 2.3 and put

X× := M#R4

which is a smooth 4-manifold obviously homeomorphic to the punctured M×. More generally, the
construction X×t :=M×#R4

t produces uncountably many mutually non-diffeomorphic smooth structures
on the unique topological 4-manifold underlying X×t .

3 The construction
In this section, which serves as a warming-up for the next one, we construct solutions of the vacuum
Einstein equation on punctured 4-manifolds carrying their standard smooth structure. We begin with
an application of Theorem 2.1 as follows.

Lemma 3.1. Out of any connected, closed (i.e., compact without boundary) oriented smooth 4-manifold
M one can construct a connected, open (i.e., non-compact without boundary) oriented smooth Rieman-
nian 4-manifold (XM,γ) which is self-dual but incomplete in general.

Proof. Pick any connected, oriented, closed, smooth 4-manifold M. Referring to Theorem 2.1 let
k := max(1,kM) ∈ N be a positive integer, put

XM := M#CP2# . . .#CP2︸ ︷︷ ︸
k

and let γ be a self-dual metric on it. Then (XM,γ) is a compact self-dual manifold. Pick a CP2 factor
within XM and any (holomorphically embedded) projective line CP1 ⊂ CP2 in that factor (avoiding its
attaching point to M); then CP1 =CP2 \C2 ∼=CP2 \R4 i.e., the line arises as the complement of an R4

in CP2. Let K ⊂ R4 be any connected compact subset and put

XM := M#(CP2 \CP1)# . . .#(CP2 \CP1)︸ ︷︷ ︸
k−1

#K(CP2 \CP1)∼= M#R4# . . .#R4︸ ︷︷ ︸
k−1

#KR4 ∼= M×#R4# . . .#R4︸ ︷︷ ︸
k−1

(1)
where the operation #K means that the attaching point y0 ∈ R4 taken to glue a distinguished R4 with
the rest M#R4# . . .#R4︸ ︷︷ ︸

k−1

satisfies y0 ∈ K ⊂ R4 and M× := M#KR4 ∼= M \{point} is the punctured space

with its inherited smooth structure from the smooth embedding M× ⊂ M. The result is a connected,
open 4-manifold XM (see Figure 1).
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M XM

Figure 1. Construction of XM out of M. The gray ellipse represents a distinguished end
diffeomorphic to the complement of a connected compact subset K in R4.

From the proper smooth embedding XM $ XM there exists a restricted self-dual Riemannian metric
γ := γ|XM on XM which is however in general non-complete. 3

Next we improve the incomplete self-dual space (XM,γ) of Lemma 3.1 to a complete Ricci-flat space
(XM,g) by conformally rescaling γ with a suitable positive smooth function ϕ : XM → R+ which is a
“multi-task” function in the sense that it kills both the scalar curvature and the traceless Ricci tensor of
γ moreover blows up sufficiently fast along the R4 ends of XM to render the rescaled metric g complete.
Two classical examples serve as a motivation.

First example. First, let S4 ⊂ R5 be the standard 4-sphere equipped with the standard orientation and
round metric inherited from the embedding. Put XM := S4 and γ :=the standard round metric. It is
well-known that (XM,γ) = (S4,γ) is self-dual and Einstein with non-zero cosmological constant i.e.,
not Ricci-flat. Put XM := S4 \{∞}=R4; then γ = γ|R4 thus (XM,γ) = (R4,γ) is an incomplete self-dual
space. But setting ϕ : R4→ R+ to be ϕ(x) := (1+ |x|2)−1, then g := ϕ−2γ is nothing but the standard
flat metric η on R4 which is of course complete and Ricci-flat. Hence (XM,g) = (R4,η), the conformal
rescaling of (XM,γ) = (R4,γ), is the desired complete Ricci-flat space in this simple case. Note that
(R4,η) is a trivial hyper-Kähler space, too.

It is worth working out here how the corresponding holomorphic map π : Z → CP1 over the cor-
responding twistor space arises in this situation (see the summary of twistor theory in Section 2).
Consider the smooth twistor fibration p : Z→ S4. Since R4 ⊂ S4 writing Z := Z|R4 and p := p|R4 we
obtain a restricted fibration p : Z→ R4. Unlike the full twistor fibration over S4, the restricted one is
topologically trivial i.e. Z is homeomorphic to R4×S2 since R4 is contractible; consequently Z admits
a continuous trivialization over R4. This is a necessary topological condition for the existence of the
map π . Since R4 with its flat metric is conformally equivalent to S4\{∞}with its round metric, Z arises
by deleting the twistor line over ∞∈ S4 from Z. However it is well-known that the twistor space Z of the
round S4 is CP3 consequently the twistor space Z of the flat R4 is simply CP3 \CP1. More explicitly,
take a homogeneous coordinate system [z0 : z1 : z2 : z3] on CP3 and remove the line z0 = z1 = 0 from
CP3 to get Z. We wish to define a map π : Z → CP1 such that its target space is a twistor i.e. a real
line in Z. Any line in CP3 \CP1 can be written as [z0 : z1 : az1 + bz0 : cz1 + dz0] with [z0 : z1] ∈ CP1

and a,b,c,d ∈ C being some parameters. Note that the case of a = b = c = d = 0 is meaningful and
[z0 : z1 : 0 : 0] is simply the distinguished line [z0 : z1] in CP3 \CP1. Thus

The lines in Z = {[z0 : z1 : az1 +bz0 : cz1 +dz0] | [z0 : z1] ∈ CP1 and a,b,c,d ∈ C} . (2)

The real structure on Z is defined by demanding the fibers of p : Z→ S4 to be invariant. Under Z ∼=CP3

it comes from the identification C4 ∼=H2 and has the form [z0 : z1 : z2 : z3] 7→ [z1 :−z0 : z3 :−z2]. It is
compatible with the antipodal map [z0 : z1] 7→ [z1 :−z0] and restricts to a real structure τ : Z→ Z. It then
follows that the corresponding real lines have the shape [z0 : z1 : az1+cz0 : cz1−az0]. Consequently the
twistor fibration p : Z→R4 looks like [z0 : z1 : az1+cz0 : cz1−az0] 7→ (a,c)∈C2∼=R4 and in particular
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the distinguished line is real and can be identified with the twistor line p−1(0) over the origin. Since
every point z ∈ Z contained in exactly one real line let us define π : Z → p−1(0) by the canonical
projection π([z0 : z1 : az1 + cz0 : cz1− az0]) := [z0 : z1]. Upon introducing the projective coordinate
u := cz1−az0

az1+cz0
if (a,c) 6= (0,0) or u := z1

z0
if (a,c) = (0,0) along the twistor lines in the domain of π the

map looks like

π(u) =
{ cu+a
−au+c if (a,c) 6= (0,0)
u if (a,c) = (0,0)

(3)

which is an obviously holomorphic map since it arises by holomorphic deformations of p−1(0) within
Z moreover it is the identity on p−1(0). What we only have to check is that π is compatible with the
real structure. This means that we have to demonstrate that all real lines p−1(x) ⊂ Z are sections of
π : Z → p−1(0) or in other words that π|p−1(x) : p−1(x)→ p−1(0) is a holomorphic bijection of CP1

for every x ∈ R4. Assume that this is not true. Since π|p−1(x) has the form (3) we can normalize its
coefficients such that |c|2 + |a|2 = 1. However the assumption implies that this rational function is
constant in u yielding |c|2 + |a|2 = 0, a contradiction.

Second example. This time put XM := CP2 and γ :=Fubini–Study metric. It is well-known that
(XM,γ) = (CP2,γ) is self-dual and Einstein with non-zero cosmological constant i.e., not Ricci-flat.
Now let XM := CP2 \CP1 = R4; then γ = γ|R4 and (XM,γ) = (R4,γ) is an incomplete self-dual space.
If 0 6= (z0,z1,z2) ∈ C3 and [z0 : z1 : z2] ∈ CP2 then take the projective line CP1 ⊂ CP2 defined by
z0 = 0. Introducing wi =

zi
z0

(i = 1,2) and w = (w1,w2) ∈ C2 = R4, on the complementum CP2 \CP1

the restricted Fubini–Study metric γ looks like

γi j(w) = (1+ |w|2)−1
δi j− (1+ |w|2)−2wiw j

and along this local part it already possesses a Kähler potential K(w) = log(1+ |w|2). This time define
ϕ :R4→R+ as ϕ(w) := e−

3
4 K(w) = (1+ |w|2)− 3

4 which is a non-holomorphic function and consider the
conformally rescaled (real) metric g := ϕ−2γ . One can check that this is a complete Ricci-flat metric
on R4. Hence (XM,g) = (R4,g), the conformal rescaling of (XM,γ) = (R4,γ) is a complete Ricci-flat
space. It is already not flat but note again that nevertheless g indudes a (not asymptotically flat in any
sense) hyper-Kähler structure on R4 because g is a complete, self-dual, Ricci-flat metric on the simply
connected space R4.

Again, the corresponding twistor-theoretic map π arises as follows. Consider the smooth twistor
fibration p : Z→CP2. Since R4⊂CP2, writing Z := Z|R4 and p := p|R4 we obtain a restricted fibration
p : Z → R4. Unlike the full twistor fibration over CP2, this restricted one is topologically trivial i.e.,
Z is homeomorphic to R4×S2 since R4 is contractible; consequently Z admits a continuous trivializa-
tion over R4. This is a necessary topological condition for the existence of the map π . It is known that
Z ∼= P(TCP2) i.e., the twistor space of the complex projective space can be identified with its projective
holomorphic tangent bundle. Consequently Z admits a very classical description namely can be iden-
tified with the flag manifold F12(C3) consisting of pairs (L,P) where 0 ∈ L⊂ C3 is a line (i.e., a point
p∈CP2) and 0∈ L⊂P⊂C3 is a plane containing the line (i.e., a line p∈ `⊂CP2 containing the point).
Then in the twistor fibration p : Z→ CP2 of the complex projective space (L,P) ∈ F12(C3) is sent into
the point x∈CP2 provided by the line X := L⊥∩P⊂C3 where L⊥ is the plane perpendicular to the line
L in C3 with respect to the standard Hermitian scalar product. This is a smooth but not holomorphic fi-
bration over CP2 with CP1’s as fibers since p−1(x) = {(L,P) |L⊂ X⊥ , X ⊂ P}= {(p, `) |x⊥∩`,x ∈ `}
i.e., it consists of all lines `⊂CP2 through x∈CP2 (a copy of CP1) and a distinguished point p on each
given by its intersection with the line x⊥ ⊂CP2 given by X⊥ ⊂C3. Consider now the restricted twistor
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fibration p : Z→R4. Fix a point x0 ∈CP2 \x⊥0 =R4 with target space p−1(x0)∼=CP1 consisting of ter-
minating pairs (p0, `0)∈ p−1(x0)⊂ Z. Take a starting pair (p, `)∈ Z over a running point x ∈CP2 \x⊥0 .
Our aim is to construct a holomorphic map which associates to (p, `) another pair (p0, `0). We construct
this π : Z→ p−1(x0) very simply as follows. Consider a starting pair (p, `) and take its line component
`⊂CP2. This line has a unique intersecion p0 := x⊥0 ∩` with the infinitely distant projective line. Then,
given the target space p−1(x0), define the projective line component `0 ⊂ CP2 in the terminating pair
(p0, `0) ∈ p−1(x0) by taking the unique projective line `0 connecting p0 with x0. In short,

π((p, `)) := (p0, `0) where p0 ∈ CP2 satisfies p0 := x⊥0 ∩ ` and
`0 ⊂ CP2 satisfies that `0 connects p0 with x0 in CP2 (4)

(see Figure 2 for a construction of this map in projective geometry).

ux

u
p0

ux0
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�
�
�
�
�
�
�
�
�
��

`

@
@

@
@
@

@
@
@
@

`0

x⊥0

up

x⊥ CP2

Figure 2. Construction of the map π : Z→ CP1 satisfying π((p, `)) = (p0, `0).

It is a classical observation that this map is well-defined on Z and holomorphic; in particular it is the
identity on the target space p−1(x0) i.e., π((p0, `0)) = (p0, `0).

This globally defined map admits a local description which looks very similar to the First example.
Given the target point x0 ∈CP2\x⊥0 ∼=R4, its twistor line can be identified with the infinitely distant line
x⊥0 ⊂CP2 or equivalently, x⊥0 ⊂ Z. Likewise, if x ∈CP2 \x⊥0 ∼=R4 is a nearby point then its twistor line
is x⊥ ⊂ CP2 or equivalently, x⊥ ⊂ Z. In this picture the map (4) can be described simply as follows:
if x ∈ ` ⊂ CP2 is a line then π(`∩ x⊥) = `∩ x⊥0 as ` runs over all possibilities. Pick homogeneous
coordinates [z0 : z1 : z2] on CP2 such that x0 := [1 : 0 : 0] hence x⊥0 = {[0 : v1 : v2]|[v1 : v2] ∈ CP1}.
Likewise, if x= [1 : z1 : z2] is the nearby point then x⊥= {[−z1w1−z2w2 : w1 : w2]|[w1 : w2]∈CP1}. The
affine part of the line ` connecting [1 : z1 : z2] and [0 : v1 : v2] is {[t : v1+(z1−v1)t : v2+(z2−v2)t] |t ∈C}
hence by solving the equation [t : v1+(z1−v1)t : v2+(z2−v2)t] = [−z1w1−z2w2 : w1 : w2] for [w1 : w2]

and upon introducing the projective coordinate u := w1

w2 along x⊥ ∼= CP1 the map (4) takes the shape

π(u) =
(1+ |z1|2)u− z1z2

−z1z2u+(1+ |z2|2)

hence looks like (3) indeed.

Remark. It follows from the description (2) of its holomorphic lines that the twistor space Z of the
flat R4 can be globally holomorphically identified with the total space of the bundle H ⊕H over the
distinguished projective line CP1 parameterized with [z0 : z1] in (2) and the map (3) is nothing but
the projection π : H⊕H → CP1. The point is that this picture on the twistor space continues to hold
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true in the generic case at least locally. Consider a general twistor space Z with its twistor fibration
p : Z → XM. Take x ∈ XM and let N p−1(x) be the normal bundle of the twistor line p−1(x) ⊂ Z. We
know (see the summary of twistor theory in Section 2) that the holomorphy type of the normal bundle
is fixed in advance and is a very special bundle: it is positive hence admits holomorphic sections such
that they parameterize a locally complete family of projective lines Y ⊂ Z which are small holomorphic
deformations of Yx = p−1(x) inside Z (cf. e.g. [30, Sections III.1 and III.2]) including therefore all
nearby real lines as well. Thus there exist small open neighbourhoods Ux ⊂ XM of x and Vx ⊂ N p−1(x)
of the zero section with an injection Ψx : p−1(Ux)→ Vx that is, Ψx maps injectively the twistor fibers
over Ux into the space of holomorphic sections of Vx such that this map is onto an appropriately defined
subspace of real sections. More explicitly, we know that the normal bundle is always isomorphic
to H ⊕H consequently all small holomorphic deformations of a given twistor line within Z can be
parameterized by (a,b,c,d) ∈ C4 ∼= H0(CP1;O(H ⊕H)) such that the twistor lines satisfy a reality
condition implying ad−bc 6= 0 (because the real lines never intersect), exactly like in the First example.

We can return now to the much more general situation set up in Lemma 3.1; motiveted by the examples,
instead of finding conformal rescalings ϕ : XM→ R+ directly, we are going to use Penrose’ non-linear
graviton construction (i.e., twistor theory [47]) to find their holomorphic counterparts π : Z → CP1.
Consider the compact self-dual space (XM,γ) from Lemma 3.1, take its twistor fibration p : Z→ XM
and let p : Z→ XM be its restriction induced by the smooth embedding XM $ XM i.e., Z := Z|XM and
p := p|XM . Then Z is a non-compact complex 3-manifold already obviously possessing all the required
twistor data except the existence of a holomorphic mapping π : Z→ CP1.

Lemma 3.2. Consider the connected, open, oriented, incomplete, self-dual space (XM,γ) as in Lemma
3.1 with its twistor fibration p : Z→XM constructed above. If π1(M) = 1 and M is spin (or equivalently,
having even intersection form) then there exists a holomorphic mapping π : Z→ CP1.

Proof. Let x0 ∈ XM be a fixed point. Our aim is to construct a holomorphic map

π : Z −→ p−1(x0)∼= CP1 (5)

that we carry out by analytic continuation.
First, put π|p−1(x0)

:= Idp−1(x0)
. Secondly, suppose that in x ∈ XM the map is already defined i.e.

there exists π|p−1(x) : p−1(x)→ p−1(x0) which is compatible with the real structure on Z hence is
a holomorphic bijection between the twistor fibers in question or in other words is a holomorphic
bijection of CP1. Consider a sufficiently small open neighbourhood Ux⊂XM of x such that p−1(Ux)⊂ Z
can be holomorphically modeled within the neighbourhood Vx of the zero section of N p−1(x), the
normal bundle of the twistor line p−1(x). Define ρx : p−1(Ux)→ p−1(x) to be the restriction of the
projection π : N p−1(x)→ p−1(x) onto the image of the twistor lines of p−1(Ux) within N p−1(x). That
is, given a point z ∈ p−1(Ux) there exists a unique real line passing through it and ρx(z) ∈ p−1(x)
simply arises by the projection of this line onto the central twistor line p−1(x). This local map is
clearly holomorphic because it stems from holomorphic deformations of p−1(x) inside Z provided by
its locally complete family of lines.2 Moreover ρx is the identity on p−1(x). What we have to still
check that it is compatible with the real structure on Z i.e. for every y ∈Ux the map ρx is a holomorphic

2For a comparison with the general theory [30, Proposition 1.3] we remark here that although the Griffiths obstruction
groups H1(p−1(x);O((π|p−1(x))

∗T p−1(x0)⊗ SkN∗p−1(x))) against the extendibility of π|p−1(x) : p−1(x)→ p−1(x0) to the
kth formal neighbourhoud of p−1(x) ⊂ Z are non-trivial for k = 4, the above construction (or the explicit Second example)
shows that the corresponding obstruction classes ω(πk−1) themselves are nevertheless trivial. This essentially follows from
Kodaira’s integrability condition H1(p−1(x);O(N p−1(x))) = {0}, cf. [30, Theorem 3.1].
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bijection between p−1(y) and p−1(x). Exploiting the isomorphism N p−1(x)∼=H⊕H (see the summary
of twistor theory in Section 2) the map ρx : p−1(Ux)→ p−1(x) can be described by the projection
π : H⊕H→ CP1 therefore, upon introducing the projective coordinate u along p−1(y)∼= CP1

ρx(u) =
{ au+b

cu+d if (a,b,c,d) 6= (0,0,0,0)
u if (a,b,c,d) = (0,0,0,0)

where (a,b,c,d) ∈ H0(CP1;O(H⊕H))∼= C4 are the coefficients of a real line hence satisfy an appro-
priate reality condition. Fortunately whatever this reality condition is, we surely know that ad−bc 6= 0
because real lines never intersect. However this implies that the map u 7→ au+b

cu+d is not constant in u that
is, ρx is indeed a holomorphic bijection between p−1(y) and p−1(x) for all y ∈Ux (such that it is the
identity on p−1(x)) hence ρx is compatible with the real structure on p−1(Ux) as desired.

Therefore let us define the local extension π|p−1(Ux)
: p−1(Ux) → p−1(x0) by the composition

π|p−1(Ux)
:= π|p−1(x) ◦ρx. By assumption π|p−1(x) already possesses all the required properties hence

is compatible with the real structure therefore it is a holomorphic bijection between the twistor lines
p−1(x) and p−1(x0); consequently, taking a projective coordinate v along p−1(x) ∼= CP1, we know
that π|p−1(x) also has the form v 7→ a0v+b0

c0v+d0
with some a0,b0,c0,d0 ∈ C satisfying a0d0− b0c0 6= 0.

Composing the maps above means that we insert v = au+b
cu+d where u is the projective coordinate along

p−1(y)∼= CP1 as before; thus the local extension looks like

π|p−1(Ux)
(u) =

a0
au+b
cu+d +b0

c0
au+b
cu+d +d0

=
(a0a+b0c)u+(a0b+b0d)
(c0a+d0c)u+(c0b+d0d)

.

Since (a0a+b0c)(c0b+d0d)− (a0b+b0d)(c0a+d0c) = (a0d0−b0c0)(ad−bc) 6= 0 it readily follows
that it continues to be compatible with the real structure.

Thirdly, since M is connected, simply connected and spin, Z is connected, simply connected and
p : Z→ XM is trivial. These make sure that π extends over Z in a consistent way. 3

Remark. Note that the reasons for both the local map ρx and the non-local one π|p−1(x) having the same
shape (namely both are fractional linear transformations of CP1) are quite different. Nevertheless it
makes possible to regard π : Z → CP1 as an action of SL(2;C) on the target projective line CP1 via
fractional linear transformations which are in turn SO(3) rotations on S2 regarded as the unit sphere in
the space of anti-self-dual 2-forms provided either by the old or the new metric γ or g, respectively.

It follows that π : Z → CP1 i.e., the map (5) constructed in Lemma 3.2 is compatible with the real
structure τ : Z → Z already fixed by the self-dual structure in Theorem 2.1 therefore twistor theory
provides us with a Ricci-flat (and self-dual) Riemannian metric g on XM. We proceed further and
demonstrate that, unlike (XM,γ), the space (XM,g) is complete.

Lemma 3.3. The four dimensional connected and simply connected, open, oriented, Ricci-flat Rieman-
nian spin manifold (XM,g) is complete.

Proof. Since both γ and this Ricci-flat metric g arise from the same complex structure on the same
twistor space Z we know from twistor theory that these metrics are in fact conformally equivalent. That
is, there exists a smooth non-constant strictly positive function ϕ : XM → R+ such that ϕ−2γ = g. Our
strategy to prove completeness is to follow Gordon [29] i.e., to demonstrate that an appropriate real-
valued function on XM, in our case logϕ−1 : XM→R, is proper (i.e., the preimages of compact subsets
are compact) with bounded gradient in modulus with respect to g implying the completeness.
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Referring to (1) the open space XM arises by deleting one-one projective line from each CP2 factor,
respectively, of the closed space XM. First we observe that ϕ−1 : XM → R+ is uniformly divergent
along these projective lines. Assume that ϕ−1 extends over XM ⊃ XM in a uniform continuous manner
i.e. ϕ

−1 ∈C0(XM) exists. A general principle based on the twistor construction is that the continuous
extendibility of ϕ−1 over U j XM implies the extendibility of π i.e. the holomorphic map (5) over
p−1(U)j Z too in a manner which is compatible with the real structure on p−1(U) i.e. this extension
is a trivialization of the real bundle S(∧−U) (see the summary of twistor theory in Section 2). Therefore
by our assumption the holomorphic map (5) extends over Z as well. However, since CP2 is not spin
XM = M#CP2# . . .#CP2 cannot be spin, too; consequently S(∧−XM) underlying the compact twistor
space Z of (XM,γ) is topologically not trivial hence its globally trivializing map (5) cannot extend from
XM to XM, a contradiction. Assume that ϕ−1 extends over at least one point of XM \XM continuously.
It yet follows that we run into a same type of contradiction. Assume now that ϕ−1 extends over at
least one point of XM \XM in a discontinuous-but-bounded manner. Then we proceed as follows. The
conformal scaling function satisfies with respect to γ the following equations on XM:

∆γϕ−1 + 1
6ϕ−1Scalγ = 0 (vanishing of the scalar curvature of g on XM);

∇2
γϕ− 1

4

(
∆γϕ

)
γ + 1

2ϕ Ric0
γ = 0 (vanishing of the traceless Ricci tensor of g on XM).

(6)

The Ricci tensor Ricγ of γ extends smoothly over XM because it is just the restriction of the Ricci
tensor of the self-dual metric γ on XM. Therefore both its scalar curvature Scalγ and traceless Ricci
part Ric0

γ extend. Thus from the first equation of (6) we can see that ϕ∆γϕ−1 extends smoothly over
XM. Likewise, adding the tracial part to the second equation of (6) we get ϕ−1∇2

γϕ = −1
2Ricγ hence

we conclude that the symmetric tensor field ϕ−1∇2
γϕ extends smoothly over XM so its trace ϕ−1∆γϕ

as well. Expanding ∆γ(ϕϕ−1) = 0 gives (∆γϕ)ϕ−1 + 2 γ(dϕ ,dϕ−1)+ϕ∆γϕ−1 = 0 hence we obtain
the pointwise equality

ϕ
2 ∣∣dϕ

−1∣∣2
γ
=

1
2
(
ϕ∆γϕ

−1 +ϕ
−1

∆γϕ
)

(7)

which demonstrates that ϕ
∣∣dϕ−1

∣∣
γ

extends smoothly over XM, too. If ϕ−1 was extendible as a discon-
tinuous bounded function over a point of XM \XM then its gradient dϕ−1 was divergent in that point;
hence from the extendibility of ϕ|dϕ−1|γ we obtain that ϕ vanishes hence ϕ−1 is unbounded in that
point, a contradiction again. We conclude that ϕ−1 : XM → R+ is uniformly divergent along the whole
complementum XM \XM yielding, on the one hand, that the function logϕ−1 : XM→ R is proper.

As a byproduct the inverse of ϕ−1 is bounded on XM i.e., |ϕ| 5 c1 with a finite constant. We
already know that |ϕ∆γϕ−1|5 c2 and |ϕ−1∆γϕ|5 c3 with other finite constants as well. Now writing
ϕ|dϕ−1|γ = |d(logϕ−1)|γ and carefully noticing that |ξ |g = ϕ|ξ |γ on 1-forms we can use (7) and the
estimates above to come up with

|d(logϕ
−1)|g 5 c1|d(logϕ

−1)|γ 5 c1
(∣∣ϕ∆γϕ

−1|+ |ϕ−1
∆γϕ

∣∣) 1
2 5 c1(c2 + c3)

1
2 <+∞

and conclude, on the other hand, that logϕ−1 : XM→ R has bounded gradient in modulus with respect
to g. Therefore, in light of Gordon’s theorem [29], the Ricci-flat space (XM,g) is complete. 3

We want to finish the construction by ending up with an open space with a single end, hence we want
to remove the extra “non-distinguished” R4’s from XM in its decomposition (1) without destroying
completeness and Ricci flatness.
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Lemma 3.4. Consider the space (XM,g) as in Lemma 3.3. Then the orientation and the complete
Ricci-flat metric g on XM descend to the punctured space M× ⊂M with its inherited smooth structure,
rendering it a connected and simply connected, open, oriented, complete, Ricci-flat Riemannian spin
4-manifold (M×,g).

Proof. It is clear from (1) that M× arises from XM by filling in the “centers” of the finitely many
non-distinguished R4 summands with one-one point, respectively (see Figure 3).

M×XM

Figure 3. Construction of M× out of XM by filling in the extra R4’s.

Given this set-up, our strategy to prove the lemma is as follows: First apply Uhlenbeck’s singularity
removal theorem at each R4 summand to get rid of the corresponding singularity of the Levi–Civita
connection of g—which is certainly an obstacle against the extension of the metric over the “center” of
this R4 summand in the intermediate manifold—and in this way extend the connection to M×. Finally
around each former singular point use a geodesic normal coordinate system adapted to this extended
smooth connection on M× to conclude that the metric g on XM smoothly extends over the singularities,
too. If this procedure works then the result is a smooth complete Ricci-flat metric on M×. However, as
we shall see shortly, the non-existence of a spin structure on the original compact M plays the role of
an (and the only one) obstruction against the feasibility of this procedure.

So let us take a fixed R4 summand in XM = M×#R4# . . .#R4. Since XM locally looks like a
punctured M around this summand i.e., a point p ∈ M removed, we can diffeomorphically model
M×#R4# . . .#R4 around this R4 summand by an open punctured ball in some local modeling R4. More
precisely let p ∈M be a point, p ∈U ⊂M a neighbourhood containing the point and consider a local
coordinate system (U,y1, . . . ,y4) centered at p i.e., satisfying y1(p) = 0, . . . ,y4(p) = 0. Identifying this
local coordinate system with (x1, . . . ,x4) about the origin of the modeling R4 implies that p is mapped
to 0 ∈ R4 having coordinates (x1, . . . ,x4) = (0, . . . ,0) and our model for the vicinity of the given R4

summand in XM then looks like (
B4×

r (0) , x1, . . . ,x4
)

(8)

i.e., a coordinatized open punctured ball B4×
r (0) :=B4

r (0)\{0} about 0∈R4 of (Euclidean) radius r > 0.
(In this picture the “infinity” of the R4 summand corresponds to the the center of the ball.) Consider the
restricted tangent bundle T B4×

r (0) := T XM|B4×
r (0); using the restrictions of the orientation on XM and

the metric g, we can render it a real four-rank SO(4) vector bundle over the punctured ball B4×
r (0). We

claim that T B4×
r (0) in fact can be reduced to a complex two-rank SU(2) ⊂ SO(4) vector bundle over

the annulus. We can see this by exploiting the so far unmentioned feature of our construction namely
that as a “byproduct” the space (XM,g) of Lemma 3.3 carries a compatible hyper-Kähler structure, too.
Since the original compact space (XM,γ) of Lemma 3.1 was oriented and self-dual with both properties
being conformally invariant, (XM,g) is in fact a connected, simply connected, oriented, complete self-
dual and Ricci-flat space or in other words: A hyper-Kähler 4-manifold [3, Chapter 13]. This implies
among other things that the holonomy group of the Levi–Civita connection of g hence the structure
group of T XM reduces to SU(2) ⊂ SO(4). Consider the Levi–Civita connection of (XM,g). We can
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therefore suppose that its restriction to T B4×
r (0) ⊂ T XM is an SU(2) connection ∇× suffering from a

singularity at the origin. We know moreover that being ∇× self-dual, it solves the SU(2) Yang–Mills
equations. Moreover ∇× has finite energy over B4×

r (0). This is because g is Ricci-flat and self-dual
so the curvature of ∇× coincides with the self-dual Weyl component W+

g of g only; however being
conformally invariant, W+

g =W+
γ =W+

γ
|XM that is, the curvature tensor of ∇× is just the restriction of

the Weyl tensor of the original smooth metric γ on XM. Consequently it is a smooth bounded tensor
field on B4×

r (0) implying finite local energy. This also yields that, if 0 < r is sufficiently small, ∇×

admits an L2
1 gauge along B4×

r (0) as well. Therefore, by Uhlenbeck’s singularity removal theorem
(see Theorem 2.2) there exists an L2

2 gauge transformation on T B4×
r (0) such that the gauge transformed

connection extends across the singularity to a smooth SU(2) connection ∇ on the trivial bundle T B4
r (0).

Consequently, switching to the global picture, the singularity of the Levi–Civita connection around the
fixed R4 summand of XM can be removed hence the corresponding R4 summand can be deleted from
(1) according to our original plan. Repeating this procedure around all the finitely many R4 summands
of XM we finally come up with a smooth SU(2) connection over M×.

However there is an important topological subtlety here. For notational simplicity suppose that
XM = M×#R4 i.e., possesses one non-distinguished R4 summand only. Then the singularity removal
procedure carried out above convinces us that the original singular Levi–Civita connection defined on
the tangent bundle T (M×#R4), regarded as an SU(2) bundle, indeed extends to a non-singular SU(2)
connection on some SU(2) bundle E× over M× i.e., it indeed smoothly exists somewhere which is
however not necessarily the tangent bundle of M×. For instance, as we emphasized in the discussion
after Theorem 2.2, the singularity-removing-gauge-transformation is not continuous in general hence
the original global vector bundle carrying the singular connection may change topology during the
singularity removal procedure. However, we know the following two things. On the one hand com-
plex two-rank SU(2) vector bundles over M×, like the E× above carrying the non-singular connection,
are classified by various characteristic classes taking values in the groups H i(M×;πi−1(SU(2)) with
i = 1, . . . ,4. Knowing the first three homotopy groups of SU(2) and taking into account the non-
compactness of M× these cohomology groups are all trivial consequently we know that E× is necessar-
ily isomorphic to the trivial bundle over M×. On the other hand, real rank-four SO(4) vector bundles
over M×, like the tangent bundle T M× carrying an orientation and a Riemann metric, are classified by
characteristic classes taking values in H i(M×;πi−1(SO(4)). Again recalling the first three homotopy
groups of the non-simply connected group SO(4) and still keeping in mind that M× is non-compact,
the only potentially non-trivial group here is H2(M×;Z2) demonstrating that vector bundles of this type
over M× are classified by a single element and this is nothing but their second Stiefel–Whitney class.
Consequently if M is spin or equivalently w2(T M) = 0 ∈ H2(M;Z2) then by the injection M× ⊂ M
we find w2(T M×) = 0 ∈ H2(M×;Z2) as well showing that T M× is isomorphic to the trivial bundle,
too. Therefore we conclude that whenever M is spin, we can identify the vector bundle E× carrying the
non-singular SU(2) connection over M× with its tangent bundle T M×.

Having understood this, we can finish the proof by extending the metric itself through the singu-
larities. Fortunately this is simple. Consider the restricted connection ∇ about one singular point p.
This is now an overall (i.e., including the singular point) smooth connection. Therefore there exists a
δ (p) > 0 such that we can suppose without loss of generality that the coordinate system (8) we take
about this singular point with 0 < r < δ (p) is a geodesic normal coordinate system with respect to ∇.
This implies that the Christoffel symbols ∇∂i∂ j = ∑

k
Γk

i j∂k all vanish in the center i.e., Γk
i j(0, . . . ,0) = 0
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for all i, j,k = 1, . . .4. Then the well-known compatibility equations

Γ
k
i j =

1
2

4

∑
l=1

(
∂igl j +∂ jgli−∂lgi j

)
glk

imply in a well-known way that in this gauge g extends over the origin, too, such that gi j(0, . . . ,0) = δi j
and ∂kgi j(0, . . . ,0) = 0 for all i, j,k = 1, . . . ,4. The further differentiablity i.e., the smoothness of g at
the origin follows from the smoothness of the Christoffel symbols there. That g is Ricci-flat is a trivial
consequence of the same property of the original metric. 3

4 Construction in the exotic setting
In this section we shall sink into the bottomless sea of four dimensionality, called Exotica, and repeat
the procedure performed in Section 3. That is, we shall construct solutions of the vacuum Einstein
equation on the smooth 4-manifold X× which is only homeomorphic but not diffeomorphic to the
punctured manifold M× appeared in Section 3. This construction basically goes along the lines of that
presented in Section 3 with minor technical differences. Consequently, those steps which require new
tools will be worked out in detail while those which are basically the same as the corresponding ones
in Section 3 will be sketched only.

To begin with, we compose Theorems 2.1, 2.3 and 2.4 together as follows.

Lemma 4.1. Out of any connected, closed (i.e., compact without boundary) oriented smooth 4-manifold
M one can construct a connected, open (i.e., non-compact without boundary) oriented smooth Rieman-
nian 4-manifold (XM,γ) which is self-dual but incomplete in general.

Proof. Pick any connected, oriented, closed, smooth 4-manifold M. Referring to Theorem 2.1 let
k := max(1,kM) ∈ N be a positive integer, put

XM := M#CP2# . . .#CP2︸ ︷︷ ︸
k

and let γ be a self-dual metric on it. Then (XM,γ) is a compact self-dual manifold. Pick one CP2 factor
within XM and denote by S2 := CP2 \R4 the complement of the largest exotic R4-space R4 ⊂ CP2,
considered as an only “continously embedded projective line” in that factor, as in the discussion after
Theorem 2.3 (we can suppose that the closed subspace S2 ⊂ CP2 avoids the attaching point of CP2 to
M). Let K ⊂ R4 be the connected compact subset as in part (ii) of Theorem 2.3 and put

XM := M#(CP2 \CP1)# . . .#(CP2 \CP1)︸ ︷︷ ︸
k−1

#K(CP2 \S2)∼= M#R4# . . .#R4︸ ︷︷ ︸
k−1

#KR4 ∼= X×#R4# . . .#R4︸ ︷︷ ︸
k−1

(9)
where the operation #K means that the attaching point y0 ∈ R4 used to glue R4 with M#R4# . . .#R4

satisfies y0 ∈ K ⊂ R4 and X× := M#KR4 is a smooth manifold homeomorphic but not diffeomorphic
to the puncturation M× of the original manifold (see Theorem 2.4). The result is a connected, open
4-manifold XM (see Figure 4).
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M XM

Figure 4. Construction of XM out of M in the exotic setting. The gray zig-zag represents a
“creased end” diffeomorphic to the complement of a connected compact subset K in the exotic R4.

From the proper smooth embedding XM $ XM there exists a restricted self-dual Riemannian metric
γ := γ|XM on XM which is however in general non-complete. 3

In the case of our situation set up in Lemma 4.1 twistor theory works as follows. Consider the compact
self-dual space (XM,γ) from Lemma 4.1, take its twistor fibration p : Z→ XM and let p : Z→ XM be
its restriction induced by the smooth embedding XM $ XM i.e., Z := Z|XM and p := p|XM . Then Z is a
non-compact complex 3-manifold already obviously possessing all the required twistor data except the
existence of a holomorphic mapping π : Z→ CP1.

Lemma 4.2. Consider the connected, open, oriented, incomplete, self-dual space (XM,γ) as in Lemma
4.1 with its twistor fibration p : Z→XM constructed above. If π1(M) = 1 and M is spin (or equivalently,
having even intersection form) then there exists a holomorphic mapping π : Z→ CP1.

Proof. Let x0 ∈ XM be an arbitrary fixed point of XM in (9). Our aim is to construct a holomorphic map

π : Z −→ p−1(x0)∼= CP1

that we carry out exactly the same way as in the proof of Lemma 3.2 hence we do not repeat it here. 3

It also follows that π : Z → CP1 i.e., the map constructed in Lemma 4.2 is compatible with the real
structure τ : Z → Z already fixed by the self-dual structure in Theorem 2.1 therefore twistor theory
provides us with a Ricci-flat (and self-dual) Riemannian metric g on XM. We proceed further and
demonstrate that, unlike (XM,γ), the space (XM,g) is complete.

Lemma 4.3. The four dimensional connected and simply connected, open, oriented, Ricci-flat Rieman-
nian spin manifold (XM,g) is complete.

Proof. The metrics γ and g originate from the same twistor space again hence they are conformally
equivalent consequently there exists a smooth function ψ : XM→R+ satisfying g = ψ−2γ . Taking into
account that the steps in the proof of Lemma 3.3 have been insensitive for the particular construction
of the complementum XM \XM we can simply repeat them here. Hence we find again, on the one
hand, that ψ−1 blows up uniformly along the whole XM \XM this time consisting of the disjoint union
of “ordinary” i.e. holomorphically embedded projective lines CP1 = CP2 \R4 and the distinguished
“continuously embedded projective line” S2 =CP2 \R4 in the distinguished factor in (9); consequently
logψ−1 is proper. Moreover, on the other hand, recalling the steps of Lemma 3.3 we see that logψ−1

has bounded gradient in modulus with respect to g, too. Consequently (XM,g) is complete as in the
proof of Lemma 3.3 hence the details are omitted. 3

Remark. For clarity we remark that comparing the proofs of Lemmata 3.3 and 4.3 one cannot con-
clude that the resulting complete spaces (XM,g) in the non-exotic and exotic situations are conformally
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equivalent. This is because (see the discussion after Theorem 2.3) the locations of XM in the two cases
within their common closure XM are different such that even the former cannot be mapped into the
latter by any diffeomorphism of XM. Consequently taking the pointwise product of the scaling function
ϕ−2 in Lemma 3.3 with the inverse one ψ2 from Lemma 4.3 to obtain a conformal rescaling between
the corresponding metrics makes no sense.

Finally we cut down the standard R4’s from XM to obtain X× as in Lemma 3.4.

Lemma 4.4. Consider the space (XM,g) as in Lemma 4.3. Then the orientation and the complete
Ricci-flat metric g on XM descend to the punctured space X× (which is homeomorphic but not diffeo-
morphic to the corresponding space M× of Lemma 3.4) with its inherited smooth structure, rendering
it a connected and simply connected, open, oriented, complete, Ricci-flat Riemannian spin 4-manifold
(X×,g).

Proof. Taking into account that filling in the standard R4’s in the decomposition (9) of XM is a com-
pletely local procedure (see Figure 5)

X×XM

Figure 5. Construction of X× out of XM by filling in the extra R4’s.

the proof of this lemma is verbatim the same as the proof of Lemma 3.4 hence is omitted. 3

Proof of Theorems 1.1 or 1.2. Collecting all the ruslts of Sections 3 and 4 together the desired statements
are obtained. 3

Remark. Before proceeding further let us note that Theorems 1.1 or 1.2 correspond to the case when the
creased end of X× is diffeomorphic to the largest member R4 =R4

+∞ in the radial family of Theorem 2.3
i.e. X× = M#R4

+∞. It would be interesting to understand whether or not a similar construction works
for the intermediate members of the family i.e. for X×t = M#R4

t .

5 Lorentzian solutions
In the previous sections we have produced an immense class of Ricci flat Riemannian spaces (X×,g)
which are non-compact but complete. In this section we convert all of them i.e. the spaces in Theo-
rem 1.1 or equivalently Theorem 1.2 into Ricci-flat Lorentzian ones as formulated in Theorem 1.3 by
(essentially verbatim) recalling [19, Lemma 4.2]. Conversion is in principle possible because all the
underlying manifolds X× are non-compact hence there is no topological obstruction against Lorentzian
structure.

Proof of Theorem 1.3. By virtue of its global triviality (cf. Lemma 3.4 or 4.4), T X× admits a nowhere
vanishing smooth section yielding a splitting T X× = L⊕L⊥ into a real line bundle L ⊂ T X× spanned
the section and its g-orthogonal complementum subbundle L⊥ ⊂ T X×. Take the complexification
TCX× := T X×⊗RC of the real tangent bundle as well as the complex bilinear extension of the Rie-
mannian Ricci-flat metric g found on T X× to a Ricci-flat metric gC on TCX×. This means that if vC is
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a complexified tangent vector then both vC 7→ gC(vC , · ) := g(vC , · ) and vC 7→ gC( · , vC) := g( · , vC)
are declared to be C-linear and of course RicgC = Ricg = 0. There is an induced splitting

TCX× = L⊕L⊥⊕
√
−1 L⊕

√
−1 L⊥ (10)

over R of the complexification i.e., if TCX× is considered as a real rank-8 bundle over X×. Define
a metric on the real rank-4 sub-bundle L⊥⊕

√
−1 L ⊂ TCX× by taking the restriction gC|L⊥⊕√−1 L.

It readily follows from the orthogonality and reality of the splitting that this is a non-degenerate real-
valued R-bilinear form of Lorentzian type on this real sub-bundle. To see this, we simply have to
observe that taking real vector fields v1,v2 : X× → L and w1,w2 : X× → L⊥ we can exploit the C-
bilinearity of gC to write

gC|L⊥⊕√−1 L(
√
−1 v1,

√
−1 v1) = gC(

√
−1 v1,

√
−1 v1) =−gC(v1,v1) =−g(v1,v1)

and

gC|L⊥⊕√−1 L(
√
−1 v1,w1) = gC(

√
−1 v1,w1) =

√
−1 gC(v1,w1) =

√
−1g(v1,w1) = 0

and finally
gC|L⊥⊕√−1 L(w1,w2) = gC(w1,w2) = g(w1,w2) .

Consider the R-linear bundle isomorphism WL : TCX× → TCX× of the complexified tangent bundle
defined by, with respect to the splitting (10), as

WL(v1,w1,
√
−1 v2,

√
−1 w2) := (v2,w1,

√
−1 v1,

√
−1 w2) .

Obviously W 2
L = IdTCX× or more precisely WL is a real reflection with respect to gC making the diagram

TCX×

��

WL // TCX×

��
X×

IdX× // X×

commutative. In particular it maps the real tangent bundle T X× = L⊕L⊥ ⊂ TCX× onto the real bundle
L⊥⊕

√
−1L⊂ TCX× and vice versa. Consequently with arbitrary two tangent vectors v,w : X×→ T X×

gL(v,w) := gC(WLv , WLw)

satisfies gL(v,w) = gC|L⊥⊕√−1 L(WLv , WLw) i.e., obtain a non-degenerate real-valued R-bilinear form
of Lorentzian type hence a smooth Lorentzian metric gL on the original real tangent bundle T X×.

Concerning the Ricci tensor of gL, the Levi–Civita connections ∇L of gL and ∇C of gC satisfy

gL(∇
L
uv,w)+gL(v,∇L

uw) = dgL(v,w)u
= dgC(WLv,WLw)u
= gC(∇C

u (WLv) , WLw)+gC(WLv , ∇
C
u (WLw))

= gC(W 2
L ∇

C
u WLv , WLw)+gC(WLv , W 2

L ∇
C
u WLw)

= gL((WL∇
C
u WL)v , w)+gL(v , (WL∇

C
u WL)w)

yielding ∇L =WL∇CWL (this is an R-linear operator). Consequently the curvature RiemgL of gL is

RiemgL(v,w)u =
[
∇

L
v ,∇

L
w
]

u−∇
L
[v,w]u =WL(RiemgC(v,w)WLu) .
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Let {e0,e1,e2,e3} be a real orthonormal frame for gL at TpX× satisfying gL(e0,e0) = −1 and +1 for
the rest; then WLe0 =

√
−1 e0 and WLe j = e j for j = 1,2,3 together with the definition of gL imply that

gL(RiemgL(e0,v)w,e0) = gC (WL(RiemgL(e0,v)w),WLe0) = gC
(

RiemgC(e0,v)WLw ,
√
−1e0

)
and likewise

gL(RiemgL(e j,v)w , e j) = gC(WL(RiemgL(e j,v)w),WLe j) = gC(RiemgC
(
e j , v

)
WLw ,e j) .

Using an orthonormal frame { f1, . . . , fm} for a metric h of any signature, its Ricci tensor looks like

Rich(v,w) =
m
∑

k=1
h( fk, fk)h(Riemh( fk,v)w , fk); hence

RicgL(v,w)= gL(e0,e0)gL(RiemgL(e0,v)w,e0)+
3

∑
j=1

gL(e j,e j)gL(RiemgL(e j,v)w,e j)

= gC(
√
−1e0,

√
−1e0)gC(RiemgC(e0,v)WLw,

√
−1e0)+

3

∑
j=1

gC(e j,e j)gC(RiemgC(e j,v)WLw,e j)

= (−
√
−1 −1)gC(e0,e0)gC(RiemgC(e0,v)WLw,e0)+RicgC(v , WLw)

= (−1+
√
−1)gL(RiemgL(e0,v)w,e0)

and we also used {e0,e1,e2,e3} as a complex orthonormal basis for gC on TC
p X× to write

3

∑
j=0

gC(e j,e j)gC(RiemgC(e j,v)WLw,e j) = RicgC(v,WLw) = 0 .

Being the left hand side in RicgL(v,w) = (−1+
√
−1)gL(RiemgL(e0,v)w,e0) real, the right hand side

must be real as well for all v,w ∈ TpX× which is possible if and only if both sides vanish. This demon-
strates that gL is indeed Ricci-flat. 3

6 Physical interpretation
In this closing section we discuss the physical interpretation of the Lorentzian Ricci-flat geometries
found in Theorem 1.3. We believe that an interpretation is necessary because there are many known
physically irrelevant solutions of the vacuum Einstein equation and our solutions as presented in The-
orem 1.3 are admittedly very implicit and transcendental hence their physical significance, if any, is
unclear yet. The offered interpretation fits well into the context of the celebrated strong cosmic cen-
sorship conjecture in its usual broad formulation (SCCC for short) which is a hot topic recently (far
from being complete cf. [4, 5, 10, 12, 13, 18, 19, 23, 34, 41, 45]; for historical accounts see [7, 37, 48])
and the so far hypothetical topology changing phenomena (again far from being complete, cf. e.g.
[15, 24, 35]).

The current situation of the SCCC can perhaps be best summarized as a puzzling dichotomy: al-
though there are some signs or hints for its (in)validity in physically relevant situations (like various
black holes in asymptotically flat or de Sitter space-times filled with vacuum or various matter fields,
etc. [4, 5, 10, 12, 13, 23, 34, 41, 45]), these are still not sharp enough to decide the status of the SCCC
in these important cases. On the other hand there exists an superabundance of “exotic” smooth solu-
tions in which the SCCC clearly fails [18, 19] (namely the ones exhibited in Theorem 1.3) however



Solvability of the vacuum Einstein equation in four dimensions 22

the physical meaning of these quite purely mathematical solutions is not clear yet. The reason for
this latter issue is that, although being smooth solutions of the vacuum Einstein equation hence appar-
ently relevant, the SCCC violating properties of these “exotic” solutions rest neither on some physical
phenomenon nor on standard analytico-geometric properties of Lorentzian metrics; but rather based on
subtle novel differentio-topological features (often called exotica) of four dimensional manifolds which
have gradually been recognized in the underlying mathematical model of physical space-times from the
1980’s onwards (cf. [19, Introduction]). Despite that no a priori principle has been introduced so far to
exclude these curious and apparently fundamental mathematical discoveries from the game, they have
not found their right places in theoretical physics yet [1].

The aim of this section is an effort to fill in this gap by offering a plausible and simple physical
interpretation of the new SCCC violating solutions [18, 19] (i.e. the spaces exhibited in Theorem 1.3).
As an interesting observation it will turn out that, meanwhile the aforementioned classical situations in
which SCCC breakdown has been examined belong to the well known static or stationary regime of
general relativity, the new SCCC violating solutions are related with the yet unexplored deep dynamical
regime of general relativity describing spatial topology changes as will be explained shortly. We also
find that this dynamics appears as a cosmologial redshift for late time internal observers within these
space-times. Therefore, quite unsurprisingly, one is tempted to say that as one moves from the static
towards the dynamical regime, SCCC violating phenomena become more and more relevant in general
relativity.

Take any connected, simply connected, closed spin 4-manifold M and form the connected sum
X× := M#R4 as before (see Figure 5). It is easy to see (cf. the summary of the exotic stuff in Section 2)
that X× is homeomorphic to the punctured space M× = M \{point} however cannot be diffeomorphic
to it (with its usual inherited smooth structure from the smooth embedding M× ⊂ M) since M× is
diffeomorphic to M#R4 meanwhile X× by construction is diffeomorphic to M#R4 hence the ends of the
two open spaces, although homeomorphic, are not diffeomorphic. Actually, from a general viewpoint,
the appearance of non-compact 4-manifolds carrying smooth structures like X× i.e. having a “creased
end” is much more typical. Theorem 1.3 then says that X× always carries a Ricci-flat Lorentzian metric
gL. Having X× a creased end implies that it surely cannot be written as a smooth product Σ×R where
Σ is a 3-manifold and R is the real line (with their unique smooth structures); however the existence of
such a smooth splitting is a necessary condition of global hyperbolicity [2]. Consequently we arrive at
a sort of heavy breakdown of the SCCC (in its usual broad formulation, cf. e.g. [18, 19]), namely

SCCC. The smooth Ricci-flat Lorentzian 4-manifold (X×,gL) in Theorem 1.3 is not globally hyper-
bolic and no (sufficiently large in an appropriate topological sense) perturbation of it can be globally
hyperbolic.

Furthermore, Theorem 1.1 says that X× carries a complete Ricci-flat Riemannian metric g, too. As a
by-product of the construction we have seen that fixing an appropriate orientation on X× the metric g
is self-dual, too. However a simply-connected, complete Riemannian 4-manifold which is both Ricci-
flat and self-dual is in fact, as formulated in Theorem 1.2, hyper-Kähler (cf. e.g. [3, Chapter 13]).
Physically speaking the Riemannian 4-manifolds (X×,g) exhibited in Theorem 1.1 or equiavlently, in
Theorem 1.2 are therefore examples of gravitational instantons. Consequently, even if these Rieman-
nian (or Euclidean) vacuum spaces might not play any role in classical general relativity, they are not
negligable in any quantum theory perhaps lurking behind classical general relativity.

After these introductory or general remarks let us move towards a suggested physical interpretation
of the SCCC breaking but otherwise regular geometry (X×,gL). The conversion procedure in Theorem
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1.3 rests on a nowhere-vanishing vector field

v ∈C∞(X×;T X× \{0}) (11)

along X× whose choice was otherwise arbitrary. Therefore, taking into account the global triviality of
the tangent bundle T X× (cf. Lemmata 3.4 and 4.4), we have a great freedom in specifying it what we
now exploit as follows. Consider the original simply connected and closed M used in Theorem 1.1.
Simply connectedness implies the vanishing of the first de Rham cohomology of M therefore if we
put any Riemannian metric onto M and consider the corresponding Laplacian on 1-forms, its kernel
is trivial. The Hodge decomposition theorem then says that any 1-form ξ on M uniquely splits as
ξ = d f +d∗η where f is a function and η a 2-form on M. The corresponding dual decomposition of a
smooth vector field v on M therefore looks like v = grad f +divT where T is a (2,0)-type tensor field.

Motivated by this, consider now the space X× of Theorem 1.3 and recall that it is homeomorphic to
M× consequently has vanishing first de Rham cohomology, too. Therefore, as a first and naive choice,
we set the nowhere vanishing vector field (11) used to construct the Ricci-flat Lorentzian metric gL on
X× out of the Ricci-flat Riemannian one g to be of the form

v := grad f (12)

where f : X×→ (−∞,0] is a Morse function (to be defined shortly) on X× such that f−1(−∞) corre-
sponds to the creased end of X× while f−1(t) ⊂ X× are compact level sets for all −∞ < t 5 0 and in
particular the point f−1(0) is the “top” of X× (see Figure 6).

f : −−−−→ (−∞,0]X×

Figure 6. The manifold X× with a zig-zag representing its creased end
and a Morse function f : X×→ (−∞,0] on it.

Moreover grad f in (12) is defined by d f = g(grad f , · ) to be the dual vector field of the 1-form d f
with respect to the original Riemannian metric g on X×. If the choice in (12) is possible then we gain
a very nice picture on the vacuum space-time (X×,gL). Namely, grad f : X×→ L ⊂ L⊕L⊥ = T X× is
a vector field such that for a generic t ∈ (−∞,0] it does not vanish and the level set f−1(t)⊂ X× is a 3
dimensional closed (i.e., compact without boundary) submanifold with T f−1(t)= L⊥⊂ L⊕L⊥= T X×.
Hence with respect to gL we find that grad f is a timelike and by definition future-directed vector field
gL-orthogonal for the level sets which are spacelike. In other words: The vector field v in (11) is an
infinitesimal observer in the space-time (X×,gL). If v has the form (12) then v can be identified with a
global classical observer in the sense that the level value t ∈ (−∞,0] corresponds to its global classical
proper time as moves along its future directed own timelike curves (i.e., the integral curves of v= grad f )
and the level sets f−1(t)⊂ X× correspond to its global classical spacelike submanifolds. However this
picture is too naive because f may attain critical points i.e., p ∈ X× where grad f (p) = 0 as we know
from Morse theory. Hence the nowhere-vanishing vector field (11) cannot globally look like (12).
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A rapid course on Morse theory. The following things are well known [28, 44] but we summarize
them here for completeness and convenience. Let N be a smooth n-manifold. The point p ∈ N is a
critical point of a smooth function f : N→ R iff in a local coordinate system (Up,x1, . . . ,xn) centered
at p all the partial derivatives vanish there i.e., ∂i f (p) = 0 for all i = 1, . . . ,n and it is non-degenerate
iff the matrix (∂ 2

i j f (p))i, j=1,...,n is not singular. Moreover c ∈ R is a critical value iff the level set
f−1(c) ⊂ N contains a critical point. The smooth function f : N → R is a Morse function along N iff
it admits only non-degenerate critical points such that each critical value level set contains at most one
critical point. (Being non-degenerate already implies that the critical points are isolated [44, Corollary
2.3]). We shall also assume below that the level set f−1(c)⊂ N is compact as well, for all c ∈ R.

We know the following things. If c ∈ R is non-critical then f−1(c) ⊂ N is a smooth n− 1 dimen-
sional submanifold. If c ∈ R critical with a single critical point p ∈ f−1(c)⊂ N then (cf. [44, Lemma
2.2]) there exists a local coordinate system (Up,y1, . . . ,yn) about p i.e., y1(p) = · · · = yn(p) = 0, in
which

f |Up(y1, . . . ,yn) = f (0, . . . ,0)−
k

∑
i=1

y2
i +

n

∑
i=k+1

y2
i

and the number 05 k 5 n is called the index of the critical point. Therefore a critical point of index k = 0
is a local minimum while with index k = n is a local maximum of f . Take c ∈ R, ε > 0 and suppose
that [c− ε,c+ ε] ⊂ R consists of non-critical values only. Then (cf. [44, Theorem 3.1]) f−1(c− ε)
and f−1(c+ ε) are diffeomorphic. If the only critical value in [c− ε,c+ ε] is c and its unique critical
point p ∈ f−1(c) is of index k then (cf. [44, Theorem 3.2]) f−1(c+ ε) is obtained from f−1(c− ε) by
glueing to the boundary of f−1((−∞,c− ε]) a closed n-ball Bn in the form of a k-handle Bk×Bn−k.
More precisely take an embedding ϕk : Sk−1×Bn−k→ f−1(c− ε) and glue Bn to f−1((−∞,c− ε]) by
identifying

Sk−1×Bn−k j ∂ (Bk×Bn−k) = (Sk−1×Bn−k)∪ (Bk×Sn−k−1)

with the image ϕk(Sk−1×Bn−k)j ∂
(

f−1((−∞,c− ε])
)
= f−1(c− ε). Then after “smoothing off the

corners” we obtain an n dimensional manifold-with-boundary f−1((−∞,c− ε])∪ϕk Bn and f−1(c+ ε)
is diffeomorphic to ∂

(
f−1((−∞,c− ε])∪ϕk Bn). For instance if k = 0 then Bn is glued along S−1×Bn

where S−1 = /0 i.e., it is not glued hence this critical point is a local minimum; while if k = n then Bn is
attached along Sn−1×B0 where B0 is a point i.e., it is attached along its full boundary Sn−1 hence this
is a local maximum of f . Note that replacing the bottom-up function f with the top-down function − f
critical points with index k and n− k interchange.

Critical points necessarily occur. If N is compact then a fundamental result of Morse theory (cf.
[44, Theorem 5.2]) states that if mk(N) denotes the number of critical points of index k and bk(N) the
kth Betti number of N then bk(N) 5 mk(N) < +∞. If N is not compact then in general no such lower
bounds exist but some mk(N)’s can be even infinite. For further details cf. [28, Chapter 4] or [44].

Returning to our problem, we therefore correct (12) as follows. Although critical points of f are
unavoidable, they are at least isolated i.e., for all p,q ∈ X× pairs of critical points there exist small
surrounding open neighbourhoods Up,Uq ⊂ X× such that Up∩Uq = /0. Then taking the union

C f :=
⋃

p is a critical point of f
Up

which is therefore disjoint and supposing that this set is sharply concentrated around the critical points
of f in X×, let us correct (12) to

v := grad f +w
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where w is a smooth vector field (of the form w = divT ) on X× such that w(p) 6= 0 in the critical point
p but suppw⊂C f i.e., w vanishes outside of C f ⊂ X×. Fortunately this changes our physical picture on
(X×,gL) only locally (i.e. close to a critical point only). More precisely, the classical observer picture
of v breaks down only in the vicinity of critical points of its Morse function part. Therefore from now
on we suppose: if v = grad f +w is a non-vanishing vector field on X× then the infinitesimal observer
provided by v in the original space-time (X×,gL) gives rise to a global classical observer in the sense
above at least on the open domain

(X× \C f , gL|X×\C f
)$ (X×,gL) (13)

because v = grad f along this restriction as before.
Let us ask ourselves now about the “experiences” of this partial global classical observer, con-

structed from a Morse function, as it moves in (X×,gL). That is, consider a Morse function f on X× as
above (see Figure 6) with an associated global classical observer on the restricted domain X×\C f . This
observer has a global proper time t ∈ (−∞,0] measured by f with the infinite past t = −∞ being the
creased end of X× and also has corresponding global spacelike Σt := f−1(t)⊂ X× \C f for appropriate
t’s which are closed 3-manifolds. First, fix−∞ < K < 0 such that ΣK is a submanifold and consider the
compact part f−1([K,0])$ X×. As the observer moves forwards in time i.e., from t = K to t = 0 along
the integral curves of grad f then only finitely many critical points occur. As we have seen, around
these points the spacelike Σt’s change topology by picking up a k-handle according to the index of the
critical point.

Now consider the much more interesting non-compact f−1((−∞,K])⊂ X× regime, the downward
“neck” part in Figure 6. If K < 0 is sufficiently small (we mean |K| > 0 is sufficiently large) we can
suppose that f−1((−∞,K]) is fully contained in the exotic but topologically trivial summand R4 of
X× in its decomposition X× = M#R4. Therefore if −∞ < t 5 K then Σt is fully contained in the R4

summand. We can without loss of generality suppose that ΣK surrounds the attaching region of M and
R4 hence ΣK is diffeomorphic to S3. Now take an observer in (X×,gL) moving backwards in time along
the integral curves of grad f i.e. from t = K downwards t =−∞. A generic value of t is not critical for
f consequently the corresponding spacelike submanifold Σt exists. Consider a fixed time −∞ < t0 < K
which is a critical value of f . How the corresponding transition between the Σt’s then looks like? As we
have seen, in this moment always a single 4-ball B4, attached through its boundary S3 in various ways
to Σt depending on the index k of the critical point, is going to be removed from the latter space-time
portion f−1([t0,K]). Therefore, as we move backwards in time provided by f (or move forwards in
time provided by − f ) and pass through the moment t0 the space Σt0+ε undergoes one of the following
topological transitions:

∗ If k = 1 then at t0 an S3, attached along two disjoint B3’s to Σt0+ε , is annihilated (or equivalently,
attached along a thickened S2, is created);

∗ If k = 2 then at t0 an S3, attached along a thickened knot to Σt0+ε , is annihilated (or equivalently,
attached along a thickened knot, is created);

∗ If k = 3 then at t0 an S3, attached along a thickened S2 to Σt0+ε , is annihilated (or equivalently,
attached along two disjoint B3’s, is created)

and in this way the latter space Σt0+ε evolves into to the earlier Σt0−ε as we move backwards in time.
Strictly mathematically speaking this k-handle attachment is to be performed “instantaneosly” some-
where along the singular level surface Σt0 carrying a unique critical point p at the moment t0; however
from a physical viewpoint we can rather suppose that it occurs within the “non-classical” (with respect
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to the observer provided by grad f ) region Σt ∩Up ⊂ C f at some unspecified time t ∈ (t0− ε, t0 + ε)
such that Σt0±ε ∩Up are still not empty (see Figure 7). Beside the f Morse function picture, we have
formulated all processes in the dual picture of the reversed Morse function − f as well in order to gain
full symmetry in the formulation. Moreover we note that applying diffeomorphisms on X× (or equiva-
lently, modifying f ) we can assume that along f−1((−∞,K]) with K < 0 the k = 0,4 handle attachment
steps corresponding to local minima and maxima do not occur.

Σt0−ε ∩Up

Σt0−ε

Σt0 ∩Up

p Σt0

Σt0+ε ∩Up

Σt0+ε

Figure 7. Topology change about the critical point p ∈ Σt0 ∩Up ⊂ X× about the moment t0 ∈ (−∞,0].

Taking −∞← t i.e., as moving backwards in time till the creased end of X× in Figure 6, in this
process the collection {Σt}−∞<t5K of spacelike submanifolds looks like an evolution (in reversed time)
from ΣK = S3 into a three dimensional “boiling foam” limit Σ−∞ or something like that. That is, these
spacelike submanifolds unboundedly continue to switch their topology; or in other words the spatial
oscillation between these states never stops and it is reasonable to expect that all closed orientable 3-
manifolds occur as −∞← t. Indeed, as we noted in the Introduction, large exotic R4’s always require
countably infinitely many handles in their handle decomposition therefore moving backwards in time
the Σt’s permanently continue changing their topological type. Moreover soon or later Σt very likely
can be arbitrary since the k = 2 processes above are nothing but surgeries along knots and all connected,
closed, orientable 3-manifolds arise this way from S3 = ΣK by the Lickorish–Wallace theorem [40, 55].
This “boiling foam” picture therefore seems to be very weird and dynamical and the sole “driving
force” behind this dynamics is the non-standard smooth structure along the end of X×. (Exactly the
same thing is responsible for the role of these spaces in SCCC, too.) The existence of topologically
different Cauchy surfaces in R4 is already known to physicists, too [46].

All the things have described up to this point might seem as mere mathematical nonsense. How-
ever they get even physically interesting if we recognize that this vivid spatial topology oscillation in
(X×,gL) appears as a cosmological redshift phenomenon to our observer moving in (13), as it looks
back to the early creased end of X× at late times. Let E ∈ X× \C f be a space-time event with a
normalized future-directed timelike vector nE where a photon is emitted; in the geometrical optics ap-
proximation this photon travels along a future-directed null geodesic γ in (X×,gL) till it is received in
a later R ∈ X× \C f with corresponding receiver nR. Taking any affine parameterization (i.e., ∇L

γ ′γ
′ = 0)

the emitted frequency measured by nE is ωE = −gL(γ
′
E ,nE) while ωR = −gL(γ

′
R,nR) is the frequency

measured by the receiver. Then we define the redshift factor z in the standard way by the frequency
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ratio

1+ z =
ωE

ωR
=

gL(γ
′
E ,nE)

gL(γ ′R,nR)

and say that the photon is redshifted along γ if z > 0. We adapt this general framework at least
qualitatively to our setup as follows. Assume that the observer in the above process is given by
n = grad f

|grad f |gL
. Making use of the notation in the proof of Theorem 1.3, grad f is a section of L ⊂ T X×

hence WLgrad f =
√
−1 grad f ; moreover if γ ′ = γ ′L + γ ′L⊥ is the unique decomposition according to

T X× = L⊕L⊥ then WLγ ′ =WLγ ′L +WLγ ′L⊥ =
√
−1γ ′L + γ ′L⊥ ∈

√
−1 L⊕L⊥. Consequently

gL(γ
′ , n) =

gL(γ
′ , grad f )
|grad f |gL

=
gC(WLγ ′ , WLgrad f )
|WLgrad f |gC

=
−g(γ ′L , grad f )
−|grad f |g

=
g(γ ′ , grad f )
|grad f |g

.

Moreover

dg(γ ′ , grad f )γ ′ =−dgL(γ
′ , grad f )γ ′ =−gL(∇

L
γ ′γ
′ , grad f )−gL(γ

′ , ∇
L
γ ′grad f ) =−Hess f (γ

′,γ ′)

where Hess f (x) = (∂ 2
i j f (x))i, j=1,...,4. Consider a non-critical point q ∈ X× and its open neighbourhood

Vq ⊂ X× \C f i.e. Vq surely does not contain any critical point of f . Then there exists a local coordinate
system (Vq, t,x1,x2,x3) centered at q i.e. t(q) = xi(q) = 0 such that f |Vq(t,x1,x2,x3) = t implying
Hess f |Vq = 0. Therefore dg(γ ′ , grad f )γ ′ = γ ′(g(γ ′ , grad f )) = 0 along Vq i.e. if the photon path γ

does not intersect any critical point then g(γ ′ , grad f ) is a non-zero constant along the whole γ . In this
situation we end up with

1+ z =
|grad f (R)|g
|grad f (E)|g

.

As we emphasized throughout this note, the level surfaces f−1(t) ⊂ X× attain critical points more
and more frequently as −∞← t. Consequently, the earlier space-time event E ∈ f−1(tE) is “more
likely” to be in the vicinity of a critical point pE ∈ f−1(tE) satisfying grad f (pE) = 0 than the later
event R ∈ f−1(tR) with tR > tE . Therefore, acknowledging that a more careful statistical analysis is
surely required, it is reasonable that “typically” |grad f (E)|g ≈ 0 meanwhile |grad f (R)|g ≈ 1 implying
that the gradient ratio on the right hand side of 1+ z, when calculated for the “typical” early photon
emitting event E ∈ X× \C f and late photon receiving event R ∈ X× \C f , is large resulting in z > 0. By
the same reasoning this ratio even seems to be capable to be unbounded hence “typically” even z > 2
seems reasonable which is exclusively characteristical for cosmological (i.e., not gravitational caused
by a compact body, etc.) redshift. A cosmological context here is not surprising since our solutions
(X×,gL) are smooth while it has been known for a long time that in general relativity the gravitational
field of an isolated massive object cannot be regular everywhere [16, 17].

Finally, one may raise the question about the place or role or relevance of this topology changing
phenomenon within the full theory of (classical or even quantum) general relativity. Regarding this it
is worth calling attention again that the Riemannian solutions (X×,g) underlying our smooth vacuum
space-times (X×,gL) are not only Ricci-flat but even self-dual (see Theorem 1.2 here). Consequently
they are gravitational instantons and their appearance here looks reasonable for they are expected to
generate these topology changes as tunnelings at the semi-classical (i.e. the leading term of quantum
corrections) level. At first sight the whole picture presented here strongly resembles the structure of
the vacuum sector of a non-Abelian gauge theory in temporal gauge over Minkowski space: in analogy
with the present situation instantons of the Euclidean Yang–Mills theory over the Euclidean flat space
execute semi-classical tunnelings between topologically (hence classically) separated classical vacua
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along space-like submanifolds in the original Minkowskian Yang–Mills theory over the Minkowskian
flat space.

However there is a subtle difference between the two tunneling processes which is probably worth
recording here. In case of Yang–Mills theory all the aforementioned topologically different states
connected by (anti)instanton effects are vacua hence the corresponding tunneling mechanism is time-
symmetric which means that both instantons and antiinstantons occur and play a role. On the contrary
in our gravitational situation the family {Σt}−∞<t50 of topologically different spatial submanifolds with
their corresponding Riemannian metrics inherited from their embeddings into (X×,gL) and connected
by instanton effects are not flat; rather as t→ 0 this family looks like a sequence descending from quite
complicated, topologically non-trivial highly curved compact 3-spaces (Σt’s with t� 0, the bottom part
of Figure 6) towards topologically trivial 3-spheres carrying metrics already close to the standard round
metric (Σt’s with t / 0, the top of Figure 6). Therefore, as moving forwards in time the whole process
seems to describe a sort of monotonic decay mechanism converting the gravitational degrees of freedom
into other ones (like Yang–Mills fields, fermions, etc.) before reaching the gravitational vacuum (in our
spatially compact situation the standard round S3 plays the role of the flat geometry i.e. the gravitational
vacuum). This process therefore seems to be not reversible and having a creased end introduces a sort of
time direction along the cosmological space-time (X×,gL). Consequently the gravitational instantons
provided by the spaces (X×,g) are asymmetric unlike the gravitational instanton-antiinstanton pairs
considered in [58, Section III].

Are then (X×,g)’s physically relevant? Based on cluster decomposition Witten argues that a non-
perturbative field is still relevant in a quantum theory if it is continuously deformable to the vacuum in
an appropriate configuration space [58, Section III]. Consider the case of traditional general relativity
when space-time is topologically Rm and in particular the vacuum is the flat Rm. Then by this argument
gravitational instantons restricted to be exotic m-spheres if m 6= 4. However if m = 4 we cannot forget
about exotic R4’s. In this exceptional situation we can follow Gompf [28, Chapter 9.4] and consider
the configuration space R∼ of compact equivalence classes of smooth structures on R4. The set R∼
can be given the structure of a connected metrizable topological space with countable basis in which
therefore the vacuum i.e. the standard R4 is represented by a point while our gravitational instanton R4

by another point. Consequently within R∼ the gravitational instanton considered here is deformable
into the vacuum. However the relevance of this purely formal observation is not clear neither from a
physical nor a mathematical viewpoint.
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[22] Gasqui, J.: Sur la résolubilité locale des équations d’Einstein, Compositio Math. 47, 43-69
(1982);



Solvability of the vacuum Einstein equation in four dimensions 30

[23] Ge, B., Jiang, J., Wang, B., Zhang, H., Zhong, Z.: Strong cosmic censorship for the massless
Dirac field in the Reissner-Nordstrom–de Sitter spacetime, Journ. High Energy Phys., 2019:123
(2019);

[24] Gibbons, W.: Topology change in classical and quantum gravity, preprint, arXiv: 1110.0611

[gr-qc], 27 pp (1992);

[25] Gompf, R.E.: Three exotic R4’s and other anomalies, Journ. Diff. Geom. 18, 317-328 (1983);

[26] Gompf, R.E.: An infinite set of exotic R4’s, Journ. Diff. Geom. 21, 283-300 (1985);

[27] Gompf, R.E.: An exotic menagerie, Journ. Diff. Geom. 37, 199-223 (1993);

[28] Gompf, R.E., Stipsicz, A.I.: 4-manifolds and Kirby calculus, GSM 20, Amer. Math. Soc. Provi-
dence, Rhode Island (1999);

[29] Gordon, W.B.: An analytical condition for the completeness of Riemannian manifolds, Proc.
Amer. Math. Soc. 37, 221-225 (1973);

[30] Griffiths, Ph.A.: The extension problem in complex analysis II; Embeddings with positive normal
bundle, Amer. Journ. Math. 88, 366-446 (1966);

[31] Hitchin, N.J.: On compact four-dimensional Einstein-manifolds, Journ. Diff. Geom. 9, 435-442
(1974);

[32] Hitchin, N.J.: Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85, 465-476 (1979);

[33] Hitchin, N.J.: Complex manifolds and Einstein’s equations, in: Twistor geometry and non-linear
systems, Lecture Notes in Math. 970, 73-99 (1980);

[34] Hod, S.: Strong cosmic censorship in charged black-hole spacetimes: As strong as ever, Nucl.
Phys. B941, 636-645 (2019);

[35] Horowitz, G.T.: Topology change in classical and quantum gravity, Class. Quant. Grav. 8, 587-
602 (1991);

[36] Huggett, S.A., Todd, K.P.: An introduction to twistor theory, Cambridge Univ. Press, Cambridge
(1994);

[37] Isenberg, J.: On strong cosmic censorship, in: Surveys in Differential Geometry 20, 17-36 (2015);

[38] Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations,
Comm. Math. Phys. 231, 529-568 (2002);

[39] LeBrun, C.: Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer.
Math. Soc. 278, 209-231 (1983);

[40] Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds, Ann. Math. 76,
531-540 (1962);

[41] Luna, R., Zilhão, M., Cardoso, V., Costa, J.L., Natário, J.: Strong cosmic censorship: The nonlin-
ear story, Phys. Rev. D99, 064014 (2019);



Solvability of the vacuum Einstein equation in four dimensions 31

[42] Mazzeo, R., Pollack, D., Uhlenbeck, K.K.: Connected sum constructions for constant scalar
curvature metrics, Topol. Methods in Nonlinear Analysis, 6, 207-233 (1995);

[43] McMillen, D.R.: Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67,
510-514 (1961);

[44] Milnor, J.: Morse theory, Ann. Math. Studies 51, Princeton Univ. Press, Princeton (1973);

[45] Mo, Y., Tian, Y., Wang, B., Zhang, H., Zhong, Z.: Strong cosmic censorship for the massless
charged scalar field in the Reissner-Nordstrom–de Sitter spacetime, Phys. Rev. D98, 124025
(2018);

[46] Newman, R.P.A.C., Clark, C.J.S.: An R4 spacetime with a Cauchy surface which is not R3, Class.
Quant. Grav. 4, 53-60 (1987);

[47] Penrose, R.: Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7, 31-52 (1976);

[48] Penrose, R.: The question of cosmic censorship, Journ. Astrophys. Astronomy 20, 233-248
(1999);

[49] Singer, I.M., Thorpe, J.A.: The curvature of 4-dimensional Einstein spaces, in: Global analysis,
Papers in honour of K. Kodaira, 355-365, Princeton Univ. Press, Princeton (1969);

[50] Taubes, C.H.: Gauge theory on asymptotically periodic 4-manifolds, Journ. Diff. Geom. 25, 363-
430 (1987);

[51] Taubes, C.H.: Existence of anti-self-dual conformal structures, Journ. Diff. Geom. 36, 163-253
(1992);

[52] Thorpe, J.A.: Some remarks on the Gauss–Bonnet integral, Journ. Math. Mec. 18, 779-786
(1969);

[53] Uhlenbeck, K.K.: Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83, 31-42
(1982);

[54] Wald, R.M.: General relativity, The University of Chicago Press, Chicago (1984);

[55] Wallace, A. H.: Modifications and cobounding manifolds, Canada Journ. Math., 12, 503-528
(1960);

[56] Ward, R.S., Wells Jr, R.O.: Twistor geometry and field theory, Cambridge Univ. Press, Cambridge
(1990);

[57] Whitehead, J.H.C.: A certain open manifold whose group is unity, Quarterly Journ. Math., 6,
268-279 (1935);

[58] Witten, E.: Global gravitational anomalies, Comm. Math. Phys. 100, 197-229 (1985).


